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COelectrolysis tomulticarbonproducts over
grain boundary-rich Cu nanoparticles in
membrane electrode assembly electrolyzers

Hefei Li1,2,4, PengfeiWei1,4, Tianfu Liu1,4, Mingrun Li1, ChaoWang1, Rongtan Li 1,2,
Jinyu Ye 3, Zhi-You Zhou 3, Shi-Gang Sun 3, Qiang Fu 1, Dunfeng Gao 1 ,
Guoxiong Wang 1 & Xinhe Bao 1

Producing valuable chemicals like ethylene via catalytic carbon monoxide
conversion is an important nonpetroleum route. Here we demonstrate an
electrochemical route for highly efficient synthesis of multicarbon (C2+) che-
micals from CO. We achieve a C2+ partial current density as high as
4.35 ± 0.07 A cm−2 at a low cell voltage of 2.78 ± 0.01 V over a grain boundary-
rich Cu nanoparticle catalyst in an alkaline membrane electrode assembly
(MEA) electrolyzer, with a C2+ Faradaic efficiency of 87 ± 1% and a CO con-
version of 85 ± 3%. Operando Raman spectroscopy and density functional
theory calculations reveal that the grain boundaries of Cu nanoparticles
facilitate CO adsorption and C −C coupling, thus rationalizing a qualitative
trend between C2+ production and grain boundary density. A scale-up
demonstration using an electrolyzer stack with five 100 cm2 MEAs achieves
high C2+ and ethylene formation rates of 118.9mmolmin−1 and 1.2 Lmin−1,
respectively, at a total current of 400A (4A cm−2) with aC2+ Faradaic efficiency
of 64%.

With the decline and depletion of oil resource, producing valuable
chemicals like ethylene via the conversion of syngas, a mixture of CO
and H2 derived from coal, natural gas, and biomass, has been con-
sidered as an efficient nonpetroleum route1. In thermal catalysis, CO
hydrogenation to ethylene proceeds with a stoichiometric H2/CO ratio
of 2. However, the H2/CO ratio is usually less than 1 in the syngas
prepared by coal gasification that is the most cost-effective way in
syngas production2. This mismatch is addressed by water gas shift
reaction which generates more H2 at the expense of CO and produces
CO2. Moreover, while a high selectivity ~80% for light olefins among
hydrocarbon products in CO hydrogenation can be achieved through
oxide-zeolite (OX-ZEO) andFischer-Tropsch synthesis (FTS) processes,
20 − 50% of the converted CO is transformed into CO2 andmethane3–5.
The substantial CO2 emission as well as the undesired methane

production results in a low carbon utilization efficiency in thermo-
catalytic CO hydrogenation. Therefore, there is an urgent need to
develop more sustainable routes for CO conversion.

Electrocatalysis, when driven by renewable energy, provides an
alternative route for catalytic conversion of important carbon
resources such as CO. CO electrolysis, an electrocatalytic CO hydro-
genation process at ambient temperature and pressure, utilizes water
rather than H2 as a hydrogen source, and electrochemically eliminates
the formation ofCO2 by applying anegative potential onCOmolecules
(Supplementary Fig. 1). While high Faradaic efficiency (FE) towards
preferred multicarbon (C2+) products including ethylene, acetate,
ethanol, and n-propanol has been reported6,7, the practical application
of CO electrolysis is still hindered by low current density and energy
efficiency due to insufficient catalytic activity and large Ohmic
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resistance in H-cells and flow cells8–12. In addition, a small portion of CO
is converted to undesired methane as a by-product over some
catalysts13,14. To address these challenges, herein, using a zero-gap
alkalinemembrane electrode assembly (MEA) electrolyzer, we achieve
CO2-free, high-rate synthesis of C2+ products via CO electrolysis over a
grain boundary (GB)-rich Cu nanoparticle catalyst, with a C2+ partial
current density of 4.35 ± 0.07 A cm−2 at a low cell voltage of
2.78 ±0.01 V. CO is exclusively converted to C2+ products (~100% car-
bon selectivity) and its conversion reaches up to 85 ± 3% at a high
converted CO rate of 65.1 ± 2.3mLmin−1. The presented performance
for electrochemical synthesis of C2+ chemicals is notable comparable
to previously reported electrocatalytic and thermocatalytic CO
hydrogenation processes. Operando Raman spectroscopy and density
functional theory (DFT) calculations reveal that the GBs of Cu nano-
particles facilitate C −C coupling, thus rationalizing a qualitative trend
between C2+ production and GB density.

