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Extreme within-lake conditions have the potential to exert detrimental effects
on lakes. Here we use satellite observations to investigate how the occurrence
of multiple types of extremes, notably algal blooms, lake heatwaves, and low
lake levels, have varied in 2724 lakes since the 1980s. Our study, which focuses
on bloom-affected lakes, suggests that 75% of studied lakes have experienced a
concurrent increase in at least two of the extremes considered (27% defined as
having a notable increase), with 25% experiencing an increase in frequency of
all three extremes (5% had a notable increase). The greatest increases in the
frequency of these extremes were found in regions that have experienced
increases in agricultural fertilizer use, lake warming, and a decline in water
availability. As extremes in lakes become more common, understanding their
impacts must be a primary focus of future studies and they must be carefully
considered in future risk assessments.

The occurrence of extreme events in lakes is becoming more apparent,
with recent evidence suggesting an increase in, among others, the
frequency of algal blooms'”, lake heatwaves* and anomalously low
lake levels®®. These within-lake extremes can have a dramatic influence
on the functioning of aquatic ecosystems as well as result in numerous
negative impacts on the many ecosystem services and benefits that
they provide to society. For example, algal blooms, which have
increased in many, but not all*’, studied lakes in recent decades, are
among some of the main causes of poor water quality and can lead to
serious health issues'*". Lake heatwaves, defined as periods of extreme
warm lake surface temperature, can expose aquatic organisms to
oftentimes lethal conditions, leading to a risk of mass mortality
events'?”. Moreover, while natural fluctuations in lake level and sur-
face extent are important for aquatic ecosystems, extreme water level
declines not only reduce access to freshwater for local communities
which depend on them, but can also affect multiple physical, chemical,
and biological lake processes'*".

Previous studies that have investigated extreme events in lakes
have typically focused on the occurrence of univariate extremes, such
as lake heatwaves or algal blooms, specifically exploring how their
discrete frequency has changed through time**. However, an

emerging concern for lake ecosystems is the increased occurrence of
bivariate (two) or multivariate (three) extremes, i.e., situations where
the frequency of more than one extreme event are increasing simul-
taneously. The importance of bivariate and multivariate extremes in
lakes is widely acknowledged, particularly given that the abrupt nature
of these events can rapidly push lake ecosystems beyond the limits of
their resilience. Indeed, multivariate extreme events have the potential
to exacerbate negative impacts compared to univariate extremes,
leading to more severe ecologically and socioeconomically damaging
events. Evaluating multivariate extreme events in lakes is thus essential
for quantifying the impact of environmental and climate change on
aquatic ecosystem.

In this study, we provide a global assessment of changes in uni-
variate, bivariate and multivariate extreme events in lakes, namely in
the occurrence of algal blooms, lake heatwaves, and anomalously low
lake levels. To investigate these changes, we compiled data from the
scientific literature, specifically those available from three key data
sources (see Methods for further details): (i) the global bloom dataset
(GBD) of ref. 3, which includes remotely sensed information on the
occurrence of algal blooms in lakes, covering three distinct decadal
periods (1982-1999, 2000-2009, and 2010-2019); (ii) the global lake
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surface water temperature dataset (GLAST) of ref. 16, which offers
daily information on the near-surface temperature of lakes worldwide
during the period of 1981-2020; and (iii) the Global Lake Evaporation
Volume (GLEV) dataset, which comprises historical observations of
global lake surface water extent at a monthly temporal scale’. We
identified 2724 lakes that had information available from the three
datasets described above (see Methods). Using the available data, we
then investigated changes in the occurrence of extreme events in
bloom-affected lakes worldwide and calculated, for each site, the
occurrence of algal blooms, lake heatwaves, and extreme low water
extent (see Methods). Subsequently, we calculated decadal changes in
the occurrence frequency of these extremes between two time periods
of interest, namely the historic (-1980s to 1999) and contemporary
(2010 to 2019) period.

Results

Variations in univariate extreme events

We calculated multi-decadal changes in the occurrence of univariate
extreme events in the 2724 studied lakes (Supplementary Data 1). It is
important to reiterate that in this study we focus solely on bloom-
affected lakes, defined according to ref. 3. as those that have experi-
enced an algal bloom during the historic period. Approximately 90% of
the lakes investigated by ref. 3. do not experience algal blooms. Across
the studied sites, our data suggests that, between the two time periods
of interest, the frequency of algal blooms have increased (> 0%) in 56%
of lakes, by 2.7+7.9% on average (Fig. 1). The summary statistics
quoted here, and elsewhere in the manuscript, represent the mean and
standard deviation across the studied lakes. Between the two time
periods of interest, a Kolmogorov-Smirnov (K-S) test suggested that
the change in algal bloom frequency was statistically significant
(Supplementary Fig. 1). Moreover, in this study, we classified the stu-
died lakes as experiencing a notable (or considerable) increase or
decrease in the occurrence of algal blooms if their decadal change in
frequency surpassed a 0.4 increase in relative frequency (that closely
aligned with a statistically significant change (see Methods)). We cal-
culate that 40% of the studied lakes experienced a notable increase in
algal blooms frequency and 26% experienced a notable decrease.
Based on this classification, one could thus estimate that 34% of lakes
have not experienced a notable increase/decrease and could be cate-
gorized as stable. Our analysis also suggests that multi-decadal
alterations in the frequency of algal blooms can be considerably
greater in some lakes or in specific regions (Fig. 1).

By ranking the observed alterations in algal bloom frequency
among the studied lakes, we find that approximately one-third (num-
ber of lakes [n] = 37) of the top 100 (i.e., the 100 lakes with the highest
increase in bloom frequency) are situated in India and approximately
one-quarter (n =28) are in China. In these two countries the frequency
of algal blooms has increased on average, i.e., across all lakes, by
16.1+14.0% (n=145) and 7.1+9.2% (n=404), respectively (Supple-
mentary Table 1). These results largely align with our expectations
given documented increases in agricultural fertilizer consumption in
both countries in recent decades (Supplementary Fig. 2; Supplemen-
tary Table 2). Specifically, one of the dominant drivers of change in the
frequency of algal blooms in lakes is nutrient enrichment, primarily via
Nitrogen (N) and Phosphorus (P) from agricultural fertilizer. In India, N
and P fertilizer use has increased by 52 kg ha™ and 24 kg ha™, respec-
tively, between the historic and contemporary period. In China, the
increase is even higher, with N and P fertilizer use having increased by
69 kg ha™ and 44 kg ha™, respectively. The increase in fertilizer use in
these countries is among the highest in the world. More broadly, N and
P fertilizer use has increased in Asia, on average, by 39 kgha™ and
18kgha™, respectively, during the study period (Supplementary
Table 2). This has likely contributed to the 8.2 +11.2% average increase
in algal bloom frequency in Asia since the 1980s. Moreover, the
increase in algal bloom frequency is almost an order of magnitude

