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Postmortem imaging reveals patterns of
medial temporal lobe vulnerability to tau
pathology in Alzheimer’s disease
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Our current understanding of the spread and neurodegenerative effects of tau
neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during
the early stages of Alzheimer’s Disease (AD) is limited by the presence of
confounding non-AD pathologies and the two-dimensional (2-D) nature of
conventional histology studies. Here, we combine ex vivo MRI and serial his-
tological imaging from 25 human MTL specimens to present a detailed, 3-D
characterization of quantitative NFT burden measures in the space of a high-
resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that
can beused to inform future in vivo neuroimaging studies. Averagemaps show
a clear anterior to poster gradient in NFT distribution and a precise, spatial
pattern with highest levels of NFTs found not just within the transentorhinal
region but also the cornu ammonis (CA1) subfield. Additionally, we identify
granular MTL regions where measures of neurodegeneration are likely to be
linked to NFTs specifically, and thus potentially more sensitive as early AD
biomarkers.

Alzheimer’s disease (AD) is a slowly developing neurodegenerative
disorder characterized by the accumulation of beta-amyloid plaques
(Aβ) and tau neurofibrillary tangles (NFTs) in the brain, often decades
before a patient becomes symptomatic. Compared to Aβ, the accu-
mulation of NFTs is strongly correlated with neural damage and
eventual cognitive decline1–4. According to early histological studies,
NFT formation during AD follows a relatively stereotyped regional
pattern of spread, with earliest cortical accumulations occurring in the

medial temporal lobe (MTL)5–13. More specifically, the Braak staging
system suggests that NFTs initially manifest in the transentorhinal
cortex, which corresponds to themedial portion of Brodmann Area 35
(BA35), before spreading further into the entorhinal cortex (ERC) and
eventually the cornu ammonis 1 (CA1) and subiculum subfields of the
hippocampus. High levels of NFT density have also been described in
regions of the amygdala closely connected to the hippocampus and
ERC8, and the stratum radiatum lacunosummoleculare (SRLM) layer of
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the CA1 subfield12,14. Consistent with these regions of early NFT
pathology, brain atrophy measured by structural magnetic resonance
imaging (MRI) in the hippocampus15,16 and ERC17,18 are closely corre-
lated with cognitive decline.

Recently, with advances in granularity and accuracy of MTL sub-
region segmentation on in vivo MRI19,20, a growing number of studies
have focused on themore detailed interrogation ofMTL subregions as
a promising biomarker of AD-related neurodegeneration during the
early, preclinical stages of the disease17,19,21–24. Early histological studies
have been cited extensively in such studies and play a major role in
informing the development of neuroimaging-based MTL biomarkers.
However, current descriptions of the topographic distribution of NFT
pathology are not sufficient for validation since they are largely based
on two-dimensional (2-D) histological examination of tissue sampled
at a limited number of brain locations. Therefore, our understanding
of the spread of NFT pathology and the interpretation of in vivo PET
and MRI biomarkers would benefit from a more complete, 3-D histo-
logical characterization of the distribution of NFT burden within
the MTL.

In addition, while studies have shown that longitudinalMRI is able
to detect subtle structural changes in MTL subregions associated with
the earliest stages of NFT pathology accumulation25,26, a limitation of
current brain atrophymeasures is that they are not necessarily specific
to AD pathology. This is because multiple co-occurring pathological
processes often underly neurodegeneration in patients with AD. A
recent autopsy study suggested that compared to other neurode-
generative diseases, the prevalence of co-pathology is increased in AD
with approximately 41–55% of individuals with AD having α-synuclein
pathology, typically associated with Lewy body dementia and Parkin-
son’s Disease, and 33–40% of individuals having TAR DNA-binding
protein 43 (TDP-43) pathology, associated with frontotemporal lobar
degeneration with TDP-43 inclusions (FTLD-TDP) and Limbic-
predominant Age-related TDP-43 Encephalopathy (LATE)27. While
recent advancements in PET imaging have enabled 3-D in vivo visua-
lization of Aβ and tau pathology, there are currently no established
imaging biomarkers available to specifically detect non-AD co-
pathologies in vivo, although cerebrospinal fluid measures are emer-
ging for detecting α-synuclein pathology28. Previous histology and
antemortem-based studies have reported that these confounding non-
AD pathologies tend to follow different trajectories of MTL involve-
mentwhen compared toNFTpathology2,29,30. This suggests that amore
comprehensive postmortem characterization of NFTpathology and its
specific effects within the MTL could help inform imaging biomarkers
by defining regions of the MTL where neurodegeneration is most
directly linked to underlying NFTpathology, as opposed to co-morbid,
non-AD pathologies and aging.

In this study, we leverage foundational frameworks presented in
our earlier work to construct a computational atlas of the MTL using
ex vivoMRI, whichenables statisticalmapping of associations between
MTL cortical/hippocampal thickness and multiple markers of
pathology31, and generate 3-D quantitative “heat maps” of NFT
pathology from dense serial histology using machine learning
algorithms32. Yushkevich et al.32 showed that NFT burden measures
derived from these heat maps (i.e., the mean intensity across the heat
map) correlate strongly with manual tangle counts and semi-
quantitative ratings of NFT severity provided by an expert neuro-
pathologist, indicating that they accurately capture both the number
and severity of tangle-like pathological inclusions in the tissue. In
Ravikumar et al.31 a computational atlas was constructed by applying a
custom groupwise registration pipeline to ex vivo MRI scans of 29
human MTL specimens, and group analyses were performed corre-
lating regionalMTL thickness and semi-quantitative neuropathological
ratings of tau and TDP-43 pathology. While the analyses revealed
strong associations between cortical thinning and tau pathology in the

ERC and SRLM, themajor limitations of that study were the pathologic
heterogeneity and the relatively small size of the brain donor cohort.
Here, we address these limitations by leveraging a much larger brain
donor cohort to construct the atlas (n = 55), and only including
patients with diagnoses spanning the AD continuum in the thickness
analyses (n = 47). Furthermore, we improve upon the atlas by incor-
porating cytoarchitecture-guided segmentations of MTL subregions
from a larger number of cases (n = 17) and including the full extent of
the SRLM layer. In this studywe additionally expand on the group-level
analyses presented in Yushkevich et al.32, which used 3-D quantitative
maps of NFT burden derived from serial histology in 15 brain donors
with heterogeneous neuropathological diagnoses, to describe the
average distribution of NFT burden in the space of an in vivo brain
template. Here, we examine 3-D NFT burden maps from 25 cases, with
diagnoses on the AD continuum (inclusion/exclusion criteria descri-
bed in the results section), now in the space of our high-resolution,
ex vivoMRI atlas; andwe comparedifferences in the 3-D topographyof
NFT pathology between early and late Braak stages. Unlike in32, where
the anatomical labels for the analysiswere derived from in vivo atlases,
here we use histologically-defined subregion boundaries to describe
anatomical differences in NFT burden. In addition to enabling a more
granular and accurate 3-D characterization of the distribution of NFT
pathology across specimens, using the ex vivo MRI atlas permits, for
the first time, regional thickness analyses directly linking quantitative
NFT burden measures and cortical thickness. Taken together, these
methodological improvements and the better selection of brain
donors create a far more precise postmortem reference which can be
used to validate and inform the development of future in vivo imaging
biomarkers and studies investigating the spread of tau pathology in
early AD.