Results
CO electrolysis performance
The porous nanocrystalline Cu nanoparticle (Cu-nc) catalyst with high-
density GBs was synthesized by reducing CuCl2 with NaBH4 in the
absence of any additives at room temperature. The CO electrolysis
performance of the Cu-nc catalyst was measured in a home-made zero-
gap alkaline MEA electrolyzer with an electrode area of 4 cm2 (Supple-
mentary Fig. 2) described previously15. The CO electrolysis was per-
formed in the galvanostaticmode. The anode and cathodewere fedwith
0.5MKOH solution at a flow rate of 5mLmin−1 and dry CO at a flow rate
of 80mLmin−1, respectively. The Cu-nc powder catalyst was incorpo-
rated into a gas diffusion electrode (GDE) with polytetrafluoroethylene
(PTFE) as abinder in thecatalyst layer. Thehydrophobic andporousGDE
structure drastically reduces the diffusion pathway for CO to reach the
catalyst, resulting in high current densities15,16. Moreover, through care-
ful optimization in the assembly and operation17, the MEA electrolzyer
used in this work exhibits an Ohmic resistance as low as 0.13Ω∙cm2

(Supplementary Fig. 3), which is very important for reducing cell voltage

and increasing full-cell energy efficiency. The high performance of our
MEA electrolyzer has been demonstrated using commercially available
Cu nanoparticles (Supplementary Fig. 4). As shown in Fig. 1a, CO is
selectively reduced to C2+ products including ethylene, ethanol, acetate,
and n-propanol, while no C1 products like CO2 and methane are detec-
ted. TheC2+ FE is up toover90%,while theH2 FE is as lowas 2.03 ±0.68%
(Fig. 1a). More remarkably, while the C2+ FE slightly decreases to 87 ± 1%,
a high total current density of 5.0A cm−2 is achieved at a low cell voltage
of 2.78 ±0.01 V (Supplementary Fig. 5), resulting in a notable C2+ partial
current density of 4.35 ±0.07Acm−2. The corresponding C2+ and ethy-
lene formation rates reach 0.39±0.01mmolmin−1 cm−2 and
3.44 ±0.12mLmin−1 cm−2 (Fig. 1b). The CO electrolysis performance in
termsofC2+ FE andpartial currentdensity iswell-placedamongprevious
reports (Fig. 1c, SupplementaryTable 2)8,9,15,18–24. As noC1by-products are
generated, the C2+ carbon selectivity is ~100%, even at a high CO con-
version of 85 ± 3% and a high converted CO rate of 65.1 ± 2.3mLmin−1, is
favorable compared to reported thermocatalytic CO hydrogenation
processes (Fig. 1d,e, Supplementary Table 3)3–5,25–32. Furthermore, the
full-cell energy efficiency towards CO electrolysis to C2+ products is
above 32%, with a peak value of 39.6 ±0.5% at a total current density of
3.0A cm−2 (Supplementary Fig. 6). The stability of the Cu-nc catalyst was
measured at a high applied current density of 1.0A cm−2. Over a course
of 150h, the cell voltage only increases by 0.12 V. The ethylene FE is
almost stable, and the C2+ FE slightly decreases but is still above 83.6%
(Fig. 1f). The H2 FE gradually increases to 16.7%, which is likely attributed
to slowelectrodefloodingdue to the loss of hydrophobicity over timeas
indicated by contact angle measurements before and after the stability
test (Supplementary Fig. 7). Nevertheless, we demonstrate the great
promise for highly efficient electrochemical synthesis of C2+ chemicals
from CO using the GB-rich Cu-nc catalyst.

Apparent trend between C2+ production and GB density
To reveal structure-reactivity relations of the Cu-nc catalyst for the
notable CO electrolysis performance, thorough characterizations and
control experiments were conducted. The Cu-nc catalyst is highly
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Fig. 1 | CO electrolysis performance over Cu-nc catalyst. a Faradaic efficiencies
(FEs) and cell voltage and (b) ethylene and C2+ formation rates as a function of
current density. The error bars represent standard error of themean and are made
based on three fully separate and identical measurements. c CO electrolysis

performance comparison8,9,15,18–24. d, e Performance comparison between CO elec-
trolysis in this work and thermocatalytic CO hydrogenation3–5,25–30. f Stability test at
a current density of 1.0 A cm−2. Source data are provided as a Source Data file.
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porous with interconnected nanocrystalline networks as shown in
both scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) images (Fig. 2a, Supplementary Figs. 8,9). High-
resolution TEM (HRTEM) images (Fig. 2b, Supplementary Figs. 10,11)
show the presence of high-density GBs in the Cu-nc catalyst. The as-
prepared Cu-nc catalyst was further annealed in air at 350, 450 and
550 oC for 2 h to reduce GB density33, and the treated samples were
denoted asCu-x (x is 350, 450, and 550, respectively).While the porous
structure remains over the Cu-x catalysts after annealing in air, the
number of GBs drastically decreases (Fig. 2d−f, Supplementary
Figs. 10,12−14). The densities of GBs present in the Cu-nc and Cu-x
catalysts were quantified by analyzing ten typical HRTEM images for
each sample (Supplementary Figs. 11−18). The Cu-nc catalyst has a GB
density of 204.2 ± 25.3μm–1, 5-fold higher than previously reported
carbon-supported Cu nanoparticles33. Such a high GB density is ascri-
bed to the interconnected networks comprised of nanosized Cu
domains (Fig. 2a, Supplementary Figs. 8, 9). From the statistical results
(Fig. 2g and Supplementary Tables 4−6), the GB density decreases with
increasing annealing temperature, and it only changes slightly after CO
electrolysis. Meanwhile, the annealing treatment transforms the par-
tially oxidized Cu-nc catalyst withmixed Cu and Cu2O phases into fully
oxidizedCu-x catalystswithpureCuOphase, as demonstratedbyX-ray
diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results