greater than that estimated in any other continent (Supplementary
Table 4). Specifically, in Europe, where nearly one-quarter of the stu-
died lakes are located (n=1040), the average change in algal bloom
frequency is 1.0 + 6.1% since the 1980s, which could be the result of a
documented decrease in N and P fertilizer use of -7 kg ha™ and -16 kg
ha™, respectively, across the continent during the same period (Sup-
plementary Fig. 3). Other factors, such as an increase in surface water
temperature (see below), likely contributed to the marginal average
increase in algal bloom frequency in Europe despite the overall decline
in the application of N and P fertilizer (Fig. 1). It is also important to
note that even when external loading of nutrients have declined,
internal loading from lake sediments may also lead to more frequent
algal blooms; this could also explain the marginal increase in algal
bloom frequency in Europe'.

Regarding the frequency of lake heatwaves, our analysis suggests
that across the 2724 studied sites, their frequency has increased (i.e., >
0%) in the vast majority (92%) of lakes, by 4.7 + 3.8% on average (Fig. 1).
However, we also calculate that only 46% of the studied lakes experi-
enced a notable increase (i.e., where the calculated annual changes
were statistically significant; see Methods), whereas 1% experienced a
notable decrease. The remaining lakes (i.e., 53%) could be considered
stable. A K-S test indicated that changes in the statistical distribution in
the frequency of lake heatwaves between the two periods of interest
were significant (Supplementary Fig. 1). The water bodies which have
experienced the greatest increase include, among others, those situ-
ated in Europe (Supplementary Table 1; Supplementary Table 4). On
average, lakes in Europe have experienced a 6.5 + 3.6% increase in the
frequency of lake heatwaves. This is considerably higher than the
estimated increase for lakes in Asia (3.1+3.2%) and higher than esti-
mated for lakes in both North and South America (3.3 £3.2% [n =501]
and 4.7 + 4.2% [n=270], respectively). The substantial increase in lake
heatwave frequency in Europe is primarily a result of rapid lake
warming across the continent during the historic to contemporary
period”®*. Among the 2724 studied lakes, we estimate a Spearman’s
rank correlation coefficient of 0.35 between the change in mean lake
surface temperature and the frequency of lake heatwaves. On average,
we estimate that lakes in Europe have warmed by 0.43 + 0.26 °C during
the study period, which is higher than the estimated change for lakes in
Asia (0.36 + 0.21 °C) and greater than the estimated increase for lakes
in North (0.25+ 0.19 °C) and South America (0.30 £ 0.14 °C). It is also
important to consider the role that other factors, besides mean surface
warming, play in the occurrence frequency of lake heatwaves. Speci-
fically, the climatological seasonal cycle of lake surface temperature is
a key factor influencing lake heatwave alterations within a warming
world*. Notably, lakes that experience low seasonal temperature
variability (e.g., tropical lakes) can experience more frequent lake
heatwaves under relatively minimal warming, as the lake heatwave
threshold can be more easily exceeded. Our analysis supports this
assertion. For example, African lakes (n=99), which typically experi-
ence minimal seasonal temperature variability”, have experienced a
5.3+3.6% increase in the frequency of lake heatwaves since the 1980s,
one of the highest in our study, despite only warming by 0.30 + 0.15 °C,
the second lowest in our study (Supplementary Table 1; Supplemen-
tary Table 4).

In terms of low water level extremes, our data suggests that,
between the two time periods of interest, their occurrence frequency
has increased (>0%) in 50% of the 2724 studied lakes, by 0.7 £13.6% on
average (Fig. 1). Our analysis indicated that these changes likely did not
arise due to random variability and that the empirical distribution
functions of low water extremes from the two epochs differed sig-
nificantly from each other (Supplementary Fig. 1). We also calculate
that 18% of the studied lakes experienced a notable increase (i.e., where
the calculated annual changes were statistically significant; see Meth-
ods) and 20% experienced a notable decrease. In turn, 62% of lakes
could be considered ‘stable’. For those lakes that have experienced an
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Fig. 1| Change in the occurrence frequency of univariate extreme events

in lakes. Shown are the estimated changes in the frequency of (a) lake heatwaves,
(b) algal blooms, and (c) anomalously low water extent in 2724 globally distributed
lakes between the historic (-1980s to 1999) and contemporary (2010 to 2019)

period. Negative values suggest that the frequency of a specific extreme event has
decreased during the study period. Data are aggregated into 1° x 1° grid cells.
Source data are provided as a Source Data file.
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increase in the frequency of this extreme event, we calculate an aver-
age increase of 11.7 + 8.8%. Our data suggest that approximately one-
quarter of the top 100 ranked lakes (i.e., in terms of the change in low
water extremes) are situated in the United States. However, if we
consider all studied lakes from the United States (n = 328), the average
change in the frequency of low water extremes is relatively small (=
0.11 +15.5%). Our study also highlights regions that have experienced a
considerable increase in low water extremes, including southern
Australia, northern China, and central Asia, as reported in previous
studies’. An increase in the frequency of low water extremes in lakes is
primarily influenced by changes in mean surface extent between the
historic and contemporary period. Indeed, among the 2724 studied
lakes, we estimate a Spearman’s rank correlation coefficient of -0.81
between the percent change in mean lake water extent and the fre-
quency of low water extremes. Thus, lakes that experience the greatest
relative decline in mean surface extent also typically experience the
greatest increase in the frequency of low water extremes. The primary
factors that influence mean water extent and, in turn, the frequency of
low water extremes in lakes include changes in flow regime (i.e.,
streamflow) that are linked to global climate change, the volume of
water withdrawn for agricultural and domestic purposes, and the
volume of water lost via evaporation, all of which have changed in
recent decades”**** (Supplementary Fig. 3). The two dominant drivers
of change in the occurrence of low water extremes include streamflow
and water use. Across the studied sites, we observe that positive
changes in low water extremes are associated with larger decrease of
streamflow and larger increase of water use (Supplementary Fig. 4).
Such patterns are likely to persist in the future in many regions in the
context of population growth and the enhancement of agricultural and
atmospheric water demands®. In addition, the volume of water lost via
evaporation can influence the occurrence of low water extremes.
However, from a volumetric perspective, lake evaporation changes are
much smaller than the changes in streamflow and water use and is not
a dominant factor for explaining changes in low water extremes in the
studied lakes.

