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Organic fertilization co-selects genetically
linked antibiotic and metal(loid) resistance
genes in global soil microbiome

Zi-Teng Liu 1, Rui-Ao Ma1, Dong Zhu2, Konstantinos T. Konstantinidis 3,
Yong-Guan Zhu 4,5 & Si-Yu Zhang 1

Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs)
coexist in organic fertilized agroecosystems based on their correlations in
abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by
organic fertilization remains elusive. Here, an analysis of 511 global agricultural
soil metagenomes reveals that organic fertilization correlates with a threefold
increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs)
in the microbiome (63 types) compared to non-organic fertilized soils (22
types). Metatranscriptomic data indicates increased expression of AMCCs
under higher arsenic stress, with co-regulation of the ARG-MRG pairs. Organic
fertilization heightens the coexistence of ARG-MRG in genomic elements
through impacting soil properties and ARG and MRG abundances. Accord-
ingly, a comprehensive global map was constructed to delineate the dis-
tribution of coexistent ARG-MRGs with virulence factors and mobile genes in
metagenome-assembled genomes from agricultural lands. The map unveils a
heightened relative abundance and potential pathogenicity risks (range of 4-6)
for the spread of coexistent ARG-MRGs in Central North America, Eastern
Europe, Western Asia, and Northeast China compared to other regions, which
acquire a risk range of 1-3. Our findings highlight that organic fertilization co-
selects genetically linked ARGs and MRGs in the global soil microbiome, and
underscore the need to mitigate the spread of these co-resistant genes to
safeguard public health.

Soil, as one of Earth’s largest reservoirs ofmicrobial diversity, is also a
hotspot where antibiotic resistance genes (ARGs) can be transferred
to a wide range of pathogens and represents a continued threat to
human and animal health and sustainability1,2. This phenomenon is
even more pronounced in agricultural soils due to the selective
pressure of intensive anthropogenic inputs associated with fertili-
zation practices. Due to the growing usage of antibiotics in livestock,

a considerable amount of antibiotics, such as tetracyclines, sulfona-
mides, quinolones, and macrolides, remain in manure, and thus,
likely select for the ARGs present in agricultural soils when organic
fertilizer is applied3–5. In addition to antibiotics, metal(loid), espe-
cially copper (Cu), zinc (Zn), arsenic (As), and chromium (Cr), are also
used in livestock to maintain animal health and promote growth and
are therefore transferred to the agricultural soils through organic
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fertilizer application6–8. The long-term application ofmanure has also
been reported to increase the concentrations of As,mercury (Hg), Cr,
Cu, Zn, and manganese (Mn) in agricultural soils6,9,10. The imported
antibiotics andmetal(loid) applied during fertilizer application could
further lead to an increase in the diversity and frequency of co-
occurring ARG-metal(loid) resistance genes (MRGs), along with an
elevated potential for horizontal gene transfer (HGT) of these genes
to pathogenic or opportunistic pathogenic organisms and the asso-
ciated risk of pathogenicity8. However, these studies were based on
correlations between the abundances of ARGs andMRGs and did not
provide evidence for the direct, genetic linkage between ARGs and
MRGs in the soil microbiome.

In the mining-impacted environment, which is characterized by
high levels ofmetal(loid), the association between the abundances of
ARGs and MRGs has been previously observed, indicating that
metal(loid) stresses prevalent in the environment could drive the co-
occurrence of ARGs and MRGs. A study of the globally distributed
mining-impacted environments showed that multidrug resistance
genes tend to co-occur with multimetal resistance genes more fre-
quently as confirmed by genetic associations between ARGs and
MRGs11. Because several bacterial antibiotic and metal(loid) resis-
tance systems share common modes of action, i.e., the same gene
confers resistance to multiple types of antibiotics and metal(loid), or
because of the co-presence of the same genetic element resistance
such asmobile genetic elements (MGEs),metal(loid) stressmay exert
long-term and widespread co-selective pressure on antibiotic
resistance12–14. However, in agricultural soils amended with organic
fertilizer, which may also introduce both antibiotics and
metal(loid)15, it is not clear whether the previous associations of ARGs
and MRGs found represent spurious results or rather that the ARGs
and MRGs are genetically linked; that is, they are carried within the
same genetic element such as plasmid DNA. Genetic linkages have
been previously observed based on bacterial isolate genomes13,16,
including the coexistence of Zn and beta-lactam resistance, baci-
tracin and polymyxin resistance, and cadmium (Cd) and aminogly-
coside resistance, but it is unclear to what extent these linkages can
be found within complex microbial communities such as those
occupying agricultural soils. To date, with the increasing number of
agricultural soil metagenomic datasets obtained from various
countries, an extensive analysis of specific genetic associations of
ARGs andMRGs in the agricultural soilmicrobiome and an evaluation
of their global potential risk are achievable and can advance the
knowledge gaps mentioned above.

