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Solution-state methyl NMR spectroscopy of
large non-deuterated proteins enabled by
deep neural networks

Gogulan Karunanithy 1, Vaibhav Kumar Shukla 1,2 &
D. Flemming Hansen 1,2

Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful
technique for characterising large biomolecules in solution. However, pre-
paring samples for these experiments is demanding and entails deuteration,
limiting its use. Here we demonstrate that NMR spectra recorded on proto-
nated, uniformly 13C labelled samples can be processed using deep neural
networks to yield spectra that are of similar quality to typical deuterated
methyl-TROSY spectra, potentially providing information for proteins that
cannot be produced in bacterial systems. We validate the methodology
experimentally on three proteins with molecular weights in the range
42–360 kDa. We further demonstrate the applicability of our methodology to
3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where
observed NOE cross-peaks are in good agreement with the available structure.
The method represents an advance in the field of using deep learning to
analyse complex magnetic resonance data and could have an impact on the
study of large biomolecules in years to come.

Nuclear Magnetic Resonance (NMR) spectroscopy is a ubiquitous
technique in material science, chemistry, structural biology, and clin-
ical diagnosis. In the biosciences, NMR provides unprecedented
insight into functional motions and non-covalent interactions with
atomic-level resolution. However, NMR is notoriously insensitive, so
maximising resolution and sensitivity is a perpetual challengewithin all
areas of NMR spectroscopy. Nuclear spin-relaxation, the process by
which equilibrium magnetisation is restored and detectable NMR sig-
nal is lost, scales rapidly with molecular size, making it challenging to
study large biomolecular systems by solution-state NMR. This has
meant that individual NMR experiments are traditionally associated
with size limits, above which most signals are broadened beyond
detection.

Overmany decades, a series of developments have raised the size-
limits of detection for biomolecular NMR applications, combining
advances in hardware, sample preparation and pulse sequence devel-
opment. The introduction of methyl-TROSY methods1, wherein

methyl-bearing side chains are used to probe biomolecular structure
and dynamics, provided a step-change inmolecular weight limitations
for solution-state biomolecular NMR and now routinely allow appli-
cations to systems of several hundreds of kDa. Using these techniques
makes it possible to study systems up to the megadalton molecular
weight range. A key requirement, however, for attaining high quality
methyl-TROSY spectra is that the protein should be prepared with a
very high level of deuteration. Consequently, in practice, for methyl-
TROSYNMRstudies, theproteins produced are completely deuterated
with the exception of [1H, 13C] labelled methyl moieties in specific side
chains, typically those in isoleucine, leucine, methionine, and valine.
There are now well-established protocols to introduce such labels,
which rely on the addition of specifically labelled precursor com-
pounds to minimal and deuterated media2,3. However, this uniform
deuteration has several disadvantages, including extra costs and
typically lower yields of expressed protein. Furthermore, deuteration
is not possible for many systems of considerable biological interest,
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including proteins that can only be expressed in mammalian systems.
As such, the ability to obtain high-quality 13C-1H correlation maps from
uniformly 13C labelled protonated proteins is highly desirable. The
uniform labelling is easier, cheaper, and gives access to peaks asso-
ciated with all methyl-bearing side chains rather than just those where
the appropriate precursor has been added during protein expression.
Importantly, such amethod would also avoid the need for deuteration
and pave the way for characterisations of large proteins that can only
be expressed in mammalian systems.

In this era of burgeoning applications and developments in AI,
from computational structural biology4,5 to sophisticated large lan-
guage models6, it is natural to look for solutions within this field for
the challenges encountered in characterising large proteins. In this
context, we and others have recently demonstrated that deep neural
networks (DNNs) can be trained to accurately transform7–9 and
analyse10–12 complex NMR data. The most recent applications use
supervised deep learning, where a DNN is supplied with an input and
a target training dataset and through a training process the DNN
attempts to determine the mapping between the two. Typically, this
training requires very large amounts of training data, but impor-
tantly, as has been noted in several prior studies8,13,14, it is possible to
simulate an arbitrary amount of realistic training data for magnetic
resonance based supervised deep learning, avoiding a significant
potential data bottleneck. Deep learning methods have now been
successfully applied to several tasks in magnetic resonance spec-
troscopy including the analysis of DEER data13, reconstruction of
non-uniformly sampled spectra7,9,14, peak-picking11,15, and virtual
homonuclear decoupling8.