Results
Brain donor cohorts
Brain hemisphere specimens from 55 donors, aged 57-99 years were
obtained from autopsy cases at the HumanNeuroanatomy Laboratory
at the University of Castilla-LaMancha (HNL, n = 21) and the Center for
Neurodegenerative Disease Research at the University of Pennsylvania
(CNDR, n = 34). Donors from CNDR were participants in vivo ageing
and dementia research and included patients from the Penn Fronto-
temporal Degeneration Center and the Penn Alzheimer’s Disease
Research Center. For this study, we were interested in characterizing
neurodegeneration in patients with a primary diagnosis of Alzheimer’s
disease pathology. Therefore, while all 55 cases were used to construct
a computational atlas of theMTL, clinical analyseswereperformed in a
subset of 47 cases with an “AD continuum” diagnosis and no con-
founding non-AD tau (i.e., Pick’s disease, progressive supranuclear
palsy, and corticobasal degeneration) or FTLD-TDP43 pathology. AD
continuum diagnoses include a neuropathological diagnosis of ‘unre-
markable brain’, primary age-related tauopathy and AD neuropatho-
logic change, and co-pathologies such as Lewy body dementia,
cerebrovascular disease, multiple system atrophy, limbic age-related
TDP-43 encephalopathy, hippocampal sclerosis, and cerebral amyloid
angiopathy. 3-Dmapsof quantitativeNFTburdenwere constructed for
a smaller subset of 25 “AD continuum” cases with serial anti-tau
immunohistochemistry (IHC) data. Table 2 provides a summary of
demographic and diagnostic data for the AD brain donor cohorts, with
additional details of the full dataset in Supplementary Table 1. Note
that in brains with co-occurring pathologies, the neuropathology that
is more dominant or advanced is listed as the primary neuropatholo-
gical diagnosis. However, there are cases where it is not clear which
neuropathology is more dominant. In such cases, the driving neuro-
pathology that is more responsible for the clinical phenotype is listed
as the primary neuropathological diagnosis even though both the
primary and secondary neuropathologies are equally severe.
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3-D distribution of NFT burden within the MTL
Figure 1 shows the MRI atlas of the MTL constructed from 55 ex vivo
specimens as a synthetic “average” MR image and a consensus MTL
subregion segmentation derived from serial histology in 17 specimens.
The consensus segmentation provides a detailed visualization of 26
MTL subregion labels, including the 7 subdivisions in the ERC, 2 sub-
divisions each in BA35 and BA36, and 2 subdivisions in Area TF
(Table 1). The atlas construction pipeline combines specimens
obtained from both left and right hemispheres (by flipping the latter),
resulting in a single atlas that describes MTL anatomy and pathology
bilaterally.

For a subset of 25 “AD continuum” cases, we reconstructed 3-D
quantitative NFT burden maps from serial anti-tau IHC sections and
brought them into the space of the MTL atlas for group-level analyses.
Figure 2Aplots the averageNFTburdenmaps computed separately for
specimens with a low B score (B0 or B1, which corresponds to Braak
stages 0–II, 11 cases) and a high B score (B2 or B3, which corresponds
to Braak stages III–VI, 14 cases). Figure 2A also includes four frequency
maps for the low and high Braak groups, where each of the four fre-
quencymaps indicates how frequently among the specimens included
in the subgroup the NFT burden exceeds a certain threshold. Regions
of the MTL with a high frequency are indicative of anatomical regions
affected during the early stages of the disease. The coronal cross-
sectional views of the maps reveal a high average NFT burden in
regions corresponding to the CA1 subfield of the hippocampus, and
the ERC, and BA35 regions of the parahipppocampal cortex during the

early Braak stages. Interestingly, in the ERC and BA35, a higher NFT
burden appears to be concentrated in the outer cortical layers. We are
now able to better observe this detailed pattern because of our higher-
resolution mapping. At later Braak stages, the average NFT burden is
visibly higher, with regions of high burden spreading further into the
subiculum, ERC, BA36, and more posteriorly into Areas TF-TH. In 2-D
histological studies, sectioning is typically done in the coronal plane,
thus limiting our knowledge of the distribution of NFTs along the
anterior-posterior axis of the MTL. The sagittal views of our 3-D map-
pings reveal a marked anterior to posterior gradient in NFT burden
along the parahippocampal gyrus, visible in cases at both the early and
late Braak stages. We also observe an increased NFT burden in CA1
along the full length of the hippocampus. These patterns are clearly
depicted in 3-D visualizations comparing the average NFT burden
maps at the early and late Braak stages, as shown in Supplementary
Movie 1.

These differences in the distribution of NFT burden across ana-
tomical subregions and Braak stages are quantified in Fig. 2B, C.
Quantitative summary measures of NFT burden were computed for
each anatomical region of interest (ROI) defined in the histology-
derived MTL subregion segmentation. We combined the pre-
subiculum and parasubiculum into a single ROI and did the same for
the subdivisions within the ERC, those within BA35, and those within
BA36. Figure 2B shows box and whisker plots for each ROI comparing
thedistributionofmeanNFTburdenbetween cases in the lowandhigh
Braak groups, and Fig. 2C plots the distribution ofmeanNFTburden in
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Fig. 1 | Computational atlas of the medial temporal lobe (MTL) constructed
from ex vivo MRI scans of 55 donor specimens and serial histology in 17 spe-
cimens. Four coronal sections are shown ordered from anterior (ant) to posterior
(post), indicated as I, II, III, and IV, as well as a sagittal cross-section and 3-D
reconstructions of the MTL and SRLM surfaces. For each cross-sectional view, the
“average” MRI is shown with and without the histology-derived, consensus MTL

subregion segmentation. The subregion labeling includes the subdivisions of the
ERC (in shades of purple), BA35 (in shades of blue), BA36 (in shades of pink), and
area TF (in shades of green). (med medial, lat lateral, sup superior, inf inferior,
PrSPaS pre/parasubiculum, S subiculum, CA cornu ammonis, DG dentate gyrus,
SRLM stratum radiatum lacunosum molecular, PP perforant pathway, ERC
entorhinal cortex, BA Brodmann Area, RSC retrosplenial cortex).
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each ROI computed across all 25 cases normalized to the mean NFT
burden for BA35. We chose BA35 as the reference region for normal-
ization as it corresponds to the transentorhinal region, described as
the earliest cortical region affectedby taupathology inAD11. Significant
or near significant (subiculum: p = 0.051) increases in the distribution
of NFT burden between the low and high Braak cases are observed
across all anatomical ROIs. Consistent with the qualitative findings, the
highest levels of NFT burden relative to BA35 are found in CA1 and the
ERC, and the lowest levels are observed in the pre- and parasubiculum
region, Area TE, and dentate gyrus.