It is important to acknowledge that some lakes within our dataset
exhibited marginal changes in extreme event occurrences, reported
above as stable. These changes might fall within the range of uncer-
tainties inherent to observational data. These uncertainties can
arise from various sources, including measurement error and data
limitations. As such, the interpretation of these marginal changes
requires careful consideration. We also emphasize the need to be
cautious when interpreting marginal changes, as they may not always
carry ecological or practical significance. In our statistical analyses, we
have incorporated measures of statistical significance to offer an
assessment of the reported changes in extreme event occurrences.
However, we cannot be certain that the statistical definition of extreme
events in our studied lakes lead to ecological or socioeconomic
impact.

Decadal alterations in bivariate and multivariate extreme events
Alterations in bivariate extreme events are considered as situations
where the frequency of more than one of the univariate extremes are
increasing simultaneously within a lake. Ultimately, here we investi-
gate, for each pair of extreme events, how their frequency has changed
concurrently between the historic and contemporary period. Specifi-
cally, we investigate what percentage of lakes with available data have
experienced parallel changes in the frequency of (i) algal blooms and
lake heatwaves, (ii) lake heatwaves and low water extremes, and (iii)
algal blooms and low water extremes. Overall, our study suggests that
approximately three quarters of the studied lakes (n =2035; 75%) have
experienced a simultaneous increase (27% experiencing a notable
increase) in at least one of these bivariate extreme events during the
study period, with some (see below) experiencing an increase in all
three extremes.

Our analysis suggests that 51% of the studied lakes (n =1398) have
experienced a concurrent increase (20% experiencing a notable
increase and 0% a notable decrease) in the frequency of algal blooms
and lake heatwaves (Fig. 2). An increase in this bivariate extreme can
occur when the drivers of the univariate extremes (i.e., agricultural
fertilizer consumption and mean lake surface temperature) are simul-
taneously increasing. Given that most of the studied lakes have
experienced an increase in the frequency of lake heatwaves (see
above), an increase in the occurrence of this specific bivariate extreme
will be influenced primarily by changes in the frequency of algal
blooms. Among the studied sites, our data suggest that lakes in Asia,
notably those situated in India and China, have experienced the most
consistent simultaneous increase in the frequency of algal blooms and
lake heatwaves (Fig. 2; Supplementary Table 5; Supplementary
Table 6). Notably, we calculate that 95% and 69% of lakes with available
data in India and China, respectively, have experienced an increase in
the frequency of this bivariate extreme. Furthermore, 75% of the stu-
died lakes in Asia experienced a simultaneous increase in the frequency
of algal blooms and lake heatwaves, which is considerably higher than
in any other continent (e.g., 37% of studied lakes in Europe).

Regarding the second bivariate extreme of interest, we estimate
that 46% (n=1266) of the studied lakes have experienced a simulta-
neous increase (9.5% experiencing a notable increase and 0% a notable
decrease) in the frequency of lake heatwaves and low water extremes
(Fig. 2). Among the studied sites, 55% of those situated in Europe have
experienced a simultaneous increase in the frequency of lake heat-
waves and low water extremes since the 1980s (Supplementary
Table 6). Specifically, the greatest percentage of lakes within a country
that experienced an increase in this bivariate extreme were 66% in
Finland (n=365) and 65% in Sweden (n=101); note that we restricted
our analysis to countries where at least 50 lakes had available data
(Supplementary Table 5).

Our data suggests that the third bivariate extreme of interest,
notably a joint increase in the frequency of algal blooms and low water
extremes, changed less consistently across the studied lakes com-
pared to the other bivariate extremes described above. Most notably,
27% of the studied lakes experienced an increase (8% with a notable
increase and 3.8% with a notable decrease) in the frequency of this
bivariate extreme event (Fig. 2). However, the number of lakes within a
specific country or continent that experienced a change can be con-
siderably higher. For example, 42% of the studied lakes in Asia
experienced an increase in this bivariate extreme event with the stu-
died lakes in India (54%) experiencing the most pronounced increase
(Supplementary Table 5; Supplementary Table 6).

As well as experiencing an increase in the frequency of bivariate
extreme events, our analysis suggests that a proportion of the studied
lakes have also experienced an increase in the occurrence of multi-
variate extremes. We define an increase in multivariate extreme events
as situations where the frequency of the three univariate extremes
considered have increased simultaneously within a lake since the
1980s. Specifically, using all available information for the lakes of
interest, we calculate how the frequency of multivariate extremes have
changed between the historic and contemporary period. We calculate
that approximately one-quarter of the studied lakes (n = 687; 25%) have
experienced a simultaneous increase (5% with a notable increase and
0% with a notable decrease) in all three univariate extremes since the
1980s (Fig. 3). However, across some continents (e.g., Asia; 37%) and
notably within some countries, the percentage of studied lakes that
have experienced an increase in the frequency of multivariate
extremes is much higher (Supplementary Table 6). For example, in
India approximately half (52%) of the studied lakes experienced an
increase in the occurrence frequency of multivariate extreme events
(Supplementary Table 5). This is particularly concerning given that
India is now one of the most populated countries in the world, and that
its growing population is being subjected to more extreme conditions
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Fig. 2 | Change in the occurrence frequency of bivariate extreme events changes in the occurrence frequency of (a) algal blooms and lake heatwaves, (b)
in lakes. Shown are the estimated changes in the frequency of bivariate extremes,  algal blooms and low water extremes, and (c) lake heatwaves and low water
considered as situations where the frequency of more than one of the univariate extremes. Data are aggregated into 1° x 1° grid cells. Source data are provided as a
extremes have increased simultaneously within a lake between the historic (-1980s
to 1999) and contemporary (2010 to 2019) period. We calculate concurrent

Source Data file.
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Fig. 3 | Change in the occurrence frequency of multivariate extreme events in
global lakes. Shown are changes in the frequency of multivariate extreme events,
which we define as situations where the frequency of the three extremes con-
sidered (algal blooms, lake heatwaves, and anomalously low water extent) have
increased simultaneously since the 1980s. Different colors, as shown in the legend,
can represent a change in frequency of either an individual or multiple extreme
events. For example, solid colors represent a positive change for a specific

covariate, whereas transparent colors represent a situation where the frequency of
specific pairs of covariates have increased. The center piece of the legend (i.e., black
color) represents a situation where all covariates follow a positive change. A gray

colour suggests that all covariates experienced a negative change in terms of the

occurrence frequency of each extreme. Data are aggregated into 1° x 1° grid cells.
Source data are provided as a Source Data file.

regarding one of its important sources of freshwater. Given historic
increases in agricultural fertilizer use, climatic warming and freshwater
withdrawal, India has experienced a perfect storm of conditions that
has led to an increase in the frequency of multivariate extreme events
in lakes.

