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Alzheimer’s Disease (AD) pathology has been increasingly explored through

single-cell and single-nucleus RNA-sequencing (scRNA-seq & snRNA-seq) and
spatial transcriptomics (ST). However, the surge in data demands a compre-
hensive, user-friendly repository. Addressing this, we introduce a single-cell
and spatial RNA-seq database for Alzheimer’s disease (SSREAD). It offers a
broader spectrum of AD-related datasets, an optimized analytical pipeline, and
improved usability. The database encompasses 1,053 samples (277 integrated
datasets) from 67 AD-related scRNA-seq & snRNA-seq studies, totaling
7,332,202 cells. Additionally, it archives 381 ST datasets from 18 human and
mouse brain studies. Each dataset is annotated with details such as species,
gender, brain region, disease/control status, age, and AD Braak stages. SSREAD
also provides an analysis suite for cell clustering, identification of differentially

M Check for updates

expressed and spatially variable genes, cell-type-specific marker genes and
regulons, and spot deconvolution for integrative analysis. SSREAD is freely
available at https://bmblx.bmi.osumc.edu/ssread/.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder,
the most common form of dementia worldwide. Over 57 million indi-
viduals globally suffer from this debilitating condition’. Despite the
significant strides in medical research and development, therapeutic
interventions for AD remain distressingly ineffective. This glaring
lacuna in clinical therapeutics underscores the urgency to probe into
the intricate molecular mechanisms underlying the disease’s cellular
and regional susceptibility that are still largely enigmatic®. Recent high-
throughput sequencing technologies, particularly single-cell RNA-
sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-
seq) have cast fresh light on our exploration of AD pathogenesis. To
study the cellular heterogeneity of the brain and reveal the complex
cellular changes in AD, we launched scREAD in 2020°. By then, it was
the first database dedicated to managing public AD-related sc/snRNA-
Seq data from human and mouse brain tissue. As the sequencing
technology and scientific inquiry rapidly evolved, more studies are
discerning the spatial information of differentially expressed genes
(DEGs) associated with AD pathology, the interconnectedness of DEGs

related to AD biomarkers, DEGs enriched in specific cell subtypes,
cell-cell communications, and regional and cellular vulnerability in
AD". Spatial transcriptomics (ST) revolutionized our understanding of
neurobiology and AD pathogenesis by enabling the visualization of
gene expression patterns within their spatial context. Yet, these public-
available scRNA-seq, snRNA-seq, and ST data have not been well col-
lected and managed by any AD databases. In addition, the remarkable
potential usage of these datasets is accompanied by the formidable
challenge of data aggregation, analysis, and interpretation, necessi-
tating substantial computational resources and bioinformatics
expertize.

In recent years, there has been a significant increase in the avail-
ability of AD-related sc/sn RNA-seq datasets. This has led to the
development of various databases, including those that serve as gen-
eral repositories for scRNA-seq data and others that specifically focus
on AD and the brain. For instance, the TACA® database facilitates dif-
ferential expression comparisons to identify cell type-specific gene
expression alterations, cell-cell interactions, and drug screening
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opportunities. Meanwhile, the SC2Disease database® aims to offer a
comprehensive and accurate resource of gene expression profiles
across various cell types for 25 diseases. However, the AD data pro-
vided by SC2Disease is limited to a single dataset from one brain region
(prefrontal cortex). SCAD-Brain’ is another public database dedicated
to AD, with a focus on both human and mouse brain data. It provides
more extensive analysis results, such as cell communication analysis
and trajectory information. Despite these advances, there remains a
gap in the field for a specialized database that concentrates on spatial
transcriptomics in AD and offers comprehensive differential analyses
under various conditions, such as sex-specific, region-specific, and
comparisons between AD and control groups. Integrating these
diverse datasets and conditions would prove invaluable for research-
ers studying the complex landscape of AD.

To address these burgeoning complexities and to meet the sci-
entific community’s growing demand for comprehensive, integrated,
and accessible data analysis, we introduce ssREAD (Single-cell and
Spatial RNA-seq databasE for Alzheimer’s Disease). It includes 381 ST
and 277 sc/snRNA-seq AD-related datasets. These sequencing data
enable researchers to investigate transcriptomic alterations in AD
compared to the control and their regulatory mechanisms at various
resolutions: sub-cellular, cellular, and spatial levels®’, which will help
uncover the pathogenesis of AD. We also highlight the sc/snRNA-seq
and ST data analysis framework in ssREAD, including cell clustering
and annotation, DEGs and spatially variable gene identification, cell-
type-specific regulon inference, cell-cell communication analysis and
functional enrichment analysis. Moreover, the integrative exploration

of ST and sc/snRNA-seq data revealed nuanced molecular landscapes
that underlie AD, emphasizing ssREAD’s unparalleled capability.
Beyond that, ssREAD also delivers marked improvements to the user
interface. These modifications, grounded in user-centric design prin-
ciples, advance visibility and usability, fostering an environment con-
ducive to intuitive data visualization and streamlined querying.

Results

Overview of sSREAD

SSREAD comprises 381 ST samples from 16 AD-related studies and
1,053 sc/snRNA-seq samples from 85 studies (Supplementary Data 1).
The 1,053 sc/snRNA-seq samples are grouped into 277 datasets by
integrating sample replications from the same study. All datasets are
collected and downloaded from Broad Institute SingleCellPortal, Gene
Expression Omnibus (GEO), and Synapse'® (Supplementary Fig. 1).
sSREAD has a considerable 379% increase in the number of integrated
sc/snRNA-seq datasets than the previous scREAD (from 73 to 277),
encompassing over three times the total cell and nucleus count.