Association of quantitative tau pathology measures with MTL
cortical thickness
In the subset of cases with serial anti-tau IHC, we performed thickness
analyses using summary measures of NFT burden derived ipsilaterally
from the quantitative NFT burden heatmaps. First, to investigate the
local effects of tau burden on cortical thinning, we examined the
Spearman rank correlation between mean NFT burden and mean
thickness computed within the same anatomical ROI. The two excep-
tions were SRLM and perforant pathway, since these regions do not
contain neurons and thus are not expected to accumulate NFT
pathology. Instead, SRLM thickness was correlated with the meanNFT
burden in the neighboring CA1 subfield and perforant pathway thick-
ness was correlated with the mean NFT burden in the structurally
connected ERC region. Scatter plots for the different MTL subregions
are shown in Fig. 3. Negative correlations are observed across all
subregions, although only the perforant pathway, dentate gyrus, ERC,
pre/parasubiculum and the posterior MTL subregions (i.e., Areas TE,
TF, andTH) reach significance. Trend level associations are observed in
the subiculum and BA36 (uncorrected p <0.1). Only NFT-structure
associations in dentate gyrus, Area TE and Area TH remained sig-
nificant when age was added to the model and no significant associa-
tions were observed when both age and sex were added to the model,
likelydue to the small sample size. The scatter plots showhigh levels of
variability in cortical thickness measurements across specimens even
at low levels of NFT burden, suggesting that non-AD developmental or
aging-related variations in thickness across cases may be weakening

the detected associations. In Supplementary Fig. 3, we include scatter
plots showing the relationship between age and mean NFT burden
computed within each of the anatomical ROIs. Significant correlations
between age and NFT burden are observed across all subregions
(R >0.53 across all ROIs). Since age is likely in the causal pathway
between the accumulation of NFT burden and neurodegeneration,
with increased age leading to higher levels of tau pathology, which in
turn leads to reduced cortical thickness, by correcting for age, wemay
be obscuring a crucial aspect of the pathway that we are interested in
investigating, rather than correcting for a confounder. In these ana-
lyses, we did not co-vary for TDP-43 or α-synuclein pathologies.
However, all the cases in this subset have an average TDP-43 pathology
rating that is less than 1, with the majority of the cases having no TDP-
43 pathology (see Table 2).

We also performed pointwise thickness analyses to visualize the
regional atrophy patterns obtained in correlation with quantitative
NFT burden measures derived from different anatomical subregions
(Fig. 4). More specifically, we correlated regional thickness with the
meanNFTburden computedwithinROIs involved in the early stages of
the disease (i.e., CA1, BA35, and the ERC), and late stages of the disease
(i.e., pre/parasubiculum and Area TE). These ROIs were chosen based
on the analyses shown in Fig. 2C which examined the relative dis-
tribution of NFT burden across the different MTL subregions. When
using NFT burden measures derived from ROIs affected during the
later stages of the disease, we observe significant correlations between
NFTburden and cortical thickness in the ERC, extending into BA35, the
CA1/subiculumregion, andSRLM.The strengthof pathology/thickness
associations in these regions progressively weakens as we use NFT
burden measures derived from regions affected earlier in the disease
process (i.e., CA1, BA35, and ERC), with only SRLM atrophy patterns
observed in association with CA1 NFT burden. The weakened asso-
ciations between cortical thickness andmeanNFTburdenmeasured in
these early regions are likely because these regions have reached a
ceiling of high NFT burden across cases. Supplementary Fig. 4 shows
the results of the same analysis, repeated with age and sex included as
covariates in the model. We observe weakened results, with only
atrophy patterns in the CA1/subiculum region remaining statistically
significant when using NFT burden measures derived from late tau
subregions.

In a supplementary analysis, we repeated the pointwise thickness
analysis in this subset of 25 cases using the semi-quantitative tau rat-
ings derived from theMTL contralateral to the thicknessmeasures (see
Supplementary Fig. 5). Overall, we find weakened tau-thickness asso-
ciations with small clusters of correlation observed only in the SRLM
(p = 0.009) andCA1 (p = 0.051) subfield of the hippocampus.While the
MTL t-statistic map shows stronger pointwise correlations in the ERC
region, they donot reach significance at a cluster level. Bearing inmind
differences in protocols and staining used to obtain the ipsilateral and
contralateral measurements, the stronger atrophy patterns observed
when using the ipsilateralmeasurements highlight the value of using 3-
D, quantitative ratings of NFT pathology specifically.

Association of semi-quantitative measures of different neuro-
degenerative pathologies with MTL cortical thickness
In the larger dataset of 47 specimens, we studied the association
between pointwise regional thickness of theMTL cortex, hippocampal
graymatter, andSRLM, and semi-quantitative, histologic ratings of tau,
TDP-43, and α-synuclein pathologies derived from the MTL con-
tralateral to the thickness measures. The resulting statistical maps are
shown in Fig. 5. The correlation analysis between tau pathology and
thickness, with only age and sex as co-variates, reveals clusters of
significant associations (after correction for multiple hypothesis
testing33) between increased tau severity and cortical thinning in the
ERC region and SRLM. Our analysis including TDP-43 and α-synuclein
pathologies in the model as nuisance covariates resulted in similar

Table 1 | Abbreviations and descriptions for the anatomical
subregions defined within the medial temporal lobe atlas

Abbreviation Description

PrS Presubiculum

PaS Parasubiculum

S Subiculum

CA1-3 Cornu Ammonis 1-3

DG Dentate gyrus

SRLM Stratum radiatum lacunosum moleculare.

PP Perforant pathway. Refers to thewhitematter of the subiculum.

ERC Entorhinal cortex. This region contains several subdivisions
detailed in Fig. 6

BA35 Brodmann Area 35 or perirhinal cortex. This region contains
oblique and dorsal subdivisions.

BA36 Brodmann Area 36 or perirhinal cortex. This region contains
rostral and caudal subdivisions.

RSC Retrosplenial cortex

Area TE Also known as the inferotemporal cortex, this subregion is
laterally adjacent to the parahippocampal cortex. Although
subdivisions of area TE have been identified, here we group
them all under a single label.

Area TF Subdivision of the parahippocampal cortex based on
cytoarchitectural features. This region contains medial and
lateral subdivisions.

Area TH Subdivision of the parahippocampal cortex based on
cytoarchitectural features.
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atrophy patterns, with stronger associations observed in the ERC, and
an additional significant cluster seen along the border of the sub-
iculum and CA1 regions. To further understand the neurodegenerative
effects of TDP-43 and α-synuclein, we repeated this analysis with TDP-
43 and α-synuclein as the variables of interest instead and found sig-
nificant associations between TDP-43 pathology and thickness in the
subiculum and CA1 region, spanning the full length of the hippo-
campus. No significant associations were observed between α-synu-
clein pathology and thickness, consistent with previous findings2,34.

3-D Distribution of NFT burden within the ERC
In an exploratory analysis, wewere interested in analyzing variability in
the distribution of NFT burden within the subfields of the ERC. In35,
Insausti et al. define eight distinct subfields within the human ERC
based on cytoarchitectural features: Eo (olfactory), ER (rostral), EMI
(medial intermediate), EI (intermediate), ELr (lateral rostral), ELc (lat-
eral caudal), EC (caudal), and ECL (caudal limiting). Figure 6A shows
the histology-based consensus labeling of these entorhinal subfields in
the space of the MTL atlas at different cross-sectional levels from
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Fig. 2 | Characterization of histology-derived quantitative tau neurofibrillary
tangle (NFT) burden maps in the space of a 3-D ex vivo anatomical atlas.
A Average and summary frequencymaps of NFT burden in the space of the ex vivo
MRI atlas of the medial temporal lobe (MTL). Maps are computed separately for
specimens with a low B score (B0 or B1, which corresponds to Braak stages 0–II;
n = 11) and a high B score (B2 or B3, which corresponds to Braak stages III–VI). For
each subgroup, four coronal and one sagittal cross-sectional view of the average
NFT burden map, and four frequency maps are visualized. The frequency maps at
each voxel describe the fractionof cases forwhich theNFTburden at that voxelwas
above a given threshold. Thresholds were chosen based on the analysis conducted
by Yushkevich et al. (2021) and correspond to different levels of pathological
burden (> 1.0 for `severe’; > 0.5 for `moderate’; > 0.25 for `mild’; > 0.1 for `rare’).
The top row shows the corresponding cross-sections of the consensus histology-
basedMTL subregion segmentation. For simplicity, we combine the presubiculum
and parasubiculum labels, and the subdivisions of the ERC, BA35, and BA36. B Box