Discussion

Individually, each of the extreme events described in this study can
have considerable, and diverse, impacts on lake ecosystems, as well as
more broadly. For example, while some littoral communities are
adapted to periodic drying and flooding and even rely on these per-
turbations to support life history stages*, anomalous littoral exposure
that occurs during extreme low water events can degrade nearshore
habitat structure, alter biotic community composition, and impact
critical lake ecological functions'*?, Critically, changes in water level
can directly affect the availability of habitat for various organisms,
particularly those dependent on shoreline areas for breeding, fora-
ging, or shelter. In extreme cases, dramatic shifts in water levels can
even result in the loss of critical habitats and the displacement of
sensitive species. A reduction in water level can also increase the
amount of sunlight reaching deeper waters, leading to a change in
dominant primary producers with cascading effects at higher trophic
levels®. Furthermore, dramatic declines in lake level and surface water
extent can influence human activity, with already vulnerable commu-
nities having to travel greater distances to reach freshwater®. It can
also influence the local climate®* as well as greenhouse gas emissions
from lakes®™**. Regarding lake heatwaves, recent studies have sug-
gested that an increase in their frequency can have a detrimental
influence on aquatic organisms by exposing them to unprecedented
temperatures, which can be particularly fatal for species that live in
regions close to their critical thermal maximum'>">*, Specifically, when
temperatures more frequently exceed critical levels, organism traits
such as embryonic development, growth, or heat tolerance can be
severely affected. Extreme temperatures have even been described as
potentially having a disproportionate impact on species relative to
gradual, long-term temperature change. An increase in surface water
temperature during a lake heatwave can also result in other critical
changes, such as a decline in dissolved oxygen concentrations at the

lake surface due to reduced gas solubility and at depth due to stronger
and longer lasting thermal stratification®”®, Finally, algal blooms can
have a devastating impact on lake ecosystems. For example, blooms of
algae in freshwaters can produce potent toxins, potentially making
water bodies unsafe for recreational activities and threatening the
health of humans, pets, or livestock that use affected waters. These
blooms are often produced by cyanobacteria which can cause a range
of health problems, from minor skin irritations to severe stomach
upsets, and can even lead to death®”. However, even if algal blooms are
non-toxic, they can negatively impact aquatic life by, for example,
irritating or even clogging fish gills causing suffocation and blocking
out sunlight from reaching deeper water. The latter can reduce pho-
tosynthesis, ultimately leading to a decrease in the concentration of
dissolved oxygen available to support aquatic life*. In addition, when
algae eventually die and decompose, they consume oxygen in the
water, causing dead zones that can be inhospitable for many organ-
isms. The detrimental effects of algal blooms can ripple throughout
the ecosystem, impacting not only water quality but also the avail-
ability of resources for other species, such as zooplankton and fish.
Whilst the potential impact of univariate extreme events on lake
ecosystems are troubling, the impact of more frequent bivariate or
multivariate extremes could arguably be much greater. Indeed,
simultaneous changes in lake heatwaves, algal blooms, and lake water
extent could lead to a complex interplay of environmental factors that
significantly influence aquatic ecosystems. Most notably, the syner-
gistic effects of these changes can create a cascade of ecological
consequences that amplify their individual impacts. For instance, ele-
vated temperatures not only directly encourage algal blooms but also
reduce the oxygen-carrying capacity of water, exacerbating the nega-
tive effects of these blooms on aquatic life. Similarly, fluctuating water
levels can interact with temperature changes to alter the timing and
extent of algal blooms, further complicating the ecological dynamics.
This interconnectedness underscores the need for a holistic and
multidisciplinary approach to studying and managing lake ecosys-
tems. Understanding the complex relationships between these factors
and their combined effects is essential for effective conservation and
mitigation strategies. Addressing the simultaneous changes in lake
temperature, algal blooms, and water level is a critical step in
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preserving the delicate balance of these ecosystems and ensuring their
resilience in the face of ongoing environmental challenges.

An increase in the frequency of bivariate and multivariate
extremes in lakes can be driven by several factors. For example, the
frequency of concurrent algal blooms and lake heatwaves can increase
due to changes in external drivers (e.g., fertilizer use and climatic
warming), or they can also arise when the driver of one extreme, such
as anomalously hot surface water temperature causing a lake heat-
wave, also cause other relevant changes, such as an algal bloom due to
the temperature dependence of algal growth***2. However, it is also
important to note that a synchronous increase in the frequency of the
univariate extreme events may not always occur, as one extreme could,
in fact, suppress the occurrence of another. For example, previous
studies have shown that higher lake surface temperatures that can lead
to a lake heatwave often also result in stronger thermal stratification
and, in turn, a reduced supply of nutrient rich bottom waters to the
near-surface layer, leading to nutrient limitation at the surface and thus
reduced phytoplankton growth*>*.

In terms of an increase in the occurrence frequency of lake heat-
waves and low water extremes; these will largely occur in lakes where
the average surface water temperature has increased considerably
above the climatology and where the mean surface water extent has
decreased between the historic and contemporary period. This
coherent change could occur, for example, when surface water tem-
perature increases within a warming world and, at the same time, water
is withdrawn from a lake for agricultural purposes. However, surface
water temperature and lake water extent are also closely related
where, for example, a change in one variable could instigate a change
in the other. For example, lake evaporation, which is an important
driver of lake level and surface water extent, can increase during per-
iods of high surface water temperature, resulting in positive feedback
between the univariate extremes. In contrast, higher evaporation rates
and thus a short-term decline in surface extent could lead to cooler
lake surface temperatures' and thus a subsequent decline in the fre-
quency of lake heatwaves. Indeed, the relationship between lake
heatwaves and low water extremes is complex and one should not
expect a direct relationship across lakes worldwide, particularly given
the influence of other external factors (e.g., precipitation, river inflow,
groundwater flux, withdrawal) on the lake water budget.