In our pursuit of thoroughness, each dataset is meticulously
annotated, providing pertinent details such as species, gender, brain
region, disease/control distinction, and AD Braak stages. In the realm
of species, 144 out of 277 integrated sc/snRNA-seq datasets are from
human samples, whereas 133 datasets are from mouse samples. In
contrast, mouse datasets are prominently represented with 319 ST
datasets, four times more than human ST datasets (Fig. 1a). When
demarcating datasets based on the AD condition, 154 integrated sc/
snRNA-seq datasets are assigned to the AD group, as opposed to the
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Fig. 1| ssREAD Data characteristics and statistics (as of December 2023).
a-d Barplots show the number of datasets by species, condition, sex, and brain
regions, respectively. e Treemap presents the breakdown of technologies deployed

in mouse and human studies. f The comparative table showcases the number of
studies and datasets across extant AD databases and data collection sources.

Nature Communications | (2024)15:4710



Article

https://doi.org/10.1038/s41467-024-49133-z

123 datasets associated with control scenarios (Fig. 1b). This distribu-
tion takes a nuanced shift within ST samples, with AD-oriented data-
sets numbering 140 and control datasets as 241. Sex-specific
stratification is also evident within the ssSREAD construct. It includes
140 integrated datasets from sc/snRNA-seq and an additional 213
datasets sourced from ST methodologies for males (Fig. 1c), compared
to 137 sc/snRNA-seq and 168 ST datasets for females. sSREAD also
offers a detailed breakdown of samples by brain region, with separate
datasets for sc/snRNA-seq and ST techniques (Fig. 1d). sSREAD show-
cases a range of technologies that contribute to a comprehensive
spatial transcriptomics profile (Fig. 1e). For the mouse model, tech-
nologies span from Slide-seq (106 samples) to HDST (3 samples). The
human segment is inclined towards 10x Visium, accounting for
18 samples, closely trailed by In-situ ST of 20 samples, and MERFISH
with 24 samples.

Benchmarking ssREAD against contemporaneous repositories
underscores its unparalleled stature. Compared with some existing
databases with a collection of datasets on AD, such as scREAD?, SCAD-
Brain’, TACA®, SODB", STOmicsDB", and Single-Cell Portal, ssREAD has
the most decadent AD-related samples collected for both sc/snRNA-
seq and ST data with great depth and breadth (Fig. 1f). Overall, sSREAD
leads to a comprehensive collection of AD-related scRNA-seq, sSnRNA-
seq, and ST datasets, offering both breadth and depth of data that
stand unrivaled compared to other available resources or databases.

Our ssREAD collects the above data and offers comprehensive, in-
depth data analyses and result interpretations. For sc/snRNA-seq data,
ssREAD provides functions including cell clustering, cell type annota-
tion, marker gene expression visualization, and cell proportion ana-
lysis (Fig. 2a). For ST data, it provides visualizations for original spatial
H&E image, layer/tissue architecture/spatial domain annotation, mar-
ker gene expression on spatial map, and spot deconvolution (Fig. 2b).
DEGs can be identified for cell types in sc/snRNA-seq data or spatial
layers in ST data (Fig. 2c). Cross-data queries and analyses are also
facilitated, including comparative studies between male and female
subjects across various datasets. Additionally, spatially variable genes
(SVGs) can be identified via spaGCN® from ST data to show marker
genes with spatially resolved expression patterns that may be related
to tissue functions. Functional enrichment analysis is included to
identify pathways or gene ontology enriched by DEGs or SVGs (Fig. 2d).
Moreover, ssSREAD also features cell-type-specific (or layer-specific)
regulons for individual datasets and the integrated cell atlas (Fig. 2e),
focusing on cellular and regional vulnerability in AD.

To ensure ease of use, all analytical results are displayed via a user-
friendly and single-access web portal that frees AD researchers from
the requirement of extensive programming knowledge. We offer
interactive plots for visualizing cells and spatial spots, including scatter
plots, bar plots, and violin plots, as well as real-time analyses for DEGs,
SVGs, and functional enrichment queries. Furthermore, all datasets,
including author-provided metadata and cell type labels, are provided
in ready-to-analyze formats (e.g.,.h5ad and.h5seurat), compatible with
analysis tools such as Seurat and Squidpy for further analysis.

Spatially-informed subpopulation analysis reveals cellular
heterogeneity in AD

To illustrate the ST data analysis workflow and functions that are
available to users of ssREAD, we used two ST data (STO1101 and
STO01103), labeled by six cortical layers and the adjacent white matter in
two human middle temporal gyrus (MTG) brain samples based on the
information provided in the original study™ (Fig. 3a). We performed
DEG analysis between AD (ST01103) and control (ST01101) for each
functional layer (Supplementary Data 2) and evaluated the DEG con-
sistency with the other two comparison groups (i.e., STO1102 vs
ST01104 and STO1106 vs STO1105) (Supplementary Data 3-4). Results
showed that there exist DEGs between AD and control in each layer
that overlapped among the three comparison groups (Supplementary

