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Simultaneous enhancement of multiple
functional properties using evolution-
informed protein design

Benjamin Fram1,2 , Yang Su1,14, Ian Truebridge3,4,10,14, Adam J. Riesselman1,5,
John B. Ingraham1, Alessandro Passera2,11, Eve Napier6, Nicole N. Thadani1,12,
Samuel Lim1, Kristen Roberts7, Gurleen Kaur7, Michael A. Stiffler2,13,
Debora S. Marks 1,8, Christopher D. Bahl 3,4,10, Amir R. Khan6,9,
Chris Sander1,2,8 & Nicholas P. Gauthier 1,2,8

Amajor challenge in protein design is to augment existing functional proteins
with multiple property enhancements. Altering several properties likely
necessitates numerous primary sequence changes, and novel methods are
needed to accurately predict combinations of mutations that maintain or
enhance function. Models of sequence co-variation (e.g., EVcouplings), which
leverage extensive information about various protein properties and activities
from homologous protein sequences, have proven effective for many appli-
cations including structure determination and mutation effect prediction. We
apply EVcouplings to computationally design variants of the model protein
TEM-1β-lactamase. Nearly all the 14 experimentally characterized designswere
functional, includingonewith 84mutations from thenearest natural homolog.
The designs also had large increases in thermostability, increased activity on
multiple substrates, and nearly identical structure to the wild type enzyme.
This study highlights the efficacy of evolutionary models in guiding large
sequence alterations to generate functional diversity for protein design
applications.

As proteins become increasingly useful across a range of fields
including medicine and industry, there is a growing need for designed
proteins with optimized characteristics, such as elevated thermo-
stability, higher binding affinity, or increased catalytic activity. Natural
proteins are often used as starting points for the development of
useful proteins, which can then be engineered as high-performance,
task-specific tools. However, efficiently mutating enzymes to yield

optimized variants is exceedingly difficult, and randomly mutating
enzymes almost always leads to loss of performance, which decreases
considerably with every additional mutation1. Information-based
‘rational’ engineering can avoid performance loss, but is generally
limited to a very small number of sequence changes. One approach to
protein engineering, directed evolution, makes use of iterative rounds
of mutagenesis followed by selection to optimize a specific property
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like activity or thermostability. However, increased random mutation
count overwhelmingly negatively impacts fitness1, limiting the number
of amino acid changes that can be introduced while still maintaining a
reasonable number of functional variants. This stepwise incremental
selection strategy is often effective at finding sequences with
improved properties with a limited number of mutations. The intro-
duction of many simultaneous changes to a protein’s primary
sequence is likely required to diversify and optimizemultiple desirable
properties, and new methods that enable such large changes in pri-
mary sequence are needed. Computational design strategies2–7, which
account for the complexity of howeachmutated residue interactswith
all other residues, are likely required to maintain function when
introducing more than a handful of mutations.

An evolution-informed computational protein design strategy
may provide a means to generate many changes in primary
sequence, enabling the exploration of diverse structural and func-
tional properties. Evolutionary models that account for complex
selective conditions over millions of years by learning meaningful
constraints on function from related sets of homologous protein
sequences5,8–10 have been shown to recapitulate core aspects of
protein biology, such as 3D structure8,11,12, protein stability10,13,14,
conformational state15–17 and the effects of mutations on protein
fitness2,10,13,18–20. Some of these models have been used for protein
design, generating mutated proteins from a wild type scaffold that
maintain structure and/or function2,5–7,21–23. Evolutionary couplings
(EVcouplings) models are a specific instance of evolutionary models
based on residue site- and pairwise dependencies in natural
sequence variation8,10,24. These models are unsupervised, inferring
sequence constraints characteristic of a functional space and quan-
tifying fitness differences between variants without experimentally
measured phenotype labels. To make use of these discriminative
models for protein design, a sampling algorithm is used to iteratively

generate variant sequences that are chosen to optimize a fitness
function.

The TEM-1 β-lactamasemodel system has been extensively used
to study protein evolution7,9,25–28. β-lactamases are a class of enzymes
that are produced by bacteria in order to provide resistance to
bactericidal β-lactam antibiotics through hydrolysis of their core β-
lactam ring. Many bench biologists are familiar with the use of TEM-1
β-lactamase as a marker for successful transformation, in which
selection of functional TEM-1-containing plasmids is as simple as
growth in a β-lactam antibiotic like ampicillin. Due to experimental
tractability, many publications report the effects of mutations on
TEM-1 function and stability, including several studies using deep
mutational scans25,27,29. Other studies have described the exponential
decrease in TEM-1 function when subjected to multiple mutations,
with the cumulative effect of 10 random mutations completely
abrogating enzyme activity1.

In this work we investigate whether evolutionary models of
sequence co-variation can be used to design enzyme variants that
contain many changes to the target sequence while maintaining
function. In addition, we test whether making large jumps in the pri-
mary amino acid sequence can lead to augmented protein properties
such as increased thermostability, increased activity and broadening
of available substrates, and investigate the implications of these
mutations on protein 3D structure.

Results
Protein design and testing workflow
Protein design from discriminativemodels such as EVcouplings10,30 is a
multistep process (Fig. 1). A multiple sequence alignment (MSA) of
homologous proteins is generated for the protein of interest, which is
then used to generate a site and pairwise evolutionary model. This
maximum entropy model quantifies evolutionary constraints and is
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Fig. 1 | The β-lactamase variant design process. Strategy applied to generate and
test design variants using an evolution-informed statistical model of the β-lacta-
mase protein family. [A, Computationally Model β-lactamase] WT TEM-1 β-lacta-
masewas used to generate amultiple sequence alignment thatwas used as input to
derive an EVcouplings maximum entropy model. The predicted fitness (EVH) for
any sequence (σ) can be calculated as the sumof coupling terms ( Jij) between every
pair of residues as well as site-wise conservation terms (hi). [B, Computationally

Design β-lactamase Variants] Design variants are generated by using Gibbs sam-
pling to iteratively optimize an objective function that takes into account EVH and
sequence similarity to WT TEM-1, to natural homologs, as well as to the other
designed sequences. [C, Experimentally Test Designs] Designs were synthesized,
cloned into plasmids, expressed in E. coli, and several experimental protocols were
performed to characterize each design including cell-based activity assays, bio-
chemical kinetics assessment, and structure determination and analysis.
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parameterized by both site-specific (hi) and pairwise or epistatic (Jij)
constraints (where i and j indicate amino acid positions) with minimal
spurious information in the parameter set. The predicted fitness of a
specific sequence (σ) is defined as the statistical energy (evolutionary
Hamiltonian or EVH, Fig. 1A). To have confidence that the model is
capable of generating functional sequences, model quality is assessed
here by comparing predictions to known biological properties, e.g.,
recapitulating known structural contacts common to the protein
family and/or the known effects of point mutations on protein fitness
of individual sequences.

Designed sequences are generated using a sampling algorithm,
(e.g., Markov Chain Monte Carlo or Gibbs sampling, Fig. 1B) that
optimizes EVH fitness of each entire sequence and satisfies user-
specified sequence distance constraints. Conceptually, a single design
variant is generated from an iterative process in which a random
starting sequence is mutated over and over with the identity of the
retained mutations chosen to optimize a function that includes para-
meters such as predicted fitness and sequence distance to target or
homologous proteins. Testing of designs is dependent on the protein
of interest, and can include cellular biological activity assays or
detailed biochemical characterization after protein purification
(Fig. 1C). For this work we used the TEM-1 β-lactamase model system,
which is highly tractable for high-throughput experimental analysis in

bacterial culture, and has been well studied for many purposes
including evolvability9,31,32, design7, and the fitness effect of point
mutations9,27,28.

