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Brain-state mediated modulation of
inter-laminar dependencies in visual cortex

Anirban Das1,2,3,8, Alec G. Sheffield 4,8, Anirvan S. Nandy 2,5,6,7,9 &
Monika P. Jadi 1,2,7,9

Spatial attention is critical for recognizing behaviorally relevant objects in a
cluttered environment. How the deployment of spatial attention aids the
hierarchical computations of object recognition remains unclear. We investi-
gated this in the laminar cortical network of visual area V4, an area strongly
modulated by attention.We found that deployment of attention strengthened
unique dependencies in neural activity across cortical layers. On the other
hand, shareddependencieswere reducedwithin the excitatory populationof a
layer. Surprisingly, attention strengthened unique dependencies within a
laminar population. Crucially, these modulation patterns were also observed
during successful behavioral outcomes that are thought to be mediated by
internal brain state fluctuations. Successful behavioral outcomes were also
associatedwith phases of reduced neural excitability, suggesting amechanism
for enhanced information transfer during optimal states. Our results suggest
common computation goals of optimal sensory states that are attained by
either task demands or internal fluctuations.

Adaptive information processing, comprised of local computations
and their efficient routing, is crucial for flexible brain function.
Attention to features, such as color and shape, or locations of interest
in the visual scene is regularly deployed by the visual system to
enhance object recognition1,2. Object recognition is mediated by
neural computations distributed across the ventral visual hierarchy in
the cortex - V1, V2, V4, and IT–with increasing receptive field sizes and
complexity of features encoded along the way3,4. Deployment of spa-
tial attention is thought to modulate these hierarchical computations
in a way that aids both information representation and information
transfer. Neurons that encode an attended visual stimulus increase
their activity at various stages (V1, V2, V4, LIP, MT) of visual
processing5–13, with neuronal gain especially prominent in the later
stages of the hierarchy. Attentional gain increase is also cell-class14–18

and layer specific in area V47. Based on pairwise correlation analysis,
two additional mechanisms of attentional enhancement have been

proposed: First is an improvement in the efficacy of unique informa-
tion directed from one encoding stage to another, suggested by evi-
dence along the visual hierarchy19–23. Based on theoretical results that
even weak correlated variability can substantially limit the encoding
capacity of a neuronal pool24, a second proposal is an improvement in
the sensory information capacity of an encoding stage through a
reduction in shared fluctuations25,26 of neural activity. However, pair-
wise analyses capture both unique and shared components of these
fluctuations, and therefore cannot disambiguate the proposed
mechanisms in a multi-variate system such as the cortical network. To
test these proposals, it is crucial to estimate the attentional modula-
tion of unique information flow across and shared information within
the stages of the visual hierarchy. We investigated these questions in
themulti-stage laminar network of visual area V4, an area in the ventral
visual stream that is strongly modulated by attention13,27,28. The visual
cortex has a laminar organization and both sensory computations and
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information flow patterns are layer-specific, forming the building
blocks of the ventral visual hierarchy29–33. We hypothesized that the
deployment of spatial attention strengthens unique inter-layer infor-
mation transfer between and weakens shared information within the
input and superficial layers, both of which are crucial nodes of feed-
forward information flow along the ventral visual hierarchy30,34. To
test this, our primary goal was to quantify unique statistical depen-
dencies between the populations of each layer, which requires char-
acterizing the joint spiking activity of the laminar ensemble. Using
network-based statisticalmodeling, we estimated the strength of inter-
layer information flow by measuring statistical dependencies in the
V4 network that reflect how the cortical layers uniquely drive each
other’s neural activity.Wequantified theirmodulation across attention
conditions (attend-in vs. attend-away) in a change detection task.
Using the partial information decomposition framework35,36, we esti-
mated the modulation of shared dependencies, specifically in the
putative excitatory subpopulations. Additionally, we assessed if opti-
mal sensory processing strategies are common to brain states that

could be either task-driven or resulting from endogenous state
fluctuations37–39.

Results
Information decomposition framework to distinguish the
modulation of unique and shared sources of dependencies in a
network
In a multi-actor system, it is important to understand how information
carried by multiple source variables about a target variable is
distributed over the source variables. Partial information
decomposition35,36 (PID) seeks to characterize the multivariate Shan-
non information that a set of source variables contains about a target
variable into basic atoms of information. Depending on the nature of
the underlying interactions between actors, multivariate information
can be decomposed into two or more key components: uniquely
directed from each source, shared by sources (Fig. 1a), or additionally,
synergistically provided by two or more sources (Fig S1). Cortical
neural ensembles are highly interconnected, and this can be a source
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Fig. 1 | Dependency decomposition in a multi-variate system using pairwise
and network models. a Simplified Partial information decomposition (PID)
framework35,36 based definition of types of information that multiple sources can
have about a target (seeMethods and Supp. Fig S1).bA synthetic ensembleof eight
neural variables with two kinds of dependencies – unique or shared – between
seven source variables (black) and one target variable (cyan). All interactions are
excitatory. Strength of dependencies is determined by model parameters Punique
and Pshared (see “Methods”). c1, c2 Information fraction (reduction in the propor-
tion of total entropy) as a function of parameters (Punique, Pshared) that control
unique and shared information in the model. Information fraction estimation as a
function of Pshared (c2) was performed using a subset of variables in the simulated
network for computational efficiency, (see Methods). c3 Normalized total mutual
information, measured by uncertainty coefficient, as a function of the sum of
model parameters (Punique,Pshared) that varied unique and shared components of

mutual information in a monotonic way. d Coefficients of a pairwise model
(univariate logistic regression (UR)) as a function of Punique and Pshared. White
arrow provides a visual guide for direction of highest change in coefficients.
e Coefficients of a network model (LASSO multivariate regularized regression
(RR)) as a function of Punique and Pshared. White arrow provides a visual guide
for direction of highest change in coefficients. f Application of pairwise and
network-based statistical models for approximate information decomposition
in an example multivariate system. It illustrates interpretation of the modulation
of these dependencies using the PID framework. g Schema for utilizing
pairwise and network methods for the estimation of total (brown) and
unique (green) information modulation respectively, and to infer the
modulation of shared information (purple) based on the PID framework.
Shaded blocks indicate indeterminate modulation direction of shared
information in the network.
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of both unique and shared dependencies between any pair
of ensemblemembers (Fig. 1a, b). We hypothesized that dependencies
traditionally captured by pairwise models should reflect the total
information that a source has about a target, while those captured by
network models should mainly reflect the unique information40,41. We
tested this in synthetic multivariate neural data (see Methods) with
parameterized unique and shared dependencies between variables
(Fig. 1b, c). When we fit a univariate regression model to our data,
the coefficients indeed varied as a function of the sum of shared and
unique information (Fig. 1c, d). On the other hand, when amultivariate
LASSO regression42 was fit to our synthetic data, the regression
coefficients were highly sensitive to the unique information and
weakly so to the shared information (Fig. 1c, e). In summary, pairwise
measures reflect both unique and shared sources of dependencies,
whereas network-basedmeasures that penalize correlations between
source variables (such as regularized regression coefficients), mainly
extract unique sources of dependencies. With a goal to identify the
modulation of unique and shared dependencies across experimental
conditions, we proceeded to use a combination of network-based
and pairwise models, interpreted within the PID framework, to ana-
lyze the neural spiking data and decompose the modulation of
unique and shared dependency components by spatial attention
(Fig. 1f, g). Since neural dependencies are temporally directed and
can manifest at multiple timescales, we first developed a network-
based measure of Granger43 causal dependencies that discovers
unique information that a neural source has about its target in an
unbiased manner.