Herein, 511 metagenomic datasets of agricultural soils with or
without organic fertilization practices were collected from different
countries at the global scale. Genetic linkage analyses were carried out
to profile the different coexistence types of ARGs and MRGs in agri-
cultural soil microbiomes under different fertilization practices. We
also sampled 12 agricultural soils under different levels of metal(loid)
treatment for metagenomic and metatranscriptomic analyses. Con-
sidering that the As organic compound roxarsone is one of the most
commonly used food additives in livestock to treat parasitic diseases
and for animal fattening17,18, as well as the worldwide reported As
contamination in agricultural soils resulting from either manure
application or geologic origins19, the stress of As on the transcriptional
activities of the ARGs andMRGs found in the sameDNAmolecule and/
or genome was further assessed. Factors including climate, socio-
economic status, and soil properties, were examined as driving factors
of the coexistence of ARGs and MRGs in the agricultural soil micro-
biome. According to the critical affecting factors, the abundances of
ARG-MRG-carrying microbes with potential pathogenicity and gene
transmissionpotential werepredicted, and aglobalmapof agricultural
lands delineating their distribution was generated to unveil potential
health risks from spreading ARGs on different continents using
machine learning.

Results
Overview of microbial communities and resistomes in
agricultural soils at the global scale
A total of 511 agricultural soil metagenomes were distributed across 17
countries (Fig. 1a and Supplementary Table 1), including Australia,
Canada, China, Finland, Germany, India, Indonesia, Italy, Japan, Mex-
ico, Russia, Slovenia, South Africa, Switzerland, the United Kingdom,
the United States, and Vietnam. An average of 64,623,003 clean reads,
360,427 contigs, and 557,535 ORFs were generated per sample after
trimming and assembling. These agricultural soil metagenomes were
classified into two groups, i.e., organic fertilization applied (OF) or not
applied (NOF) based on the information if available. For the remaining
metagenomes without fertilization information, an in-house-built
random forest (RF) classification model with an F1 score of 0.97,
which indicated a robust result of sample classification, was used for
grouping the agricultural soil metagenomes (Supplementary Fig. 1).
Ultimately, these agricultural soil metagenomes were classified as 227
NOF and 284 OF samples (Supplementary Fig. 2).

The soil microbial communities in the NOF samples exhibited
significantly (p < 0.001) greater Shannon diversity than those in the OF
samples (Fig. 1b). The significantly greater robustness (two-sided t-test,
p <0.001; Fig. 1b) and other metrics (Supplementary Fig. 3) in the OF
network than in theNOFnetwork indicated aheightened complexity in
the interaction of microbial communities in agricultural soils with
organic fertilizer application. A significantly (p < 0.001) increased
diversity (richness) of ARGs, risk ARGs, and MRGs was observed in OF
soils relative to that in NOF soils (60.3 vs. 44.1, 5.5 vs. 2.3 and 84.7 vs.
69.1, respectively; Fig. 1c and Supplementary Fig. 4), especially in
Europe and/or North America (Supplementary Fig. 5). The relative
abundance of risk ARGs was significantly positively correlated with
MRGs (R2 = 0.10, p <0.001) and MGEs (R2 = 0.19, p <0.001) in OF soils,
while this correlation was not observed in NOF soils (Supplementary
Fig. 5). Microbes belonging to Bacteroidetes, Firmicutes, and Pseudo-
monadota, which exhibited significantly increased abundances in OF
soils (adjusted p < 0.05, |log2FoldChange| > 1) contributed to the
increased abundance and diversity of the risk ARGs and MRGs in OF
soils (Supplementary Fig. 6).

Genetic linkage profiles of ARG-MRG-carrying contigs in the
NOF and OF agricultural soil microbiomes
The ARG-MRG-carrying contigs (AMCCs) which indicated the coex-
istence of ARG-MRG in microbial genomes, showed significantly
(p < 0.001) higher abundances in OF than NOF soils (0.44 vs. 0.11
copies per cell, i.e., the fraction of total cells encoding the AMCCs).
Moreover, a higher fraction of AMCC carryingMGEs (4.59% vs. 0.86%),
virulence factor genes (VFGs; 2.72% vs. 0.05%), and both (1.14% vs.
0.98%) was observed in OF than NOF soils (Fig. 2a and Supplementary
Fig. 7). For AMCCs carrying MGEs, more various MGE types, including
integrative and conjugative element (ICE), actinomycete ICE (AICE),
insertion sequence (IS), recombinase, transposon, integrative and
mobilizable element (IME), and integron were observed in OF soils,
while in NOF soils, only three MGE types (ICE, integron and transpo-
sase) were found (Fig. 2b). Approximately 36% and 43% of the AMCCs
were predicted to be on the chromosome, and 30% and 17% were
predicted to be on the plasmid for the NOF and OF soils, respectively
(Fig. 2b). A total of 63 and 22 types of AMCCs were observed inOF and
NOF soils, respectively, representing an approximately threefold dif-
ference (Fig. 2c, d). Multidrug resistance was the predominant ARGs
coexistingwithMRGs inAMCCs, accounting for 88%of the total AMCC
abundance in NOF and 77% in OF soils (Fig. 2c, d). While the coex-
istence ofmultidrug andZn resistance geneswas themain (71%) AMCC
type identified in the NOF soils, this AMCC type accounted for 45% of
the total AMCC abundance in the OF soils (Fig. 2c, d). Multidrug
resistance genes coexisting with aluminum (Al), As, gold (Au), Cd, Cr,
Cu, iron (Fe), selenium (Se), and multimetal resistance genes
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were identified in OF soils and accounted for a total of 32% of
the total AMCCs. Other ARG types including kasugamycin, vancomy-
cin, bacitracin, tetracycline, fosmidomycin, rifamycin, beta-lactam,
and quinolone resistance were also observed mostly in OF
soils (Fig. 2d).