plots comparing the distribution of mean NFT burden within each subregion
between patients with a low and high B score. Using the two-sided t test, significant
increases in NFT burden are observed in all subregions except the subiculum,
where it nearly reaches significance (p <0.05). C Box plot showing the NFT burden
in MTL subregions normalized to BA35 NFT burden (dashed blue line). Subregions
are sorted inorderofdecreasingmeanNFTburden relative toBA35, going from top
to bottom. Box plots in (B) and (C) show the median as the middle box line, first
quartile (Q1) and third quartiles (Q3) as box edges (denoting the interquartile
range, IQR), whiskers as the minima/maxima and outliers based on thresholds
<Q1 − 1.5(IQR) or >Q3 + 1.5(IQR). Sample sizes are provided in Supplementary
Table 2. Source data for 2B) and (C) are provided as a SourceData file. (S subiculum,
PrS-PaS Pre/Parasubiculum, SRLM stratum radiatum lacunosum molecular PP
perforant pathway, CA cornu ammonis, DG dentate gyrus, HATA hippocampal
amygdala transition area, ERC entorhinal cortex, BA Brodmann area).
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anterior to posterior. Note that since the anterior border of the atlas
only starts at the hippocampal head, we are partially missing the
anterior extents of the entorhinal subfields Eo, ER, and EMI. In our
analysis, we exclude quantitative measurements derived from Eo and
ER since much of the extent of these subfields is not included in the
atlas. Figure 6B plots the distribution of mean NFT burden in each of
the entorhinal subfields, computed across all cases and separately for
cases with low and high B scores respectively. These plots are shown
together with corresponding surface heat maps which highlight the
distribution of NFT burden across the entorhinal subfields ranked in
order of highest to lowest mean NFT burden. In the low Braak group,
the highest NFT burden is observed in EMI, followed by ELr and ELc. In
high Braak cases, the highest NFT burden is observed in ELc, followed
by EI and ELr. Overall, our results indicate that the anterior-lateral
subfields of the ERC may be more vulnerable to NFT pathology, with
the lowest NFT burden observed in EC and ECL. Lastly, we performed
Spearman rank correlations between mean cortical thickness and

mean NFT burden computed within each entorhinal subfield (Fig. 6C),
and found negative correlations across all subfields, although only the
associations in EC, ECL, and ELr reach significance.

Discussion
Leveraging postmortem imaging of a relatively large number of human
MTL specimens with neuropathological diagnoses on the AD con-
tinuum, we characterize at an unprecedented level of detail, the 3-D
probabilistic distribution of NFT burden at the different stages of AD
and the regional effects of tau pathology on MTL neurodegeneration.
This allows us to visualize and analyze patterns of NFT distribution
along both the coronal and sagittal axes of the MTL and thus offers
more extensive information than current histology-based descriptions
of NFT topography in AD, which are in 2-D and based on selective
sampling of the MTL6,8,9,11. According to the Braak staging system, NFT
pathology initially accumulates in the border region between the
‘transentorhinal cortex’, the medial portion of BA35, and the lateral

Mean NFT Burden
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Fig. 3 | Relationship between mean cortical thickness and mean quantitative
NFT burden computed within the same MTL subregion. The scatter plots illus-
trate the regional relationship between cortical thickness and NFT burden mea-
sured within the same subregion for each of the 14 MTL subregions. Each plot also
includes the Spearman’s rank correlation calculated between mean cortical thick-
ness and mean NFT burden within the same subregion. The two exceptions are
SRLM and PP since these ROIs do not directly accumulate NFT pathology. SRLM
and PP thickness are correlated with mean NFT burden in CA1 and the ERC region

respectively. Significant negative associations are bolded (one-sided, uncorrected
p <0.05). The asterisk is used to indicate ROIs where the model including both age
and mean NFT burden is significant. Sample sizes are provided in Supplementary
Table 2. Source data are provided as a Source Data file. (S subiculum, PrS-PaS: Pre/
Parasubiculum, SRLM stratum radiatum lacunosum molecular, PP perforant path-
way, CA cornu ammonis, DG dentate gyrus, ERC entorhinal cortex, BA
Brodmann area).
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portion of the ERC (ELr and ELc) during Stages I and II (corresponding
to B1) followed by the CA1 and subiculum subfields of the hippo-
campus (Stages II/III). Here, in addition to early transentorhinal invol-
vement, we observe similar and in some cases higher levels of NFT
burden in the CA1 subfield of the hippocampus, suggesting a more
widespread distribution of NFT pathology during this early stage. We
also observe greater vulnerability to NFT pathology in the anterior
portion of the parahippocampal gyrus extending towards the tem-
poral pole. This increased anterior involvement includes the region
that appears to correspond to the amygdala, consistent with findings
reported in previous neuropathology studies that have shown amyg-
dala changes due to the presence of NFT pathology8,10,36,37. Overall,
these findings add important histological evidence showing the
broader impact of NFT pathology during early AD beyond just the
transentorhinal region, highlighting the need for examining the hip-
pocampal subfields and amygdala in future in vivo studies of early AD.

The 3-D mapping of NFT burden presented in this work expands
on the recent study conducted by Yushkevich et al. in which 3-D NFT
burden maps, generated in 15 specimens, were used to characterize
the topographic distribution of NFT burden in the space of a coarser
in vivo brain MRI template32. Compared to the preliminary results
presented in32, the current work uses a larger and better-defined set of
AD cases, thus enabling more expansive analyses focused on the MTL

and characterization of NFT burden in relation to disease stage. In
Supplementary Fig. 6, we map our ex vivo atlas to the in vivo brain
template used in32 to provide a side-by-side comparison of the 3D
mapping presented in the current work and32. Although the distribu-
tion of NFT pathology observed in the current dataset is mostly con-
sistent with the pattern of distribution reported in32, we see that by
leveraging a more advanced, shape-based atlas construction pipeline
and cytoarchitecture-guided MTL subregion segmentations derived
from serial histology, the current mapping provides a fine-grained
visualization of the differential involvement of NFT pathology across
the MTL that is also more precisely linked to the specific subregion
boundaries. While in32, an anterior to posterior gradient in NFT dis-
tribution was observed in both the parahippocampal gyrus and hip-
pocampus, here our average maps suggest greater NFT accumulation
in the anterior parahippocampal gyrus but more extensive CA1 invol-
vement extending to include both the anterior and posterior regions
of the hippocampus, even during the early Braak stages. This differ-
encecould alsobe indicativeof someBraak III casesbeingmisclassified
as Braak Stage II due to NFT pathology not being present or missed in
the CA 1/subiculum region of a single histology slice sampled from the
opposite hemisphere during standard autopsy.

Other studies have focused on developing frameworks for
reconstructing 3-D mappings of tau pathology in the brain using
ground truth information from histology38,39, although in a limited
number of specimens. Ushizima et al. present an end-to-end pipeline
for creating 3-D tau mappings across the whole brain in the space of 1
mm isotropic ex vivoMRI, with the goal of validating in vivomolecular
imaging39. While the increased scope of brain regions is advantageous,
the pipeline offers a lower spatial resolution and has only been applied
to two specimens. More similar to the current work, Stouffer et al.
focus on reconstructing the 3-D distributions of NFT densitywithin the
MTL of two advanced AD specimens, and link pathology measures to
longitudinal atrophy rates measured within the amygdala, and trans-
entorhinal and entorhinal cortices36. In support of our findings36,
report significant atrophy rates in the ERC, and the highest levels of
NFT burden in the ERC and amygdala. Compared to both these prior
studies, the current work presents a more comprehensive analysis of
3-DNFTburdenmaps generated froma large number of both early and
late AD cases.