Unbiased estimation of Granger causal dependencies
Probabilistic graphicalmodels (PGM)44 capture the factorization of the
joint distribution of a large number of random variables that interact
with each other. The graph edges express the conditional dependence
structure between the variables that form its nodes (Fig. 2a). These
models provide a framework for capturing the unique dependency
structures among multiple variables, without explicit assumptions
about the nature of dependency. Dynamic Bayesian Networks
(DBN)45–50 is a class of PGMs wherein graph edges describe Granger
causal dependencies between multiple variables in a sparse structure.
The graph edges express the conditional dependence structure
between the variables and their lags (Fig. 2b). Fitting our data with
DBNs allows unbiased discovery of multi-timescale Granger causal43

and cyclical dependencies, without making assumptions about their
specific nature (linear/nonlinear), direction, or latency (Fig. 2c, Fig S2).
In addition to fitting models with multiple lags, we estimated the
probability of discovered dependencies (referred to henceforth as
weights of a graph edge) and used it as a measure of their strength51

(Fig. 2c, d). We used a time-shuffled estimate of the edge weights to
determine the statistical significance of the discovered dependencies
(Fig. 2c). We refer to this approach as multi-timescale weighted
Dynamic Bayesian Networks (MTwDBN). To validate our analysis
pipeline, we simulated a compartmentalized network of stochastically
spiking excitatory and inhibitory neurons that were recurrently con-
nected within compartments, in addition to inter-compartmental
excitatory connectivity (Fig. 2e). When tested on synthetic data based
on spiking activity in the network, the MTwDBN approach robustly
recovered the dependency structure (Fig. 2e-g), and performed sig-
nificantly better than regularized regression, especially when the
populations were sparsely sampled (Fig. 2h) as is the case in neural
recordings52–54. Additionally, MTwDBN outperformed existing
unweighted50 or fixed-threshold weighted DBN methods51 in unco-
vering the dependency structure (Fig. 2h). Finally, in addition to
dependency strength, edge weights in MTwDBN provided a more
accurate estimate of the dependency structure (Fig. 2i). Based on these
findings, we proceeded to analyze neural data within the PID frame-
work, using the modulation of MTwDBN edge weights as a measure of

the changes in unique dependencies across attention condi-
tions (Fig. 2j).

Attentional modulation of unique and shared dependencies in
V4 ensembles
Visual area V4 is strongly modulated by attention15,16,25,28,55, with neu-
rons exhibiting attention-mediated gain increases in a cell-class14–18 and
layer-specific manner7. However, it is not known whether and how
attentionmodulates information flow in the laminar cortical circuit. To
characterize this, we employed linear array electrodes and recorded
neuronal activity from well-isolated single units simultaneously across
the cortical depth in visual areaV4ofmacaquemonkeys performing an
attention-demanding orientation change detection task (Fig. 3, see
“Methods”; 2 animals, 337 single units). In the main experiment, we
presented a variable-length sequence of paired Gabor stimuli with
different contrasts15 (Fig. 3a), with one stimulus overlapping the
receptive fields (RF) of the recorded sites. Attentionwas cued either to
the stimulus within the neurons’ receptive fields (IN) or to the one
outside it (AWAY). Themonkeywas rewarded for detecting the change
by making a saccade to one of the two stimuli that changed its orien-
tation at a timeunknown to the animal.Weused current sourcedensity
(CSD) analysis to identify different laminar compartments (superficial,
input, and deep), and assigned isolated single units to one of the three
layers15 (Fig. 3b, see Methods). To characterize the modulation of
information flow, we analyzed layer-wise pooled spiking activity of
isolated single units only, as they could be classified based on their
average spike shape (Fig. 3c, see “Methods”).

We fit MTwDBN and logistic regression models to the pooled
spiking activity of neural subpopulations defined by layers and neu-
ronal types (Fig. 4). We first considered the ensemble of layer-wise
populations (Fig. 4a) and quantified the net attentional modulation of
dependencies across multiple timescales (Fig. 4b). At longer time-
scales ( > 60ms lag)33, while attention weakened pairwise dependen-
cies estimated by the regression models, in agreement with previous
findings25,26, we found a strengthening of unique dependencies overall.
The inferred modulation of shared component of dependencies
showed a weakening by attention (Fig. 4b, bottom), thereby providing
direct evidence for this previously hypothesized mechanism of per-
ceptual improvement by attention25,26. MTwDBN-based unique
dependencies between layers, specifically thosebetween the input and
superficial layers, an important link in feedforward processing, were
strengthened by attention (Fig. 4c). On the other hand, shared
dependencies within the input and superficial layers were inferred to
beweakened by attention (Fig. 4d). Surprisingly, unique dependencies
within the layers were strengthened by attention at most timescales
(Fig. 4e). Taken together, these results provide direct evidence that
attention improves unique dependencies both within and across
stages of the laminar circuits of the ventral visual hierarchy, while
weakening shared dependencies within these stages (Fig. 4f).

Neuronal cell classes in the cortex contribute differentially to
information processing15,16,56. To test if the above results hold when we
allow the discovery of cell-class specific dependencies, we next ana-
lyzed an ensemble of broad- and narrow-spiking layer-wise popula-
tions (Fig. 4g) and quantified the net attentional modulation of
dependencies across different timescales (Fig. 4h). The pattern of net
modulation of unique and shared dependencies in this ensemble lar-
gely mirrored that discovered in the layer-wise aggregated ensemble,
specifically at the longer timescales. Same was the case for the mod-
ulation of unique dependencies between layers and shared depen-
dencies within layers (consistent across both animals) (Fig. 4i, j).
Theoretical predictions24 regarding the effects of shared spike-count
covariation on information representation apply primarily to excita-
tory neurons which are the primary projection neurons in the cortex.
When we quantified the attentionmodulation of shared dependencies
within layers in a cell-class specific manner, we found that the broad-
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spiking population (putative excitatory neurons) showed a robust
weakening of shared dependencies within layers (consistent across
subjects) (Fig. 4j). On the other hand, the narrow-spiking population
(putative inhibitory neurons) showed a distinct pattern, one that was
dominated by a strengthening of shared dependencies within layers.
Consistent with the findings in the aggregated ensemble, unique

dependencies within the layers were strengthened by attention at
most timescales (Fig. 4k). Taken together, these results provide direct
evidence that attention specifically weakens shared dependencies in
the projection populations within encoding stages, in addition to
robustly improving unique dependencies both within and across
stages of the ventral visual hierarchy (Fig. 4l).