A simultaneous increase in the frequency of algal blooms and low
water extremes will most likely be influenced by a concurrent increase
in the external factors that contribute to their individual occurrences.
However, some studies have suggested that these lake properties are
also related, e.g., a decrease in surface water extent can lead to an
increased occurrence of algal blooms. Most notably, drought condi-
tions, and a drawdown in lake level and surface extent, can result in an
increase in retention time and a subsequent relative increase in water
column nutrient concentrations, which can lead to algal blooms***¢*’,
as well as promote nutrient resuspension from the sediments'. In
contrast, during periods of heavy precipitation, where a sudden pulse
of water can flow into a lake, influent water can also increase the
amount of nutrients entering the system, subsequently leading to algal
blooms"*8, Often high summer rainfall events can transport a large
proportion of the annual load and result in exceptional blooms.
However, there is also evidence suggesting that nutrient concentra-
tions in lakes could be reduced through greater flushing due to pre-
cipitation, leading to less algal blooms*.

We understand relatively little about the impact of multivariate
extremes, particularly in terms of their knock-on effects on the phy-
sical, biological, and chemical environment of lakes. Indeed, it is
challenging to anticipate the precise effects due to the interactions
that occur within a water body and how these differ globally. The
complex interplay of selective pressures due to multivariate extremes
makes emergent effects on lake ecosystems difficult to predict and
underlines the need for empirical data and detailed modeling

approaches that can accurately capture such changes, whether it be via
process-based modeling, mesocosm experiments, or large-scale meta-
analyses. In addition, studies investigating additive, antagonistic and
synergistic effects are critical to fill this knowledge gap*’~*'. Under-
standing how various extreme factors interact and influence each
other is critical for forecasting and early warning systems. Advanced
modeling approaches, informed by real-time data and artificial intel-
ligence, can enhance our ability to anticipate and respond to extreme
events. Overall, the effects of multivariate extremes are likely to cas-
cade through whole ecosystems, but we currently lack critical knowl-
edge of the direction and magnitude of these effects. It is also
important to acknowledge that we do not currently know which of the
impacts described above will dominate as multivariate extreme events
become more frequent. Certain types of bi- or multi-variate extremes
could have opposite impacts on lake ecosystems, such as low water
levels and algal blooms, respectively, increasing or reducing light
availability in deeper water. Other bivariate extremes could work
synergistically to have an even greater detrimental impact, such as lake
heatwaves and algal blooms, leading to widespread deoxygenation.
These potential impacts should be a primary focus of future work. It is
also imperative that we investigate the spatial-temporal relationships
between the extremes and, when data becomes available, delve into
the underlying drivers of concurrent increases in different extremes as
well as the occurrence of compounding events, where two or more
extremes occur simultaneously or sequentially as well as their
drivers’>™,

An increase in the frequency of bivariate and multivariate extreme
events in our natural environments are indicative of the intricate web
of challenges posed by climate change and other human-induced
factors. These compound extremes are not just isolated incidents but
rather the manifestation of a changing climate that demands our
utmost attention and concerted efforts in mitigation and adaptation.
One notable concern is the interconnectedness of these extreme
events with broader environmental, societal, and economic systems.
When we examine the repercussions of bivariate and multivariate
extremes, we must not limit our perspective solely to the immediate
ecological impacts. Instead, we should consider their ripple effects
across various domains. For example, a simultaneous occurrence of
prolonged drought could not only devastate local ecosystems but also
threaten water supplies, agricultural production, and human settle-
ments. These cascading effects underscore the urgent need for holis-
tic, cross-disciplinary approaches to address and adapt to these
challenges. Furthermore, bivariate and multivariate extremes highlight
the limitations of traditional risk assessment and management strate-
gies. Conventional risk assessments often focus on single hazards in
isolation, but these compound events demand a shift toward a more
integrative and systemic approach. Incorporating the potential inter-
actions between multiple stressors in our risk assessments can provide
a more accurate picture of the true vulnerabilities of ecosystems,
infrastructure, and communities. In addition, the emergence of
bivariate and multivariate extremes underscores the importance of
anticipatory governance and resilience-building. Instead of reacting to
disasters as they occur, we must proactively invest in adaptive strate-
gies that can withstand and recover from these complex events. This
includes designing resilient infrastructure, implementing sustainable
land-use practices, and fostering community preparedness and
collaboration.

There is increasing appreciation of the influence of extreme
events in lakes and concerns over their effects on aquatic ecosystem
functioning. Of particular concern is that an increased occurrence of
these extremes could amplify the effects of gradual long-term change.
However, most research to date has focused on the impacts of uni-
variate extremes, and their influence on the aquatic ecosystem. Far
fewer assessments of bivariate and multivariate extremes exist. It is
critical that we accelerate knowledge of concurrent physical and
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biogeochemical extreme events in lakes, which is fundamental for
adaptation, planning and future risk assessments. Indeed, whilst
emerging challenges for lake ecosystems are already underway, these
will likely accelerate in the future, resulting in unprecedented and
unpredictable changes to aquatic ecosystems. Improving our under-
standing of the complex impacts of multivariate extreme events in
lakes is urgently needed. The rise in bivariate and multivariate
extremes is not merely a coincidence but a poignant reflection of the
changing dynamics of our planet. It necessitates a paradigm shift in
how we perceive and manage risks, requiring interdisciplinary colla-
boration, anticipatory governance, and cutting-edge scientific
approaches. Only through this comprehensive approach can we hope
to address the multifaceted challenges posed by these complex
extreme events and build a more resilient and sustainable future.

Methods

Study sites

The lakes included in this investigation were initially chosen based on
the availability of lake specific information on the occurrence of algal
blooms, surface water temperature, and lake surface water extent. This
information was extracted from three openly available data sets,
namely the global bloom dataset (GBD), the global lake surface water
temperature dataset (GLAST), and the Global Lake Evaporation
Volume (GLEV) dataset, each of which are described below. While the
information on some of these variables are available for up to 1.4
million lakes worldwide (i.e., in the case of the GLEV dataset), in this
study we only selected lakes where information for all three variables
were available for a specific lake. Additionally, we excluded lakes with
marginal historic extreme occurrence frequency of algal blooms,
particularly those less than the propagated uncertainty from the lim-
ited Landsat-derived algal bloom observations during the 1980s-1999
compared to the 2010s (see below). Overall, 2724 globally distributed
lakes were chosen from these datasets and, in turn, are included in this
investigation (Supplementary Data 1, Supplementary Fig. 5). These
lakes span various latitudes and longitudes (Supplementary Fig. 5c-f),
and their distribution across different climate types closely mirrors
that of global bloom-affected lakes (Supplementary Fig. 5g-h). The
areas of the selected lakes range from 0.16 to 17,444.01km?, with a
median size of 6.96 km2. The number of small, medium, large, and
large lakes accounts for 1.5% (<1km?), 58.4% (1-10km?2), 32.1%
(10-100 km?), and 8.0% (>100 km?2) respectively.