Fig. 2). The overlapping DEGs among the three comparison groups
correspond to up-regulated genes in AD compared to controls of layer
4 with three DEGs, layer 5 with two DEGs, and layer 6 with three DEGs.
Further implementation of RESEPT", a deep-learning framework for
spatial domain detection, provided a precise delineation of the tissue
architecture and functional zones in both control and AD brain tissues
(Fig. 3b). The resulting spatial delineation remains comparable to the
six cortical layers identified in the original study. Layers 5-6 of the AD
sample (ST01103) exhibit slight differences in their delineation com-
pared to controls and their original labels, suggesting there may be
underlying differences in the functional zones of these layers. The data
is consistent with previous publications suggesting layer 5 is highly
relevant to changes in AD including accumulation of neurofibrillary tau
tangles'*'®, Moreover, the potential of ssREAD in navigating the com-
plex spatial information of AD was further exemplified through a multi-
dimensional exploration of spatially informed sub-populations via
MAPLE" (Fig. 3c). Noted that MAPLE has a critical multi-sample design
considering information sharing across samples and accommodating
spatial correlations in gene expression patterns within samples. Thus,
clusters MAPLE identifies are sample-specific and could be either
shared among samples (e.g., cluster 1in both ST01101 and ST01103) or
unique in individual samples (e.g., cluster 5 only in ST01103). This
analysis demonstrated the ability of ssSREAD to untangle the spatial
complexity inherent in the transcriptomic landscape of AD. To further
illuminate these cellular dynamics, we mapped the MAPLE cluster
annotations in individual samples to their corresponding layer anno-
tations (Fig. 3d, Supplementary Fig. 3, and Source Data 1). In doing so,
we show that cluster 1 corresponds to layers 5 and 6 of the AD sample
(ST01103), but only corresponds to layer 6 of the control sample
(STO1101). This indicates the deviations in layer 5 of AD cases com-
pared to controls may also be a result of differences in their spatial
organization as well as their gene expression patterns.

At the molecular level, we identified DEGs in each MAPLE cluster
(Fig. 3e and Source Data 2) and between control and AD samples within
individual MAPLE clusters (Fig. 3f, Supplementary Data 5, and Source
Data 3). The expression pattern of these DEGs underscores the mole-
cular heterogeneity in MAPLE clusters (subpopulations) and between
AD and the control (Fig. 3f). For example, the expression of DEPPI1, also
known as PGC-1a (peroxisome proliferator-activated receptor gamma
coactivator 1-alpha), was found to be significantly lower in AD than the
control in our dataset. The PGC-1a is highly responsive to numerous
forms of environmental stress, including temperature and nutritional
status. Several studies have reported that the level of PGC-la sig-
nificantly decreases in the brains with AD compared to control
brains®® . PGC-1a has thus been suggested to contribute to the
improvement of AD pathophysiology. Additionally, the pathway
enrichment analysis on AD and control DEGs in cluster 1 showed both
upregulated and downregulated pathways. Interestingly, all five
downregulated pathways are associated with immune responses/
functions (Fig. 3g), which may highlight the important role of immune
cells in AD pathogenesis®*. We then further investigated the asso-
ciation of genes within each pathway to microglial states previously
published by Sun et al.”®, as well as disease-associated microglia (DAM)
and activated response microglia (ARM) genes”*°. In agreement with
previously published data, three out of five of our upregulated path-
ways (Regulation of Expression of Slits and Robos, Selenoamino Acid
Metabolism, and Eukaryotic Translation Elongation) include several
genes that make up a population of microglia (MG3) that is highly
enriched with disease-associated microglial genes. On the other hand,
the five downregulated pathways (Scavenging of Heme from Plasma,
Interleukin 10 Signaling, Tnfs Bind their Physiological Receptors, Fcgr
Activation, and Creation of C4 and C2 Activators) are composed of
genes found in microglia states that are associated with inflammation
due to presence of cytokine and cytokine receptor-related genes
(Supplementary Fig. 4). Therefore, the upregulated pathways overlap
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Fig. 2 | Overview of sSREAD functions. a Features and visual representations
related to sc/snRNA-seq, encompassing cell type annotations, marker gene
expressions, and graphic depictions via bar and violin plots. Each box showcases
the minimum, first quartile, median, third quartile, and maximum average
expression values of a cell type (Ast: n =208, Endo: n =28, EN: n=2,696, IN: n = 740,
MIC: n =266, OPC: n=195, and Olig: n=1,546). Dots represent outliers. b Functions
and visualizations pertinent to ST, highlighting H&E imagery, layer annotations,
marker gene expressions, and spot deconvolutions. ¢ DEG analysis, with compar-
isons drawn between categories like Cell Type 1vs. Cell Type 2 (CT1vs. CT2), AD vs.