In this study, we demonstrate that deep neural networks (DNNs)
can be used, in conjunction with the traditional Fourier transform16, to
deliver very high-quality 13C-1H correlation spectra from uniformly 13C
protonated samples, including large proteins whose size limits have
traditionally rendered them inaccessible to NMR. The DNNs presented
below are trained tomap the broad 13C-1H spectra of uniformly labelled
protonated samples to spectra that are akin to classical methyl-TROSY
spectra. This is achieved by removing the effect of one bond 13C-13C
scalar couplings and increasing the resolution of both the 1H and 13C
dimensions by effectively sharpening the observed cross-peaks (Fig. 1).
We robustly assess the trained DNNs on synthetic data and show the
applicability of the trained DNNs on experimental data for proteins
with increasing size: HDAC8 (42 kDa), MSG, (81 kDa), and α7α7
(360 kDa). Finally, we extend the method to obtain 3D Methyl NOESY
NMR spectra ofMSG, which can aid in chemical shift assignments and/
or structural characterisations.

Results
Attempting to obtain high-quality 13C-1H correlation maps on large
proteins using classical approaches, such as 13C-1H HSQC spectra, is
hindered by several factors. Firstly, since the proteins are uniformly 13C
labelled they will be subject to one-bond 13C-13C scalar couplings that
will evolve during indirect chemical shift evolutions, and split signals
intomultiplets and thus complicate interpretation of the spectrum. Of
perhaps even greater significance, is the lack of deuteration in the
system, which will lead to substantial line-broadenings in both the 13C
and 1H dimensions as a result of significantly increased dipolar
relaxation. Consequently, peaks in the spectra will be very difficult to
identify and difficult to assign to specific sites in the protein, making
the spectra challenging to interpret and limiting the utility of such a
labelling scheme. Other tools such as constant-time 13C-1H HSQC
spectra17,18 also do not provide high-quality spectra of large uniformly
labelled proteins, since the constant-time substantially skews the
intensities and even renders many signals invisible. However, due to
the inherent sensitivity of methyl groups, 13C-1H correlation maps of
protonated large proteins nonetheless contain a significant amount of
information frommany of themethyl groups present. The challenge is

that these spectra are difficult to interpret, even by specialists, due to
the poor resolution, see e.g. Fig. 1b.

Training and assessment using synthetic data
In order to transform 13C-1H correlation maps from universally 13C
labelled proteins into spectra that can easily be interpreted, we train
two DNNs, both of which are based on the FID-Net architecture7.
Briefly, the first network is trained to transform time-domain FIDs in
the 13C dimension by removing a single cosine modulation corre-
sponding to a 13C-13C coupling constant and reducing the decay rate of
the peak such that it gives a sharper signal in frequency domain. The
second DNN is trained to act on FIDs in the 1H dimension. In this case,
the network is trained only to reduce the decay rate of FIDs so that
peaks are sharper in the frequency domain of this dimension. Both
networks are trained independently solely on synthetic data (full
parameters provided in the supplementary information).

For transforming a full 13C-1H 2D plane of a uniformly labelled
protein the workflow is as follows: the input 2D plane is first processed
and Fourier transformed in the 1H dimension before being transposed.
This half-processed spectrum is then passed to the firstDNNwhere the
signal modulation due to one-bond 13C-13C couplings is removed and
the signals are sharpened. Subsequently, the 13C dimension is pro-
cessed and Fourier transformed as normal. The spectrum is then
transposedback to the 1H dimension, inverse Fourier transformed, and
Hilbert transformed. The resulting time-domain data is passed to the
second DNN to sharpen signals in the 1H dimension. This 1H dimension
is then reprocessed, and Fourier transformed to yield the final
frequency-domain spectrum.