Fig. 2 | Multi-timescale & weighted Dynamic Bayesian Networks based esti-
mation of unique dependencies in a sparsely sampled recurrent neuronal
network. a Bayesian Networks for graph representation of dependencies in a
multivariate system. bDynamic Bayesian Networks (DBN) for graph representation
of dependencies inmultivariate time series data. cAnalysisflow formulti-timescale
weightedDBN(MTwDBN)graphicalmodelfitting.dEdgeweight ofMTwDBNgraph
as a function of connection weight in a 2-population simulated network using the
pipeline in c. Error bars indicate 95% confidence interval (n = 100 weighted DAGs).
e Spiking activity of 6 subpopulations in a simulated network with recurrent con-
nectivity. Connectivity is visualized in the overlaid schematic. f Directed depen-
dencies (edge in the graph) in the simulated network in e, estimated using
MTwDBN fitting. g Summary graph of dependencies across all timescales from f.
Solid and dashed lines indicate two different timescales. h F-score (harmonicmean
of precision and recall of dependency structure) as a function of % of neural

population observed. F-score was estimated for shuffle corrected weighted DAGs
(MTwDBN, green), weighted DAGs with a fixed threshold (weightedFT, blue),
unweightedDAGs (red), or LASSO regression, an example of regularized regression
(RR)models (black). Eachpoint represents the average of five separate runs, except
100% (single run). Error bars indicate standard deviation, some error bars are
smaller than symbol size. i DBN decoder accuracy with different sizes of MTwDBN
DAGs. Decoders were trained to predict population activities using a subsample of
shuffle-corrected edges (see “Methods”). Graph edges for the decoder were sam-
pled from the learned structure either in an unbiased fashion (black) or biased with
the edge weights (green). Box indicates lower quartile, median, and upper quartile;
whiskers indicate range of data points (n = 100 model seeds). Asterisk (*) indicates
significant differences between unbiased and weight biased M-Scores (p <0.001,
two-tailed paired t-test, Bonferroni adjusted). j Schema for estimating modulation
of unique dependencies in a network of neural populations, using MTwDBN.
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Modulationof unique and shareddependencies in V4ensembles
by behavior outcome
To test if the pattern of inter- and intra-layer dependency modulation
that we observed is a signature of brain states that are optimal for per-
ceptual behavior, we analyzed the laminar ensemble activity for a subset
of trials within the attend-in condition in which the animal was equally
likely to correctly detect (Hit) or fail to detect (Miss) the orientation
change (Fig. 5a, b). Controlling for task and stimulus conditions, these
behavioralfluctuations are thought to arise fromendogenousbrain state
fluctuations such as attentional sampling and arousal changes37–39,57–61.
The pattern of net modulation of unique and shared dependencies
across behavioral outcomes (Fig. 5c) largely mirrored the pattern dis-
covered across attentive states (Fig. 5d) at lags longer than 60ms. The
same was the case for modulation of unique dependencies between
layers and shared dependencies within layers (Fig. 5d), suggesting that

the pattern of enhanced inter-layer unique dependencies and weakened
intra-layer shared dependencies is a hallmark of brain states that are
optimal for perceptual performance (Fig. 5e). Combined with prior
theoretical work24, our results suggest a conceptual model of optimal
states that involves enhanced inter-layer communication and improved
intra-layer information capacity that are either imposed by task
demands or are attained via endogenous fluctuations in brain state.

The above model hypothesizes that endogenous fluctuations
modulate the hit rate through periods of lower shared variability. To
test if optimal states that are associated with hit trials are also asso-
ciated with a reduction in shared correlations among the projection
neurons of the input layer, we estimated the probability of presenta-
tion of successful target stimuli and the probability of spiking of input
layer broad spiking units, both as a function of the phase of the
ongoing cortical activity. We estimated the generalized phase of the

Fig. 3 | Laminar recordings in area V4. a Experimental protocol: Paired Gabor
stimuli with varying contrasts (see “Methods”); one stimulus was presented inside
the receptive fields (RFs) of the recorded neurons and the other at an equally
eccentric location across the vertical meridian. Attention was cued either to the
neurons’ RFs (IN) or to the location in the contralateral visual hemifield (AWAY).
The orientation of one of the two stimuli changed at a random time. The monkey
was rewarded for detecting the change by making a saccade to the corresponding
location. Task difficulty was controlled by the magnitude of orientation change.
b Left, Recording approach: Laminar recordings in visual area V4. Middle, Stacked
contour plot showing spatial receptive fields (RFs) along the laminar probe from an
example session. Alignment of RFs indicates perpendicular penetration down a
cortical column. Zero depth represents the center of the input layer as estimated
with current source density (CSD) analysis. Right, CSD is displayed as a colored

map. The x-axis represents time from stimulus onset; the y-axis represents cortical
depth. The CSD map has been spatially smoothed for visualization. c An example
trial showing single-unit activity across the cortical depth in the attend-in condition.
The time axis is referenced to the appearance of the fixation spot. Spikes (vertical
ticks) in each recording channel come from either single units (blue, orange) or
multi-units (black). Spike waveforms for an example narrow-spiking (blue) and a
broad-spiking (orange) single unit are shown. The bars at the bottom depict sti-
mulus presentation epochs, with height indicating relative stimulus contrast. The
brain schematic in (b) is adapted from Nandy, A.S., Nassi, J.J., Jadi, M.P., Reynolds,
J.H. (2019) Optogenetically induced low-frequency correlations impair perception
eLife 8:e35123. https://doi.org/10.7554/eLife.35123 and is under a CC BY license:
https://creativecommons.org/licenses/by/4.0/.

Article https://doi.org/10.1038/s41467-024-49144-w

Nature Communications |         (2024) 15:5105 5

https://doi.org/10.7554/eLife.35123
https://creativecommons.org/licenses/by/4.0/


band-filtered (5–40Hz) local field potential signals in the input layer
(see “Methods”), and calculated the probability of a hit-causing target
onset and of neuronal spikes at different phases (Fig. 5f). We found a
clear phase dependence of response onset of hit targets (Fig. 5g, top).
These phases were also associated with a lower excitability of broad
spiking cells (Fig. 5g, bottom), suggesting that the improved

performance in optimal states occurs during phases of lower than
average spiking probability of putative excitatory neurons in the input
layer. Interestingly, the excitability of superficial layer putative exci-
tatory neurons, the primary candidates that project to downstream
cortical areas in the ventral stream, was independent of the phase of
the ongoing activity in the superficial layers of V4 (Fig S5).

Fig. 4 | Modulation of dependencies in a V4 laminar network across attention
conditions. aNeural populations used for fitting laminarMTwDBN. Current source
density analysis identified different layers (superficial, input, deep), and isolated
single units were assigned to one of these layers (see Methods). b Top: Average
MTwDBN-based modulation (green) of all unique dependencies between the
laminarpopulations.Modulationof the samedependencies as estimated by logistic
regression (brown). Error bars indicate 95% confidence intervals. Bottom: Visuali-
zation of modulation sign of unique dependencies at different lags. Combining the
modulation sign of unique and total dependencies (see Top), PID framework-based
estimatedmodulation sign of shared dependencies (using schema in Fig. 1g) is also
shown for different lags. Thicker line along the time axis indicates the timescales of
attentional modulation in prior studies38,39. c Sign of average modulation of unique
dependencies between layers (bi-directionally). I: input layer; S: superficial layer.
d Sign of average modulation of shared dependencies within layers. e Sign of
average modulation of unique dependencies within layers. f Summary of