Control, Male vs. Female, Brain Regions 1 vs. 2, etc. p-values were calculated based
on two-sided Wilcoxon Rank-sum test and adjusted using Bonferroni correction.
d Functional enrichment analysis focusing on GO ontology and KEGG pathways. p-
values were calculated using the Hypergeometric test from Enrichr and were
adjusted using the Benjamini-Hochberg correction method. e Predictions of cell
type-specific regulons. The following abbreviations are used for cell types: Ast
astrocytes, Endo endothelial cells, EN excitatory neurons, IN inhibitory neurons, Mic
microglia, Olig Oligodendrocytes, OPC oligodendrocyte precursor cells.
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Fig. 3 | Multi-dimensional analysis of spatially-informed sub-populations.

a Annotation of the six cortical layers alongside the adjacent white matter within
two human middle temporal gyrus (MTG) brain samples (ST01101 and ST01103).
b Detection of spatial domains by RESEPT. ¢ Visualization using MAPLE to elucidate
shared or unique spatial domains identified across the two Spatial Transcriptomics
samples (ST01101 and ST01103). d Alluvial diagrams showcasing the progression of
cells: originating from individual samples, aggregating into joint subpopulations,
and culminating in layer annotations. e A heatmap depicting genes specific to the
MAPLE-derived clusters for both AD and Control samples. f Heatmap representing
the top 10 upregulated and top 10 downregulated genes distinguishing AD from
Control within Cluster 1. g Gene Set Enrichment Analysis (GSEA) of DEGs from

(F) plotted against REACTOME pathways. The bar plot shows the top 10 upregu-
lated and downregulated pathways, accompanied by normalized enrichment
scores. h Spatial feature plots highlighting the variance in gene expression of PLPI
and UCHLI from Cluster 1, segregated by AD and Control samples. i Violin plots
showcasing the activity of two selected TFs between AD and Control, with asso-
ciated p-values calculated from a two-sided Wilcoxon rank-sum test. Each box
showcases the minimum, first quartile, median, third quartile, and maximum ARI
results of a tool performed on different data subsets (Control group: n =232, and
AD group: n=1412). Dots represent spatial spots. Source data are provided as a
Source Data file.
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with disease-associated microglia states while downregulated path-
ways do not include genes found in disease-associated microglia
states. In line with previous findings, inflammatory states of microglia
change in relation to AD progression, with more strongly correlated
inflammatory states being present at early disease stages and weaker
inflammatory states present at late disease stages. Therefore, the
downregulation of inflammatory-related states in our data coincides
with the dysregulation of microglia states found in AD. Besides DEGs
and DEG-enriched pathways, we also identified 305 SVGs in cluster 5,
such as PLPI and UCHL1 (Fig. 3h), which show clear spatial expression
patterns that are linked to specific tissue layers. Interestingly, both
genes have also been found to be associated with AD**%,

To further investigate the regulatory mechanisms in different
clusters between the above Control (ST01101) and AD (ST01103)
samples, we implement DeepMAPS* in the ssREAD framework for
spatial transcriptomics-guided gene regulatory network analysis. This
facilitated a comprehensive investigation into the interconnected
relationships among key transcription factors (TFs) and their asso-
ciated genes. Our analysis highlighted a network comprising 10 TFs
(i.e., NRIH3, SREBFI1, ATF6, TAL1, SOX10, NFYA, AR, MYC, HIFIA, and
EGRI) and 2,164 genes regulated by those TFs in MAPLE cluster 1
(Supplementary Data 6). This network, interconnected with the enri-
ched genes from gene modules identified by DeepMAPS, underscores
the dynamic and intricate interactions between critical TFs and their
downstream regulated genes. Further dissection of these TFs showed
differences in TF activities between control and AD samples, for
example, ATF6 and EGRI (Fig. 3i). These two regulators are reported to
be associated with AD pathology and highly related to stress response.
ATF6, a key player in unfolded protein response to endoplasmic reti-
culum (ER) stress, has been found to reduce amyloid-beta (Af) toxicity
via the downregulation of B-site APP-cleaving enzyme 1 (BACE1)**. On
the other hand, EGRI may impair the brain’s cholinergic function in the
preclinical stages of AD via the upregulation of acetylcholinesterase
(AChE)*, and EGRI regulates tau phosphorylation and Ap synthesis in
the brain by enhancing activities of Cdk5 and BACE-1, respectively®.
The GO and REACTOME enrichment analysis showed that genes
regulated by these two TFs are enriched in multiple stress-related
pathways. Our results showed that genes, including XBPI, HSPAS,
DDIT3, SELIL, ATP2A2, and HSP90BI, regulated by ATF6 are related to
response to ER stress pathways (Supplementary Data 7). While 106
genes regulated by EGRI are related to stress response, such as
CDKNIA, MYC, TP53, and RXRA, responding to pathways including
oxidative stress, ER stress, chemical stress, and stress-activated MAPK
cascade. Overall, our data-driven analysis of ST data provides a step-
ping stone for future studies aimed at deciphering the complex
molecular pathogenesis and novel therapeutic targets.

ssREAD unveils AD pathophysiology through an integrated
analysis of spatial and single-cell transcriptomics

One of the most prominent analyses that sSREAD can power is the spot
deconvolution enabled by the integration of sc/snRNA-seq and ST
data. A cornerstone in ssREAD is the utilization of the Seattle Alzhei-
mer’s disease brain cell atlas (SEA-AD) with ID of AD03501, an atlas that
includes cells derived from the health and AD human middle temporal
gyrus (MTG)*. The SEA-AD atlas originally encompassed an extensive
dataset of 378,211 cells. We employed the sketch-based analysis feature
in Seurat v5 to streamline our analysis, which strategically selects a
‘subset’ or ‘sketch’ of 50,000 cells. This analytical decision was driven
by achieving computational efficiency while ensuring a robust repre-
sentation of cellular diversity. Such an atlas painted a detailed cellular
tableau, effectively revealing cell distributions of 23 cell types (Fig. 4a).
Beyond cell types, the atlas also includes a nuanced statistical break-
down of'the cells, distinctly categorized by the Braak stage, Thal phase,
gender, and ethnicity, offering a comprehensive glimpse into the
atlas’s cellular constitution (Fig. 4b-f). As shown, there is no batch

effect among samples regarding Braak stage, Thal phase, and ethnicity.
However, there are obvious sex-oriented differences in cell clusters,
which may contribute to the possible pathological sex-bias differences
in AD.