Importantly, by constructing an ex vivo atlas, we are now able to
perform histology-based analyses linking local NFT burden and neu-
rodegeneration. The results of our pointwise thickness analyses, using
both quantitative and semi-quantitative NFT burdenmeasures, further
highlight the early effects of NFT pathology on neurodegeneration in
the ERC, and CA1 and subiculum subfields of the hippocampus. We
also observe significant associations in the SRLM, in agreement with
histopathology studies showing early involvement of tau pathology in
the SRLM of CA1, as well as prior in vivo MRI studies which have
demonstrated SRLM atrophy in patients with AD12,40–42. The clusters
identified in the current work are in regions consistent with our initial
findings31, and as expected, stronger in absolute terms. Similar to our
earlierwork, we still do not observe any taueffects inBA35. Indeed, the
average NFT burden maps reveal a high NFT burden in BA35, sug-
gesting that noise in the thickness measurements obtained from this
region and registration errors are likely contributing to the weakened
associations. This further motivates future work focused on develop-
ingmore advanced groupwise registration techniques to better handle
anatomical normalization of highly variable sulcal patterns. In our
analysis using semi-quantitative neuropathology ratings, when com-
paring atrophy patterns in relation to tau pathology versus TDP-43
pathology, we observe that TDP-43 pathology has a much greater
effect on the pyramidal layers while tau is more correlated with the
SRLM. This is in line with the CA1 subfield showing robust atrophy,
particularly with hippocampal sclerosis associated with TDP-43
pathology43. In34, Wisse et al. found no significant associations when

Table 2 | Demographic and diagnostic summaries of the brain
donor cohort with Alzheimer’s disease

Full AD Cohort AD Cohort subset with
NFT Burden Maps

N 47 25

Age 78.6 ± 10.1 (57–99) 78.6 ± 10.9 (59–97)

Sex 29M/18F 16M/9F

Contralateral MTL Pathology Rating

Average Tau rating 1.55 ± 0.82 (0–3) 1.51 ± 0.80 (0.33–3)

Average A rating 1.14 ± 0.99 (0–3) 1.15 ± 0.98 (0–3)

Average TDP-43 rating 0.16 ± 0.45 (0–2.33)
(81% ratings = 0)

0.08 ± 0.20 (0–0.67)
(84% ratings = 0)

Average a-synuclein rating 0.27 ± 0.61 (0–2.33)
(79% ratings = 0)

0.22 ± 0.64 (0–2.33) (88%
ratings = 0)

Neuropathological Diagnosis (from
contralateral sampling)

PrimarySecondaryPrimarySecondary

Unremarkable Brain 5 0 2 0

Primary Age Related Tauopathy 2 2 2 0

Low ADNC 11 3 8 0

Intermediate ADNC 10 3 7 2

High ADNC 10 1 3 1

Lewy Body Disease 7 7 3 2

Cerebrovascular Disease 0 9 0 5

LATE 2 2 0 1

Multiple Systems Atrophy 1 0 0 0

Hippocampal Sclerosis 0 1 0 0

Neuropathological Staging 0 1 2 3 0 1 2 3

A (Amyloid) 8 10 11 18 4 6 5 10

B (Braak) 4 17 15 11 1 10 10 4

C (CERAD) 16 6 9 16 8 5 4 8

This includesmedial temporal lobe (MTL) pathology ratings, primary andsecondarypostmortem
diagnoses, andglobal neuropathological staging using theHymanet al. (2012) protocol. The tau,
TDP-43, andα-synuclein ratings for each specimenare averagedacross threeMTL locations (ERC
Entorhinal cortex, CA Cornu Ammonis and DG Dentate Gyrus) sampled from the contralateral
hemisphere. The ratings range from 0 (none) to 3 (severe). (ADNC Alzheimer’s disease neuro-
pathologic change, LATE Limbic Age-related TDP-43 Encephalopathy).
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investigating synergistic effects between tau and TDP-43 on MTL
neurodegeneration. This analysis was done in a slightly larger dataset,
albeit with more variable neuropathological diagnoses. Future ana-
lyses of a larger AD dataset including more cases with severe TDP-43
pathology would enable further investigation of interactive effects
between tau and TDP-43 pathology. Together, the results of our

regional thickness analyses suggest that the ERC and SRLM might be
more specific to tau pathology, as opposed to aging and non-AD
pathologies. We hypothesize that by mapping the detected ‘hotspots’
to the in vivo domain, in vivo measures of structural change derived
from these regions would provide heightened sensitivity and utility
over conventional whole hippocampus imaging biomarkers.
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At this high resolution, we are now able to further investigate the
ERC and describe the accumulation of NFT pathology across its sub-
fields. There has been increased interest in characterizing atrophy
patterns and pathology burden across the subfields of the ERC due to
its involvement in early, preclinical AD36,44–46. However, with few
approaches offering the high spatial resolution required for such
analyses, our understanding of ERC vulnerability at the level of sub-
structures is still limited. Here, we assess the distribution of NFT bur-
den across the entorhinal subfields using histopathological ground
truth and find higher levels of NFT burden in EI, ELr, and ELc, which
correspond to the anterior-lateral parts of the ERC. This makes sense
given that the anterior-lateral ERC borders with the transentorhinal
cortex, a site of early NFT pathology5. We note that our result of higher
anterior NFT burden in the ERC of low Braak cases appears incon-
sistent with the recent postmortem study by Llamas-Rodríguez et al.
that characterized NFT burden in 10 preclinical AD cases (age range
59–84 years), and found higher tau in the posterior-lateral subfields:
ECL, ELc and ECs (lateral portion of ERC), and increased anterior tau in
older individuals (age range 75–84 years)44. Indeed, the patient
population used in the present study includesmany older participants
which could explain the high anterior tau burden observed even in the
caseswith lowB scores (B0/1 subset: age range 59–93 years).While this
is a relatively small sample size to reliably study age effects, thisfinding
together with our result showing weakened pointwise tau-thickness
associations in the ERC when accounting for age and sex effects (see
Supplementary Fig. 4), highlights the importance of future studies
examining age-related spreading of tau pathology, particularly within
the ERC. The patterns of tau-thickness correlations observed in our
analyses using semi-quantitative tau ratings, which include age and sex
in the model, are consistent with the atrophy patterns detected in the
analyses using quantitative NFT burden measures, suggesting that
these neurodegenerative effects are largely driven by disease severity
and not age-related factors. Furthermore, even though we observe a
strong association between age andNFTburden in our dataset, we also
observe significant increases in NFT burden across all MTL subregions
when comparing cases at low and high Braak stages. In the present
study, we don’t have a large enough sample size to investigate age-
related pathology patterns and analyze the primary AD cases sepa-
rately from other groups such as PART and those where AD is the
secondary diagnosis. Our findings motivate future analyses using a
larger dataset to perform tau mediation analyses and examine
potential differences in 3D tau distributions and pathology-structure
associations between diagnostic groups and age groups.