ARG-MRG coexistent gene cluster and transcriptional activity
evaluation under arsenic stress in agricultural soils
For the AMCCs obtained from the collected metagenomic datasets,
the majority of ARGs (47/71) coexisted with a single specific MRG on
the same contig, and the remaining ARGs (24/71) coexisted with mul-
tiple MRGs (Fig. 3a). The coexistence of the mdtA, mdtB, and mdtC

genes, which confer resistance to both multidrug and Zn, represented
a cross-resistance mechanism20 that was dominant in the NOF (71%)
and in the OF soils but had a relatively lower proportion, i.e., only 45%,
of the total coexistent types of ARG-MRGs. The coexistence of variant
ARG and MRG subtypes, which are genetically linked on the same
MGE12, were approximately fivefold more abundant in OF than in NOF
soils. Additionally, a gene cluster (plasmid) with almost identical genes
(with identity and query breadth coverage by amino acids greater than
90%)ofAs resistant (acr3, arsC2, arsH, and arsR3), transposon (Tn6183,
and Tn6302) and sulfonamide resistant (sul2) plants adjacent to each
other was identified in different OF soils (Fig. 3b), corroborating the
coexistence of ARG-MRG in the OF soil microbiome.
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Fig. 1 | Global distribution of agricultural soil metagenomes and associated
diversity of microbial communities and resistomes in organic fertilized (OF)
and nonorganic fertilized (NOF) soils. aGeographic location of globally collected
soil metagenomes. Each point indicated one sampling location, with the point size
reflecting the number of samples, and the point color indicating the country.
Hollow and solid dots represented NOF and OF samples, respectively. Twenty-six
sampleswithout latitudeand longitude informationwerenot shown. Thebar charts
indicate the sample numbers of the NOF and OF soils on each continent.
b Microbial diversity was assessed by Shannon index (two-sided Wilcoxon test,
***p <0.001) in NOF (n = 227) and OF (n = 284) soils. Robustness was measured as
the proportion of taxa remaining after 50% random removal from each network

(Supplementary Fig. 3). Each error bar corresponds to the standard deviation (SD)
of 100 repetitions (n = 100) of the simulation and data were showed as mean + SD.
Significant comparisons (two-sided t-test, t = 4.19, df= 198, ***p <0.001) between
NOF and OF were indicated. c Diversity (Richness) of antibiotic resistance genes
(ARGs), riskARGs, andmetal(loid) resistancegenes (MRGs) in theNOF (n = 227) and
OF (n = 284) samples (two-sided Wilcoxon test, ***p <0.001). The boxes indicated
the 25th to 75th percentiles (with themedian as a horizontal line), and the whiskers
represented themaximum andminimumvalues except for outliers. Each point was
a sample in the box plot. In b, c orange and blue dots represented NOF and OF
samples, respectively. Source data were provided as a Source Data file. ARG anti-
biotic resistance genes, MRG metal(loid) resistance gene.
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Fig. 2 | Abundances and types of coexistent ARG-MRGs in agricultural soil
microbiomes. a Abundance and relative proportion of ARG-MRG-carrying contigs
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ICE, IS insertion sequence, MLS macrolide-lincosamide-streptogramin.
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To further validate the co-selection of antibiotics and As resis-
tance, 12 agricultural soils were sampled from China, and subjected to
metagenomic and metatranscriptomic sequencing. According to the
National Soil Environmental Quality Standard of China, which sug-
gested soil contamination of As if the total soil As content was higher
than 15mgkg−1, these soil samples were classified into relatively low
levels of As stress (average As concentration of 9.32mg kg−1) and rela-
tively high levels of As stress (average As concentration of
19.49mgkg−1) groups. The co-resistant AMCCs on plasmids carrying
vancomycin-As resistance genes (vanS-arsM) and macrolide-
lincosamide-streptogramin (MLS)-multimetal resistance genes (macB-
wtpC), and the ARG-MRG cross-resistant AMCC carrying mdtB-mdtC
were assembled from the soilmetagenomes. All threeAMCCs exhibited
relatively greater abundances in soils under relatively high As stress
than in soils under lowAs stress (average of 0.52 vs. 0.13 copies per cell;
Fig. 3c). Moreover, the transcriptional activities of these AMCCs in soils
with relatively high As stress (average of 0.44) were also greater than in
soils with low As stress (average of 0.02; Fig. 3d). The even distribution
ofmetatranscriptomic reads aligned to the associatedARGs orMRGs in
the AMCCs, as revealed by a read recruitment plot (Fig. 3e), confirmed
that theseARGs andMRGswere expressed similarly in the soilmicrobial
genome and likely confer resistance to both antibiotics and As.