DEG analysis between AD and control cells revealed distinctive
signatures in each cell type (Supplementary Data 8). For example,
DEGs associated with the homeostatic state of microglia (e.g., P2RY12,
CSFIR, CX3XR1, TGFBRI, MEF2A, and ENTPDI) are decreased, while
DEGs associated with the dyshomeostatic state of microglia (e.g.,
CTSD, APOE, AXL, SPP1, and GPNMB) are increased in AD compared to
the control’>* (Fig. 4g). To showcase the feasibility and power of our
analysis, we further included a large AD dataset from the prefrontal
cortex (PFC) region®, and integrated the MTG sample with the PFC
samples. The top 25 microglia DEGs between AD and control in the
integrated data include most genes found in the individual datasets
(Supplementary Data 9-11). We also identified 68 upregulated Micro-
glia DEGs between AD and control overlapped across all datasets
(Fig. 4h, Supplementary Data 12, and Source Data 4), indicating many
DEGs can be recapitulated by using the integrated datasets. Impor-
tantly, our comparison highlights the differences in DEGs due to
region differences, in which the MTG encompasses many identified
DEGs compared to the PFC. This showcases the underlying tran-
scriptomic changes may be more prominent in regions that are
affected earlier in Alzheimer’s disease in comparison to regions such as
the PFC which are affected later in disease. In addition, the integrated
data set reveals 17 DEGs that are not present in either individual
dataset. The 17 DEGs suggest there are potential transcriptomic
changes that are independent of region-based characterization which
could only be identified by integrating such datasets. These genes
include DOPEY2, CSF2RA, and SRRM2 which have been previously
linked to AD*°. For example, CSF2RA was upregulated in mouse
microglia that have internalized AP plaques, and have been treated
with IL-1B*°. DOPEY was previously identified in cases (AD and/or MCI)
in the ADNI and NIA-LOAD/NCRAD Family studies®. Lastly, SRRM2 was
previously studied due to its association with the progression of
tauopathy in transgenic mice*’ as well as recruitment to tau
aggregates*. We compared our DEG results from the integrated sc/
snRNA-seq dataset to previously published spatial datasets’. Out of the
68 genes that are upregulated in the microglia population, we identi-
fied 29 genes (-43%) overlapped with DEGs from previously published
spatial transcriptomics datasets (Supplementary Data 13).

Bridging the understanding between single-cell and spatial data,
sSREAD was instrumental in performing a cell-type deconvolution
analysis between the ST datasets and the SEA-AD atlas using the CARD
R package*’. This synergetic approach underscored the presence and
dynamics of critical cell types, including oligodendrocytes, astrocytes,
and endothelial cells, across both AD (ST01103) and the control
(STO1101) datasets. The cellular insight was further illuminated by
visualizing the expression of marker genes, such as GFAP (Fig. 4i) for
astrocytes (Fig. 4j) and MOBP (Fig. 4k) for oligodendrocytes (Fig. 41),
distinguishing between control and AD conditions. Unfortunately, we
observed a very low proportion of the microglia cell type in both Vis-
ium samples (Supplementary Fig. 3B). We further compared DEGs
between AD and control in MAPLE cluster 1 to the identified single-cell
DEGs from the integrated ADO35 datasets. Among the overlapped
DEGs, we highlight two upregulated (G/AI and MT-ATPS8) (Fig. 4m, n)
and two downregulated DEGs (/FITM3 and TUBB2B) (Fig. 4q, r) in the
astrocyte population and their spatial distribution. Importantly, G/A1
has been identified as a key regulator in AD pathogenesis, being
associated with AD amyloid, tau pathology, and cognitive functions.
While depletion of astrocytic GJAI is linked to neuroprotection in
neurons®. In Oligodendrocytes, we highlight four upregulated DEGs,
ERBIN, GPRC5B, MID1IP1, and SLC44A1 (Fig. 40,p,s,t). Notably, ERBIN
and MIDIIPI have been identified in previous datasets as upregulated
in Oligodendrocytes for AD pathology cases*. The seamless fusion of
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snRNA-seq and spatial transcriptomics data, as facilitated by ssREAD,
positions this integrated methodology as a potent tool for in-depth
cellular analysis, demonstrating the platform’s pivotal role in multi-
dimensional data integration and offering transformative insights into
AD®. As a result, we showcase the capability of sSREAD in integrating
sc/snRNA-seq and ST data with computational tools like MAPLE,
shedding light on the multi-dimensional dynamics of spatially
informed subpopulations in AD. By unveiling the biological pathways
and regulatory networks associated with disease progression, spread
allows a comprehensive understanding of the cellular and molecular
landscape in AD, thus bringing us a step closer to unraveling the
mysteries of this complex neurodegenerative disease.