In order to test and benchmark this approach, it was first applied
to synthetic data. Rather than using randomly generated data, as is
done in the training of the networks, we aimed to benchmark perfor-
mance on synthetic data that were nonetheless reminiscent of actual
13C-1H correlation maps of proteins. In order to do this, synthetic
spectra were made using chemical shifts expected for real systems as
sampled from the BMRB19. Using this approach, we generate one
hundred synthetic spectra with a comparable number of peaks to the
42 kDa protein HDAC820, and one hundred synthetic spectra with a
comparable number of peaks toMSG21 (see ref. 22 for data availability).
These spectra contain all expected 13C-13C couplings as well as broad
peaks as expected for large, protonated proteins. Given that these
spectra are synthetically generated, we can also generate an idealised
target spectrum in which all 13C-13C scalar couplings are removed, the
linewidths are narrowed, and the positions of all peaks within this
target spectrum are known. In order to test the performance of the
DNNs, we transform the original synthetic spectra using our two
trained DNNs.We then pick peaks in the resulting transformed spectra
and compare the results against the known peak positions by quanti-
fying the rate of true positives, false positives, and false negatives. In
order to avoid any influence of the accuracy of the peak-picking
algorithm used, which can vary, we only considered peaks that are
isolated in the processed spectra (with a distance larger than pro-
cessed linewidths), and those that are doublets in the original
spectrum.

As shown in Fig. 2, for synthetic spectra, the FID-Net processing
appears successful at significantly enhancing the resolution of spectra
expected for uniformly 13C-labelled proteins, even when there are a
number of heavily overlapping signals. Based on the high levels of true
positive peaks and low levels of false positive peaks observed in the
synthetic data, we proceeded to test the FID-Net based processing on
experimental data, where the proteins are uniformly 13C labelled in the
absence of deuteration.

Application to experimental 2D 13C-1H correlation spectra
To test the feasibility of our approach to transformexperimental 13C-1H
correlation spectra of uniformly 13C labelled proteins, the method was
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applied to increasingly larger proteins, demonstrating the ability of the
FID-Net approach to provide high quality correlation maps, similar in
quality to methyl-TROSY spectra. In addition to higher expression
yields, a key advantage of the methodology here is that information is
provided on all methyl-bearing side chains, including, alanine 13Cβ,
isoleucine 13Cγ2 and 13Cδ1, leucine 13Cδ1,δ2, methionine 13Cε, threonine

13Cγ2, and valine 13Cγ1,γ2. While methods do exist for specific labelling of
nearly all methyl groups23, these approaches typically lead to reduced
yields and come with higher costs.

Following benchmarking on synthetic data, the trained FID-Net
networks were first applied to the 42 kDa protein HDAC820. While a
protein of this size is relatively small for methyl-TROSY studies, as
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Fig. 1 | Overview of processing NMR spectra with FID-Net. a Overview of tradi-
tional tools used to characterise methyl groups in large proteins, which requires
expression in bacterial cells such as E. coli, deuteration of the protein, and specific
isotopic labelling.bOverview of ourmethod to characterise large, non-deuterated,
uniformly labelled proteins, enabled by the trained deep neural network FID-Net.
Two FID-Net networks are trained: (i) one to virtually decouple and enhance
the resolution in the 13C dimension of the initial 2D 13C-1H correlation spectra
(green-blue to red spectra), (ii) followed by a second network trained to enhance

the resolution in the 1H dimension (red to orange spectra). The example shown is
that of Malate Synthase G (MSG) an 81 kDa protein. As the protein is uniformly
labelled it gives rise to peaks associated with all methyl groups in the protein,
including methionine, alanine, and threonine residues, as well as isoleucine γ2
methyl groups. The additional methyl probes offered by the uniform labelling
scheme are highlighted on the structure ofMSG (red). The estimated costs in a and
b are calculated using listed prices from Sigma-Aldrich.
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shown in the 13C-1H correlation spectrum in Fig. 3a (blue-green) of a
non-deuterated, uniformly 13C labelled sample, signals in the methyl
region of the spectrum are nonetheless broad and overlapped,making
many of them difficult to discern. This also holds for a constant-time
13C-1H HSQC spectrum, where the constant-time (27ms or 54ms)
substantially skews intensities and renders many of the signals invi-
sible, see Supplementary Fig. 5. Conversely, following application of
the FID-Net Networks (orange spectrum), Fig. 3b, the signals are vir-
tually decoupled in the 13C dimension and sharpened in both the 13C
and 1H dimensions. This dramatically simplifies peak identification. By
overlaying the FID-Net transformed spectrum with a classical methyl-
TROSY spectrum of an ILVM specifically labelled sample of HDAC8
(blue), Fig. 3c, where only the side chains of these amino acids are
labelled, an excellent correspondence is seen between isoleucine,
leucine, and valinemethyl peaks. The linewidths of the peaks inboth of
these spectra are highly comparable and all expected peaks from the
methyl-TROSY spectrum are recovered in the FID-Net processed
spectrum of the uniformly labelled sample. Additional peaks are also
visible in the FID-Net processed spectrum, due to the presence of
additional labelled methyl groups, including, threonine and isoleucine
13Cγ2. Small peak-shifts are mainly due to the isotope shifts originating