Factors contributing to the coexistence of ARG-MRG in
agricultural soil microbiome
The partial least square-structural equationmodel (PLS-SEM)was used
to describe the direct and indirect impacts of various factors on the

coexistence of ARG-MRG (AMCC abundance). A goodness of fit (GOF)
of 0.55 was achieved for the PLS-SEM and could explain 41% of the
variance in the coexistence of ARG-MRG in the soil microbiome
(Fig. 4a, b). Similarly, fertilizer type; soil properties, including pH,
organic carbon content, and density; climate; and socioeconomic
factors, including mean annual temperature (MAT), annual precipita-
tion (AP), and the human development index (HDI), had the significant
contributions (p <0.05). Biofactors, including the relative abundances
of ARGs, MRGs, and potassium metabolism genes, were also sig-
nificantly important influencing factors based on the random forest
model (Fig.4c). The fertilizer type indirectly impacts the coexistenceof
ARG-MRG in the soil microbiome by directly affecting the soil prop-
erties and the relative abundances of ARGs and MRGs. Climate and
socioeconomic factors also contributed to the coexistence of ARG-
MRG through indirect impacts on soil properties, microbial commu-
nity diversity, and elemental metabolism gene abundances or through
direct impacts on the abundances of ARGs and MRGs. Interestingly,
climate contributed to the coexistence of ARG-MRG in the micro-
biome, with greater positive impacts on the NOF than OF soils (total
effect of 0.53 vs. −0.14), while the biofactors, i.e., the abundance of
ARGs and MRGs, were the predominant factors contributing to the
coexistence of ARG-MRG in the OF soil microbiome (Supplemen-
tary Fig. 8).

Identification of ARG-MRG-carrying MAGs
Approximately 15% (95 out of 617 in total) of the total metagenome-
assembled genomes (MAGs)with relatively high quality (completeness
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≥ 70% and contamination ≤ 5%) were identified as MAGs carrying
AMCCs. Moreover, theseMAGs were all detected with MGEs and VFGs
in their genomes (Fig. 5a), indicating the potential risk of HGT in ARG-
MRG co-resistant and pathogenicity in agricultural ecosystems.
Among the antibiotic and metal(loid) co-resistant bacteria (AMRB),
these MAGs were mostly resistant to antibiotics, including multidrug,
fosmidomycin, bacitracin, etc., and metal(loid) including Cr, As, Fe,
multimetal, Cu, Zn and Se (Fig. 5a), which is consistent with the
dominant ARG and MRG types revealed based on the analyses of
metagenomic reads and AMCCs (detailed in the Supplemen-
tary Results). According to the Microbial Genomes Atlas (MiGA) clas-
sification, three of these AMRB represented a potentially new genus
with a probability of p <0.01, 72 represented a potentially new species
(p < 0.01), and 17 represented a potentially new subspecies (p < 0.001;
Supplementary Table 6), indicating the novelty of these newly identi-
fiedAMRB in agricultural soils. The total abundanceof theseAMRBwas
consistently greater in OF thanNOF soils (0.011 vs.0.005 CPG; Fig. 5b).
While the dominant AMRB were composed of Gammaproteobacteria
(44%), Bacteroidia (20%), and Actinomycetia (15%) in OF soils, in NOF
soils, the AMRB were predominantly assigned to Acidobacteriae (41%),
Nitrospiria (18%) and Gammaproteobacteria (16%; Fig. 5c and Supple-
mentary Fig. 9). Among them, the observed MAGs, i.e., OF_MAG49
(Enterobacter), OF_MAG23 (Pseudomonas), and OF_MAG51

(Pseudomonas), which had the highest number of VFGs, are typical
pathogenic genera confirmed by previous studies21.

Prediction of the global threat potential of AMRB in agricultural
soils based on machine learning
Five machine learning (ML) algorithms (artificial neural network,
k-nearest neighbors, support vector machine, extreme gradient
boosting, and random forest) were further used to map the threat
levels of AMRB in agricultural lands worldwide with 511 collected soil
metagenomes and 34 features from public databases. The abundance
of AMRB in 511 agricultural soils was divided into six levels by the
K-means algorithm, with the rank six to one indicating the relative
abundance of AMRB and their associated potential risk from high to
low (detailed in Supplementary Results, Supplementary Fig. 10). Sub-
sequently, the pre-processed dataset was divided into a training set
(80%) and a test set (20%). The training set was used to train themodel
to predict the risk level of AMRB with 10-fold cross-validation and the
test set was used to evaluate the model performance. The test set was
never evaluated by the model until the final model was reached. After
hyperparameter optimization and feature selection, the best model of
eachML algorithm was validated on the same test set. Finally, the best
model (feature selection: 23, n estimators: 50, max depth: 27, max
features: None, min samples split: 7, and min samples leaf: 1) of the
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random forest algorithm that performed best on the test set was used
to predict the threat level of AMRB (F1 score of 0.722; Fig. 6a, b). The
receiver operating characteristic curve (ROC) for each level further
evaluated the performance of the random forest model (Fig. 6c).

After determining the best predictive model, we extracted the
latitudinal and longitudinal coordinates of the global croplands based
onGoogle Earth Engine (GEE) data, and ultimately, themicrobial risk at
2,910,454 locations was predicted and visualized at a 0.083° of

resolution on the global map of agricultural soils (Fig. 6d). This map
could provide an overview of AMRB in agricultural soils worldwide.
Considering the multiple stresses in agricultural soils under fertiliza-
tion practices, microbes conferring both antibiotic and metal(loid)
resistance would have advantages over either ARG or MRG-resistant
microbes and could be the predominant microbes facilitating ARG
spread and resulting in potential risk. According to the prediction
results from machine learning, a relatively higher risk of AMRB was
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observed in central North America, Eastern Europe, Western Asia, and
Northeast China (Fig. 6d).