dependency modulation pattern. g Neural populations used for fitting laminar
MTwDBN. Isolated single units were classified as broad- and narrow-spiking based
on peak-to-trough duration in their average spike shape (see Methods). h Top:
Average MTwDBN-based modulation (green) of all unique dependencies between
the cell-type specific laminar populations.Modulation of the same dependencies as
estimated by logistic regression (brown). Bottom: Visualization of modulation sign
of unique dependencies and PID framework-based estimated modulation sign of
shared dependencies is also shown for different lags. i Sign of average modulation
of unique dependencies between layers. j Sign of average modulation of shared
dependencies within layers for all, broad or narrow populations. M1, M2: subject-
wise; broad, narrow: cell-class specific. k Sign of average modulation of unique
dependencies within layers. l Summary of dependency modulation pattern. See
Fig S3 formodulation indices in (c–e, i–k). Data points in (b,h) indicatemean, error
bars indicate 95% confidence interval (n = 5000 bootstraps).
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Discussion
The laminar network is considered a canonical circuit that constitutes a
key computational unit in the cortex. While anatomical connectivity
maps have identified the key variables of this unit30,34, access to the
functional connectivity that determines the resulting computations has
remained elusive. Laminar recordings in awake animals transitioning
across behavioral states have allowed us to observe the neural variables
that are expected to play a significant role in these computations. Using
a combination of network-based dependency models and information

decomposition, we show that the dependency structure in the laminar
cortical ensemble is modulated by attention in a layer and cell-type
specificmanner. The input and superficial layers in V4 are crucial nodes
of feedforward information flow along the ventral visual hierarchy, with
the input layer receiving information from earlier visual areas (V1, V2)
and excitatory projection neurons in the superficial layer sending
information to the next stage of this hierarchy, namely the infer-
otemporal cortex30,34. We find that unique dependencies between input
and superficial layer populations are strengthened by attention, as well

Fig. 5 | Modulation of dependencies in a V4 laminar network across behavioral
outcomes at perceptual threshold. a Example session showing performance as a
function of task difficulty. Gray box: threshold orientation change at which the
animal was equally likely to correctly detect (hit) or fail to detect (miss) the change.
Error bars indicate standard deviation (n = 20 jackknifes). b Laminar populations
used for multi-lag analysis. c Modulation magnitude (top) and sign (bottom) of all
unique (green) and total (brown) laminar dependencies in b across Hits andMisses
at perceptual threshold. Estimated modulation sign of shared dependencies (bot-
tom, see Fig. 1g). Data points indicate mean, error bars indicate 95% confidence
interval (n = 5000 bootstraps). dModulation sign of between layer (BL) and within
layer (WL) dependencies. See Fig S4 formodulation indices. e Summary of laminar
dependency modulation pattern. fWideband (5–40Hz) LFP signals (colored lines)

overlaid on the raw LFP (0–200Hz) signals (gray) in the input layer in a portion of
an example session. The generalized phase (color-coded) depicts the dominant
phase of the wideband LFP. Vertical ticks indicate single-unit spikes in the corre-
sponding channel (see “Methods”).gTop: Target stimulus presentation probability
as a function of the generalized phase of the LFP (adjusted for cortical delay),
separated by HIT and MISS trials. Asterisk (*) indicates phases with significant dif-
ferences (p <0.05) between the two trial types (Ranked sum test, corrected for
multiple comparisons). Bottom: Spike probability in the input layer as a function of
generalized phase of the LFP, separately estimated for putative excitatory (broad)
and putative inhibitory (narrow) units. For other layers, see Fig S5. Error bands
indicate standard error of the mean.
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as during successful behavioral outcomes within the attentive state.
Our finding suggests that enhanced unique information transfer
between encoding stages of the laminar hierarchy is a hallmark of
behaviorally optimal sensory processing. This is in line with the
observation of excitability phase alignment between layers 4 and 3 of
V1 during visual attention61. On the other hand, shared dependencies
within the putative excitatory laminar populations are weakened by
attention, as well as during successful behavioral outcomes. Prior
theoretical and modeling studies have proposed that a reduction in
shared correlations can enhance both the information capacity24 and
signal-to-noise ratio25,26 of a neural population. Interpreted within this
framework, our finding suggests that enhanced information capacity
mediated by reduced shared dependencies is another hallmark of
behaviorally optimal sensory processing.

An unexpected finding of our study is the attentional enhance-
ment of unique dependencies within the (putative) excitatory laminar
populations. Prior theoretical work has shown that networks with
clustered (as opposed to random) architectures can result in dynamics
that lead to strong correlations within the clustered subpopulations62.
Excitatory neuronswithin the superficial layers (layers 2/3) in the visual
cortex have been shown to exhibit higher connectionprobabilitywhen
the neurons receive common inputs from the input layer (layer 4) and
superficial layers63. Since our laminar populations are tightly localized
in cortical space and, given their strongly overlapping receptive fields
(Fig. 3b), are recipients of highly overlapping inputs, their activity
fluctuations could result in within-population unique dependencies.
The observed modulations of these dependencies could reflect the
attentional enhancement of effective connectivity (and hence clus-
tering) in these populations and the resulting enhancement in neural
activity fluctuations.

Additionally, we find that phases of the endogenous fluctuations
that are associated with optimal target presentation (resulting in hits)
are also associated with reduced excitability of broad spiking neurons,
especially in the input layer. Our findings are in agreement with pre-
vious reports of rhythmic shifts of neural excitability and their
entrainment to the stream of sensory inputs as key mechanisms of
sensory selection57–61,64. Interpreting the fluctuations in excitability to
be at least partly based on changing correlations due to fluctuations in
shared inputs, our finding suggests an additional mechanism through
which weakened shared neural activity fluctuations could improve
behavioral outcome: a low excitability phase of endogenous fluctua-
tions, which is associated with reliable encoding in the visual cortex65.

Ourfindings and interpretations point to a set of key questions for
future studies that will shed further light on the mechanisms of opti-
mal states. One key question that can be addressed using our com-
putational approach, but is currently limited by the statistical power
from available datasets is: how are unique and shared dependencies
between pairs of populations modulated in specific causal directions,
and between specific cell classes?While the current data allowed us to
answer this in a limited way, recent advances in recording techniques
should allow the collection of denser neural data that, in combination
with the approach we successfully demonstrated in this study, would
provide further insights into the computations and mechanisms of
optimal behavioral states. Another equally significant question is: How
are unique and shared dependencies between superficial and deep
layers of the laminar network modulated during optimal behavioral
states? The communication between superficial and deep layers, spe-
cifically in the direction from the former to the latter, plays a key role in
the feedback computations of the ventral visual hierarchy. Theoretical
frameworks of object perception suggest computations of hierarchical
Bayesian Inference, with a key role for feedback pathways66,67. Addi-
tionally, our group has shownpreviously thatoptogenetic induction of
low-frequency fluctuations in V4 impairs performance in an attention-
demanding task68. An important follow-up to this line of investigation
would be testing the hypothesis that reduced shared dependencies in

laminar populations are causal to enhanced information capacity. This
will require experimental paradigms with a richer set of visual stimu-
lation, such as complex shapes, and causal manipulation of shared
neural activity fluctuations in a layer-specific manner. Combining with
both regular and irregular visual stimulation could further shed light
on the causal role of slow endogenous fluctuations on perception61.