(Supplementary Figs. 19, 20). OH− adsorption spectra measurements
conducted in 1M KOH show that the three OHad peaks at 0.44, 0.39,
and 0.34 V vs. reversible hydrogen electrode, assigned to the (111),
(110) and (100) Cu facets, respectively, have very similar intensities for
the Cu-nc and Cu-x catalysts (Supplementary Fig. 21). No any OHad

peaks appear at a more negative potential, ruling out the existence of
high-index facets on these catalysts21,34,35. The electrochemically active
surface areas (ECSAs) of these catalysts determined by Pb under-
potential deposition (UPD) measurements are close to each other but
slightly decrease after annealing treatment (Supplementary Fig. 22,
Supplementary Table 7). The CO electrolysis performances of the Cu-x
catalysts are shown in Supplementary Figs. 23, 24. Compared to the
Cu-nc catalyst, the geometric current densities of theCu-x catalysts are
lower, while the product selectivity shifts from ethylene towards
acetate (Supplementary Fig. 25). We plot the ECSA-normalized partial
current densities of C2+, ethylene, and acetate at a fixed cell voltage
(2.5, 2.6, and 2.7 V) as a function of GB density. It is clear that the ECSA-
normalizedC2+ partial current density shows verypositive correlations
with GB density after electrolysis (Fig. 2h, Supplementary Fig. 26).
More specifically, the production of ethylene, ethanol and n-propanol
increases with increasing GB density, while the acetate production
seems to be independent on GB density (Fig. 2g, Supplementary
Figs. 26, 27). As the initial Cu oxidation states in the Cu-nc and Cu-x
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catalysts are different (XRD and XPS results in Supplementary Figs. 19,
20), the differences in the production of C2+ products over these cat-
alysts are also likely caused by Cu oxidation state, in addition to GB
density.

Cu oxidation state
Operando spectroscopic characterizations were further conducted to
track the oxidation state of Cu catalysts under reaction conditions35,36.
A home-made MEA operando cell used in this work (Supplementary
Figs. 28, 29) allows us to perform spectroscopic characterizations
under very similar reaction conditionswhere theperformancedata at a
current density of hundreds ofmAcm−2 are acquired. Figure 3a, b show
CuK-edgeX-rayabsorption near edge structure (XANES) spectra of the
Cu-nc and Cu-350 catalysts at the open circuit voltage (OCV) and dif-
ferent applied current densities. The Cu-nc catalyst shows mixed Cu
and Cu2O phases at OCV, in consistent with XRD results. On applying
current densities for several minutes, the Cu-nc catalyst is electro-
chemically reduced to metallic Cu (Fig. 3a). While the Cu-350 catalyst
displays a CuO phase at OCV, metallic Cu is present during CO elec-
trolysis as well (Fig. 3b). Quasi in situ XPS measurements without air
exposure indicate that the surfaces of both Cu-nc and Cu-350 catalysts
after CO electrolysis show the presence of similar amounts of Cu+

species (Supplementary Fig. 20). Overall, the oxidation states of the
Cu-nc and Cu-350 catalysts are almost same under CO electrolysis
conditions. Therefore, the role of initial Cu oxidation state in C2+

production is excluded and the GBs are very likely the active sites for
CO electrolysis to C2+ products.

Operando Raman spectroscopy studies
To provide in-depth insights into the role of GBs in C −C coupling,
surface adsorbed intermediates during CO electrolysis were studied

via operando Raman spectroscopy (Supplementary Fig. 29)37. Gen-
erally, the peaks of atop-adsorbed and bridge-adsorbed CO (*COatop

and *CObridge) are observed at 1900 − 2100 cm−1, when current den-
sities are applied to the Cu-nc and Cu-x catalysts (Supplementary
Fig. 30). The broad *CO peak can be deconvoluted to high-frequency-
band (HFB)-*COatop at 2102 and 2078 cm−1, low-frequency-band (LFB)-
*COatop at 2048 cm−1, and *CObridge at 1960 cm−1 (Supplementary
Fig. 31)38,39. The presence of *CObridge was further confirmed by atte-
nuated total reflectance Fourier transform infrared (ATR-FTIR) spec-
troscopy measurements (Supplementary Fig. 32). Figure 3c shows the
Raman spectra over the Cu-nc andCu-x catalysts at 0.1 A cm−2. The *CO
peaks shift to higher vibration frequencies with increasing annealing
temperature (thus, decreasing GB density, Supplementary Table 8).
Figure 3d plots the ratios of *CObridge/*COatop and LFB/HFB-*COatop

versus GB density. Both ratios increase with increasing GB density,
indicating that *CO binding over the Cu-nc catalyst is stronger than
that over the Cu-x catalysts40,41. These *CO peaks get weaker with
increasing current densities, due to the lowered *CO coverage caused
by accelerated *CO conversion. However, at a higher current density,
e.g., 0.3A cm−2, *CO is hardly observed over the Cu-x catalysts, but still
visible over the Cu-nc catalyst (Supplementary Fig. 30). Therefore, the
*CO coverage during CO electrolysis is also higher over the Cu-nc
catalyst versus the Cu-x catalysts. Overall, it is reasonable to postulate
that GBs facilitate *CO binding and improve its coverage, thus
enhancing subsequent C −C coupling.