Discussion
The application of organic fertilizers, especially manure, can
directly import resistance genes22–24, and thus drive the spread of
diverse ARGs and MRGs in agricultural soils worldwide (Fig. 1). The
antibiotics and metal(loid) introduced during manure fertilization
in agroecosystems5,15 could also drive the co-selection of antibiotics
and heavy metal(loid) resistomes observed here and elsewhere8.
While previous studies have shown the co-occurrence of ARGs and
MRGs in organic fertilizer agricultural soils based on the correlation
between their abundances, we further reported a greater abun-
dance of genetic linkages of ARG-MRGs in AMCCs in OF than NOF
soils (Fig. 2). In addition to the genetic linkage of ARG-MRGs
reported in isolated genomes11,13,16, our results confirmed that these

linkages can be found within complex microbial communities
occupying agricultural soils, such as Gammaproteobacteria, Bac-
teroidia, and Actinomycetia (Fig. 5). Specifically, the coexistence of
mdtA, mdtB and mdtC which are involved in the cross-resistance
mechanism of microbiomes25,26, was the most common AMCC types
in agricultural soils. Moreover, with organic fertilizer application, an
increased proportion of AMCC types associated with co-resistance
mechanisms in the soil microbiome13,27,28 was observed, including
multidrug-multimetal, multidrug-Cd, As, Cu, Se, Au, and Fe co-
resistance. This co-resistance could be selected by the exogenous
Cu, Zn, and As through the application of animal manure in soils,
which has been used as a feed additive in food animals5,29–31. The
greater abundance and transcriptional activity of ARG and MRG on
AMCCs under higher As stress than under lower As stress (Fig. 3),
further confirmed that the ARG and MRG were co-selected and co-
regulated under stress in agricultural soils.
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Soilborne ARGs have been recognized as ancient products of
evolution32,33 and essential microbial warfare for competing for soil
resources34. Nevertheless, in agricultural soils, the nutrient levels of
soil C, N, P, and K are typically high due to fertilization practices, and
bacterial communities are usually associated with increased diversity
resulting from an increased niche availability35. Therefore, instead of
acting as warfare for competing for soil nutrients, the presence of
resistomes in this habitat is more likely to aid in resisting the stress of
antibiotics and metal(loid) presented. At the microbial community
level, land-use perturbations have been identified as the most impor-
tant anthropogenic pressures affecting soil microbial diversity36,37.
With the application of organic fertilizers, the pressure from anti-
biotics and metal(loid) reduced microbial diversity at the community
level (Fig. 1b) and selected the resistomes conferring both antibiotic
and metal(loid) resistance (Figs. 2 and 3), such as Pseudomonadota,
Actinobacteriota, and Acidobacteriota (Supplementary Fig. 9), which
have been identified as ARG hosts38,39 or with high tolerances of
metal(loid)40. Recently, with an increasing awareness of antibiotic-
resistant pathogens embedded within complex species interaction
networks, ecological coexistence theory has been utilized to under-
stand antibiotic resistance41. We suspected that the enhanced micro-
bial interaction (Fig. 1) in organic fertilized agricultural soils would
contribute to the co-resistance of the microbial communities to the
presented stresses through possible HGT of the resistance genes, as a
significantly greater abundance and variant types of MGEs were
revealed on the AMCCs in OF soils (Fig. 2) and in previously studied
manure-amended soils23. Corroboratively, HGT of ARGs through dif-
ferent strains has been confirmed to be an important way for trans-
mission of resistance through microbial communities42.

In contrast to the previously studied ARGs in various types of
soil environments which could be contributed by complex factors,
including both ancient evolution32 and anthropogenic activities43,
we focused on agricultural ecosystems in which ARG and MRG
abundances and co-selection were more strongly contributed by
certain factors, such as fertilization types and associated soil
properties or climate factors (Fig. 4). The contributions of these
factors could be quantified more accurately and thus generate a
more robust and reliable prediction model for AMRB in agricultural
lands, promoting the understanding of the potential risk of AMRB at
a global scale. A relatively greater risk of AMRB was revealed in
agricultural soils with organic fertilizer applied (Fig. 5), especially in
Central North America, Eastern Europe, Western Asia, and North-
east China (Fig. 6). A similar distribution pattern of soil ARG hot
spots has been revealed in these locations44 and was most likely
resulted from the highly dense populations45–47 and the associated
human activities such as livestock, crop production, irrigation,
manure application, and barley and sheep production, which con-
tributed to the spread of ARGs44. The relatively greater abundance
of ARGs presented in the soils located in these areas could also
contribute to a greater abundance of resistomes conferring both
antibiotic and metal(loid) resistance, considering that genes con-
ferring resistance to antibiotics and other contaminants are usually
carried by the same MGEs and were co-selected48,49.