Diverse design variants generated from model of protein
evolution
We generated an EVcouplings model8,10 of the β-lactamase protein
family using a multiple sequence alignment of 14,793 sequences
compiled by the jackhmmer33 sequence search and alignment tool,
seeded with wild type TEM-1 (WT TEM-1; UniProt P62593; bitscore
cutoff = 0.5*length, Neff = 3757). Alignment depth was selected to be
largely composed of bona fide β-lactamases. Analysis of the model
revealed that over 80% of the top L predicted residue-residue
interactions ("evolutionary couplings”, where L is the length of
alignedWT TEM-1 residues) match structural contacts in a known 3D
structure of WT TEM-1 solved using X-ray crystallography (PDB:
1XPB34, Fig. 2A). In addition, mutation effect prediction from the
model (EVH), for single residue variants, is positively correlated with
a published deep mutational scan of WT TEM-1 (replicate 1: n = 4788
with Spearman = 0.717; replicate 2: n = 4769 with Spearman = 0.702;
Supplementary Fig. S1)25. These data indicate that the model is able
to capture both the structure and functional sequence dependence
of TEM-1 β-lactamase.
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Fig. 2 | Quality of computational model and properties of experimentally tes-
ted design variants. [A, Model Quality] The computational model was evaluated
for quality by comparison to published metrics of β-lactamase structure and
function. Predicted residue-residue interactions (top L model couplings that are at
least 5 positions apart in primary sequence) are compared with known structural
contacts of WT TEM-1 as determined by X-ray crystallography (PDB: 1XPB34). Dots
indicate contacts either in the model (couplings) or PDB structure. Green bar on
y-axis (left) and x-axis (top) indicates positions that are aligned in theMSA used for
model inference, and are therefore included in the model (n = 252). Dashed gray
bars indicate position numbers that are skipped in the PDB structure (positions 239
and 253). Over 80% of the top predicted interactions are structural contacts.
[B, Design Properties] (Predicted fitness, left): Predicted fitness changes (ΔEVH)
between WT TEM-1 and designs (bottom) as well as the natural homologs of β-

lactamases (top, from the multiple sequence alignment used to generate the
model). (Diversity, right): Table of similarities and general properties of each
design. Identity to natural homologs was determined using blastp (Methods). Core
residues were defined as having a relative surface accessibility (ACC field of DSSP
analysis of PDB 1XPBdivided by residue size) of less than0.2. [C, Design Sequences]
Multiple sequence alignment (MSA) of all designs, with amino acid changes relative
to WT TEM-1 colored by new residue properties (standard colors: green, hydro-
phobic and glycine (G); blue, negative charge; red, positive charge; light blue,
polar). Conservation and logo for each position in themultiple sequence alignment
of natural homologs are displayed above the design sequences. Empty columns
in the logo and lowercase letters in the WT TEM-1 sequence indicate
unaligned positions in the MSA and model. Source data are provided in the
Source Data file.
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WT TEM-1 design variants were generated algorithmically. To
begin, a random amino acid sequence of length L was generated
separately for each design. Batch Gibbs sampling (simultaneous opti-
mization to all designs at each cutoff) was applied to each sequence: at
each iteration, a random position was chosen for mutation and the
identity of the amino acid selected to persist to the next round was
determined by sampling from the conditional probability distribution
of residues at that position proportional to a three-term objective
function. The objective function aims to (a)maximize predictedfitness
(EVH) while (b) constraining to a target sequence identity relative to
WT TEM-1 and (c) enforcing an upper bound on the sequence identity
relative to known natural homologs and other design variants. For
example, a target of 70% results in a design that has ~70% sequence
identity with WT TEM-1 and at most a 70% sequence identity with any
natural homolog or other design. We generated sequences with vary-
ing sequence identity targets (98%, 95%, 90%, 80%, 70%, and 50%). Of
the six sequences that were generated at each threshold, two were
randomly selected for experimental testing. The sequences assayed
are referred to hereafter as “98.a, 98.b, 95.a...50.a, 50.b”, correspond-
ing to their respective sequence identity threshold and an arbitrary
secondary identifier. In addition, two sequences were optimized solely
towards generating the highest predicted fitness (unconstrained by
sequence identity): (1) The opt.a sequence was generated in a greedy
manner that, starting withWT TEM-1, iteratively addedmutations with
the top predicted fitness until there were no additional predicted
positive mutations. (2) The opt.b sequence was selected using parallel
tempering35,36 that, as applied, is a global sampling method that
attempts to find the sequence with the maximum predicted fitness
(Methods).

We next examined general properties of the designs (Fig. 2).
Controls include WT TEM-1, a consensus sequence that contains the
most represented amino acid at each position in the frequency-
reweighted alignment used for model generation (rw-consensus), and
a catalytically-inactive negative control where the catalytic residue
Ser70 (Ser68 in UniProt numbering) was mutated to alanine (S70A,
neg. ctrl)25,37. The designs all had a predicted fitness (EVH) higher than
WT TEM-1 except for 50.a and 50.b (Fig. 2B). All of the designs had
much higher predicted fitness than randomly introducing mutations
into theWTTEM-1 sequence (Supplementary Fig. S2). As expected due
to distance constraints imposed by the sequence generation objective
function, most of the designs were more similar to WT TEM-1 than to
sequences in the MSA used for model inference (Supplementary
Fig. S3). While a given position was frequently altered across multiple
designs, the identity of the amino acid change often varied (Fig. 2C). In
general and as expected, the algorithm tended to change positions
that were variable rather than conserved in the multiple sequence
alignment (Fig. 2C, Supplementary Fig. S4A, and Supplementary
Fig. S5). Although the algorithm didmakemutations to residues in the
core of the protein (Table in Fig. 2B), the algorithm tended to mutate
positions that were more surface accessible than non-mutated posi-
tions (Supplementary Fig. S4B, Supplementary Fig. S5, and Supple-
mentary Fig. S6). In addition, positions mutated in the designs
generally had fewer overall interactions with other positions in WT
TEM-1 (PDB: 1XPB) compared with positions that were not mutated
(Supplementary Fig. S4C). An overview of each design, including the
number of amino acid changes relative to WT TEM-1 and closest nat-
ural homolog as well as some general properties of mutated positions
(e.g., number of mutations at core residues) can be found in Fig. 2B.

The majority of designs confer resistance to ampicillin in bac-
teria and are able to hydrolyze ampicillin and nitrocefin in
biochemical assays
To assess the effect of themanymutations in each design on function,
the sequences were synthesized and inserted after the WT TEM-1
promoter and N-terminal signal peptide, transformed into E. coli, and

assayed for growth in the presence of ampicillin. Using a Clinical and
Laboratory Standards Institute (CLSI) broth microdilution assay, we
quantified the minimum inhibitory concentration (MIC) of ampicillin
required to completely abrogate the growth of bacteria that express
thedesigned variant (Methods). The results are shown in Fig. 3A.Of the
14 designed variants, 11 conferred resistance to ampicillin. Eight had
equal or increased MICs compared with WT TEM-1, three had a
decreased MIC, and three had the same MIC as the catalytically-
inactive negative control (neg. ctrl). In at least one replicate, several of
the designs (98.b, 95.a, 95.b, 90.b, and 80.a) grew on the maximum
tested concentration of ampicillin (4096μg/mL), which completely
inhibited growth of WT TEM-1. Bacteria expressing the rw-consensus
sequence were unable to grow in any concentration of ampicillin
above the MIC of the negative control. The two designs that were
optimized solely for predicted fitness (i.e., distance unconstrained)
both conferred resistance to ampicillin, with the greedy optimized
sequence (opt.a) having a MIC equal to WT TEM-1, and the parallel
tempering optimized sequence (opt.b) had a large decrease in MIC
(roughly 100X less). In summary, nearly all of the designs were able to
confer resistance to ampicillin including a design with 84 mutations
relative to its closest natural homolog (70.a) and two designs with over
50 mutations (80.a and 80.b).