Our finding of higher NFT burden in the anterior-lateral ERC also
makes sense in the context of structural connectivity patterns within
the MTL. The lateral part of the ERC receives the heaviest projections
from the perirhinal cortex and is a zone of convergenceof polysensory
association cortex inputs47. In contrast, more medial regions of the
ERC receive stronger projections from the parahippocampal and other
sources as well48. While both regions, in turn, send connections to the
subiculum/CA1 subfields of the hippocampus, studies have demon-
strated that there is substantial segregation between the two pathways
resulting in two distinct cortical networks within the MTL, namely the
anteriortemporal (AT) system, which includes the perirhinal cortex

and amygdala, and the posterior-medial (PM) system, which includes
the parahippocampal cortex49,50. The higher NFT burden and atrophy
patterns we observe in the anterior parahippocampal gyrus, more
specifically the anterior-lateral part of the ERC, and consequently the
subiculum/CA1 region, which receives projections from the ERC, could
therefore be explained by the early involvement of the perirhinal
cortex (specifically the BA35 subregion) in AD. This is in line with
recent studies suggesting that the AT network is more affected by tau
deposition during the earliest stages of AD46,51–53. This result suggests
that tauPETorMRImeasures of the anterior-lateral ERCmight bemore
sensitive to detect early changes in AD in contrast to the now com-
monly used ERC. Current studies examining the role of structural and
functional connectivity in the spread of tau pathology typically use the
ERC as a seed for connectivity analysis, with definitions based on
in vivo segmentation protocols and tau-PET54,55. Recent studies have
explored more granular analyses associating patterns of tau deposi-
tion with connectivity networks derived from the anterior-lateral and
posterior-medial ERC54,56. In56, Hrybouski et al. thresholded and
binarized the 3D NFT burden maps presented in our earlier work32 to
define tau-based MTL ROIs as seed for in vivo analysis of MTL-AT and
MTL-PM functional connectivity. Such studies of both intra-MTL and
MTL-dependent connectivity would benefit from the improved 3D
mapping of NFT burden, and detailed, histology-based anatomical
labeling of MTL subregions and entorhinal subfields presented in this
work, to inform more accurate seed regions for connectivity analysis.

Our study has several potential limitations that are important to
acknowledge. First, while postmortemMRI allows structure/pathology
associations to be examined at amuchgreater resolution thanpossible
with in vivo MRI, there are certain limitations associated with using
cortical thickness measurements made from postmortem tissue. A
study by Wisse et al.57 compared cortical thickness of MTL sub-
structures measured using in vivo (3T MRI), and ex vivo (9.4T MRI)
scans of the same subject and founddifferences in thickness across the
two scans. These differences were attributed to various factors such as
1) brain shrinkage caused by formalin fixation, 2) brain swelling caused
by hypoxia and ischemia after or during death, and 3) increased brain
size following extraction caused by a relief of intracranial pressure
after autopsy. To the best of our knowledge, these factors are not
linked to pathology. Despite these sources of variability, our analyses
reveal patterns of correlation consistent with previous studies. How-
ever, further comparative studies are needed to help us better
understand how to account for this potential source of variability in
postmortem analyses58. Moreover, performing structure/pathology
analyses using antemortem imaging has its own set of limitations,
particularly when the time between antemortem imaging and death is
long, since the postmortem pathology may not accurately reflect the
state of pathology at the time of imaging. In future work, we will
explore alternatives to cortical thickness as a measure of neurode-
generation, such as quantitative maps of cell density derived from
serial histology, as a more direct measure of local neuronal injury due
to NFT pathology.

While the machine learning classifier used to generate the NFT
burden maps can reliably detect tangle-like inclusions, a second lim-
itation of our algorithm is that it does not distinguish pre-tangles and

Fig. 4 | Association between pointwise medial temporal lobe thickness and
ipsilateral, quantitative NFT burden measures. The t-statistic maps show the
correlation between pointwise cortical thickness and the mean NFT burden com-
puted within different anatomical subregions (n = 25). The NFT burden measures
are computed based on the 3-D quantitative NFT density maps. The analyses are
arranged in the order in which the anatomical subregions used are affected during
the AD process, from early to late, based on the results shown in Fig. 2C. The
t-statistic maps reveal increasingly strengthened associations with NFT burden
measures derived from regions affected during the later stage of AD. Clusters were

defined based on an empirical threshold (uncorrected p <0.01) and permutation
testingwith the Freedman& Lanemethod (1000 iterations)was used to assign each
potential cluster a one-sided, corrected p-value. To account for multiple compar-
isons, the analysis uses cluster-level family-wise error rate correction. The clusters
outlined inblack indicate regionswhere a significant correlationwasobserved after
correction for multiple hypothesis testing (corrected p <0.05). No covariates were
included in this model. (S subiculum, PrS-PaS Pre/Parasubiculum, SRLM= stratum
radiatum lacunosum molecular, PP perforant pathway, CA cornu ammonis, DG
dentate gyrus, ERC entorhinal cortex, BA Brodmann area).
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Fig. 5 | Association between pointwise medial temporal lobe (MTL) thickness
and contralateral, semi-quantitative neuropathology measures. The t-statistic
maps show the correlation between cortical thickness and the semi-quantitative
neuropathology ratings based on tissue samples obtained from the MTL con-
tralateral to the thickness measures (n = 47). Each row specifies the variable of
interest with the covariates used in the analysis in parentheses. The first two rows
show the association between thickness and tau burden, with and without cor-
rection for co-pathologies. Rows 3 and 4 show the patterns of correlation obtained
between pointwise thickness and TDP-43 and α-synuclein pathology respectively.
Clusters were defined based on an empirical threshold (uncorrected p <0.01) and

permutation testing with the Freedman & Lane method (1000 iterations) was used
to assign each potential cluster a one-sided, corrected p-value. To account for
multiple comparisons, the analysis uses cluster-level family-wise error rate cor-
rection. The clusters outlined in black indicate regions where a significant corre-
lation was observed after correction for multiple hypothesis testing (corrected
p <0.05). No covariates were included in this model. (S subiculum, PrS-PaS: Pre/
Parasubiculum, SRLM stratum radiatum lacunosum molecular, PP: perforant
pathway, CA cornu ammonis, DG dentate gyrus, ERC entorhinal cortex, BA
Brodmann area).
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astrocytic tau inclusions, which can be similar in visual appearance to
tangles. To overcome these limitations, future work will focus on
expanding thehistological trainingdataset to include awider variety of
pathological inclusions and building on the frameworks developed
thus far to generate 3Dmaps quantifying other forms of tau pathology
(i.e., neuropil threads, neuritic plaques, astrocytic inclusions) aswell as
other neurodegenerative co-pathologies. We also aim to develop
quantitative histopathological markers of neuroinflammation and
vascular disease to be able to examine their role in neurodegenerative
processes. Using these rich quantitative datasets, future analyses can
be performed leveraging the atlas to better characterize the relation-
ship between tau burden, co-morbid neurodegenerative pathologies,
neuronal density, and cortical thinning.

In summary, in this study we generate an ex vivo MRI atlas with
detailed cytoarchitecture-based labels at the level of MTL subfields, to
describe, usingquantitative histologymeasures, the 3-Ddistributionof
NFT burden within the MTL and its regional effects on

neurodegeneration. Our findings provide a more refined postmortem
reference for histological validation of future in vivo neuroimaging
studies investigating tau spread in AD and have been uploaded to a
publicly available data repository to facilitate their use in in vivo MRI
and PET research. To improve our mapping of ex vivo information to
in vivo structuralMRI,we have been acquiring in vivo and ex vivo scans
from the same subject that will enable more accurate matching of
anatomical regions between the two domains. We have also been
acquiring high-resolution, ex vivo scans of whole hemispheres and
ongoing efforts are being made to develop tools and pipelines to
examine tau/structure associations at the level of whole
hemispheres59,60. Therefore, the current work also serves as a foun-
dation for future ex vivo studies, leveraging larger datasets and more
expansive quantitative histological characterizations, to examine
associations between pathology and cognitive metrics, connectivity
patterns, and other neuroimaging features, thus improving our
understanding of AD biology and progression.
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Fig. 6 | 3-D distribution of neurofibrillary tangle pathology within the
entorhinal cortex. A Coronal cross-sectional view of the medial temporal lobe
atlas at different levels, ordered from anterior to posterior, showing the histology-
based consensus labeling of the entorhinal subfields. Note that since the anterior
border of the atlas only starts at the hippocampal head, we are partiallymissing the
anterior extents of the entorhinal subfields Eo, ER, and EMI.BBox andwhisker plots
showing the distribution of mean NFT burden across the different entorhinal
subfields, computed using all cases and separately for cases with low (B0/1; n = 11)
and high (B2/3; n = 14) B scores respectively. These plots are shown together with