MTwDBN analysis approach
Our approach demonstrates that the information flow structure in a
neural ensemble is robustly described by Dynamic Bayesian Network
modeling that is adapted to includemultiple lags spanning timescales of
interest. This unbiased approach allows us to dive deeper into the causal
functional interactions (beyond correlations) in a multivariate system
with unknown nonlinear dependencies. Further, the results demon-
strate that weighing dependencies using confidence measures provides
a more accurate information flow structure that can be utilized to
investigate how this structure is modulated by changes in brain and
behavioral states. Finally, an integration of this approach with pairwise
models allows us to dissect changes in distinct components of depen-
dencies. Since temporally directed unique dependencies suggest caus-
ality and shared ones suggest common inputs, this allows us to gain
insights into the network mechanisms. In comparison, prior correla-
tional studies have quantified net dependency modulation19,25,26. While
these provided valuable characterization of the neural correlates of
attention, the underlying network mechanisms remained hypothetical.

Comparison to other multivariate models
While approaches such as generalized linear models (GLM) have been
useful in providing improved phenomenological models of individual
neural responses to sensory stimulation in early sensory circuits, such
as in the retina69, they are not ideal for dependency structure learning
in the highly recurrent cortical ensemble30. It is possible to learn the
dependency structure in a laminar network by fitting a GLMmodel for
each of the observed populations in our data, with the remaining
populations as predictors. However, the assumption of the indepen-
dence of predictor variables inherent in GLMs can result in the dis-
covery of spurious dependencies due to shared inputs, and hence, a
dense and likely inaccurate structure. Since structure learning in DBNs
involves determining conditional independence by solving an opti-
mization problem that penalizes density, our approach is ideal for
generating a sparse and hence interpretable unique dependency
structure in multivariate data.

Current limitations of our approach
Currently, a limitation of this class of DBN models is that it does not
identify functional consequences of dependencies between popula-
tions, such as enhancement or suppression of target activity. Future
work in this direction will further enhance the functional interpret-
ability of discovered dependencies. Nonetheless, these models are
effective in elucidating the structure and modulation of information
flow in a multivariate system such as the laminar cortical network.

In general, the discovery of dependency structure, as well as its
interpretation using the PID framework, using our approach is sensitive
to the inclusion of relevant neural variables. It is indeed possible that a
gross classification of subpopulations as broad and narrow in our study
fuses distinct but relevant neural variables. On the other hand, our
three- and six-population laminar DBNs yield consistent patterns of
dependency modulations, suggesting the inclusion of relevant variables
for the purposes of this study. It is important to note that while statis-
tical dependencies discovered using our approach imply directed
functional connectivity, these do not necessarily imply direct anatomi-
cal connectivity: an edge in the structure could reflect indirect anato-
mical connectivity. Finally, the PID framework describes a synergistic
component of information in a multivariate system, such as the cortical
network, that we ignore for reasons of simplification. An example of
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synergistic information would be that conveyed by the coactivation of
two or more neural populations that are causally connected to a target
population. While it is a real possibility in the laminar cortical networks,
this limitation of our approach will merit revisiting when significantly
denser recordings are made available through future experiments.

In summary, network mechanisms of behaviorally optimal brain
states are shared across those that are either externally induced or are a
consequence of endogenous brain state fluctuations. They target effi-
ciencies in both information transfer and representation. MTwDBN-
based models provide a quantitative description of information flow
patterns in an ensemble. In this study, they provide a structural
description of the attention modulation of dependencies in cortical
space and time in a compartmentalized network, such as the laminar
cortical network. They allow us to quantify the unique contributions of
activity history and network interactions to information processing in
suchaneural ensemble.Weexpect this framework toextend toneuronal
ensembles inotherpartsof thenervous system, and toplayan important
role in revealing flexible information-processing principles in the brain.

Methods
Partial information decomposition
Information theory does not provide a complete description of the
informational relationships between variables in a system composed
of three or more variables35,36,70,71. The information IðT ; S1,S2Þ that two
source variables S1 and S2 hold about a third target variable T
decomposes into four parts: (i)UðT ; S1jS2Þ, the unique information
that only S1 (out of S1 and S2) holds about T; (ii) UðT ; S2jS1Þ, the
unique information that only S2 holds about T; (iii) RðT ; S1,S2Þ, the
redundant information that both S1 and S2 hold about T; and (iv)
SðT ; S1,S2Þ, the synergistic information about T that only arises from
knowing both S1 and S2 (see Fig S1). The set of quantities
fUðT ; S1jS2Þ,UðT ; S2jS1Þ,RðT ; S1,S2Þ,SðT ; S1,S2Þg is called a partial
information decomposition related as follows:

I T ;S1, S2ð Þ=U T ;S1jS2ð Þ+U T ;S2jS1ð Þ+ S T ;S1, S2ð Þ+R T ;S1, S2ð Þ ð1Þ

IðT ;S1Þ=UðT ;S1jS2Þ+RðT ;S1, S2Þ ð2Þ

IðT ;S2Þ=UðT ;S2jS1Þ+RðT ;S1, S2Þ ð3Þ

Thus, the Partial Information Decomposition (PID)35,36 framework
characterizes the mutual information between variables by decom-
posing it into unique, shared, and synergistic components.

In a multi-neuronal network, unique (and synergistic) compo-
nents of the mutual information between neural variables due to
causal interactions (unique and synergistic) are captured by directed
statistical dependencies. On the other hand, shared components of
mutual information between neural variables correspond to shared
neuronal inputs, and the sign of their modulation can be estimated
from the modulation of unique and total mutual information (Fig. 1g).

Information decomposition with pairwise and network models
Generation of synthetic data. A synthetic network was generated in
which unique and shared dependencies between variables were con-
trolled. Eight variables were randomly initialized to values of 0 or 1.
One variable was assigned as the target, the other seven as sources.
One source was designated as the unique source. Samples were gen-
erated in the followingmanner: (1) the values of all variableswere set to
1 with probability Pshared and unchanged with probability 1� Pshared

and (2) the values of the target and unique source were set to 1 with
probability Punique and unchanged with probability 1� Punique. This
created a shared dependency between all eight variables and a single
unique dependency between the target and the unique source. Two
thousand (2000) samples each were generated with Pshared , Punique ∈
{0.1, 0.2, 0.3, 0.4}.

Information estimation. The total normalized mutual information
between the unique source and the target variable was calculated by
the uncertainty coefficient:

U target
�
�source

� �
=
H targetð Þ � H target

�
�source

� �

HðtargetÞ ð4Þ

where H is entropy. Additionally, unique information between the
unique source variable and target was calculated for Punique ∈ {0.1, 0.2,
0.3, 0.4} and Pshared ∈ {0.1, 0.4}.

Unique information was divided by the total entropy of the target
and termed unique information fraction. Likewise, redundant or
shared information about the target from random subsets of three
source variables (repeated 100 times) was calculated for Punique ∈ {0.1,
0.4} and Pshared ∈ {0.1, 0.2, 0.3, 0.4} and divided by total entropy of the
target, termed shared information fraction. Unique and redundant
information were calculated using the dit (discrete information the-
ory) python package72 with redundancy measured by pointwise com-
mon change in surprisal71.