In addition to assessing MIC with the broth microdilution assay,
we applied and obtained similar results using two additional inde-
pendent antibiotic-resistance assays to determine the designs’ resis-
tance to ampicillin in cells: MIC determination by assessing colony
formation on a serial dilution of ampicillin on agar plates (Supple-
mentary Fig. S7A and Fig. 5) and growth on agar plates containing MIC
strips (Liofilchem, Supplementary Fig. S7B and Fig. 5).

Intrigued that nearly all designs (11 of 14) were able to confer
resistance to ampicillin in bacteria, we next investigated the bio-
chemistry of the enzymatic reaction. Each design was expressed in
E. coli and purified. The catalytic activities on the colorimetric β-lactam
substrate nitrocefin were measured and initial velocities (Supplemen-
tary Fig. S8) were fit to the Michaelis-Menten equation (Methods,
Fig. 3C, Supplementary Fig. S9, and Supplementary Table S1). All of the
designs that enabled resistance to ampicillin in the biological assays
had a similar catalytic efficiency (kcat/KM) to WT TEM-1. This includes
the 70.a design with 84 amino acid differences relative to any known
protein. The remaining designs that did not confer resistance to
ampicillin in bacteria had no detectable biochemical activity (70.b), or
were unable to be purified (50.a, 50.b). Although several designs had
an increase in kcat (98.b, 90.b, opt.a, opt.b), the overall effect of this
increase on catalytic efficiency was nullified by a concordant increase
in KM for 90.b and opt.b. Many of the designs also appeared to show
substrate inhibitionat themaximumtested concentrationofnitrocefin
(Supplementary Fig. S9). In summary, these results offer a biochemical
explanation (β-lactam hydrolysis) for each designs’ ability to confer
ampicillin resistance in bacteria.

We also performed biochemical analysis of each designs’ activity
on ampicillin. As absorbance-based detection of ampicillin cleavage
was noisy in high-throughput plate-based formats and in low con-
centrations of ampicillin, we used a single concentration of ampicillin
to determine initial velocities (Supplementary Fig. S10) and calculate
specific activity for eachdesign (Fig. 3B). All of thedesigns that enabled
resistance to ampicillin in bacteria (except for opt.b) had activities
similar to WT TEM-1, and the designs that did not confer resistance in
bacteria had activity values similar to the catalytically dead negative
control (neg. ctrl) or could not be purified (50.a and 50.b). The one
exception to this agreement was opt.b, which, compared with the
negative control, did not have different biochemical specific activity,
but did have an increased MIC in the bacterial assays. Overall, as with
the nitrocefin biochemical analysis, specific activity on ampicillin fur-
ther confirms that the majority of designs are able to hydrolyze
β-lactams.
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Taken together, designs with the largest number of amino acid
differences (50.a, 50.b, 70.b) were non-functional in both bacterial
resistance assays andbiochemical analysis. The other designs (11 out of
14) conferred resistance to ampicillin in bacteria using multiple inde-
pendent assays and exhibited β-lactam hydrolysis in biochemical
analysis of nitrocefin and/or ampicillin. These functional designs had
varying numbers of amino acid changes, including two sequences with
over 50 amino acid changes (80.a and 80.b), one with 62 changes
(opt.b), and one with 84 changes (70.a) relative to any known homo-
log. These data are consistent with the general view that it is increas-
ingly difficult to maintain or improve activity with an increasing
number of amino acid changes in a protein, whether by computation
design (this work) or experimental-based approaches1. The key
encouraging difference, however, is that the design process used here
can maintain function with a much larger number of mutations than a
random mutation process.

Designs have increased stability and increased activity on
additional substrates
Enhanced enzyme stability and altered substrate specificity or cat-
alytic profile are common goals of protein design. The spectrum of
protein stabilities and catalytic substrates of the β-lactamases
included in the MSA used to derive the computational model likely
extends far beyond that of WT TEM-1. As the design process is
informed by this ensemble of homologous proteins with various
characteristics (melting temperature, specificity, enzyme kinetics,

etc.), it is plausible that the designs are not just an optimized version
ofWT TEM-1, but rather that each reflects information from all of the
sequences used in the MSA.

We assayed the melting temperature (Tm) of each purified design
using differential scanning fluorimetry (DSF, Supplementary Fig. S11).
Every design we were able to purify (all except 50.a and 50.b) had
substantial increases in Tm relative toWTTEM-1 (Fig. 4A). TheWTTEM-
1 Tm is 50.6 °C and the absolute Tmof each design ranged from 55 °C to
78 °C. Over half (9 of 14) of the designs had an increase of over 10 °C,
and three exceeded a 20 °C increase. Additionally, these increases in
thermostability were not at the expense of enzymatic activity as, aside
from 70.b, all of these designs were also functional (at mesophilic
temperatures). In general a protein’s consensus sequence often has
increased thermostability38, and indeed the rw-consensus (reweighted
consensus, Methods) of our MSA had a large Tm increase of 15 °C.
Although the computational fitness prediction takes into account
positional conservation, all of the design sequences are substantially
different from the rw-consensus (Fig. 2), suggesting that these
increases in Tm are not solely accounted for by conserved residues. In
summary, every design that we were able to purify had increased
thermostability, and, despite these increases, all of these designs
except 70.b conferred resistance to ampicillin in E. coli and were able
to hydrolyze nitrocefin (Fig. 3).

Wenext profiled the designs’ ability to confer resistance to a panel
of β-lactam antibiotic substrates using the same CLSI broth micro-
dilution assay used to profile ampicillin resistance. Interestingly, many
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values are generally consistent with the results of cell-based resistance experi-
ments. Error bars: standard deviation. C Michaelis-Menten kinetics of each design
towards the canonical colorimetric β-lactam substrate nitrocefin. Error bars: stan-
dard error of the model fit to all three replicate initial velocities on six or seven
substrate concentrations (Methods). N/H: no hydrolysis was detectable (neg. ctrl,
consensus, and 70.b). N/A: designs that could not be purified (50.a and 50.b).
[colored bars] Binary call for each sample and assay. Red: non-functional. Green:
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of the designs acquired increased activity on multiple substrates
relative to WT TEM-1 (Figs. 4B and Fig. 5). Other than the two designs
thatwere optimized solely for predicted fitness (opt.a andopt.b),most
of the designs that were able to confer resistance to ampicillin also
conferred increased resistance to E. coli grown in the presence of at
least one of the other tested β-lactam antibiotics (aztreonam, ceftazi-
dime, cefazolin, and cephalothin). Most notably, the 70.a design,
which contains 88 mutations relative to WT TEM-1, had a ~32-fold
increased MIC of the monobactam β-lactam antibiotic aztreonam, a
16-fold increased MIC of ceftazidime, an 8-fold increased MIC of
cefazolin, and a 4-fold increasedMICof cephalothin. The80.a and80.b
designs also had a 4-fold increased MIC of aztreonam, as well as a 16-
fold increased MIC of ceftazidime. Many of the designs had an
increased MIC of cefazolin (98.a, 95.a, 95.b, 80.a, and 70.a) and
cephalothin (98.a, 98.b, 95.a, 95.b, 80.a, 70.a). Three of the antibiotics
(cefoxitin, imipenem, and meropenem) had no consistent differences
in MIC compared with the negative controls or WT TEM-1 (Supple-
mentary Fig. S12). We obtained similar results when assessing resis-
tance to aztreonam, ceftazidime, and cephalothin using MIC strips
(Supplementary Fig. S13).