In conclusion, our study revealed the worldwide coexistence of
ARG-MRG in agricultural soils based on the genetic linkage evidence
from global agricultural soil metagenomes and indicated that organic
fertilization facilitates the coexistence of ARG-MRG in the agricultural
soil microbiome. In addition to the coexistence patterns of ARG-MRG,
the results of the metatranscriptomic data confirmed the increase in
the co-transcript levels of ARG and MRG under As stress, further
advancing our understanding of the co-selection of soil resistomes.We
also constructed a global spatial distribution map of AMRB in agri-
cultural lands based on machine learning and propose that the co-
resistant resistomes to both antibiotics and metal(loid) in agricultural
soils should be brought to the forefront, especially considering their

genetic transmission potential and the intensive pressure from
anthropogenic activities during cultivation practices. Our study high-
lights the impact of organic fertilization on the coexistence and
potential dissemination of ARGs and MRGs in global agricultural soils,
underscoring the need for further investigation to understand and
mitigate the spread of these co-resistant genes to safeguard public
health.

Methods
Metagenomic dataset collection
Metagenomic samples from agricultural soils worldwide were
retrieved from the Sequence Read Archive (SRA, https://www.ncbi.
nlm.nih.gov/sra) database, the European Nucleotide Archive (ENA,
https://www.ebi.ac.uk/ena/browser/home), the DNA Data Bank of
Japan (DDBJ, https://www.ddbj.nig.ac.jp), and the National Geno-
mics Data Center (NGDC, https://ngdc.cncb.ac.cn/) by searching for
the keyword ‘agricultural soil’ on 2022-10. The data obtained were
subsequently refined using the following criteria: (1) Plant-
associated samples, such as rhizosphere and rhizoplane soils,
were excluded; (2) Only topsoil (depth < 20 cm) metagenomic
samples were retained; (3) Only paired-end sequencing reads were
generated by Illumina shotgun platformswere included; and (4) The
data size (number of bp) of every metagenomic sample was greater
than 1 Gb. After rigorous screening, a total of 511 agricultural soil
metagenomes were collected.

Classification of the agricultural soil groups using the random
forest classification model
Based on the data uploaded or corresponding article information, 109
of the 511 global agricultural soil samples were classified as fertilized
with organic fertilizer (OF), and 109 samples were classified as not
fertilized with organic fertilizer (NOF). Due to insufficient information
on fertilization types, 293 of the 511 agricultural soil samples lacked
information on fertilization types. The trained random forest (RF)
classification model was built based on the information of the 109
identified NOF samples and 109 OF samples by the ‘randomForest’ R
package (v4.7-1.1) and was subsequently used to classify 293 agri-
cultural soil samples as NOF or OF samples (detailed in the Supple-
mentary Results). Briefly, after taxonomic classification (the methods
are provided in the following paragraph), the abundances of all the
genera in the 109 NOF and 109 OF samples were used to construct an
RF classification model. In each group, 70% of the samples were ran-
domly selected as the training set to train the classificationmodel, and
the rest were used as the test set. To ensure the representativeness of
the training and test sets in each group, the data splitting strategy and
ten-fold cross-validation were applied and detailed in the
supplementary.

Metagenomic assembly, open reading frame (ORF) prediction
and binning
The raw data of 511 metagenomes were downloaded from Kingfisher
(wwood.github.io/kingfisher-download). The raw reads were trimmed
using fastp v0.22.050, after which the readswere removed by the Phred
quality score (Q < 20), the number of ambiguous ≤ 3, and a minimum
fragment read length of 50bp after trimming for downstream ana-
lyses. The clean reads from each sample were individually assembled
into contigs using MEGAHIT v1.2.951 with the parameters ‘-min-contig-
len 500’. Metagenome-assembled genomes (MAGs) were recovered
from the contigs longer than 1000bp by MetaWRAP v1.2.152. The
resulting MAGs were improved by the ‘Bin_refinement’ model of
MetaWRAP. The completeness and contamination of the refinedMAGs
were assessed using CheckM v1.1.353 and only those MAGs with com-
pleteness≥ 50% and contamination≤ 10% were included in the suc-
ceeding analysis. The MAGs were subsequently dereplicated using
dRep v3.3.054 with the parameters ‘-sa 0.95 -nc 0.30’. The ORFs were

Article https://doi.org/10.1038/s41467-024-49165-5

Nature Communications |         (2024) 15:5168 9

https://www.ncbi
https://www.ebi.ac.uk/ena/browser/home
https://www.ddbj.nig.ac.jp
https://ngdc.cncb.ac.cn/


predicted from the contigs of each sample orMAG by Prodigal v2.6.355

with the parameter ‘-p meta’. The taxonomic affiliation of the MAGs
was determined by the ‘classify_wf’ model of GTDB-Tk v2.1.056. Phylo-
genetic analysis of MAGs was conducted with the ‘infer’ module of
GTDB-Tk, and the phylogenetic tree was visualized in tvBOT v2.5.057.
The taxonomic novelty of the MAGs was analyzed with the Microbial
Genomes Atlas (MiGA)58. The abundance of the MAGwas calculated in
a few steps. First, clean reads from each sample were mapped to the
contigs of the MAG using BLAT v2.3.4.159 with an e-value less than 1e-5,
at least 95% identity, and at least 70% query coverage, and only the top
hits were retained. Next, a script (http://enve-omics.ce.gatech.edu/
enveomics/docs?t=BlastTab.seqdepth.pl) was used to calculate the
coverage of each contig in the MAG. The average coverage of all
contigs in theMAGwas used as the coverage of theMAG. The genome
equivalents, which were equal to the total bp sequenced/average
genome size in bp, for each sample were calculated byMicrobeCensus
v1.1.060. Finally, the abundance of the MAG was normalized to that of
the CPG (coverage per genome equivalent).