Unveiling Sex-Specific Differences in Alzheimer’s Disease at the
Cellular Level

Besides the data-driven analysis that can be elaborated from ssREAD,
we also showcase the ability to generate biological hypotheses that
can be powered by the database. Capitalizing on the wealth of
information offered by sc/snRNA-seq data, our investigation delves
into the intricate, sex-specific nuances of AD at the cellular level.
Using ssREAD, we were able to elucidate the AD heterogeneity

between male and female, an aspect not previously pursued in the
original research, which primarily focused on the molecular land-
scape of the over 183k cells in human brain hippocampus vasculature
in AD* (ADO19). Our investigation utilized all 16 samples from the
original study (Supplementary Data 14). Commencing with a UMAP
visualization of the single-cell data, color-coded by cell type (Fig. 5a),
we achieved a broad perspective of 13 cell types (i.e., Arterial cell,
Astrocyte, Capillary cell, Ependymal cell, Fibroblast, Microglia, Neu-
ron, Oligodendrocyte progenitor cell, Oligodendrocytes, Pericyte,
Smooth muscle cell, T cell, and Venous). From the ensuing break-
down of the proportion and count of each cell type by sex (Fig. 5Sb-c),
we observe more Oligodendrocytes, Astrocytes, and Microglia in
overall female cell types than male. Such sex-specific differences in
cellular composition raise intriguing questions about the potential
roles of these variations in disease pathogenesis and progression,
warranting further investigation. We further compared DEGs across
four demographic groups: Male AD patients, Female AD patients,
Male controls, and Female controls. The result showcased both
unique and shared gene signatures among these groups (Fig. 5d).
Our findings indicate that both sex and disease status can shape the
transcriptomic landscape of cells, which could have profound
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Fig. 5| Exploration of sex-specific differences at the cellular level in AD. a UMAP
visualization of the single-cell data used in the analysis, with different cell types
color-coded. b-c Bar plots illustrate the count and proportion of each cell type,
segregated by sex. This reveals any potential differences in cellular composition
between male and female samples. d UpSet plot showing the unique and shared
DEGs across four groups: Male AD patients, Female AD patients, Male controls, and
Female controls. e Violin plots for the top 10 upregulated DEGs between male and
female in microglia. * Indicates sex-chromosomal genes. p-values were calculated
based on a two-sided Wilcoxon Rank-Sum test and adjusted using Bonferroni

enrichment score

correction. f Violin plots for the top 10 downregulated DEGs between male and
female in microglia. p-values were calculated based on a two-sided Wilcoxon Rank-
Sum test and adjusted using Bonferroni correction. g Gene Set Enrichment Analysis
(GSEA) plot showing the enrichment of genes involved in binding and uptake of
ligands by scavenger receptors. h-j GSEA plots showing the enrichment of genes
involved in neurogenesis for three different comparisons: Male AD vs. Male Control
in Microglia (h), Female AD vs. Female Control in Microglia. (i), and Male AD vs.
Female AD in Microglia (j). These plots highlight the sex-specific differences in
neurogenesis-related gene activity under AD conditions.
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implications for understanding the underlying molecular mechan-
isms of AD and developing targeted therapies.

By comparing the gene expressions between males and females,
we revealed unique sex-specific gene signatures within different cell
types (Supplementary Data 15). Specifically, we identified 44 upregu-
lated and 108 downregulated genes in male microglia vs female
(Fig. Se). We highlight the top 10 upregulated and downregulated
DEGs, in which we identify ATPIB3, a previously identified ARM and
DAM gene is downregulated in our comparison of female microglia to
male microglia”?°. On the other hand, LHFPL2, and RTTN are DAM
genes that we find are upregulated in female microglia compared to
male’®. Our data also remains consistent with a previous publication of
AD-related transcriptional sex differences that identified ACSLI,
ATPIB3, CD163, CREM, and SRGN as downregulated in female microglia
cell nuclei compared to male*®, The upregulation of genes APBBIIP,
GLDN, LHFPL2, LRRK1, P2RY12, RASSFS, and RTTN in female microglia
compared to male is also consistent with previous findings*®. We
validated the sex related DEGs findings using two additional datasets
(ID ADO35 and AD048) (Supplementary Data 16-17 and Supplementary
Fig. 5). We find that the Y chromosomal genes UTY, LINCO0278,
TTTY14,and USP9Y are found in both datasets and correspond to genes
that are upregulated in male microglia; While the X chromosomal
gene, XIST, is upregulated in female microglia and is found in both
datasets. Our analysis of Gene Set Enrichment Analysis (GSEA) further
explored the activity of binding and uptake of ligands by scavenger
receptors, which are known to be involved in the recognition and
clearance of various ligands, including modified lipoproteins, cellular
debris, and pathogens®. In AD, the dysregulation of scavenger
receptor activity has been implicated in the clearance of AP plaques
(Fig. 5G), which are one of the hallmark pathological features of the
disease™. Previous studies have reported sex differences in scavenger
receptor expression in the context of AD*. Additionally, we observed
differences in GSEA enrichment of neurogenesis pathways in Microglia
under AD conditions. Microglia can shape adult hippocampal
neurogenesis’>. We compared Male AD vs. Male Control (Fig. SH),
Female AD vs. Female Control (Fig. 5I), and Male AD vs. Female AD
(Fig. 5J). Interestingly, neurogenesis pathway activity varied sig-
nificantly, with upregulation observed in female AD, and down-
regulation in male AD patients. This observation denotes a sex-
dependent dysregulation of neurogenesis in AD, indicating that the
disease could affect foundational neural processes in a sex-specific
manner. Enhancing our understanding of how microglial activation
states differentially regulate adult neurogenesis in men and women
could yield invaluable insights into the disease’s intricate mechanisms.
Taken together, these results underscore the intricate interplay
between sex and cellular and molecular profiles in AD. They highlight
the necessity of considering sex as an integral factor in AD research,
and point towards the potential for developing more personalized,
sex-specific therapeutic strategies in the future.