In summary, every design had an increase in thermostability, and
most of the designs had an increase in the ability to confer resistance
towards at least one of the tested β-lactams. In particular, the 80.a and
70.a designs had between 4-fold and 32-fold increased MIC of four
tested antibiotics as well as 24 °C and 6 °C increased Tm, respectively.
Most of the rest of the distance-constrained designs (98.a, 98.b, 95.a,
95.b, and 80.b), which all had more than an 11 °C increased melting
temperature, also had increased activity on at least one of the four
tested β-lactams. The simultaneous increase in thermostability and
activity on some substrates suggests that the design process enhanced
multiple parameters, resulting in a diverse set of designed variants that
contain a set of useful properties.

Highly mutated design variants have 3D protein structures
nearly identical to WT TEM-1
To examine the structural effects of these mutations, we obtained
X-ray crystal structures of designs 80.a, 80.b, and 70.a (Fig. 6A and

Supplementary Fig. S14). These three designs had some of the highest
mutation counts relative to any natural sequence while still retaining
function. Aligning these structures in 3D to a published WT TEM-1
structure (PDB: 1XPB34) revealed that all three have nearly identical Cα
backbones toWTTEM-1 (0.26–0.61ÅRMSDover all Cα atoms, Fig. 6A).
We also searched for local structural changes byexamining differences
in all pairwise distances between residues, which showed small chan-
ges in a one looped region for all three structures (positions 255–257)
and in a second loop of 70.a (positions 53–55) (Supplementary Fig. S15,
Supplementary Fig. S16, and Supplementary Fig. S17). Both 80.a and
80.b have 55 amino acid substitutions relative to WT TEM-1, of which
80.a has 15mutations in the core of the structure and 80.b has 19 in the
core (Fig. 6B). 70.a has 88mutations relative toWT TEM-1, 35 of which
are in the core.

Although all three designs had Cα backbone structures that
were nearly identical to WT TEM-1, there were slight deviations, and
so we analyzed structural variations among WT TEM-1 natural
homologs. We collected a set of β-lactamase structures (947 poly-
peptide chains from 542 PDB: structures, Methods) and structurally
aligned each aswell as the 70.a, 80.a, and 80.b structures toWTTEM-
1 (PDB: 1XPB). The Cα backbones of the homologous structures lar-
gely overlap with one another and those of the three designs
(Fig. 6C). Quantifying the structural deviation from WT TEM-1 (PDB:
1XPB) reveals that the designs have a similar amount of variation as
the natural homologous structures (Inset of Fig. 6C). We next
investigated the relationship between sequence identity (from WT
TEM-1) and structural variation, and found that the three designs
have similar structural variation as other PDB entries that also have
~70–80% sequence identity from WT TEM-1 (Fig. 6D). In summary,
themutations introduced by the design process do not lead to larger
structural variations than those of naturally evolved proteins, in
spite of the imposed design constraint of upper bounds on the
sequence distances not only to WT TEM-1, but also to all known
natural homologs.

We next attempted to find structural evidence for the increased
melting temperature and altered substrate activity profiles of the
three functional designs for which we were able to obtain crystal
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structures. To investigate the structural basis for the increased Tm
(80.a had a 24 °C increase relative to WT TEM-1, 80.b had a 18 °C
increase, and 70.a had a 6.3 °C increase, Figs. 4, 5), we tallied the total
number of hydrogen bonds and the number of atom pairs in contact
(1.7–4 Å) in each structure. These analyses did not reveal any sub-
stantial differences withWT TEM-1 that would explain the increase in
Tm (see Source Data, Structural Mechanism Analysis). However, we
did observe literature-reported globally stabilizing mutations such
as M182T in every one of the designed sequences, which has been
shown to confer a 7.5 °C increase in Tm as a single substitution28. The
70.a, 80.a and 80.b designs also showed increased resistance to
aztreonam (80.a and 80.b had a 4-fold increasedMIC, and 70.a had a
32-fold increase MIC, see broth microdilution assay in Figs. 4, 5).
Analysis in and around the active site area of residue B-factors and
solvent accessible surface area did not reveal any consistent differ-
ences between any of the design structures compared with the three
PDB structures (1XPB, 4GKU, 1S0W34,39,40) that have the exact same
sequence as WT TEM-1 (see Source Data, Structural Mechanism
Analysis). There are five shared mutations near the active site that
are in three designs (M69A, E104T, P167T, E168A, E240G) that may
contribute to this increased resistance (Supplementary Fig. S18).
Compared with published structures of β-lactamases bound to
aztreonam (PDB: 5G18, 1FR6, 2ZQC, 4WBG, 4X53, 5KSC)39,41–44, and
penicillin-binding proteins (PDB: 3PBS, 3UE0, 5HLB, 6KGU)45–48 the
smaller side chains of E104T and E240G possibly avoid steric hin-
drance with aztreonam, but further experimental testing is neces-
sary in order to arrive at a definitive biophysical explanation for the
increased resistance.

In summary, the three designs possessed identical folds and
highly conserved backbone conformations relative to WT TEM-1. The

differences in structural variation were of similar magnitude to other
published structures with a similar sequence identity to WT TEM-1
(~70–80%), and the mechanism for increased thermostability and
increased activity on multiple substrates was not due to any obvious
structural changes.

The ensemble of mutations in each design positively influences
fitness beyond that of individual point mutations
Thus far, this work indicates that our design algorithm, which utilizes
a scoring function that takes into account both positional constraints
and pairwise interactions between positions (i.e., epistasis between
positions), can generate sequence variants with a very large
number of amino acid changes (up to 84 in a single sequence) that
maintained function and had enhanced properties. It is common
to utilize experimentally-derived fitness measurements of individual
point mutations to inform protein design. For example, deep
mutational scans (DMS), which aim to quantify the fitness of
all single point mutations in a wild type background, are a
useful means to increase the yield of obtaining functionally active
variants by avoiding the introduction of deleterious mutations49,50.
However, the fitness effect of point mutations on the wild type
sequence is not necessarily additive and likely becomes less useful
for design as the variant sequences diverge substantially from
wild type.

We examined the experimentally-determined fitness effect of
individual amino acid changes in the functional designs in the WT
TEM-1 background from a published DMS25 (Supplementary Fig. S19).
We defined “fitness defect” as an amino acid substitution having a
fitness score of less than -1 in at least one replicate in the published
DMS study, which conceptually equates to a 10-fold decrease in
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fitness at a high ampicillin concentration (2500 μg/mL) relative to
WT TEM-1. Designs with the fewest number of amino acid changes
(98.a, 98.b, 95.a, 95.b, 90.a, 90.b, opt.a) did not contain any muta-
tions that exhibited a fitness defect at any concentration of ampi-
cillin. However, the other functional designs contain amino acid
changes that exhibit fitness defects in WT TEM-1; 80.a has two amino
acid changes that show fitness defects, 80.b has four, 70.a has 11 and
opt.b has 28. The presence of mutations that cause fitness defects to
WT TEM-1 in four of the functional designs was noteworthy, espe-
cially given that all of these mutations also had a negative
fitness prediction as point mutants in the WT TEM-1 background.
Several key questions arise from these observations. How are these
designs able to function with mutations that are deleterious to WT
TEM-1? Why does the design generation algorithm, which attempts
to optimize the predicted fitness, produce designs with mutations
that were predicted to have a negative fitness impact to WT TEM-1?
We next investigated these questions by (1) performing a targeted
analysis on one particularly well studied inactivating mutation
(G251W), and (2) taking a more general look at the predicted fitness
effects of a set of mutations known to be deleterious to WT TEM-1 in
each design.

The G251W mutation, which was present in both 70.a and opt.b,
stood out due to multiple studies that describe it as negatively
impacting fitness in WT TEM-125,51. In addition, the G251W mutation in
WT TEM-1 had one of the lowest predicted fitnesses of any point
mutation in the functional designs. The opt.b design had the lowest
performance of any functional design in both the bacterial resistance
and biochemical assays, which could in part be due to G251W. Intri-
guingly, 70.a was reasonably active on ampicillin and was the most
effective design (highest MIC) towards three of tested β-lactam anti-
biotics (Figs. 2, 4, 5).