Taxonomic classification and functional gene annotation based
on clean reads
Taxonomic classification of metagenomes was conducted using
Kraken2 v2.0761 with the parameter ‘-c 0.05’, and the relative
abundance was estimated using Bracken v2.762. To annotate more
comprehensive MRG and MGE information, we constructed more
complete MRG and MGE databases. The self-constructed MRG
database consists of part of the BacMet database with experi-
mentally confirmed for MRGs63, the copper resistance protein
database64, and As resistance genes from UniProt. The self-
constructed MGE databases used included ICEberg65,
INTEGRALL66, ISfinder67, nanoMGE68, and The Transposon Reg-
istry database69. All the clean reads were searched against the
structured ARG reference database (SARG), the self-constructed
MRG database, the self-constructed MGE database, and the viru-
lence factor database (VFDB) to annotate the potential ARGs,
MRGs, MGEs, and VFGs, respectively. BLASTx of DIAMOND
v2.0.14.15270 was used for the alignment of sequences at an
e-value cutoff of 1e-7, and only the top BLAST hit was retained for
further filtration. A sequence was annotated as an ARG/MRG/
MGE/VFG-like fragment if it met the following criteria: ≥ 90%
identity and an alignment length ≥ 25 aa71. Additionally, Rank I and
Rank II ARGs were considered risk ARGs according to previously
reported standards72. Similarly, functional genes were annotated
by the SEED database73 by best-hit classification with a maximum
e-value of 1e-5, a minimum identity of 60%, and a minimum
alignment length of 25 aa74. The abundances of ARG/MRG/MGE/
VFG/functional genes were normalized as RPKG = (reads mapped
to gene)/(gene length in kb)/(genome equivalents), which indi-
cates the fraction of total cells encoding the gene of interest, i.e.,
copies per cell75.

Co-occurrence patterns of microbes
Microbial co-occurrence networks at the genus level were constructed
using the ‘RMThresh’ R package. To avoid potential spurious associa-
tions of rare genera affecting reliability, the data were filtered prior to
correlation calculations. The genera present in 80% of the NOF or OF
soils respectively, were selected for network construction based on
Spearman correlations of their relative abundances, which were
determined by the random matrix theory (RMT)-based approach.
Topological properties, including the number of nodes and edges,
relative modularity, connectance, average clustering coefficient, and
average degree, were computed by the ‘ggClusterNet’ R package76 and
finally visualized by Gephi v0.9.277. We calculated the robustness (i.e.,
the resistance to node loss) of the networks with 50% of the genera
randomly removed from each network.

Identification of the genetic linkage between ARGs andMRGs in
contigs and MAGs
ORFs were annotated as potential ARGs, MRGs, MGEs, or VFGs using
the BLASTp of DIAMOND70 by searching against the four databases
above, respectively. The ORFs from the contigs or MAGs were anno-
tated as ARG/MGE/VFG-like ORFs according to the following criteria:
minimal identity of 60%,minimumquery coverage of 70%, and e-value
below 1e-5. Only the top BLAST hit was retained. The MRG-like ORFs
were identified with a minimal identity of 50%, minimum query cov-
erage of 70%, and e-value below 1e-5. Contigs greater than 1000bp in
length were predicted to be plasmid or chromosome sequences using
PlasFlow78. The contigs (> 1000bp in length) carrying at least one ARG
plus one MRG were considered ARG-MRG-carrying contigs (AMCCs).
The relative abundances of AMCCs in each sample were calculated as
the sum of the relative abundance of the ARG/MRG-like ORFs anno-
tated on AMCCs [(readsmapped on ORF)/(ORF length in kb)/(genome
equivalents)] divided by the total number of identified ARG/MRG-like
ORFs on the AMCCs, which indicated the fraction of total cells
encoding the AMCC. The coexistence pattern of the ARG and MRG
subtypes was displayed by a network constructed using Gephi.

Metagenomic and metatranscriptomic analyses of paddy soil
samples under different As stresses
Soil sampleswere collected from four different paddy fields in China in
July 2022, including three samples in Yuchangping (CS_YCP_1/2/3),
three samples in Huaihua (HN_HH_1/2/3), three samples in Baiyun
(CD_BY_1/2/3), and three samples in Qujiang (ZJ_QJ_1/2/3). Paddy soil
samples were placed in sterile plastic bags and transported to the
laboratory on ice for DNA and RNA extraction and soil physiochem-
istry analysis. Soil properties, including pH, the total concentration of
organic carbon (TOC), nitrogen (TN), phosphorus (TP), sulfur (TS), and
As were determined on a composite sample of the three replicates
following standard methods79. Soil DNA and total RNA were extracted
from soil using the RNeasy PowerSoil Total RNA Kit (Qiagen) and
RNeasy PowerSoil DNA Elution Kit (Qiagen), respectively, according to
the manufacturer’s protocol. The DNA and RNA extracted from each
sample were subsequently sent to Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China) for metagenome sequencing and meta-
transcriptome sequencing, respectively.