DFT calculations
The role of the GBs in promoting C −C coupling and tuning the
selectivity among C2+ products was further investigated using DFT
calculations. The GBs were simulated following the coincidence site
lattice (CSL) theory42. As the ratios of the Cu(111), Cu(110), and Cu(100)
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facets were similar in the Cu-nc and Cu-x catalysts (Supplementary
Fig. 21), we built three CSLGBs for Cu(111), Cu(110), andCu(100) facets,
respectively (Fig. 4a and Supplementary Figs. 33a, 34a). Compared to
flat Cu(111) surface, CO adsorption on GBs is significantly improved,
with a CO adsorption energy of −0.70 eV on Cu(111) and −0.91 eV on
GBs (Fig. 4b, Supplementary Table 9). The improvedCO adsorption on
GBs is beneficial to increase the surface coverage of *CO for sub-
sequent reactions43,44. The energy profiles towards ethylene formation
on GBs and Cu(111) are shown in Fig. 4c. The *COCOH formation via
C −C coupling is the most demanding energetically. The free energy
changes of this step are 0.58 and 1.39 eV on GBs and Cu(111), which
indicates that GBs are much more active for C −C coupling. Further-
more, the energy profile indicates that other steps along the pathway
exhibit a generally downhill trend on GBs, which is beneficial for the
production of ethylene. We further investigated the *CO adsorption
and energy profiles on Cu(110), Cu(100), and their corresponding GBs,
which indicates that C −C coupling reaction is significantly improved
on GBs (Supplementary Figs. 33, 34). In contrast, the acetate produc-
tion is more favorable on Cu(111) over GBs (Supplementary Fig. 35).
Thus, the ethylene pathway is preferred on GBs compared to Cu(111).
Overall, the stronger *COadsorption and lowerC −Ccoupling reaction
energy on GBs improve C2+ production and the selectivity of ethylene
versus acetate. These calculation results explain well the experimen-
tally observed positive qualitative trends between CO electrolysis
performance and GB density (Fig. 2h).

Scale-up demonstration of CO electrolysis
To validate the feasibility for large-scale electrochemical synthesis of
C2+ chemicals from CO using the Cu-nc catalyst, we first scaled up the
CO electrolysis process using a 100 cm2 MEA electrolyzer (Fig. 5a and
Supplementary Fig. 36). The anode and cathode were fed with 0.5M
KOH solution at a flow rate of 0.125 Lmin−1 and dry CO at a flow rate of
2.0 Lmin−1, respectively. Figure 5b show the CO electrolysis

performance at an applied total current of 100, 200, 300, 400, and
500A. The C2+ FE is above 92% at 100 − 300A and decreases to 86% at
400Aand 73% at 500A. The stability test conducted at anapplied total
current of 100A (1.0 A cm−2) shows that the cell voltage is stable at
around 2.5 V and the C2+ FE maintains above 88% over a course of 32 h
(Fig. 5c). An electrolyzer stack with five 100-cm2 MEAs was further
assembled (Fig. 5d, Supplementary Figs. 37, 38). The anode and cath-
ode were fed with 0.5M KOH solution at a flow rate of 0.65 Lmin−1 and
dry CO at a flow rate of 10.0 Lmin−1, respectively. Figure 5e, f show the
stack performance of the Cu-nc catalyst at a total current of 100, 200,
300, and 400A. The C2+ FE is above 96% at 100 − 200A and decreases
to 84% at 300A and 64% at 400A (Fig. 5e). The highest C2+ and
ethylene formation rates reach 118.9mmolmin−1 and 1.2 Lmin−1

(Fig. 5f). Remarkably, the maximum power (electrolysis scale) of the
stack reaches as high as 5.8 kW at 400A. While further efforts should
be input in the future to improve the effectiveness and long-term
stability of the scale-up process, these scale-up attempts indicate that
CO electrolysis is a very promising and practical route for the elec-
trochemical synthesis of valuable C2+ chemicals. The CO electrolysis
process can be economically viable as demonstrated by techno-
economic assessment (TEA) based on the represented performance
data at 1.0, 3.0, and 4.5 A cm−2 using electricity derived from renewable
energy (Supplementary Note 1 and Supplementary Fig. 39), and the
CO2 emission from CO electrolysis can be reduced by up to 82%
compared to thermocatalytic CO hydrogenation via Fischer-Tropsch
synthesis (Supplementary Note 2 and Supplementary Fig. 39).