Discussion

We develop ssREAD, a single-cell and spatial RNA-seq database for AD,
that not only accommodates the expansion of sc/snRNA-seq data but
is uniquely poised to incorporate and harness the emergent wealth of
AD-related ST data. sSREAD houses data encompassing various spe-
cies, diseases, tissues, and cell types, thereby permitting granular
analyses that could reveal intricate biological phenomena. ssSREAD’s
capabilities are broad, allowing for diverse analytical activities such as
contrasting diseased tissues against healthy controls, identifying dis-
tinct cell types through gene markers, and examining gene expression
across diverse tissues and cell types. The most compelling findings of
sex differences in AD unveil a profound heterogeneity between male
and female cellular profiles. Particularly, females exhibited a heigh-
tened presence of Oligodendrocytes, Astrocytes, and Microglia

compared to males. Furthermore, while female AD patients showed
upregulation in neurogenesis pathway activity, their male counter-
parts displayed a stark downregulation. These insights align with the
findings of previous studies claiming that transcriptional responses
were substantially different between sexes in different cell types*®,
underscoring the pivotal role of gender in shaping AD’s cellular and
molecular features. Last but not least, designed with the end-user in
mind, ssREAD is characterized by its user-friendly interface, query
function, and visualizations. In terms of its infrastructure, sSSREAD
utilizes high-performance computing to manage large-scale single-cell
data analysis efficiently. It comprises a cutting-edge server archi-
tecture employing diverse programming languages, machine learning
frameworks, and data visualization libraries. As our understanding of
the complexity and heterogeneity of biological systems continues to
deepen, tools like sSREAD can play an increasingly vital role in our
pursuit and understanding of AD studies.

To ensure the stability and availability of sSREAD, we have set up
backup servers and implemented cloud-based backup solutions. In
case of unavailability of the main server, our development team can
switch the link to redirect to an alternative server without requiring
users to enter a different URL. To improve transparency and provide
real-time updates for our users, we have created a status page for
sSREAD (https://ssread.statuspage.io/). This page features automated
monitoring of the server’s status and allows users to track the opera-
tional status of the database, including any scheduled maintenance or
unexpected downtime. To widen the accessibility and integration of
ssREAD, we intend to develop an R package within the Bioconductor
project and a Python library in the future, enabling users to access all
datasets both locally and remotely through ssREAD’s server-side API.
We plan to update the ssREAD database regularly, with new data and
features being added every six months. This will ensure that our users
have access to the most recent and relevant data in the field of single-
cell research. Recognizing the need for a platform that accommodates
the diverse range of interests in the scientific community, we plan to
include a wider range of sc/snRNA-seq and spatial omics data of neural
systems such as human iPSC-derived neurons, glia, and neural orga-
noids. Furthermore, we aspire to include more neurodegenerative
diseases like Frontotemporal lobar degeneration, Parkinson’s disease,
and Amyotrophic lateral sclerosis, serving a broader research com-
munity. Future plans also include expanding our analytical pipelines
and visualization methodologies to enrich the capabilities of sSREAD.

Methods

ScRNA-seq and snRNA-seq data categorization

In constructing our comprehensive atlas, we meticulously curated a
collection of 67 studies that encompass a diverse array of brain
regions, spanning both sexes and a wide age range in human and
murine models. This extensive compilation yielded a dataset that
encapsulates a rich tapestry of cellular profiles. We have methodically
reclassified the original datasets into distinct subsets, each meticu-
lously delineated by species (human or mouse), gender (male or
female), brain region (including but not limited to the cortex, Middle
temporal gyrus, superior frontal gyrus, cerebellum, subventricular
zone, superior parietal lobe, and hippocampus), pathological status
(disease or control), and age bracket (7, 15, or 20 months for mice;
50-100+ years for humans) (Supplementary Data 18).

ST data preprocessing

Spatial transcriptomics data preprocessing was performed using the
Seurat v5 and Squidpy v1.3.0 packages. Seurat was employed for
quality control, normalization, and identification of highly variable
genes®. Squidpy was used for spatially-resolved computations, such as
spatial autocorrelation analysis, extracting neighborhood information,
and spatially-resolved clustering®*.
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Spatially variable genes (SVGs) identification

To identify spatially variable genes, the spaGCN v1.2.7 was utilized". It
integrates graph convolutional network (GCN) with spatial tran-
scriptomics to detect genes that vary significantly across different
spatial locations in tissue samples.

Cell type annotation

We applied a similar cell-type annotation strategy used in sSCREAD. Our
quest for analytical precision led us to modify our initial cell-type
annotation strategy to increase annotation accuracy. We recognized
that several marker genes used in the original release demonstrated
sub-optimal specificity. To address this, we executed two iterations of
cell type annotation, which involved filtering out several less specific
markers. During the first iteration, only Neurons were annotated. Fol-
lowing this, the Neurons were then isolated from the complete dataset,
and second-iteration marker genes were employed to annotate Exci-
tatory neurons and Inhibitory neurons. The cell labels for Neurons
were subsequently replaced by those of Excitatory neurons or Inhibi-
tory neurons. This revised workflow enhances the annotation quality
by accounting for the discrepancies between different cell types and
subtypes. The marker gene list can be accessed in Supplementary
Data 19.