Pairwise model fitting. Univariate logistic regression was performed
between the unique source and target variable using the statsmodel
python package73 for all values of Pshared and Punique.

Network model fitting. Multivariate regression was performed
between all seven source variables and the target variable using the
statsmodel python package using L1 penalty74–76.

Multi-timelag weighted dynamic Bayesian network (MTwDBN)
analysis pipeline
Fitting dynamic Bayesian network models. A Dynamic Bayesian
Network (DBN) framework was used to learn dependencies between
neural populations50. The pgmpy python package77 (https://github.
com/pgmpy/pgmpy) and custom-written python code was used to fit
all DBN models. Each binned-and-sliced data table was first boot-
strapped B times. For each session/condition, a hill climb tabu-search
with a history window of 7 was performed 120 times, each from a
unique random starting graph, to find a suitable fitting directed acyclic
graph (DAG)44. The Akaike information criterion (AIC) was used78,79 as
the scoringmetric in the tabu-search. The variables associatedwith the
latest time slice (0ms)were termed the effect variables; all others were
termed potential cause variables. The search was restricted to DAGs
where edges can only be incident on an effect variable. Edges between
effect variables were allowed as they may capture dependencies at
timescales shorter than our chosen bin widths, however such edges
have no causal interpretation andwere excluded from further analysis.
The resulting DAGs were termed unweighted, as their edges (depen-
dencies) are described in a present/absent manner. Of the 120 starting
points, only the DAG with highest AIC score was used for further
analysis. This resulted in B unweighted DAGs per session/condition.

Estimation ofweightedDAG. TheBDAGs fromeach session/condition
were used to estimate weighted DAGs51. A pool of 100 weighted DAGs
were estimated by taking 100 bootstrap samples from the B unweighted
DAGs and averaging: theweight∈ (0,1) for each edgecorresponds to the
proportion of the B unweighted DAGs where the edge was present. This
resulted in 100 weighted DAGs for each session/condition.

Testing significance of DAG edges. To test for significance of the
discovered edges, the 100 weighted DAGs were compared to 100
control DAGs that were generated in the same manner as above but
with time-shuffled data. The binned-and-sliced data tables were shuf-
fled as follows: for each row, permute the data from each of the 7 time
slices which arose from the same population. Finally, permute each
column (corresponding to each population/time slice combination).
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To test for significance, a distribution of weights was generated by
combining weights for a given edge across all sessions (conditions
treated separately). The distribution of edge weights from unshuffled
data were compared to the distribution of edge weights from the
shuffled data using a one-sided Mann Whitney U Test. If the distribu-
tion from unshuffled data had significantly higher values than from
shuffled data (p < 0.05), the edge was marked as significant for that
condition and said to have survived time shuffling.

MTwDBN validation
Synthetic neural network. Synthetic neural network models were
constructed using stochastic spiking neurons80,81. Individual neurons
in the model were treated as coupled, continuous-time, two-state
(active and quiescent) Markov processes. The active state represents a
neuron firing an action potential and its accompanying refractory
period, whereas the quiescent states represent a neuron at rest. The
transition probability for the i-th neuron to decay from active to
quiescent state in time dt was Pi active ! quiescentð Þ=αi∂ dtð Þ, where
αi represented the decay rate of the active state of the neuron. Para-
meter αi sets the upper bound on firing rate of the stochastically
spiking neuron, akin to a refractory period. The transition probability
for the i-th neuron to change from quiescent to active state (i.e., spike)
was Pi quiescent ! activeð Þ=βiG Si

� �
∂ dtð Þ80. This caused the firing

probability to be a function of the input, with βi as its peak value.
Parameter Si was the total synaptic input to neuron i, given as
Si tð Þ=Ni tð Þ+ Ii tð Þ, whereNi was the net input fromother neurons in the
local network and Ii was the net external input to the neuron. The
network input was Ni tð Þ=

P
jwijAj tð Þ, where wij are the weights of the

synapses. The activity variableAj tð Þwas set to one if the jth neuronwas
active at time t and zerootherwise. Themodel neurons hadno intrinsic
capacity to oscillate because the inter-spike interval was the sum of
two independent exponential random variables with parameters αi

and βiG Si
� �

, respectively. The model parameters were chosen as fol-
lows: Excitatory (E) and inhibitory (I) neurons in the network were
differentiated based on two model parameters: αE =0.075 ms, αI =
0.4ms; and βE= 1, βI = 2.

Two neuron network. The model network analyzed in Fig. 2d con-
sisted of two excitatory neurons with a single synaptic connection
from the first neuron to the second neuron. Ten such two-population
networks were simulatedwith synaptic weights∈ (0.5, 1.0,…, 9.0, 9.5).
1000 trials of spiking data each 100ms long were simulated for
each model.

Six-population network. Synthetic laminar network analyzed in
Fig. 2e-i consisted of simulating 45 neurons in total, 15 in each cortical
layer (superficial, input, deep). Each layer contained 10excitatory and 5
inhibitory neurons, giving a total of 6 populations (3 layers x 2 neuron
types). The network topology for synaptic connectivity is depicted in
Fig. 2e. The weights wij for synaptic connections are 1 for the inter-
laminar connections, 1.5 for intra-laminar connections where the pre-
synaptic unit is an E unit, and -2 for intra-laminar connections where
the presynaptic unit is an I unit. 1000 trials of spiking data, each 2000
ms long, were simulated using this model.

Preprocessing for MTwDBN analysis. Data from single units was
grouped by population in each model simulation. The multi-unit
spiking activity of these populations was used for the analysis. Before
aggregating activities of single units into populations, d % (d being a
pre-selected number, see Effect of sub-sampling in synthetic laminar
model) of single units in each population were dropped (not used for
analysis) from the laminar model data. The data from each trial were
discretized into 1.2ms bins of either 0, 1, or 2 to denote no spikes, one
spike, or multiple spikes in a time bin. The data were lagged 2 times to
give 3 time slices (2.4, 1.2, 0ms). The data from all trials were

concatenated together to generate a single data table with 6 or 18
columns (2 or 6 populations x 3 time slices). The binned and dis-
cretized spiking activity of a single population in a single time slice was
viewed as a variable in either the pairwise regression or DBN frame-
work. Data with structure as produced by this preprocessing step are
termed binned-and-sliced data tables. Alternative models with
between 4-7 lags were created with no improvement in accu-
racy (Fig S2).

Analysis: relationbetween synapticweights andDAGedgeweights
in two-neuron network. Binned-and-sliced data tables from each two-
neuron model were passed separately through the MTwDBN pipeline
(B = 200) to generate 100weightedDAGs each.Weights wereobtained
by averaging across the 200 unweighted DAGs. The 100 weighted
DAGs were used to compute 95% confidence intervals for these
weights.

Analysis: effect of sub-sampling on recovering ground-truth in
synthetic laminar network. To assess the effect of sub-sampling
neural data on MTwDBN outputs, d % (d ∈ {0, 20, 40, 60, 80}) of
neurons in each of 6 populations were dropped from the laminar
network beforepreprocessing (Preprocessing Synthetic Neural Network
Data). For d ∈ {20, 40, 60, 80}, five iterations of this procedure were
performed where a different random subset of neurons was dropped.
This resulted in 21 binned-and-sliced data tables.