We next investigated whether any single mutation in the 70.a
design enables it to retain function with the presence of G251W. In the
literature51, several “compensatory mutations” have been described to
at least partially alleviate thefitness defects causedbyG251W, andboth
70.a and opt.b contain some of these mutations. However, each of
these mutations was also present in at least one other design that did
not contain theG251Wmutation, suggesting that thesemutationswere
not specifically selected by the design algorithm to compensate for
G251W. It is also possible that the design generation algorithm selected
compensatory mutations not uncovered in the literature review.
Although there are no large predicted epistatic effects between G251W
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and the 70.a mutations on the WT TEM-1 sequence background
(Supplementary Fig. S20), these double mutants do have some of the
highest predicted changes in fitness of all possible double mutations
(Supplementary Fig. S21). In the 70.a structure, new local interactions
between mutated residues W251 and R230 and non-mutated residue
E212 may contribute to maintaining β-lactamase structure and func-
tion (Supplementary Fig. S22). In summary, (1) 70.a contains many
point mutations that have been described in the literature as com-
pensatory, (2) thesemutations combinedwithG251Whave someof the
highest predicted fitness effects, and (3) structural analysis suggests
that local interactions between W251 and R230 (a mutation in 70.a
F230R)may be important formaintaining function. Each or all of these
observationsmay explain how 70.a is able to overcome the deleterious
effect of the G251W mutation.

Rather than explaining the presence of mutations in the designs
that would have caused fitness defects in WT TEM-1 solely through a
single compensatory amino acid change, it is plausible that it is the
ensemble of mutations in a given design that accounts for why the
algorithm selects such mutations. To probe this hypothesis, we
examined how the predicted fitness score of a point mutation may be
effected by the amino acids in the rest of the sequence (i.e., the
“background” for the point mutation). Using the 70.a design as an
example, we isolated each of its 88 mutations and calculated the
change in predicted fitness (ΔEVH) from the WT TEM-1 amino acid to
the 70.a amino acid in both the WT TEM-1 background and 70.a
background (Fig. 7A, left). The predicted fitness effect of each point
mutation is positive (+) or negative (-) to 70.a and/or toWT TEM-1, and
therefore eachmutation falls into one of four possible categories: (Q1)
positive in 70.a and negative in WT TEM-1, (Q2) positive in both 70.a
and WT TEM-1, (Q3) negative in 70.a and positive in WT TEM-1, and
(Q4) negative in both 70.a and WT TEM-1. For all designs, the percent
of mutations in each category is shown in Fig. 7A (right). As expected,
nearly all of the mutations are predicted to have a positive effect on
fitness in the design backgrounds. Interestingly, a large fraction of the
design mutations are predicted to have a negative impact in the WT

TEM-1 background. For example, G251W in WT TEM-1 is predicted to
have an ~3 point decrease (arbitrary units) in fitness whereas the same
mutation in 70.a is predicted to have a ~3 point increase (Fig. 7A, left).
Conceptually, even though introducing an individual mutation from
the designs into WT TEM-1 often lowers its predicted fitness, adding
the same individual mutation to the set of other design mutations
leads to a higher predicted fitness. In the context of the designed
sequence, reverting the mutated residues individually to their WT
TEM-1 amino acids lowers the design’s predicted fitness (Fig. 7B).
These data suggest that the specific sequence context is very impor-
tant, i.e., that the combination of allmutations candrastically influence
the fitness effect of individual point mutations. Furthermore, the site
and pairwise evolutionary model is able to capture complex epistatic
interactions between amino acids and, with reasonable accuracy,
correctly predict the fitness of highly mutated designs.

Discussion
In this work we demonstrate a design algorithm based on an evolu-
tionary model of sequence co-variation that enables large changes to
primary sequence while enhancing function and thermostability. Pre-
vious studies have demonstrated that the random sequential intro-
duction of mutations into β-lactamase results in a rapid decay of
activity (resistance to ampicillin), resulting in complete ablation of
activity in nearly every variant after the introduction of only 10
mutations1. Of the small set of 14 β-lactamase designs that we tested,
the hit rate of active sequences, with up to 30% of residues mutated,
was surprisingly high with 11 designed proteins enabling bacterial
growth on ampicillin and hydrolysis of nitrocefin. These functional
designs contained between 7 and 84 amino acid differences from any
known protein, indicating that our algorithm far outperforms random
mutagenesis-based approaches.

Perhaps one of the most interesting results is the joint optimiza-
tion of both stability and activity, which has often been viewed as an
inherent tradeoff in the protein engineering literature52–54. In addition
tomaintaining enzymatic activity, all of the functional designs also had
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thermostability increases of between 6 °C and 27 °C, and most con-
ferred increased resistance to one or more β-lactam antibiotics. Sta-
bility has been shown by multiple groups to correlate with the
predicted fitness from evolutionary models (e.g., Potts-like models,
including EVcouplings and direct coupling analysis)10,13,14, and we now
show that this stability can extend to synthetic sequences with a high
mutation count. Crystal structures of the functional designs with the
highest mutation count to any natural sequence revealed nearly
complete structural preservation relative to WT TEM-1 β-lactamase.
The increase in stability and resistance to β-lactams plausibly emerges
from the information in the collective set of homologs, which evolved
in many species over millions of years, used in sequence fitness pre-
diction. Individual sequences only need to be stable enough to func-
tion in their native conditions, and therefore likely only require a
subset of the many possible molecular mechanisms of stabilization.
One simple explanation for why the designed variants (and often
consensus sequences in general) exhibit increased stability is that
stabilizing amino acids and interactions are likely over-represented in
the naturally occurring proteins in the multiple sequence alignment
used for model inference. The expansion of substrate specificity in
some of the designs is plausibly related to the diversity of substrate
preferences in different species and different conditions represented
in the set of sequences in the multiple sequence alignment.

We expect this design strategy leveraging natural diversity to
engineer stability and activity is broadly applicable to a range of pro-
tein families. The β-lactamase family in particular has a high level of
functional and sequence diversity, as reported, with over 4000 known
enzymes in 17 functional groups differentially targeting four classes of
substrates55,56-characteristics that likely facilitate learning of a fairly
general framework of constraints that retain fold and function while
allowing for a range of substrate specificities. A previous study using a
similar modeling framework demonstrated the generation of a large
set of functional chorismatemutase variants of considerable sequence
diversity, illustrating the potential broad applicability of this type of
design process2. The addition of complementary data sources may
further enhance the general utility of the method, especially for pro-
teins that lack rich evolutionary sequence information. For example,
structural information could be used to prioritize known interactions
in the objective function or filter out structurally unlikely candidate
designs4. It remains to be determined what levels of sequence and
functional diversity in the training alignment are necessary for
designing libraries of stable variants with increased activity, and which
protein families satisfy these requirements.

It is tempting to conclude that these designs, which have
large numbers of primary sequence changes while maintaining or
even increasing activity, are better starting points for refining the
specificity of a design in new directions, e.g., by further
exploration of very similar sequences in the neighborhood of the
designed starting point, rather than the original starting
sequence. One common approach for refining the properties of a
protein is directed evolution where mutations in a starting
sequence are gradually introduced and accumulated (usually in a
greedy manner) over multiple rounds of selection for the desired
properties. As the negative effect of mutations can often be
linked to decreased stability57, starting with a protein that has
high stability is useful for directed evolution as increased muta-
tional tolerance enables a higher “hit rate” of stable sequences.
All of the purifiable designs had increased stability with over half
having melting temperature increases of more than 10 °C from
the wild type. This increased stability suggests that the majority
of the designed sequences may be more tolerant to mutation than
WT TEM-1, which would be useful in traditional protein optimi-
zation strategies like directed evolution. Conceptually, the design
process presented here enables large “jumps” to new regions of
functional sequence space through the introduction of many

mutations, and further improvements to optimize specific func-
tional and structural properties could then be achieved through
smaller mutational steps, i.e., “walking” in sequence space. We
believe this “jump and walk” strategy may enable us to efficiently
discover protein variants with diverse structural and functional
property changes while maintaining or increasing function.