Discussion
In summary, we demonstrate an electrochemical route for highly
efficient synthesis of C2+ chemicals from CO with the GB-rich Cu
nanoparticle catalyst. We present a notable CO electrolysis perfor-
mance with a C2+ partial current density as high as 4.35 ± 0.07 A cm−2

at a low cell voltage of 2.78 ± 0.01 V in a home-made alkaline MEA
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electrolyzer. CO is exclusively converted to C2+ products (~100%
carbon selectivity) and its conversion reaches up to 85 ± 3% at a high
converted CO rate of 65.1 ± 2.3mLmin−1. Operando spectroscopy
characterization and DFT calculation studies reveal the role of the
GBs of Cu nanoparticles in the improved C2+ production. A scale-up
demonstration using an electrolyzer stack with five 100 cm2 MEAs at
an applied current of 400 A achieves high formation rates of C2+

products and ethylene with 118.9 mmolmin−1 and 1.2 Lmin−1,
respectively, highlighting the great promise of CO electrolysis as a
practical route for the electrochemical synthesis of C2+ valuable
chemicals.

Methods
Chemicals and materials
Copper(II) chloride (CuCl2), sodium borohydride (NaBH4), polytetra-
fluoroethylene (PTFE, 60wt% dispersion in H2O) suspension were
purchased from Sigma-Aldrich. Potassium hydroxide (KOH) was pur-
chased fromAladdin. Pb(ClO4)2·3H2Owaspurchased fromMacklin. Cu
foil (99.9%, 0.127mm thick) was purchased from Alfa Aesar. Ir black
catalyst was purchased from Johnson Matthey Corp. Cu nanoparticles
(product no. 774081) were purchased from Sigma-Aldrich. Ultrapure
water (18.2MΩ) was used in all experiments. All the chemicals were
used without further purification.

Catalyst synthesis
Cu-nc catalyst was synthesized in the following procedure. 10mmol
CuCl2 powder was dispersed in 300mLwater at 700 rpm. Then 50mM
NaBH4 (dissolved in 50mLwater)was addeddropwise in 2min and the
mixture was continuously stirred for 20min. Then, the black pre-
cipitates were collected by filtration andwashed with de-ionized water
and ethanol, and finally dried in vacuum. Cu-350, Cu-450, and Cu-550
catalysts were prepared by annealing the as-prepared Cu-nc catalyst in
air at 350, 450, and 550 oC for 2 h.

Preparation of gas diffusion layer (GDL)
Firstly, Vulcan XC-72R carbon black was dispersed in ethanol, and
certain amount of PTFE suspension was added with mechanically
stirring to form a homogeneous carbon black ink. Then, the ink was
hand-paintedontoone sideof carbonpaper (TorayTPG-H-60) andwas
annealed in air at 350 oC for 1 h in a muffle furnace to obtain the final
GDL. The carbon black loading was about 1.0mg cm−2 and the PTFE
content in the GDL was 15wt%.

Preparation of GDE
The Cu-nc or Cu-x catalysts and PTFE solution were dispersed in
ethanolwith amass ratio of 3:1 to forman ink. The inkwas thenpainted
onto the GDL to form a GDE. The catalyst mass loading was
2.0 ±0.1mg cm−2.

Preparation of anode
Commercial Ir black catalyst was dispersed in ethanol, and certain
amount of quaternary ammonia poly(N-methyl-piperidine-co-p-ter-
phenyl) (QAPPT) ionomer solution was added with mechanically stir-
ring to form a homogeneous ink. Then, the ink was drop-casted onto a
Ti foam to form an anode. The Ir black loading was 1.0 ± 0.1mgcm−2

and the QAPPT content in the anode catalyst layer was 10wt%.

Material characterization
The powder XRDpatterns were recordedwith a PANalytical X’pert PPR
diffractometerwith aCuKα radiation source (λ = 1.5418 Å) at 40 kVand
40mA at a scan rate of 8° min−1. The morphologies of the catalysts
were acquired using a field emission scanning electron microscopy
(FE-SEM, JSM-7800F) with an accelerating voltage of 3 kV. TEM and
HRTEM images were acquired by a JEM-2100 microscopy and a JEM-
ARM300Fmicroscopywith an accelerating voltage of 200 and 300 kV,
respectively. XPS spectra were recorded on a Thermo Scientific
ESCALAB 250Xi spectrometer with an Al Kα X-ray source. All the
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binding energies were calibrated with C 1 s spectrum with peak
intensity at 284.8 eV.