DBN Models: MTwDBN, weighted with fixed threshold, unweigh-
ted. Each data table was passed through the MTwDBN pipeline
(B = 200), generating 200 unweighted DAGs and 100 weighted DAGs.
We used bootstrap sizes of 8000 rows in the MTwDBN pipeline to
simulate data scarcity of electrophysiology experiments. Edges were
considered significant either by surviving time shuffling (MTwDBN) or
by the average weighted edge passing a fixed threshold of 0.5
(weightedFT). For unweighted models, we used the DAG with the
highest AIC score out of 200 unweighted DAGs.

LASSOmultivariate regularized regression (RR). Each data table was
used to fit a multivariate LASSO regression model (sklearn.linear_mo-
del.LASSO). For each data table, one of the 0msec time slice columns
served as the predictor variable, with all other columns serving as
independent variables (sixmodels corresponding to six 0ms time slice
columns). An edge was considered present if there was a non-zero
coefficient from a 2.4 or 1.2ms time slice variable (edges within the
0ms time slice were not considered, analogous to DBN analyses). The
regularization coefficient was fine-tuned based on the F-score of the
resulting model using the d =0 data table. We tested a range of reg-
ularization coefficients from 0.005 to 0.05 (linearly spaced by 0.005)
and found the F-score to peak at α = 0.02.

F-score calculation and model comparisons. To measure how well
they conformed to ground truth connectivity, an F-score was calcu-
lated for models (MTwDBN, weightedFT, unweighted, RR) fitted to a
given subsampled dataset. We use a framework50 where edges are
considered regardless of the time lag in which they appear. The
F-Score is defined as: F = 2RP

R+P, with R= C
C +M, P = C

C + I, and C= # connec-
tions inferred by the model which are in the ground truth, M = #
connections in ground truth not inferred by DBN, I =# connections
inferred by the model which are not in the ground truth. R and P refer
to Recall and Precision. In addition to the eight edges indicated in
Fig. 2e, self-edgeswere regarded as partof the ground-truth to indicate
firing refractory periods. F-Scores of d ∈ {20, 40, 60, 80} were com-
pared by a mixed-model ANOVA with model (MTwDBN, weightedFT,
unweighted, RR) as within-subjects variable and d (20,40,60,80) as
between-subjects variable (RStudio, ezANOVA, revealing significant
main effects (p < 0.001)) of model and model x drop interactions after
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sphericity correction (Greenhouse-Geisser). Models were further
compared for each d separately using post-hoc Tukey test with Bon-
ferroni correction. MTwDBN is considered to outperform alternative
models if it has a higher F-score for all d and all p < 0.05.

Analysis: effect of number of time lags on recovering ground-truth
in synthetic laminar model. To assess the impact of including differ-
ent number of time lags on recovering ground-truthdependencies, the
synthetic laminar datawas preprocessed (d =0)with #of lags∈ {3, 4, 5,
6, 7}. Eachbinned-and-sliceddata tablewas run independently through
the MTwDBN pipeline (B = 50) and F-scores, Recalls, and Precisions
calculated.

Analysis: validating predictive power of edge weights in synthetic
laminar model. To validate whether the edge weights contain addi-
tional information about the population dependencies above
unweighted edge weights, the binned-and-sliced data table from the
synthetic laminar network (d =0, no neurons dropped) was divided
into two data tables row-wise, datatrain (95% of data) and datatest (5% of
data). Datatrain was bootstrapped 10 times to mimicmulti-session data
and separately passed through the MTwDBN pipeline (B = 50) to gen-
erate 10 ×100 weighted DAGs. The set of edges in the weighted graph
that survived time-shuffling are denoted Eset. Subsampled unweighted
DAGs containing n edges (6 or 13) were obtained by sampling without
replacement from Eset by either sampling uniformly (UW, unweighted)
or sampling using the DAG edge weights as sampling weights (W,
weighted). Models UW and W were used for prediction by fitting
parameters to 12,000 samples from datatest by maximum likelihood
estimation82. From the remaining samples in datatest not used for
parameter fitting, 4,000 samples were used for validation. For each
sample in the validation set, one of the effect variables was chosen at
random and both UW and W were used to predict the value of this
effect variable from the cause variables. The prediction accuracies of
the two models were compared to the true effect variable value using
the M-score83. This was repeated for 100 variations of UW and W
(created by varying the random seed used to sample edges), and the
resulting 100M-scores were compared using a two-tailed paired t-test
with Bonferroni correction for both n = 6 and n = 13. The W model is
considered to outperform UW in prediction if MW>MUW and p <0.05.

Attention data
Behavioral task. Well-isolated single units were recorded from area V4
of two rhesus macaques during an attention-demanding orientation
change detection task. The task design and the experimental proce-
dures are described in detail in a previous study15,84. While the monkey
maintained fixation, two oriented Gabor stimuli were flashed on for
200ms and off for variable intervals (randomly chosen between 200
and400ms). The contrast of the stimuluswas randomly chosen froma
uniform distribution of 6 contrasts (c = [10%, 18%, 26%, 34%, 42%, and
50%]). One of the stimuli was located at the receptive field overlap
region (Attend In) and the other at an equally eccentric location across
the vertical meridian (Attend Away). At the beginning of a block of
trials, we presented instruction trials where the monkey was spatially
cued to the covertly attend tooneof two stimulus locations.Oneof the
two stimuli changed in orientation at an unpredictable time (minimum
1 s, maximum 5 s, mean 3 s). The monkey was rewarded for making a
saccade to the location of orientation change. 95% of the orientation
changes occur at the cued location, and 5% occur at the uncued
location (foil trials). We observed impaired performance and slower
reaction times for the foil trials, suggesting that the monkey was
indeed using the spatial cue to perform the task. The difficulty of the
task was controlled by changing the degree of orientation change
(randomly chosen from the following: 1°, 2°, 3°, 4°, 6°, 8°, 10°, and 12°).
If no changeoccurredbefore 5 s, themonkeywas rewarded for holding
fixation (catch trial, 13% of trials).

Electrophysiological recording.While themonkeywasperforming the
attention task (Fig. 3a), we used artificial dura chambers to facilitate the
insertion of 16-channel linear array electrodes (laminar probes, Plexon,
Plexon V-probe) into cortical sites near the center of the prelunate gyrus.
Neuronal signals were recorded, filtered, and stored using the Multi-
channel Acquisition Processor system (Plexon). Neuronal signals were
classifiedas either isolated singleunits ormultiunit clustersby thePlexon
Offline Sorter program. Data is available upon request.

Laminar boundaries: For the data collected from linear array
electrodes, we used current source density analysis to identify the
superficial (Layers 1–3), input (Layer 4), and deep (Layers 5 and 6)
layers of the cortex based on the second derivative of the flash-
triggered LFPs15,85. The resulting time-varying traces of current across
the depth of the cortex can be visualized as CSD maps (Fig. 3b). Red
regions depict current sinks in the corresponding regionof the cortical
laminae, while blue regions depict current sources. The input layerwas
identified as the first current sink followed by a reversal to current
source. The superficial and deep layers had the opposite sink-source
pattern i.e. source followed by sink.