One interesting methodological question that arises from
these results is how important accounting for epistasis is for our
design strategy, and to what extent other machine learning
models5,7,18,58–61 that explicitly include higher-order dependencies,
such as variational auto-encoders and large-scale language mod-
els, are also able to capture the collective effects of protein sta-
bility and function necessary to perform a similar design strategy.
The EVcouplings or Potts model10 used in this work does
approximate collective effects by inferring coupling terms (resi-
due-residue interactions) up to second order (pairwise) that best
describes the full dataset of available sequences. When these
interactions act iteratively through the entire system, collective
effects are approximately captured, in analogy to similar, highly
successful, models in statistical physics. Similarly, methods such
as variational auto-encoders are also an approximation with
parameters derived by minimizing the difference between enco-
ded (input) and decoded (generated) sequence distributions. In
practice, which approximation best captures collective effects for
the design of entirely new sequences depends on the particular
problem and remains to be determined in each case or against
large carefully crafted benchmark datasets.

Related work has recently reported62 the generation of WT TEM-1
variants using similar models together with an evolution-like variant
sampling and selection algorithm. Some of the variants generated by
this computational design process containedmanymutations, and the
authors report that someof the variants aremore active thanwild type.
In separate reports, the same group used similar models that evaluate
co-evolutionary patterns to create variants with a small number of
mutations that modulate DNA-protein and RNA-protein binding
interactions63,64, highlighting how these models can also be used for
molecular engineering beyond single-protein design. While different
from what is presented here (both in goals and implementation
details), collectively their work and ours demonstrate the general
capability and utility of using co-evolutionary models for protein
design.

This work supports the use of statistical models of evolutionary
sequence information for protein design, enabling the simultaneous
introduction of many mutations into the primary protein sequence
while maintaining function. Future work will investigate the biophysi-
cal explanation for the enhanced properties obtained here, as well as
how generalizable this enhancement strategy is to other proteins. We
anticipate that this type of approachwill be readily applicable tomany
protein classes as a means to enhance and design new industrial or
therapeutic functions.

Methods
Design process and parameters
Alignment. A multiple sequence alignment of β-lactamases was con-
structed using five iterations of jackhmmer search (version 3.2.1)
against the UniRef100 database with a length-normalized bitscore of
0.5 (selected to ensure primarily β-lactamases in the alignment). The
alignment was filtered to exclude positions with more than 30% gaps
and to exclude sequence fragments aligning to less than 50% of the
target sequence. To account for redundancy, similar sequences in the
alignment are re-weighted according to their uniqueness using a
Hamming distance cutoff of 0.210.

EVcouplings model. The site and coupling parameters of the
EVcouplings model were learned via regularized maximum
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pseudolikelihood8,10. The model file is provided as Supplementary
Data, which can be loaded and queried in python using the EVcou-
plings framework (https://github.com/debbiemarkslab/evcouplings).

Monte Carlo sampling with diversity restraints. Sequences were
sampled via batch-Gibbs sampling on a penalized energy function
derived from the EVcouplings Potts model. Batch Gibbs sampling
produces a batch of sequences in by iteratively resampling random
positions in random batch members according to a batch energy
function.We anneal the inverse temperature on a linear schedule from
0.5 to 10 over 1000 batch sweeps.

The batch energy function can enforce batch-level constraints
such as inter-sequence diversity. We defined the un-normalized joint
energy function as

U σ1, . . . ,σM

� �
=
XM

a= 1
UðσaÞ ð1Þ

where {σ1,…, σM} is a batch of M sequences to be sampled. This batch
objective can be factorized into per-sequence objectives U(σa) as a
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where hi(σa,i) and Jij(σa,i, σa,j) are the fields and couplings of the
EVcouplings model, D(σa, σb)∈ [0, 1] is the normalized Hamming dis-
tance between sequences σa and σb, and {s1,…, sN} is a reference
multiple alignment of N sequences.

We included three penalty scores in the batch objective: (i) a target
distance score that penalizes sequences to bewithin a specified range of
distances from the reference sequence, (ii) a batch diversity score that
penalizes pairwise sequence similarity within a batch, and (iii) an align-
ment distance score that penalizes similarity to any known sequences in
the multiple sequence alignment. Throughout our experiments, we
used hyperparameters λTarget = 1000, λDiversity = λAlignment = 10, and var-
ied dDiversity =dAlignment =dmin to the satisfy the desired similarity to tar-
get. We set dmax =dmin0:05 to add a small margin of tolerated target
distances. Sampling six sequences with 1000 sweeps of batch Gibbs
sampling took ~1 h on a 2018 2.2GHz Intel Core i7 with a naiveMATLAB
(9.4 R2018a) implementation. We note that this could be greatly accel-
erated by modern gradient-based discrete sampling methods65.

Greedy sampling—opt.a. One sequence (opt.a) was generated via a
simple greedy sampling protocol in which the wild type sequence was
iteratively mutated by the single most favorable point mutation in the
one-mutant neighborhood until reaching a local optimum.

Parallel tempering sampling—opt.b. One sequence (opt.b) was
generated via annealed parallel tempering for global optimization.
Parallel tempering combines sampling processes across several tem-
peratures that allows higher temperature exploration to inform lower
temperature exploitation, and can be useful on rugged landscapes35.
We used 19 replicas with inverse temperatures initialized with linear

spacing between 0.1 and 1.0. We increased these inverse temperatures
over 1000 Gibbs sweeps by schedule β01.002

i, where i is the numbers
of sweeps.

Frequency reweighted sequence—rw-consensus. The reweighted
consensus control was generated by assigning the most frequent
residue at each position in the alignment, after redundancy-
reweighting each sequence according to its uniqueness with a Ham-
ming distance cutoff of 0.210.

Similarity to known sequences. We used the BLAST to find the
nearest homologs when preparing for publication. The database used
was the non-redundant protein sequences (nr) and the algorithm
selectedwasblastp (protein-protein BLAST, version 2.14.1). The closest
natural homologswereonly partially aligned for rw-consensus (253out
of 263 positions aligned) and opt.b (257 out of 263 positions aligned).
The percent identity and number of mutations reported for these two
sequences was based only on the aligned positions.

Cloning for antibiotic resistance assays
Plasmid preparation. Designs were cloned into a modified pSTC0
plasmid after a native ampRpromoter andWTTEM-1 N-terminal signal
peptide. pSTC0 was a gift from Alfonso Jaramillo (Addgene plasmid
#39240; http://n2t.net/addgene:39240; RRID:Addgene_39240)66. The
pSTC0 plasmid originally contained two antibiotic cassettes, ampi-
cillin and kanamycin. We replaced the kanamycin resistance cassette
with a Zeocin resistance cassette in order to reduce the probability of
contamination with other ongoing projects in the lab.

Codon optimization. Reverse-translation of sequences to DNA was
performed using the canonical E. coli codon table. To reduce the
impact of differential translation efficiencies on the rate of β-lactamase
translation, we used codons for the mutant amino acid with the most
similar codon usage frequency to that of the wild type codon.

Gene synthesis and assembly into plasmid. Designs were synthe-
sized as gBlocks by Integrated DNA Technologies and Gibson cloned
(New England Biolabs) into the modified pSTC0 backbone.

Determination of bacterial resistance to ampicillin and other β-
lactam antibiotics
Sequence-validated glycerol stocks of DH5α E. coli (New England Bio-
labs) were used for all bacterial resistance assays.