corresponding surface heat maps which highlight the distribution of NFT burden
across the entorhinal subfields ranked in order of highest to lowest mean NFT
burden. C Scatter plots showing the relationship between mean cortical thickness
and mean NFT burden computed within each subfield. Each plot also includes the
Spearman’s rank correlation. Significant negative associations are bolded (one-
sided, uncorrected p <0.05). Sample sizes are provided in Supplementary Table 3.
Source data for 6(B) and (C) are provided as a Source Data file. (Eo: olfactory; EMI:
medial intermediate; EI: intermediate; ELr: lateral rostral; ELc: lateral caudal; EC:
caudal; ECL: caudal limiting).
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Methods
Ex vivo imaging procedure
Human brain specimens from CNDR and HNL were obtained in
accordance with the local laws and regulations, and the Ethical Com-
mittee of UCLM respectively. Where possible, pre-consent during life
and, in all cases, next-of-kin consent at death was given. For each brain
donation, tissue from one hemisphere was used for imaging, and the
opposite hemisphere was sampled for diagnostic pathology following
the NIA/AA protocol61,62. Before imaging, CNDR hemispheres were
fixed in a 10% formalin solution for at least 30 days. HNL hemispheres
were initially fixed in situ by perfusion with 8 L of 4% paraformalde-
hyde through both carotid arteries and then stored until processing in
a cold room, submerged in 4% paraformaldehyde63. After fixation, the
temporal lobe was extracted from every hemisphere and imaged
overnight on a Varian 9.4 T animal scanner at a 200 x 200 x 200μm3

resolution using a multi-slice spin echo sequence. Sequence para-
meters vary slightly between specimens, with typical values being a
repetition time of 9330ms, and an echo time of 23ms. Further details
of the MRI acquisition and processing protocol are provided in Sup-
plementary material, section 1.1.

Following MRI scanning, each MTL specimen underwent dense
serial histological processing63. First, the specimens were cut into 2 cm
blocks using custommolds that were 3-D printed to fit each temporal
lobe specimen. The blocks were then cryoprotected and sectioned at
50μm intervals in a sliding microtome coupled to a freezing unit
(Microm, Heidelberg). Every 10th section was stained for Nissl using
the 0.25% Thionin stain, resulting in approximately 40 sections per
block. In addition, for a subset of 25 “AD continuum” cases, every 20th
section was stained using AT8, a human phosphorylated tau antibody
IHC stain, and counterstained for Nissl (~ 20 sections per block).
Stained sections were then mounted on 75mmx 50mm glass slides,
digitally scanned at 20X resolution, and uploaded to an open-source
cloud-based digital histology archive (https://github.com/
pyushkevich/histoannot) that supports web-based visualization, ana-
tomical labeling, and machine learning classifier training. For each
specimen, the scanned sections were reconstructed into a 3-D volume
and aligned to 9.4 TMRI space using a customdeformable registration
pipeline, described in32. The registration pipeline was evaluated in32 by
computing the distance between anatomical curves drawn indepen-
dently on MRI and Nissl images, and overall, the registration accuracy
was high (average distance < two MRI voxels for all curves).

Construction of a computational ex vivo MRI atlas
To perform group analyses, we constructed a computational atlas of
the MTL by applying a custom group-wise registration pipeline to the
ex vivoMRI scans of 55MTL specimens.The atlas constructionpipeline
described in31, relies on shape information from segmentations of the
MTL and SRLM in each MRI scan to guide the alignment of the MTL
across different specimens. Twenty of the cases used in the current
studywere included in31 and therefore already hadMTL segmentations
generated using a semi-automated interslice interpolation
technique64. More recently, we have developed a more automated
approach for combined MTL and SRLM segmentation based on a
supervised convolutional neural network (CNN) framework that fur-
ther reduces the time required to generate these segmentations. Our
CNN is based on a modified implementation of the nnU-Net
framework65 that has been trained using a custom Laplacian-based
loss function thatwedeveloped to improve thedetectionof sulci in the
cortex66. One of the limitations of the previous iteration of the atlas
was that only the more lateral portion of the SRLM layers was seg-
mented, which limited our ability to accurately measure thickness in
the full subiculum region. In the current work, we rectify this by
training the developedCNN frameworkusing anupdated ground truth
SRLM segmentation protocol in which the SRLM label includes the

perforant pathway, extending over the entire subiculum and, pre- and
parasubiculum. Additional details on the semi-automated approach
used to update the ground truth SRLM segmentations, and CNN
training and evaluation are provided in Supplementary material, sec-
tions 1.2 and66. This CNN framework was used to initialize MTL and
SRLM segmentations for the remaining 35 cases in our dataset and to
update the SRLM segmentations in the 20 cases previously used in31.
For all cases, the predicted segmentations were visually checked, and
any under-segmentations and errors in detecting the correct bound-
aries for the anterior and posterior MTL, and between the perirhinal
and parahippocampal cortices were manually corrected. During this
step, additional segmentation labels were added to distinguish the
medial and lateral portions of the collateral sulcus, and to indicate
regions of the scan affected by tearing or image artifacts (e.g., air
bubbles), as was done in31.

Using these segmentations, the group-wise volumetric image
registration pipelinewas applied as previously described, resulting in a
synthetic template image that captures the “average” MTL anatomy
across all 55 cases, the corresponding template segmentation, and a
set of non-linear diffeomorphic transformations between the template
and each specimen’s scan. We labeled 26MTL subregions, including
subdivisions of the ERC, BA35, BA36, and Area TF, in 17 of the 55 spe-
cimens used to construct the atlas. Borders between subregions were
first traced on serial Nissl digital histology images based on
cytoarchitectural features. These borders were then mapped to 9.4T
MRI space and used to trace 3-D segmentations of the subregions.
Following atlas construction, the 17 completed histology-based MTL
subregion segmentations were mapped to the space of the MRI atlas
using the deformable transformations generated by the groupwise
registration pipeline, and a consensus labeling of the MRI atlas was
obtained by application of voxel-wise majority voting among the
17 segmentations with slight regularization by a Markov Random Field
prior40. Details of the protocol used for cytoarchitectural annotation of
theMTL subregions in each specimen areprovided in31, which followed
a similar procedure but used 11 annotated specimens and fewer ana-
tomical labels. We note that in the perirhinal cortex, the MTL sub-
region label Area TE refers to the portion of tissue lateral to BA36. We
define the lateral border of Area TE as the medial bank of the occipi-
totemporal sulcus and separate the parahippocampal cortex (PHC)
(consisting of Areas TF and TH) from Area TE based on the overall
cytoarchitecture of the cortex, where TE is a typical neocortical region
that corresponds to the association cortex, while PHC is called “proi-
socortex”, that is, a structurally less complete (more primitive) type of
cortex.