CO electrolysis measurements
CO electrolysis experiments were performed at ambient temperature
(20 − 25 oC) in a home-made alkaline MEA electrolyzer with an elec-
trode area of 4 cm2 as described previously15. Anion exchange mem-
branes (QAPPT) were synthesizedwith reference to a previous article45.
The electrolyzer was assembled using two Pt-coated titanium flow field
plates for CO feeding at the cathode, aqueous solution feeding at the
anode, as well as for current collecting, respectively. A fresh catalyst-
coated cathode, aQAPPTmembrane and an Ir-coated anodewere used
for each electrolysis test. The cathodic flow field was fed with dry 95%
CO/5% N2 (here N2 as an internal standard for quantification, and for
simplicity COwas used to represent 95%CO/5%N2 in themain text) at a
flow rate of 80mLmin−1 through a mass flow controller. The anodic
flow field was fedwith 0.5MKOH solution at a flow rate of 5.0mLmin−1

using a peristaltic pump. The electrolysis was carried out in the gal-
vanostatic mode using an Autolab potentiostat/galvanostat (PGSTAT
302N with 10.0 A booster), and an Autoranging System DC Power
Supply (Keysight N8940A, 0-80V/0-170A, 5000W) while the current
was greater than 10.0A. The scale-up measurements using a 100 cm2

MEAelectrolyzer and an electrolyzer stackwithfive 100 cm2MEAswere
carried out in the galvanostatic mode using an Autoranging SystemDC
Power Supply (Keysight N8951A, 0-80V/0-510A, 15000W), and the
cathode was fed with dry 95% CO/5% N2 at a flow rate of 2.0 and
10.0 Lmin−1, respectively. For the 100 cm2 electrolyzer and the elec-
trolyzer stack, the anodes were fed with 0.5M KOH solutions at a flow
rate of 0.125 and 0.65 Lmin−1, respectively. In all above CO electrolysis
experiments including stability measurements, the anolyte was not
recirculated, and fresh anolyte was always used.

Product analysis
Gas products were analyzed by an on-line gas chromatography
(Shimadzu, GC-2014) equipped with a thermal conductivity detec-
tor (TCD) and a flame ionization detector (FID). Liquid products
collected from anolyte were analyzed by a Bruker AVANCE III
400MHz nuclear magnetic resonance (NMR) spectrometer. A
mixture of anolyte and 1-propanesulfonic acid 3-(trimethylsilyl)
sodium salt (DSS, as an internal standard for quantification) was
used for NMR measurements. The one dimensional 1H-NMR spec-
trum was measured with water suppression using a pre-saturation
method.

The Faradaic efficiency of a specific product is calculated as fol-
lows:

εFaradaic,i =Qi=Qtotal × 100= ðNi ×ni × FÞ=Qtotal × 100 ð1Þ

Where,
εFaradaic,i: the Faradaic efficiency of product i, %;
Qtotal: the consumed charge, C;
Qi: the charge used for the formation of the product i, C;
Ni: the amount of the product i, mol;
ni: the number of electrons transferred to form the product i;
F: Faraday constant, which is 96485Cmol−1.
Partial current density of a specific product is calculated as fol-

lows:

jpartial,i = jtotal × εFaradaic,i ð2Þ

Normalized current density is calculated as follows:

jnorm = jgeometric=RFðRF is the roughness factor of a given electrodeÞ
ð3Þ

The energy efficiency for the formation of a specific product is
defined as follows:

εEnergy,i =
ΔH0

i

ΔGi
× εFaradaic,i =

ni × F × En

ni × F × Ei
× εFaradaic,i =

En

Ei
× εFaradaic,i

ð4Þ

Where,
εEnergy,i: the energy efficiency for the formation of product i, %;
ΔH0

i : the theoretical enthalpy change of product i, kJ mol−1;
ΔGi: the changes in the Gibbs free energy of product i, kJ mol−1;
εFaradaic,i: the Faradaic efficiency of product i, %;
ni: the number of electrons transferred to form the product i;
F : Faraday constant, which is 96485 Cmol−1;
En: the thermoneutral voltage (calculated from ΔH0

i ), V;
Ei: the applied cell voltage, V.
The energy efficiencyof total COelectrolysis products reported in

this work is the sum of that of each individual product.
The error bars in reporting Faradaic efficiency, energy efficiency,

and cell voltage in this work represent the standard deviation from
three fully separate and identical measurements.

ECSA measurements
Pb UPD was performed to determine the ECSAs of the catalysts
deposited on the GDE. After the catalysts were electrochemically
reduced, cyclic voltammetry (CV) measurements were carried out at a
scan rate of 10mV s−1 in a solution containing 0.1MHClO4 and0.001M
Pb(ClO4)2. Prior to theCVmeasurements, the solutionwaspurgedwith
Ar for at least 30min. Here, Cu foil was used for reference according to
previous literature46. The measurements were conducted at ambient
temperature (20 − 25 oC) and no iR correction was performed.

OH− adsorption measurements
CVs for OH− adsorption measurements were recorded in H-cell using
Ar-purged 1M KOH as electrolyte and Ag/AgCl as reference electrode
after the catalysts were electrochemically reduced. A potentialwindow
from −0.2 to 0.55V (vs. RHE) and a scan rate of 20mV s−1 were selected
during OH− adsorption measurements. The measurements were con-
ducted at ambient temperature (20 − 25 oC) and no iR correction was
performed.