fromdeuteration24. A full overlayof the FID-Net processed spectrumof
HDAC8 and the methyl-TROSY spectrum is shown in Supplementary
Fig. 1. All previously assigned methyl cross-peaks for HDAC825 were
present in the FID-Net processed spectra of HDAC8.

To test the robustness of the FID-Net processing approach on
larger systems, with substantially more cross-peaks and signal overlap,
we next applied the FID-Net DNNs to study the methyl region of the
proteinMSG. This 723-residue protein has been studied extensively by
NMR21,26, but all of these studies have required deuteration tominimise
the broadening of signals due to extensive relaxation. However, as
shown in Fig. 3e, by coupling the intrinsic sensitivity of methyl groups
with FID-Net processing, it is possible to obtain high-quality methyl-
TROSY like spectra for this system at a lower cost and with the added
bonus of signals associated with allmethyl bearing side chains. As with
the HDAC8 example above, clear agreement between the expected
peaks in the ILV spectrum and FID-Net processed spectrum is attained
and the linewidths in these two spectra are also similar. A full overlayof
the FID-Net processed spectrum of MSG and the methyl-TROSY
spectrum is shown in Supplementary Fig. 2. The FID-Net processed
spectrum of MSG also agrees with the previously published chemical
shift assignments for 13Cγ2 methyl groups of Ile and Thr, 13Cε ofMet, and
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Fig. 2 | Assessment using synthetic data. a, b Exemplar synthetic data without
processing by the FID-Net DNNs (left column) and with FID-Net based processing
(right column).aAsynthetic spectrumwherewehave a similar number of signals to
HDAC8 (42 kDa).bA spectrum that has a similar number of signals toMSG (81 kDa).
One hundred distinct spectra with a similar number of signals to those shown in

a or b are generated. These are then analysed using the FID-Net approach and the
resulting spectra are peak picked. From FID-Net analysed spectra peaks are picked
and compared to ground truth values. From picked peaks, true positive, false
positive and false negative rates of peaks are calculated (only considering isolated
peaks) and plotted (c, d). Full details are given in the Methods section.
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13Cβ of Ala27–29, with the exception of 13Cβ of A633, which was not
observed in the FID-Net processed spectra.

To push the limits of the proposed method we tested its perfor-
mance on the 360 kDa α7α7 (half-proteasome) from T. acidophilum.
This protein complex has an effective rotational correlation time of
approximately 120ns at 50 °C30. The high degree of symmetry in the
complex (composed of 14 monomeric units that form two heptameric
rings)means that there are relatively fewpeaks in its spectra compared

to its size, see Fig. 4. A full overlay of the FID-Net processed spectrum
of α7α7 and the methyl-TROSY spectrum is shown in Supplementary
Fig. 3. In the caseof the 360 kDaα7α7 complex, it is clear that a number
of peaks present in the deuterated, ILV labelled sample are fairly weak
in the FID-Net decoupled spectrum (marked with an asterisk in Fig. 4),
this is particularly evident in the isoleucine δ1 region of the spectrum,
and we therefore judge that currently systems such as the α7α7
complex are at the limit of our approach. Additional peaks in the
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spectrum are also clearly visible due to the presence of alanine,
threonine, methionine and isoleucine 13Cγ2 methyl resonances.

While for the proteins shown above the isoleucine 13Cδ1, leucine
13Cδ1,δ2 and valine 13Cγ1,γ2 methyl group resonances can be readily com-
pared to those obtained in ILV-labelled samples using traditional
methyl-TROSY spectra, peaks associated with alanine, threonine,
methionine, and isoleucine 13Cγ2 methyl groups are less readily avail-
able. To verify the reliability of these additional peaks observed in
uniformly 13C-labelled samples and demonstrate the extension of the
methodology to 3D spectra, we recorded a 13C-13C-1H NOESY spectra of
MSG and, as demonstrated below, use this methodology to provide
assignments for threonine, methionine, and isoleucine side chains.