MIC determination using a broth microdilution assay. A fixed con-
centration of design-expressing E. coli (DH5α), as determined by
optical density (OD) calibrated to a McFarland prep, was added to a
2-fold serial dilution of ampicillin in a cation-adjusted Mueller-Hin-
ton broth. Three experiments were performed for each design-
ampicillin concentration, and the final MIC was determined as (1) the
mode of the 3 replicates or, if there is no mode, then (2) use the
median if all replicates are in essential agreement (i.e., within one
serial dilution of one another) or, if there is no essential agreement,
then (3) perform an additional 2 replicates and use the median of 5
replicates.

Ampicillin MIC determination by assessing colony formation on
agar plates. E. coli (DH5α) that expressed each design were used to
inoculate Mueller-Hinton (MH) broth containing 50μg/mL zeocin (to
ensureplasmidmaintenance). Cultureswere grownovernight (37 °C at
250 RPM). The following day, cells were spun down and resuspended
in 0.85% NaCl, and diluted to a final OD of 0.125. This dilution was
further diluted to achieve 5000 cells/mL and 40μL of this final solu-
tion (~200 cells) was pipetted into one well of a 6-well plate that con-
tained a serial dilution of ampicillin in MH agar. For each design, two
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6-well plates were used for each of the three replicates, which con-
tained ampicillin at the following concentrations: 4608μg/mL,
2304μg/mL, 1152μg/mL, 576μg/mL, 288μg/mL, 144μg/mL, 72μg/mL,
36μg/mL, 18μg/mL, 9μg/mL, 4.5μg/mL, 0μg/mL. MIC was defined as
the lowest ampicillin concentration having no visible colonies after
overnight culture at 37 °C.

MIC determination using MIC strips. E. coli (DH5α) that expressed
each design were used to inoculate Mueller-Hinton (MH) broth con-
taining 50μg/mL zeocin (to ensure plasmid maintenance). Cultures
were grownovernight (37 °Cat250 RPM). The followingday, cells were
spun down and resuspended in0.85%NaCl, and diluted to a finalODof
0.125. 500μL of each design-expressing E. coli culture was pipetted
onto three 15-cm plates containing MH agar+50μg/mL zeocin, and 25
glass beads were dropped onto the plate and shaken vigorously until
the liquid culture was well distributed. Five MIC strips (Ampicillin,
aztreonam, ceftazidime, cefazolin, and cephalothin) were placed on
the plate in a star pattern. Plates were placed at 37 °C overnight, and
the following day plates were imaged with a Bio-Rad ChemiDoc. Each
sample was quantitated by eye by assessing the intersection of bac-
terial growth and non-growth on the strip.

Protein purification
All TEM-1 designs were expressed and purified as follows. Designed
variants were cloned into the pCDB179 plasmid backbone, containing a
cleavable N-terminal His-SUMO tag67. DNA was transformed into
Lemo21(DE3) cells and grown in MDAG-135 media overnight at 37 °C.
The saturated culture was used to induce an autoinduction media
culture of TBM-5052 supplemented with 1mM Rhamnose and
Y-Antifoam (Sigma, A5758) as a 1:100 dilution. The expression culture
was grown for 20–22 h at 30 °C. Cells were harvested by centrifugation
and resuspended inBuffer A (20mMNaPi, 500mMNaCl pH7.4, 20mM
Imidazole) supplemented with 0.25mg/ml Lysozyme (Sigma, L6876),
Turbonuclease (Accelagen, N0103), and EDTA-free Protease Inhibitor
tablets. Cells were lysed by sonication at 4 °C and clarified by cen-
trifugation at 14,000 x g for 20 min. The supernatant was applied to
2mL of cOmplete Ni2+-agarose (Roche) prewashed with Buffer B
(20mMNaPi, 500mMNaClpH7.4, 20mM Imidazole) andbatch bound
at room temperature for 1 h. The Ni2+-agarose resin was washed with
60mL of Buffer B, and sample was eluted with 5mL Buffer C (20mM
NaPi, 500mM NaCl pH 7.4, 400mM Imidazole). Protein was con-
centrated to 0.5mL using Amicon-4 10K concentrators and applied to a
Superdex 75pg 10/300columnequilibratedwithBufferD (20mMNaPi,
150mM NaCl pH 7.4). The β-lactamase peak was collected, and incu-
bated with a 1:100 (w/w) dilution of His-CthSUMO protease67 at room
temperature for 1 h. The protein solution was incubated with 2.5mL of
Ni2+-agarose prewashed with Buffer D, and the flow through was col-
lected as the final product. Concentration was measured by A280 and
purity was determined by SDS-PAGE. Protein was brought to 5% (v/v)
glycerol, aliquoted,flash-frozen in liquidnitrogen, and stored at−80 °C.

Enzyme kinetics
All assayswereperformed at 25 °C in20mMNaPi, 150mMNaCl pH7.4.
A SpectraMax i3x instrumentwas used tomonitor substrate hydrolysis
at wavelengths 482 nm for nitrocefin and 235 nm for ampicillin
(delta E 900).

Nitrocefin. Purified designs and control enzymes (1 nM) were incu-
bated with multiple concentrations of nitrocefin (12.5μM, 25μM,
50μM, 100μM, 200μM, 400μM, 800μM), and hydrolysis was mea-
sured at an absorbance of 482 nmover time. For eachplate, the buffer-
only well absorbance was subtracted from each datapoint. A standard
curve of absorbance versus hydrolyzed nitrocefin concentration was
generated, and a linear fit of these data was used to calculate an
absolute concentration of hydrolyzed nitrocefin for each sample. For

each sequence and nitrocefin concentration replicate condition, a
linear regressionwas calculated for all possible slidingwindows of four
timepoints (Supplementary Fig. S8). Themaximum slope was selected
and the quality offit was verifiedbynormalizedRMSDaswell as by eye.

To calculate the kcat and Km for each enzyme, data were fit using
the lmfit Python library to the Michaelis-Menten equation:

V = kcat*E*S=ðKm + SÞ ð6Þ

whereV = initial reaction rate ,

E = enzyme concentration ,

S= substrate concentration

Data were first fit to amaximum substrate concentration of 400μMas
we observed inhibition at 800μM for some designs (Supplementary
Fig. S9). If the resulting Km multiplied by three was more than the
maximum substrate concentration of 400μM (an indication that the
analysis was not reliable) and therewas no clear substrate inhibition at
800μM, then data were then re-fit to the maximum measured
substrate concentration of 800μM. Designs fit to the 800μM
substrate maximum were WT TEM-1, 98.b, 90.b, opt.b. All other
designs were fit to a maximum of 400μM substrate. The equation fit
compared to measured data (initial rate versus nitrocefin concentra-
tion) are shown in Supplementary Fig. S9. Kinetic parameters are
plotted in Fig. 3C and are listed in Supplementary Table S1. Reported
errors are the standard error directly reported from the lmfit python
library and, for the kcat/Km, error propagationwas applied to derive the
standard error:

σkcat=Km
= jkcat=Kmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσkcat

=kcatÞ2 + ðσKm
=KmÞ2

q
ð7Þ

Samples neg. ctrl (S70A), rw-consensus, and 70.b had no detectable
hydrolysis (N/H) and samples 50.a and 50.b were unable to be
purified (N/A).

Ampicillin. Specific activity measurements were determined using a
single initial concentration of ampicillin (800μM), and a constant
amount of enzyme (0.5 nM) for each enzyme. Hydrolysis was mea-
sured at an absorbanceof 235 nmover time. For each replicate, a linear
regression was calculated for all possible sliding windows of five
timepoints (Supplementary Fig. S10). Initial reaction rate was deter-
mined as the negative of the steepest slope in which predicted values
from the linear regression were consistent with the data (normalized
RMSD<0.001) so that the initial rate is related to product formation
instead of substrate consumption as is measured by absorbance. Final
specific activity was calculated by dividing the initial rate by enzyme
concentration.