Quantification of GB density from TEM images
GB densities of Cu-nc, Cu-350, Cu-450, and Cu-550 catalysts were
measured using the method described below. GBs are considered as
the border of two regions with different lattice orientations and are
marked with yellow dashed lines in the TEM images. For each sample,
ten typical TEM images are analyzed. GB density is defined as the GB
length per unit area of Cu nanoparticle surface. The length of GBs (L)
and nanoparticle area (Si) in each TEM image was quantified by Gatan
DigitalMicrograph. The length of GBs (L) was defined as the total
length of the yellow dashed lines. The nanoparticle area (Si) was cal-
culated by the difference between the total area and the blank area of
an image. Assuming that the surface GB density is calculated using the
following equation:

Grain boundary length
Nanoparticle surf ace area

=
P

LP
Si

ð5Þ

Contact angle measurements
Contact angle measurements were conducted by a DSA100 Drop
Shape Analyzer. Videowas recordedwhenwater was being pumped to
the drop slowly from the syringe via the needle, and the water front
advances on the sample. Each image of this videowas later analyzed to
determine the contact angle when the image was captured.

Article https://doi.org/10.1038/s41467-024-49095-2

Nature Communications |         (2024) 15:4603 7



Operando X-ray adsorption spectroscopy (XAS) measurements
The measurements at Cu K-edge (E0 = 8979 eV) were carried out in
fluorescencemode using a Lytle detector at the BL11B beamline of the
Shanghai Synchrotron Radiation Facility. The energy was calibrated to
the absorption edge of a Cu foil. The CO electrolysis was performed in
0.5M KOH with a reactant gas flow rate of 5.0mLmin−1 in a modified
MEA cell in the galvanostatic mode. The measurements were con-
ducted at ambient temperature (20 − 25 oC) and no iR correction was
performed. The gas chamber had a small window cut out and sealed
with Kapton film to allow fluorescence signals to pass from the elec-
trode to the detector. The XAS data were processed using the software
package Athena and ARTEMIS.

Quasi in situ XPS measurements
CO electrolysis experiments were firstly performed in the MEA elec-
trolyzer in glovebox. During CO electrolysis, the produced O2 were
expelledout of glovebox, and the concentrationofO2 in gloveboxkept
below 0.01 ppm. After CO electrolysis at 2.6 V for 1 h, the electrodes
were transferred by a mobile transfer chamber to the XPS analysis
chamber. Themeasurements were conducted at ambient temperature
(20 − 25 oC) and no iR correction was performed. The sample was kept
in inert atmosphere or vacuum during the entire transfer process
without exposure to air. The XPS spectra were recorded on a Thermo
Scientific ESCALAB 250Xi spectrometer with an Al Kα X-ray source
operated at 300W. All the binding energies were calibrated with C 1 s
spectrum with peak intensity at 284.8 eV.

Operando Raman spectroscopy measurements
Operando Raman spectroscopy measurements were carried out using
a Renishaw inVia Raman microscope in a homemade MEA cell which
was similar to themodifiedMEAcell for in situ XASmeasurements. The
measurements were conducted at ambient temperature (20 − 25 oC)
and no iR correction was performed. A near-infrared laser (785 nm)
was used as the excitation source. A long focal length objective lens
(Leica, 50×) was used for focusing and collecting the incident and
scattered laser light. A fresh catalyst-coated cathode, a QAPPT mem-
brane and an Ir-coated anode were used for each test. The Cu-nc and
Cu-x catalysts were painted onto one side of the QAPPT membrane
which served as the cathode. To get steady-state Raman spectra,
Raman signals were collected after reduction for 10min at each
applied current density.

In situ ATR-IR measurements
The catalyst ink was drop-casted via pipette onto a hemicylindrical
silicon prism covered with three layers of graphene. A Pt foil and a
saturated calomel electrode (SCE) electrode were used as counter and
reference electrodes, respectively. The electrolyte was 0.1M KOH,
which was constantly purged with CO during the experiment. Before
the experiments, the working electrode was reduced to stable state by
continuously scanning. The electrode potential was held at 0.3 V vs.
RHE, and a background spectrum (reflectance R0) was recorded. The
electrode potential was altered stepwise from −0.1 to −0.6 V vs. RHE,
and in themeantime IR spectrawere recordedwith a time resolutionof
42 s per spectrumat a spectral resolution of 8 cm−1. Themeasurements
were conducted at ambient temperature (20 − 25 oC) and no iR cor-
rection was performed. All spectra were reported as the relative
change in reflectivity, ΔR/R0 = (R−R0)/R0, where R and R0 are single-
beam spectra collected at the sample potential and the reference
potential, respectively. A Nicolet 8700 infrared spectrometer with a
HgCdTe detector cooled by liquid nitrogen was used.