Water body surface area and low water extremes

In this study, we opted to utilize surface water extent data obtained
through remote sensing observations as a basis for our assessment of
changes in lake water availability and their associated extremes. This
choice was driven by practical considerations, primarily centered on
the broader spatial coverage afforded by surface water extent data
compared to water storage information or indeed traditional in-situ
water level measurements. While in-situ measurements provide valu-
able information, they are typically limited to specific monitoring
locations and may not offer a comprehensive view of larger lake sys-
tems or entire regions. Surface water extent data, derived from satel-
lite observations, allow us to encompass substantial lake areas and
capture variations in lake surface extent, which are often indicative of
extreme events such as low water levels. To calculate the surface area
of the studied lakes, and subsequently the frequency of low water
extremes, we analysed information available from the GLEV dataset”.
The GLEV dataset stands as the most high-temporal resolution lake
surface area dataset available for 1.4 million lakes worldwide. In brief,
monthly water surface area time series were reconstructed by ref. 17.
based on a combination of the dynamic Landsat-based global surface
water (GSW) dataset® and the static HydroLAKES shapefiles®. Speci-
fically, for each month and each water body, the water classification
map from the GSW dataset was extracted within the defined boundary

of the HydroLAKES shapefiles. However, as such water classification
maps are frequently contaminated by cloud cover, cloud shadow, and
sensor failure (e.g., Landsat 7 SLC-off data), leading to large data gaps.
Ref. 58. adopted an automatic image enhancement algorithm, which
detects the observable water edge and extends it to the contaminated
area according to the water occurrence image, to create the complete
water surface. The surface area time series at a monthly time step from
1985 to 2019 for each lake was subsequently constructed. Using the
monthly varying surface area time series, we defined periods of low
water extremes in each lake as when the surface water extent
decreased below a monthly varying 10" percentile threshold. In turn,
this approach can be used to identify anomalously low water events at
any time of the year.

To assess the accuracy and reliability of our methodology in
capturing variations in lake surface area, we conducted a compre-
hensive evaluation that involved comparisons with daily in-situ lake
level measurements where available. We validated the monthly water
surface area data using observed water surface elevation from 155 lakes
worldwide (Supplementary Fig. 6; Supplementary Table 7). The
observed elevation data were compiled from multiple water manage-
ment agencies and remote sensing datasets including the Bureau of
Meteorology in Australia (http://www.bom.gov.au/; n=15 lakes), Cen-
tral Water Commission in India (https://cwc.gov.in/; n=8 lakes), US
Army Corps of Engineers*® (n=92 lakes), and DAHITI®® (n =40 lakes).
The median correlation coefficient is 0.76, representing the good
performance of our surface area dataset in representing water
dynamics. In addition, we validated the calculated extreme occurrence
using the observed elevation data. Among the 155 lakes, there are 25
lakes that have complete in-situ records from 1985 to 2019 (Supple-
mentary Fig. 7). Thus, we compared the extreme occurrence changes
(from historic to contemporary period) calculated based on our area
dataset and that calculated based on the observed elevation data.

To explain some of the long-term changes in water level across the
studied lakes, we downloaded global scale data that represented
alterations in (i) the volume of inflowing water to each lake, (ii) changes
to the volume of water withdrawal from the contributing basin, and (iii)
changes in evaporation volume. Data on the naturalized streamflow
between the historic (1985 to 1999) and contemporary (2010 to 2019)
period were retrieved from the GIoFAS-ERAS dataset with a spatial
resolution of 0.1° (ref. 22). Long-term trend of total water (surface water
and groundwater) withdrawal from 1971 to 2010 were retrieved from
the reconstructed gridded (0.5° spatial resolution) water withdraw
dataset®’. Changes in evaporation volume were extracted from the
GLEV dataset”. To investigate the relationship between the occurrence
of low water extremes and changes in streamflow, water withdrawal
and evaporation volume, we (i) aggregated the lakes into Hydro-
Basin_level03 basins”, (ii) calculated the change in low water level at
basin scale using lake area as the weight; (iii) calculated the relative
changes in streamflow, water use, and lake evaporation between the
two periods (1980s-1999 vs. 2010-2019), and (iv) plot the distribution of
the relative changes in explanatory variables against positive and
negative low water extreme changes (Supplementary Fig. 4).

Lake surface water temperature and lake heatwaves

The GLAST (Global LAke Surface water Temperature) dataset presents
a comprehensive collection of lake surface water temperatures for
92,245 lakes worldwide from 1981 to 2020'. The development of this
dataset involved the integration of satellite remote sensing and
numerical modeling and was conducted in four steps. Firstly, the
examined lakes were determined using permanent water surfaces
within the HydroLAKES boundary. Secondly, Landsat satellite obser-
vations of lake surface water temperature were retrieved for these
selected lakes using a statistical mono-window algorithm®. The high
spatial resolution of Landsat images (60-120 m) allowed for the
effective remote sensing of surface temperature of water located at
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least 3 pixels away from the adjacent land'***, Thirdly, four decades of
Landsat derived lake surface water temperatures were used to tune the
Freshwater Lake model, FLake®*®, to determine optimal model set-
tings at an hourly temporal scale for each water body. FLake was driven
by hourly ERAS5-Land climatic data®®, in line with the instantaneous
nature of Landsat retrievals. The meteorological variables required to
drive FLake include air temperature at 2 m, wind speed at 10 m, surface
solar and thermal radiation, atmospheric pressure, and specific
humidity. Times series of these parameters at each lake center were
extracted from ERAS5-Land at an hourly time step and at a longitude-
latitude grid resolution of 0.1° x 0.1°. Using high spatial resolution
satellite observations as the boundary condition for numerical simu-
lations has proven to be an effective lake-specific calibration approach
in compensating for various sources of biases, including the limita-
tions arising from the use of coarse spatial resolution atmospheric
dataset for small lakes'. Lastly, the FLake model with optimal model
settings for each lake were conducted to simulate daily lake surface
water temperature for each water body. The GLAST dataset has been
validated using in-situ water temperature records across globally dis-
tributed and various types (large/small, deep/shallow, cold/temperate)
of lakes, with an overall median absolute error (MAE) of 1.16 °C at the
daily scale'. Using the daily lake surface water temperatures from the
GLAST dataset, we estimated the frequency of lake heatwaves follow-
ing the methods described by ref. 4. Specifically, using the R package
‘heatwaveR’®’, lake heatwaves were defined as when daily lake surface
temperatures were above a local and seasonally varying 90" percentile
threshold for at least five consecutive days. The frequency of lake
heatwaves was calculated relative to the duration of the open-water
(i.e., ice-free) season in each lake.