Differential scanning fluorimetry (DSF)
Protein thermal stability was measured by differential scanning
fluorimetry using a QuantStudio Pro 6/7. Protein was brought to a
concentration of 10μM with 5x Sypro Orange dye in a final volume of
20μL in 20mM NaPi, 150mM NaCl pH 7.4. Raw data processing and
curve fitting was determined using Applied Biosystems Protein Ther-
mal Shift software, version 1.2, and the Tm is reported as the “Tm D”
value. Measurements were conducted in triplicate.

X-ray structure determination
Expression and purification. Designs 80.a and 80.b were purified as
described in Protein Purification. This purification method did not
yield crystals for 70.a so a different strategy was applied. A construct
with the sequence corresponding to the designed variant was syn-
thesized by Genscript. The cDNA was inserted into a pET15b vector at
the NdeI/BamH1 site, with an N-terminal His tag followed by a
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thrombin protease recognition sequence. The DNA construct was
transformed into BL21(DE3) cells and expressed in liter amounts in
2xYT media (FORMEDIUM, UK) in the presence of 100μg/mL of
ampicillin (SIGMA Co). Cells were grown at 37 °C to an OD600 of 0.6,
induced with 0.1mM IPTG, and incubated overnight at 18 °C. Cells
were then harvested and lysed by sonication in extraction buffer
(300mM NaCl, 20mM imidazole, 10mM β-mercaptoethanol, 20mM
Tris-Cl pH 8). Following centrifugation (30min, 4 °C, 12,000 × g), the
soluble fractionwas applied to aNi2+-agarose resinby gravity. The resin
was washed in the extraction buffer supplemented with 40mM imi-
dazole, and bound proteins were eluted with a step gradient to
200mM imidazole. Eluted proteins were dialyzed overnight in
extraction buffer in the presence of thrombin protease at 4 °C. Fol-
lowing thrombin cleavage, there were 4 non-native residues (Gly-Ser-
His-Met) prior to Pro27 ofmature TEM-1 β-lactamase. Cleaved 70.a was
collected as a flow-through fraction from a second Ni2+-agarose gravity
column. Following exchange into a low salt buffer (10mMNaCl, 10mM
Tris-HCl pH 8, 1mMDTT), the protein was loaded onto a Mono Q 5/50
GL ion exchange column and a 50% gradient of high salt buffer was
applied (low salt buffer supplemented with 1M NaCl). Fractions cor-
responding to the first peak of β-lactamase protein were pooled and
loaded onto a Superdex 75 10/300 GF column (Cytiva) equilibrated in
gel filtration buffer for further purification. The β-lactamase peak was
concentrated in a 10 kDa molecular weight cut-off Amicon centrifugal
concentrator to a final concentration of 20mg/ml.

Crystallization. Purified 70.a proteins were subjected to hanging
drop crystallization using commercial screens and Mosquito robot-
ics (SPT Labtech). Crystals were directly harvested from 96-well
plates and plunged briefly into 25% glycerol as a cryoprotectant. 70.a
crystals grew from the commercial screen Morpheus containing
0.002M Divalent II [0.005 M manganese(II) chloride tetrahydrate,
0.005 M cobalt(II) chloride hexahydrate, 0.005M nickel(II) chloride
hexahydrate, 0.005M zinc acetate dihydrate], 0.1 M buffer system 6
pH 8.5 [Gly-Gly, AMPD], and 30% precipitant mix 7 [20% w/v PEG
8000, 40% v/v 1,5-pentanediol]. Crystals of purified 80.a and 80.b
proteins were grown and harvested from commercial screens under
numerous PEG/salt conditions. However, the best crystals were
obtained with MES buffer at pH 6.5, with PEG3350 as the precipitant.
See Supplementary Table S2 for Crystallographic Data and Refine-
ment Statistics.

Data collection and refinement. The crystals were flash cooled in
liquid nitrogen and subjected to X-ray data collection at the
Advanced Photon Source (Argonne, Ill; NECAT beamline), or the
NSLS2 synchrotron at Brookhaven, NY (FMX beamline) (Supple-
mentary Table S1). Data were processed using XDS68 and Aimless69.
The structure of 70.a was determined by molecular replacement
using WT β-lactamase as a search model in Phaser (PDB: 1XPB)34,70.
The initial model was built using the program AutoBuild imple-
mented in PHENIX71. This was followed by alternate cycles of manual
model building in COOT72 and refinement using PHENIX.

Structural comparison to published β-lactamase homologs
Publicly-availableβ-lactamase structures. Experimentalβ-lactamase
structures were collected by performing a PSI-BLAST search (5 itera-
tions) of theWT TEM-1 sequence with the database set to Protein Data
Bank (PDB:). Structures annotated as beta lactamase were further fil-
tered to remove those that had less than 20% sequence identity to WT
TEM-1. After filtering, 927 polypeptide chains from 542 PDB structures
remained.

Structural alignment. Chains were aligned in pymol using the “super”
or “align” command, and the alignment with the lowest RMSD for each
chain is reported and used to visualize structural variation.

Software and code
Data collection. The following software was used for data collection:
Applied Biosystems Protein Thermal Shift software version 1.2, blastp
2.14.1, jackhmmer - 3.2.1, and MatLab 9.4 R2018a.

Data analysis. The following was used for data analysis: EVcouplings
0.1.2 (currently development version on github), Python 3.9.17, PyMOL
2.5.2, XDS February 5, 2021, Aimless 0.5.32, PHENIX 1.20.1, COOT 9.8.6,
pandas 2.0.3, biopython 1.81, seaborn 0.12.2, openpyxI 3.1.2, scikit-
learn 1.3.0, jupyter 1.0.0, Imfit 1.2.2, and numpy 1.23.5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
There are no restrictions on data access. All source data used for fig-
ures in this study are provided in the Source Data file provided by the
journal. All code, raw and processed data are available at https://
github.com/gauthierscience/beta-lac-protein-design73. The crystal
structures generated in this study have been deposited in the RCSB
Protein Data Bank (RCSB PDB) under accession codes 8RQU [10.2210/
pdb8RQU/pdb] (70.a), 8GII [10.2210/pdb8GII/pdb] (80.a), and 8GIJ
[10.2210/pdb8GIJ/pdb] (80.b). The plasmids generated in this study
have been deposited at Addgene under accession codes 202351 (WT
TEM-1), 202350 (neg. ctrl), 202349 (rw-consensus), 202332 (98.a),
202333 (98.b), 202334 (95.a), 202335 (95.b), 202336 (90.a), 202337
(90.b), 202338 (80.a), 202339 (80.b), 202340 (70.a), 202341 (70.b),
202342 (50.a), 202343 (50.b), 202347 (opt.a), 202348 (opt.b). The
nucleotide sequences used in this study are available in the Source
Data and have been deposited at GenBank under accession codes
PP763450 (WTTEM-1), PP763457 (neg. ctrl), PP763449 (rw-consensus),
PP763456 (98.a), PP763452 (98.b), PP763460 (95.a), PP763447 (95.b),
PP763455 (90.a), PP763453 (90.b), PP763461 (80.a), PP763448 (80.b),
PP763458 (70.a), PP763446 (70.b), PP763445 (50.a), PP763459 (50.b),
PP763451 (opt.a), PP763454 (opt.b). The WT TEM-1 crystal structure is
available at RCSB Protein Data Bank (RCSB PDB) under accession code
1XPB [10.2210/pdb1XPB/pdb]. Accession codes for the naturalmultiple
sequence alignment used for model generation as well as accession
codes for the 542 PDB structures used in Fig. 6 are available in the
Source Data. Source data are provided with this paper.

Code availability
All data and custom analysis code are available at: https://github.com/
gauthierscience/beta-lac-protein-design73.
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