We used SCINA R package that leverages prior marker gene
information and simultaneously performs cell type clustering and
assignment for known cell types®. Furthermore, SCINA shows good
performances among prior-knowledge classifiers when high-quality
marker genes are provided*®. Each cell was assigned a cell type based
on a manually created marker gene list file using SCINA v1.2.0, whereas
the cells with unknown labels marked by SCINA were first compared
with predicted clusters from Seurat, and then the unknown labels were
assigned to the most dominant cell types within the predicted clusters.

Cell type deconvolution analysis

Deconvolution of mixed cell populations was performed using the
CARD v1.1R package**, which employs a reference-based approach to
estimate the proportions of different cell types in bulk RNA-seq or
spatial transcriptomics data. It uses cell-type-specific gene expression
signatures from a reference dataset to calculate cell-type proportions.

Differentially expressed gene and functional enrichment
analysis

DEG analysis was performed using the MAST v1.28.0R package®’
through Seurat’s FindMarkers function. This function detects DEGs
between various conditions, such as disease versus control or male
versus female. For overall AD versus control comparisons, age at death
and sex were included as covariates. For sex-specific differences in AD
versus control comparisons, age at death was included as the covari-
ate. The p-values obtained from each comparison were adjusted to
control the false discovery rate (FDR) using the Bonferroni correction
for all genes in the dataset. Genes with an FDR < 0.05 were considered
differentially expressed. The enrichment analysis was conducted using
Enrichr’s API services to identify relevant Gene Ontology (GO) terms
and Reactome pathway databases®®*’. The statistical significance of the
enrichment was determined using a hypergeometric test which is a
binomial proportion test that assumes a binomial distribution and
independence for the probability of any gene belonging to any set. The
p-values obtained from Enrichr were adjusted to g-values using the
Benjamini-Hochberg correction method.

Cell-cell communication analysis

Cellular communication was investigated using the CellChat v2°° R
package toolkit for the inference, visualization, and analysis of cell-cell
communication patterns from single-cell and spatial transcriptomics
data. CellChat v2 extends to analyze communication patterns among
neighboring cell clusters within spatially resolved transcriptomic

landscapes, with an expanded communication network interactions
database encompassing a comprehensive compendium of over 1,000
interactions.

Tissue architecture identification

The tissue architecture was analyzed using RESEPT v1”, a computa-
tional tool that generates an atlas of regional gene expression patterns
in spatial transcriptomics data. This tool enables the visualization of
how gene expression varies across different spatial regions within a
tissue sample.

Gene regulatory network analysis

Regulatory analysis was conducted using DeepMAPS v1.0**¢!, We
employed DeepMAPS to build the cell and gene embeddings and
obtained active gene modules through the graph transformer model.
The gene modules were further sent to DeepMAPS to perform cell
cluster active gene module determination, de novo motif finding, and
TF matching and CTSR determination with the default parameters.
Gene regulatory networks were constructed to indicate the predicted
TF-gene regulatory relations via Cytoscape®>®,

User interface

We made substantial improvements to the user interface to enhance
accessibility and ease of use. Key modifications were made within the
dataset details page, such as the addition of gene expression display
for single cells/spots using feature plots and violin plots. We also
introduced a dedicated query page for DEG searching. Notably, search
results can now be refined based on sex, group, and condition para-
meters. The new design offers clearer demarcation between DEG
searching and query options. Moreover, we integrated the function to
calculate overlapping DEGs from multiple comparisons, an approach
originally outlined in the scREAD protocol®. This functionality is now
delivered through an interactive online query. We also redesigned the
homepage for better usability, positioning the search bar at the top
and displaying key information about the number of species, studies,
assays, and versions for higher visibility.

SSREAD server construction

sSREAD is hosted on an HPE XL675d RHEL system outfitted with a
2 x128-core AMD EPYC 7H12 CPU, 64GB RAM, and 8xNVIDIA A100
80GB GPU. Our backend server, written in TypeScript and built with
the koa.js framework, leverages AuthO to provide independent user
authentication and authorization services. Our frontend is constructed
with NUXT, utilizing Vuetify as the Ul library and Plotly.js for data
visualization. Communication between frontend and backend servers
is enabled using REST API. This streamlined server construction
ensures robust, efficient, and scalable performance of ssSREAD.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used were sourced from public collections, and are detailed
with online accession numbers in Supplementary Data 1. sSREAD is
freely available at https://bmblx.bmi.osumc.edu/ssread/. A backup link
is also provided at https://go.osu.edu/ssread. Relevant raw data from
each figure is available in the Source Data file. The processed data in
this study can be downloaded through the link https://bmblx.bmi.
osumc.edu/ssread/downloads. Source data are provided in this paper.

Code availability

The frontend code is available at https://github.com/OSU-BMBL/
ssread. The backend code is available at https://github.com/OSU-
BMBL/ssread-backend. Additionally, a real-time ssREAD server status
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page is available at https://ssread.statuspage.io/. The source code to
the version of the code used in this study is also available on Zenodo®.
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