Theoretical calculations
DFT calculations were performed using the Vienna ab initio simu-
lation package (VASP)47,48. The revised Perdew-Burke-Ernzerhof
functional (RPBE) from Hammer et al. was employed for electron

exchange–correlation49,50. The electron-ion interactions were
described by projector augmented wave potentials proposed by
Blochl and implemented by Kresse51,52. The plane wave basis set with
an energy cutoff of 400 eV was used for geometry optimizations.
Spin-polarized calculations were conducted using gamma-
centralized grid of k-points of 4 × 4 × 1 for Cu(111), 2 × 2 × 1 for
model of Cu grain boundary, respectively. For all the calculations,
the van derWaals (vdW) contributions were evaluatedwith a DFT-D3
method53. The electronic energy and forces were converged to
within 1 × 10−6 eV and 0.02 eV/Å. The vertical vacuum slab was set to
be at least 10 Å in all cases. We built three representative Cu grain
boundaries, Cu∑3/(111), Cu∑5/(100), and Cu∑3/(110) with Aimsgb
code by Yang et al. 42. The low∑ values were chosen for construction,
because low ∑ boundaries tended to have lower energies than
average54. We acknowledge the existence of various grain boundary
types, and modeling all types of grain boundaries is not feasible55.
We expect that the use of three representative models, Cu∑3/(111),
Cu∑5/(100), and Cu∑3/(110), which were referred to as Cu(111)-GB,
Cu(100)-GB and Cu(110)-GB, could effectively represent the essen-
tial characteristics of grain boundaries, and shed light on how grain
boundaries influence catalytic performance compared to flat (111),
(100), and (110) facets. The Cu(111)-GB, Cu(100)-GB and Cu(110)-GB
are consisted with 48, 64, 60 copper atoms as shown in Fig. 4a and
Supplementary Figs. 33a, 34a. The bottom two layers of the copper
models were fixed and the other atoms were permitted to relax. In
order to correct the significant self-interaction error inherent to the
standard DFT in describing localized d-electrons with strong cor-
relations, an on-site Hubbard termU-J was added to the open-shell d-
electrons, with U = 2 and J = 1 for copper56. We tested the solvation
effect on *CO adsorption energy using the implicit solvation model
implemented in VASPsol57,58. The relative permittivity of the media
was chosen as 78.4, corresponding to that of water. The results show
that the difference of *CO adsorption energy is smaller than 0.1 eV
with or without the implicit solvation corrections. The adsorption
energy of *CO was calculated with the

EadsðMÞ= Etotal � EM � Esurf ace ð6Þ

WhereEtotal is the calculated result of the energy of onemolecule (*CO)
adsorbed on surface, EM is the energy of an isolatedmolecule (M), and
Esurface is the energy of relaxed catalyst.

The computational hydrogen electrode (CHE)model proposedby
Nørskov et al. was applied to investigate the free energy profile in CO
electrolysis59. In CHE method, the relative free energy change is cal-
culated as

ΔG=μ½product� � μ½reactant� � 0:5μ½H2ðgÞ�+ eU ð7Þ

Where μ is the chemical potential and U is the applied electrical
potential. Therefore, in the step involving proton-electron transfer,
ΔG(U) =ΔG0(U) + neU, where U is the potential versus the reversible
hydrogen electrode, ΔG0 is the free energy at U =0V.

The Gibbs free energy (G) is calculated with Eq. (8).

G= ETotal + ZPE � TS+
Z

CpdT ð8Þ

Where ETotal is the total electronic energy, ZPE, S and
R
CpdT are the

zero-point vibrational energy, entropy, and heat capacity at 298.15 K
and 1 atm, respectively. The ZPE, S, and

R
CpdT details of different

adsorbates are listed in Supplementary Table 9.
The formation free energy of *COHCO is calculated as

ΔG=G*COCOH � G2*CO � 1=2GH2 ð9Þ
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Where G*COCOH is the free energy of adsorbed *COCOH on catalyst
surface, and G2*CO is the free energy of two adsorbed *CO on catalyst
surface, and GH2 is the free energy of H2 molecule. We note that in
previous studies, the Gibbs free energy change in the formation of
*COCOH from two *CO species was used as indicator of the activity for
C −C coupling reaction18,60. This provides a convenient method for
accessing the catalytic activity differences among various catalysts for
C −C coupling. It is also worth noting that the formation energy of
*COCOH intermediate shows a strong linear correlation with the acti-
vation energy forC −Ccoupling61. Therefore, it is reasonable topredict
the activity for C −C coupling reactions on different copper models
using the free energy change of *COCOH formation.

TEA and CO2 emission calculations
The TEA and CO2 emission of CO electrolysis were calculated based on
the performance data at an applied current density of 1.0, 3.0, and
4.5 A cm−2 in the 4 cm2 electrolyzer using previously reported
parameters62–67. The calculation details were shown in Supplementary
Notes 1, 2.

Data availability
The data that support the findings of this study are available within the
paper and the Supplementary Information. Other relevant data are
available from the corresponding authors on request. Source data are
provided with this paper.
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