SU classification: Cell bodies of single units with bi-phasic action
potential waveforms were assigned to the same layer in which the
electrode channel was situated during recordings. Units that had tri-
phasic waveforms or other shapes were excluded from analyses. Units
with peak-to-trough duration greater than 225μs were classified as
broad-spiking putative excitatory neurons; units with peak-to-trough
duration less than 225μs were classified as narrow-spiking putative
inhibitory neurons (Fig. 3c). Extracellular data were collected over
32 sessions (23 sessions in monkey A, 9 in monkey C) yielding
337 single units in total. Unit yield per session was considerably higher
in monkey C than monkey A, resulting in a roughly equal contribution
of both monkeys toward the population data.

Data selection. All analyses in this study were performed on spiking
data during an interval of 60–260ms after stimulus onset excluding
orientation changes. Only single units whose spike waveforms were
successfully classified as broad or narrow and for whom the layer
identity could be successfully discerned were used in the analysis.
Therewere 29 sessionswhich hadoneormore suchunits recorded. For
layer-wise analyses, only sessions with at least one unit from each layer
were included (18 sessions). For broad- and narrow-spiking layer-wise
(layer-class) analyses, only sessions with at least one unit from two or
more populations were included (27 sessions). Pairwise and network-
baseddependency analysiswereperformedoneach session separately.

Analysis: attention conditions. Data from Attend In and Attend Away
trials were analyzed independently. For each attention condition, only
data from trials where the animal successfully detected the orientation
change or from catch trials where the animal maintained fixation
were used.

Analysis: behavioral performance. We fit the behavioral data with a
logistic function anddefined the threshold condition as the orientation
change thatwas closest to the 50% threshold of thefitted psychometric
function for that session. This subset of trials fromwithin the attend-in
condition in which the animal was equally likely to correctly detect
(Hit) or fail to detect (Miss) the orientation change was used for our
analysis. Data from Hit and Miss trials were analyzed independently.

Preprocessing for MTwDBN analysis. Single units were grouped
according toneocortical layer (superficial/input/deep) for layer-wise (3
populations) analyses and additionally by spike waveform (narrow/
broad) for layer+class (3×2 populations) analyses. The multi-unit
spiking activity of thesepopulationswasused for the analysis. Thedata
from each stimulus presentation (60–260ms after stimulus onset)
werediscretized into 15msbins and6 lags togive 7 time slices (-90, -75,
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-60, -45, -30, -15, 0ms). The spiking activity of each population in each
bin was discretized to 1 or 0 to denote if there were spikes or not. The
data from all stimulus presentations in a session/condition combina-
tion were concatenated together. Data tables had 21 columns for layer-
wise analyses (3 layers x 7 time slices) and 42 columns for layer-class
analyses (6 layer-class populations x 7 time slices). The binned and
discretized spiking activity of a single population in a single time slice
was viewed as a variable in either the pairwise regression or DBN fra-
mework. Data from each session/condition were preprocessed sepa-
rately. To keep analyses consistent across conditions being compared
(Attend-In vs. Away OR Hit vs. Miss), the size of the bootstraps was
equal to the maximum number of rows of the two conditions.

Estimation of condition modulated edges. Binned and sliced data
tables from each session/condition were independently passed
through the MTwDBN pipeline (B = 200) to generate 100 weighted
DAGs each. Estimation of condition modulated edges was only per-
formed for those that survived time shuffled in at least one of the
conditions to be compared (Attend In or Away, Hit or Miss). For each
sessionwhere both cause and effect populations were recorded, 5000
pairs of weighted DAGswere bootstrapped from the two conditions to
be compared. For each pair, attention modulation indices (AMI) and
hit modulation indices (HMI) were calculated as:

AMI =
ðEdgeWeightÞIN � ðEdgeWeightÞAWAY

ðEdgeWeightÞIN + ðEdgeWeightÞAWAY
ð5Þ

HMI =
ðEdgeWeightÞHIT � ðEdgeWeightÞMISS

ðEdgeWeightÞHIT + ðEdgeWeightÞMISS
ð6Þ

This resulted in 5000 modulation values for each edge that sur-
vived time-shuffling and each recording session where both cause and
effect populations were recorded.

Pairwise dependency analysis. Total dependency weights between
neocortical populations were estimated using univariate logistic
regression. This analysis was only performed on edges that survived
time-shuffling in the MTwDBN analysis. For each session where both
cause and effect populations were recorded, 5000 samples were
bootstrapped from the binned-and-sliced data tables (see Data Pre-
processing) for each condition separately. To keep analyses consistent
across Attend-In/Away and Hit/Miss, the size of the bootstraps was
equal to the maximum number of rows of the two conditions to be
compared. Logistic regression was performed separately from each
cause variable to an effect variable using the statsmodel python
package, BFGS solver73. The absolute value of the β1 coefficient was
treated as the total dependency weight to mirror the unsigned
dependencies discovered using DBNs. This resulted in 5000 pairs of β1
across the conditions to be compared. For each pair, attention mod-
ulation indices (AMI) and hitmodulation indices (HMI) were calculated
as:

AMI =
jβin

1 j � jβaway
1 j

jβin
1 j+ jβaway

1 j
ð7Þ

HMI =
jβhit

1 j � jβmiss
1 j

jβhit
1 j+ jβmiss

1 j
ð8Þ

This resulted in 5000 modulation values for each edge that sur-
vived time-shuffling in the MTwDBN analysis and each recording ses-
sion where both cause and effect populations were recorded.

Calculating confidence intervals ofmodulation indices. Modulation
indices (either attention or hit) were grouped according to time lag

and additionally whether they were between layers (all layers or input
⇔ superficial only) or within layers (all layers, input only, superficial
only). For layer-class analyses, they could be additionally grouped
according tobroadornarrowwaveforms.Due to the large sample sizes
generated from bootstrapping, hypothesis testing discovers all mod-
ulations to be significantly different from zero (p = 0). Therefore, an
estimation statistics approach was used to estimate confidence inter-
vals of modulation indices. The mean modulation index and bias-
corrected and accelerated bootstrap 95% confidence intervals were
calculated in python (scipy.stats.bootstrap, modified to allow for set-
ting size of bootstrap). To estimate confidence intervals more con-
servatively given the large sample sizes, the number of resamples and
the size of each bootstrap were each set to 5000.

Generalized phase estimation. To determine the temporal relation-
ship between discrete temporal events and the ongoing local field
potential (LFP) signal, we adopted the analytical signal approach for
non-stationary wideband signals86,87. We first bandpass filtered the LFP
from 5–40Hz. This wideband signal captures the dominant fluctua-
tions of the raw LFP signal and at the same time excludes slow global
changes and higher frequency signals that could potentially con-
taminate the LFP. We then calculated the instantaneous phase of this
wideband LFP signal (the generalized phase, GP) and studied the
relationship ofGP for discrete temporal events of interest (spike times,
target stimulus onset time) across experimental conditions. We added
a 75ms offset to the target stimulus onset time to account for the
average response latency of input layer units in our dataset88.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All binned-and-sliced data tables generated in this study have been
deposited in Dryad89 (https://doi.org/10.5061/dryad.ffbg79d2w). Raw
electrophysiology data is available upon request. Source data are
provided with this paper.

Code availability
All major analyses were performed using publicly available Python
packages as detailed in the methods (pgmpy, statsmodel, scipy, dit).
Specific code is available from the authors upon request.
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