To evaluate the ability of the GLAST dataset in capturing lake
heatwave events, we conducted validation and sensitivity analysis.
Instead of relying on remote sensing products (e.g., MODIS LST and
ESA CCI Lakes), which suffer from data gaps and limited representation
of satellite overpass moments, we chose a continuously observed
in situ dataset. In total, we compiled 72,169 daily lake surface water
temperature records from 17 lakes across 8 countries (Supplementary
Table 8). In-situ lake surface temperature observations were compiled
from the National Data Buoy Center (https://www.ndbc.noaa.gov/),
King County government website (https://green2.kingcounty.gov/),
North Temperate Lakes Long Term Ecological Research Network (NTL
LTER) (https://Iter.limnology.wisc.edu/), Swedish Infrastructure for
Ecosystem Science (SITES) (https://data.fieldsites.se/), NERC Environ-
mental Information Data Centre (https://eip.ceh.ac.uk/data), EDP
(Environmental Data Portal, https://envdata.boprc.govt.nz/), Govern-
ment of Ireland (https://data.gov.ie/), as well as from the literature®®,
and personal communications (see Supplementary Table 8). Validation
results revealed that GLAST data performed well in capturing both
annual heatwave frequencies (slope: 0.92, R: 0.93) and decadal chan-
ges (Slope: 0.96, R: 0.94) among the surveyed small or large lakes
(Supplementary Fig. 8).

Additionally, we conducted a sensitivity analysis for all examined
lakes to assess the robustness of decadal lake heatwave frequency
changes between the two focused periods (-1980s-1999 and 2010s),
considering bias in the daily GLAST dataset. Random noises, matching
the biases of daily FLake simulations', were added to the daily simu-
lated LSWT time series dataset for each lake. The bias-added time
series were used to estimate lake heatwave frequency and decadal
changes. The analysis demonstrated consistent heatwave frequency
occurrences and changes between the noise-added and original time
series data (Supplementary Fig. 9). During the historical period, the
linear slope and correlation coefficient (R) were 0.89 and 0.97,
respectively. In the contemporary period, they were 0.81 and 0.96,
respectively. The consistent heatwave frequencies in each period led
to uniform decadal frequency changes (Slope: 0.71, R: 0.91) between
the two periods. Overall, 92% of lakes exhibited the same directional

changes (increase or decrease) in heatwave frequency detected by
both noise-added and original lake surface water temperature data
(Supplementary Fig. 9). This suggests a small impact of temperature
error propagation on the variability of heatwave frequency changes,
ensuring the robustness of the computational results presented in this
study. Furthermore, we conducted sensitivity tests of optimization of
Flake models by excluding partial satellite observations to unveil the
influence of coarse temporal resolution remote sensing data on lake
temperature simulations and, consequently, on the final heatwave
change detections. Our results revealed consistent validation perfor-
mance and frequency changes between the models trained on three
seasons or proportional data and those trained on all available seasons
(Supplementary Fig. 10). Consequently, the reduced data availability
presented a limited impact on the accuracy of the FLake model and the
detection results for heatwave changes.

Algal blooms

The Global Bloom Database (GBD) presents a comprehensive analysis
of global freshwater algal blooms using the complete archive of 2.91
million Landsat satellite images, with 30-m resolution and 16-day revisit
time, from 1982 to 2019°. The database represents a global character-
ization of algal blooms in freshwater lakes. A color-based algorithm was
used to identify algal blooms from each available images, initially
applied to 248,243 lakes with surface areas exceeding 0.1km2. The
selection of these lakes was based on the necessity for valid satellite
observations and their theoretical suitability for phytoplankton
growth, determined specifically by summer mean temperature®. Due to
the prolonged revisit cycle of Landsat and frequent disturbances such
as cloud contamination, detected algal bloom events exhibit a coarse
temporal resolution distribution. Multiple-year statistics were con-
ducted to ensure the validity of detecting decadal changes in bloom
occurrence. Here, bloom occurrence is defined as the ratio between
the number of positive algal bloom area values and the total number of
valid observations. To this end, the GBD includes information on the
bloom occurrence (BO), i.e., the frequency of algal bloom detection,
for three periods (1980-1990s, 2000s, and 2010s) for 21,878 affected
lakes (constituting 8.8% of the initially examined lakes)®. Algal blooms
are considered in this study as extreme events of lake eutrophication,
and we do not categorize events according to their severity.

It is important to acknowledge that our study focused on a subset
of lakes drawn from a specific remotely sensed database’. While our
analysis revealed that over half of our studied lakes exhibited an
increase in algal bloom frequency, we recognize that the prevalence
and dynamics of algal blooms can vary significantly by region. One
notable limitation of our study is the exclusion of some lakes in high-
latitude regions such as Canada, Siberia, and high-mountain Asia,
which are known hotspots for high lake density®. This exclusion was
made due to data availability constraints, notably the overlap of lakes
with available data from the lake algal bloom and lake temperature
databases. As a result, our sample may not capture the full spectrum of
algal bloom dynamics globally. The regional variations in algal bloom
occurrences are indicative of the complex interplay of local environ-
mental factors and human activities, including nutrient loading and
climate patterns. Future research could benefit from incorporating a
more comprehensive dataset to account for these regional disparities
and to provide a more holistic understanding of the factors influencing
algal blooms on a global scale.