Semi-quantitative neuropathology ratings
Semi-quantitative neuropathological evaluations are routinely per-
formed by an expert neuropathologist at the CNDR to evaluate the
severity of tau, Aβ, TDP-43, and α-synuclein pathology burden in a
specimen using tissue sampled from 18 brain regions, following the
NIAAA protocol61. In this study, we considered neuropathology ratings
provided for three MTL regions examined in the CNDR neuropathol-
ogy evaluations: the ERC, dentate gyrus (DG), and CA1/subiculum
region62. At each region, the sampled tissue is embedded in paraffin
blocks and cut into 6μm sections for IHC using phosphorylated tau
PHF-1 (mAb, 1:1000, a gift from Dr. Peter Davies) to detect phos-
phorylated tau deposits, NAB228 (monoclonal antibody [mAb],
1:8000, generated in the CNDR) to detect amyloid-β deposits, pS409/
410 (mAb, 1:500, a gift from Dr. Manuela Neumann and Dr. E. Krem-
mer) to detect phosphorylated TDP-43 deposits and Syn303 (mAb,
1:16,000, generated in the CNDR) to detect the presence of the
pathological conformation of α-synuclein. Each MTL location is
visually assigned a semi-quantitative rating on a scale of 0-3 i.e., “none
(0)”, “rare (0.5)”, “mild (1)”, “moderate (2)” or “severe (3)”61. For our
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analyses, we used the average rating across all three locations as a
measure of pathology burden in the contralateral MTL.

Quantitative 3-D maps of NFT burden derived from serial his-
tological imaging
For the subset of 25 “AD continuum” cases with serial anti-tau IHC
sections available, we generated ‘heat maps’ quantifying the burden of
NFT pathology on individual anti-tau IHC sections using the machine
learning algorithm described in Yushkevich et al. (2021)32. In brief, a
weakly supervised deep learning algorithm was trained to classify
patches of anti-tau IHC images labeled as containing either tangles
(NFTs and pre-tangles) or non-tangles (tau neuropil threads, astroglial
tau, tau coils in the white matter, normal tissue, slide background,
artifacts, tissue folds) and achieved a test accuracy of >95%. During
inference, in addition to assigning an input patch to a tangle versus
non-tangle class, the network outputs a heat map, generated using the
activation maps from the final layers of the network, indicating the
location and intensity of any tangles in the image. This is illustrated in
Supplementary Fig. 7. For each specimen, the generated IHC-derived
NFT burden maps were co-registered to the space of ex vivo MRI and
reconstructed in 3-D. The deformable registration pipeline used to
align each tau IHC section to ex vivo MRI computes the transforma-
tions in two stages. First, each IHC section is aligned and deformed to
the corresponding Nissl section and second, each Nissl section is
aligned and deformed to the corresponding cross-section of the
ex vivoMRI scan. The transformations for this second registration step
are the same ones used to map the MTL subregion boundary annota-
tions fromNissl histology toMRI space, as described in Section 2.3. To
minimize the effects of any misregistrations on our downstream
thickness analyses, before 3-D reconstruction, the results of the
deformable registration pipeline were visually inspected on a per-
section basis and sections withmajormisalignments in theMTL region
were excluded from the final reconstruction. For each specimen, a
‘mask’ volume was created in MRI space that specifies where in the
image space IHC-based measures are available, thus indicating where
tau IHC sections were excluded and any small gaps between tissue
blocks.

To perform group-level analysis, the 3-D NFT burden maps for all
25 specimens were brought into the space of the ex vivo MRI atlas
using the transformations generated by the atlas construction pipe-
line.Maps of averageNFTburdenwere computed and visualized in the
space of the atlas. For quantitative comparisons, a single summary
measure ofNFTburden for eachROI in each specimenwas obtainedby
computing the mean of the NFT burden map across all voxels in that
ROI for which IHC-based measures were available (i.e., the ‘masked’
region).

Group-level statistical analysis
To assess the relationship between MTL cortex tau burden and neu-
rodegeneration, we examined the partial linear correlation between
cortical thickness and both the semi-quantitative neuropathology
ratings and the quantitative NFT burden summarymeasures. Regional
thickness of theMTL cortex, hippocampal graymatter, and SRLMwere
estimated by applying Voronoi skeletonization to the native space
segmentations of each specimen67. The thickness measurements of all
the specimens were then mapped onto the skeleton of the MTL and
SRLM templates for pointwise group comparison. We note that this is
different from the approach followed in31, where we performed
regional thickness analyses along the boundary surfaces of the MTL
and SRLM templates. We found that estimating thickness along the
skeleton of the template increases robustness to registration errors
between individual specimens and the template. More details on this
are provided in Supplementary material, section 1.3.

In the larger dataset (n = 47), pointwise pathology-structure cor-
relations were performed to test the effects of tau, TDP-43, and α-

synuclein pathologies on the MTL and SRLM surfaces. To test the
effect of each pathology measure on pointwise thickness, we used the
open-source tool ‘meshglm’ (https://github.com/pyushkevich/cmrep/)
to fit a general linear model at each vertex on both the MTL and SRLM
skeletal surfaces with the neuropathology measurement of interest as
the independent variable, thickness as the dependent variable, and age
and co-pathology measurements as nuisance covariates. Before sta-
tistical analysis, spatial smoothing (diffusion) was applied to the
thickness data using a simple implementation of the heat equation
(diffusion parameter, T = 4). The diffusion method was modified to
avoid the propagation of missing thickness values. Additionally, the
statistical computation was adapted to handle missing data by
accounting for the variable number of observations and therefore
degrees of freedom at each vertex. Only vertices where at least 25% of
observations were valid were included in the analyses. To account for
multiple comparisons, the analysis uses cluster-level family-wise error
rate correction33. Potential clustersweredefined based on an empirical
threshold (uncorrected p <0.01) and permutation testing with the
Freedman & Lane method (1000 iterations) was used to assign each
potential cluster a corrected p-value68.

In the subset of cases with quantitative NFT burden maps
(n = 25), we performed pointwise analysis correlating MTL and SRLM
thickness with summary NFT burden measures derived from differ-
ent anatomical subregions. No covariates were included in these
models. In addition, we conducted ROI analyses assessing the local
relationship between NFT burden and thickness by performing one-
sided, partial Spearman correlation analyses using the R package
“ppcor”. 95% confidence intervals were determined based on boot-
strapping with 1000 iterations using the R package “boot”. ROI
thickness measures were computed as the mean thickness within
each anatomical subregion based on the consensus MTL labeling.
ROI analyses were performed with and without age included in the
model as a covariate and because of the relatively small size of this
dataset, we did not correct for multiple comparisons. We note that
case HNL21 (age 45 years) was excluded from all group-level analyses
since this case is an outlier in terms of age, with the next youngest
brain donor being 57 years.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized raw and processed data including the subject MRI
scans, and subject-level and group-level histology-based segmenta-
tions, and quantitative NFT burden maps generated in this study have
been deposited in the OpenNeuro database under accession code
ds004767 [https://doi.org/10.18112/openneuro.ds004767.v1.0.0]69.
Detailed demographics, neuropathological diagnosis, and semi-
quantitative neuropathology ratings for each donor are provided in
the Supplementary Information file. The medial temporal lobe
subregion-level quantitative tau burden measurements and mean
thickness measurements used in this study are provided in the Source
Data. Source data are provided with this paper.

Code availability
The code repositories for atlas construction (https://github.com/
sadhana-r/exvivo_tau_atlas_scripts, https://doi.org/10.5281/zenodo.
11123538)70 and 3D reconstruction of histology sections and registra-
tion to MRI (https://github.com/pyushkevich/tau_recon_scripts) are
publicly available. All of the tools utilized in this work are open-source.
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