Metagenomic raw data from 12 samples were processed using the
same methods and parameters as described above, including quality
control, metagenomic assembly, ORF prediction and annotation, and
relative abundance of AMCCs. The raw metatranscriptomics data of
12 samples were quality-controlled by default parameters of multitrim
(https://github.com/KGerhardt/multitrim). SortMeRNA v4.3.480 was
used with default settings to remove residual rRNA sequences after
rRNA subtraction from the metatranscriptomes. To calculate the
transcriptional activity of AMCCs obtained from 12 metagenomes,
clean reads from the metagenomes and metatranscriptomes were
mapped to AMCCs using BLAT v2.3.4.1 with an e-value below 1e-5, at
least 90% identity and a query coverage ≥ 70%, respectively. The rela-
tive abundance of AMCCs in the metagenomes was calculated as
described above. The transcriptional activity of the AMCCs was eval-
uated by the relative abundance of AMCCs in the metatranscriptomes
[RPKM= (the number of clean readsmapped to the AMCC)/(the AMCC
length in kb)/(the total number of clean reads)] normalized by the
relative abundance of the sameAMCCs identified in themetagenomes.

Estimation of factors contributing to ARG-MRG coexistence
using SEMs
To explore the effects of multiple variables on ARG-MRG coexistence,
partial least square-structural equation modeling (PLS-SEM) was
employed to explore the direct, indirect, and interactive effects
(‘plspm’ R package). Climate variables, including mean annual tem-
perature (MAT) and annual precipitation (AP), were obtained from
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WorldClim (https://worldclim.org/data/worldclim21.html). Socio-
economic variables, including population, gross domestic product
(GDP), and the human development index (HDI), were obtained from
https://data.worldbank.org.cn/. Soil variables, including pH, soil
organic carbon, organic carbon density, and total nitrogen were
obtained from SoilGrids (https://soilgrids.org/). The Shannon diversity
index and Richness diversity index were used as microbial community
diversity variables. The abundances of carbon, nitrogen, phosphorus,
sulfur, and potassium metabolism genes were used as elemental
metabolism variables. Detailed information on the latent variables in
the PLS-SEMand the corresponding observable variables were listed in
Supplementary Table 8. Indirect effects were defined as multiple path
coefficients between the predictor and response variables including all
possible paths excluding the direct effect81. The final model selection
was based on Cronbach’s alpha (C.alpha), Dillon-Goldstein’s rho (DG.
rho), loading, average variance extracted (AVE), and goodness of fit
(GOF), which evaluate the model’s reliability and goodness of fit.

Machine learning algorithms
To generate a global predictivemodel ofmicrobial risk associatedwith
AMRB, we collected 34 features from public databases, including
latitudinal and longitudinal data, climatic data, soil property data, crop
yield data from EARTHSTAT, livestock density data from the Food and
AgricultureOrganization of the United Nations (FAO, https://www.fao.
org/livestock-systems/global-distributions/en/), and HDI data. To
improve the stability and accuracy of the machine learning model and
avoid the influence of extreme values, the data were discretized using
an unsupervisedK-means algorithm. The abundanceof high-riskMAGs
from 511 samples of global agricultural soils was divided into 6 levels
after discretization. The best model was selected according to the
following steps. First, by removing the samples containing missing
values and normalizing the data, we divided the dataset into training
(80%) and testing (20%) sets. Second, the training set was used to train
5 machine learning (ML) algorithms (artificial neural network,
k-nearest neighbors, support vector machine, extreme gradient
boosting, and random forest) models separately and 10-fold cross-
validation was added to avoid overfitting. Third, after hyperparameter
optimization and feature selection, the best model was generated for
each ML algorithm. The best models of the 5 different ML algorithms
were validated on the same test set, and their accuracy, precision,
recall, and F1 score were compared. Finally, the ML algorithm model
that performed the best on the test set was selected for the final global
prediction. The final predictions were visualized through the Mat-
plotlib, Cartopy, Rasterio, and Numpy libraries of Python.

Statistical analyses
The map of the geographic location of globally collected soil meta-
genomes was generated using the ‘ggmap’ R package (https://github.
com/dkahle/ggmap). The alpha diversity of themicrobial communities
and functional genes (Shannon and Richness) was calculated by the
‘amplicon’ R package. The beta diversity of themicrobial communities
was assessed by Bray-Curtis similarity based on the species level of
taxonomic classification or functional microbial communities classi-
fied at the subsystem level using the ‘vegan’ and ‘dplyr’ R packages.
Spearman correlation analyses were performed with the ‘ggcorrplot’
and ‘corrplot’Rpackages. Linear regression analyses and plottingwere
performedwith the ‘ggpubr’ and ‘ggpmisc’Rpackages. A Sankey graph
was constructedwith the ‘tidyverse’ and ‘networkD3’R packages. Two-
group comparisons were analyzed by the two-sided Wilcoxon test
(‘dplyr’ R package) or DESeq2 analysis (‘DESeq2’ R package).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The accession codes for the 511 collected global soil metagenomes are
available in Supplementary Table 1. The 12 metagenomic and meta-
transcriptomic raw sequencing data generated in this study have been
deposited in the National Center for Biotechnology Information
(NCBI) SRA database (https://www.ncbi.nlm.nih.gov/sra) under the
BioProject PRJNA1068274 and PRJNA1068685, respectively. Source
data are provided with this paper (https://doi.org/10.6084/m9.
figshare.25144382).

Code availability
All the scripts and codes for classifying samples and machine learning
used in this studywere available online atCodeOcean (https://doi.org/
10.24433/CO.8910377.v1).
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