Another important consideration in our study is the observation
frequency of satellite imagery, which has evolved over time. Specifi-
cally, the observation frequency was typically lower in the 1980s and
1990s compared to the more recent decade. We acknowledge that
higher observation frequency is more likely to capture extreme events
in a more comprehensive manner. However, we also note that the
frequency of such events, which are defined relative to the total
number of days with available data, should not be considerably
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impacted. A commonly used practice is to extend the observation
period to acquire substantial data from multiple years for calculating
valid average levels. This practice has been commonly used in many
previous studies to support the robustness of change detections based
on remotely sensed data with data gaps®’. Nevertheless, we conducted
a sensitivity analysis to assess whether the difference in observation
frequency between the earlier decades and the recent decade may
have influenced the reported change in algal bloom occurrence
(Supplementary Figs. 11 and 12). This analysis aimed to evaluate the
robustness of our findings in light of these variations. Critically, our
sensitivity analysis considered the potential impact of observation
frequency on the detection of extreme events. Despite the differences
in observation frequency, our analysis revealed that the overall change
direction (increase or decrease) of algal blooms in Lake Taihu, China,
based on partial or all-available hourly-resolution GOCI images™®
remained unchanged (Supplementary Fig. 11). Using another high-
resolution satellite, Aqua MODIS, derived daily algal bloom dataset for
102 Chinese lakes’, we performed frequency calculation for historic
period and frequency change calculation during historic and con-
temporary periods. For the historic period, only a partial proportion of
the satellite observations were used. The results demonstrate that the
frequency changes calculated from partial observations are closely
consistent with those obtained using all data (Supplementary Fig. 12a).
We further calculated the standard deviation of the differences
between the two across all lakes, representing the uncertainty propa-
gated into the historic frequency due to gaps in remote sensing
observations (Supplementary Fig. 12b). This calculated uncertainty
was equal to 0.066%. By excluding lakes where the algal bloom fre-
quency less than this uncertainty threshold, we ensured the reliability
of our reported frequency change of extremes. This suggests that
while observation frequency is an important factor in detecting
extreme events, the reported increase in lake extremes observed in our
study is not an artifact of differences in observation frequency. This
finding underscores the significance of the reported increase in lake
extremes and its resilience to potential variations in observation fre-
quency. However, it is important to recognize that observation fre-
quency can influence the detection and characterization of extreme
events, and future research may benefit from utilizing higher-
frequency observation data to provide a more detailed under-
standing of extreme event dynamics, which would also aid in
improving our understanding of compounding events, where two or
more extremes occur sequentially. Nonetheless, our study provides
valuable insights into the changing patterns of lake extremes over
time, even within the constraints of varying observation frequency.
To explain some of the large-scale variation in algal bloom
occurrence in the studied sites, we downloaded information on
national scale annual fertilizer consumption from ref. 71. These data
describe the estimated total amount of fertilizers per area of cropland
per country. In this study, we focus solely on the application of nitrogen
(N) and phosphorus (P), measured in kilograms of total nutrient per
hectare of cropland, during the study period. For consistency across
the studied regions, we used the global dataset provided by ref. 71. to
describe large-scale patterns in N and P. However, we note that some
countries have other national datasets of N and P which may differ from
those provided by Ref. 71. For example, the dataset from National
Bureau of Statistics of China (http://www.stats.gov.cn/english/)
showed total nutrient and total phosphorus per hectare of cropland
were lower than those estimated by ref. 71. (Supplementary Fig. 2).
Therefore, we encourage caution in interpreting the large-scale data.

Identification of increase in univariate extremes and statistical
significance

In this study, our central objective was to discern changes in extreme
events within lake ecosystems over time. We sought to understand
whether there was an increase in the occurrence of these events and, if

so, to evaluate the statistical significance of such changes. Our
approach involved a comprehensive analysis of two distinct epochs,
spanning the periods from the 1980s-1999 and 2010-2019. We exam-
ined three key categories of extreme events, namely algal blooms,
extreme temperature events, and water level extremes. By comparing
the occurrence of these events across the two epochs, we identified
instances where a notable increase occurred. This increase was
determined by observing a positive change in the frequency of each
extreme event. We also employed a bootstrap version (with 1000
iterations) of the Kolmogorov-Smirnov (K-S) test, a widely recognized
statistical method for assessing the significance of distributional dif-
ferences in each extreme event type. The K-S test allowed us to
quantitatively evaluate whether the observed changes in each extreme
event type (e.g., algal bloom occurrence frequency) was statistically
significant between the two epochs or could have arisen due to ran-
dom variability. The inclusion of the K-S test provided a robust fra-
mework for the interpretation of our findings. It enabled us to
determine whether the empirical distribution functions of extreme
events in the two epochs significantly differed from each other. We
also classified the studied lakes as experiencing a notable increase or
decrease in the occurrence of univariate, bivariate or multivariate
extremes. For extreme temperature events and water level extremes,
we determined significance of occurrence changes using statistical test
P-values (<0.05) of annual trend changes, leveraging the high-temporal
resolution of GLAST and GLEV datasets. Due to limitations of the GBD
dataset, we used an alternative method to determine frequency
change thresholds corresponding to statistically significant levels.
Utilizing the MODIS-derived daily algal bloom dataset for 102 Chinese
lakes’, we computed relative algal bloom frequency changes between
historic and present periods, alongside annual trends and P-values. We
then grouped relative bloom frequency changes into two categories:
significant temporal change (P value < 0.05) and insignificant temporal
change (P-value >0.05). As shown in Supplementary Fig. 13, this
approach revealed a distinct threshold value (0.4) effectively distin-
guishing between the two groups. Despite some overlap, we find this
method a viable alternative for quantitatively identifying significant
change in bloom frequency.

Bivariate and multivariate extreme events

Alterations in bivariate extreme events were considered as situations
where the frequency of more than one of the univariate extremes
described above increased simultaneously within a lake. Specifically,
we investigated which lakes experienced parallel changes in the fre-
quency of (i) algal blooms and lake heatwaves, (ii) lake heatwaves and
low water extremes, and (iii) algal blooms and low water extremes. We
also investigated which lakes experienced an increase in all three
extremes during the study period. For each extreme event, we com-
pared their occurrence frequency between the historic (-1980s
to 1999) and contemporary (2010 to 2019) period, using all available
data. Note that we use a different approach regarding the percentiles
used to define extremes for temperature and water level (i.e., lake
specific) and algal blooms (i.e., generic across sites). A percentage
change in chlorophyll-a, relating to algal blooms, would yield a dif-
ferent result.

Data availability

The data generated in this study have been deposited in the Figshare
database (https://figshare.com/s/d6755addbe4a78a43213). The results
generated in this study are also provided in Supplementary Data 1, as
well as in the Supplementary Information and as a Source Data
file. Source data are provided with this paper.

Code availability
The code used for the analysis and to produce the figures in this paper
are available on Github: https://github.com/gzhaowater/lakeExtremes
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