Applications to three-dimensional NOESY spectra
Following the successful implementation of deep neural networks
for the production of methyl spectra of similar quality to typical
deuterated methyl-TROSY spectra just from uniformly 13C labelled
samples in a protonated background, we applied themethodology to
a 3D 13C-HSQC-NOESY-HSQC experiment acquired on a uniformly 13C
labelled sample of MSGmade in (non-deuterated) water. Despite the
high molecular weight of MSG, we observed NOE cross-peaks among
the inter methyl protons that were within a distance of 3.0 Å to 5.0 Å
of each other (Figs. 5a–d and Supplementary Fig. 4).

In total, 292 NOE cross-peaks were observed among 170 methyl-
bearing residues from different regions of the protein. Furthermore,
like conventional NOESY spectra, we observed a correlation between
theNOE cross-peaks volumes (V ) and the distancebetween the proton
pairs (r), i.e. V∝ 1/r 6, Fig. 5f. Using this experiment, we could easily
characterise the contact between two methyls, for example, 13Cδ1 and
13Cγ2 of isoleucines as shown in Supplementary Fig. 4a. Similarly, the
two geminal methyl resonances of leucine and valine can be linked
using this spectrum (Fig. 5d). However, a combination of 3D 13C-HSQC-
NOESY-HSQC and 3D HMBC-HMQC experiments would be the best
method to link the geminal methyl resonances of leucine and valine
without any ambiguity31. Additionally, using this approach, NOEs can
be observed between methyl protons of all methyl-bearing residues
(isoleucine, leucine, valine, methionine, alanine, and threonine) using

one sample, which is not possible in the conventional method due to
metabolic scrambling of amino acids in selective 13C labelling32.
Therefore, the DNNs can be utilised to produce a 3D 13C-HSQC-NOESY-
HSQC experiment acquired on a uniformly 13C labelled sample without
deuteration, resulting in a spectrum of similar quality to a 3D 13C-
HMQC-NOESY-HMQC experiment acquired on a specifically methyl
labelled sample. This approach can be generally applied to large pro-
teins and complexes without deuteration.

Discussion
The ability to characterise the regulation, interactions, and dynamics
of large proteins in solution is paramount to understanding their
molecular functions. The methyl-TROSY methodology is one of the
most important developments in biomolecular NMR over the last
decades and thesemethods have truly paved the way for NMR to offer
key insights on larger biomolecular complexes, complementing other
structural approaches including cryo-electron microscopy and AI-
based predictions33. However, the labelling requirements for such
NMR experiments are demanding, ideally requiring perdeuteration
and the use of specific precursors to introduce [1H,13C]-labelledmethyl
moieties of specific locations. While the resulting spectra are of high-
quality, the cost of such labelling is higher, typically leads to lower
protein yields, and is inconsistent with protein production methods
for many systems of interest such as eukaryotic and membrane pro-
teins. Above, we presented an alternative method to classical methyl-
TROSY NMR for characterising large proteins in solution, which is
based on uniformly protonated, 13C-labelled samples and processing
with FID-Net neural networks. With the approach one can characterise
proteins up to about 350kDa. The size limitation for FID-Net based
processing arises because it is reliant on some signal still being present
in the spectra and above this size most signals, even those associated
with methyl moieties, are broadened beyond detection in non-
deuterated systems.

The main disadvantage of the FID-Net method is that the process
of peak-sharpening inevitably leads to a loss of the intrinsic shape of
the cross-peaks, including the peak height. Accurately measuring peak
intensities is critical in a number of NMR experiments, including

Fig. 4 | Application to a 360kDa complex. a A 13C-1H HSQC NMR spectrum of
uniformly 13C labelled, non-deuterated, α7α7 (360 kDa) processed with a standard
discrete Fourier transform. b The spectrum in a processed with the FID-Net DNNs.

c Comparison of FID-Net processed HSQC spectrum in b (orange) with a methyl-
TROSY HMQC spectrum of an ILV specifically labelled and deuterated α7α7 (blue).
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diffusion and relaxation, so it is not advised to record these experi-
ments in conjunction with the presented FID-Net processing nor is it
advised to perform line-shape analyses. However, for a large body of
NMR experiments, the main parameter of importance is the chemical

shift as well as a reasonable estimate of the peak intensity, and in these
caseswebelieve that FID-Net processingwill proveuseful. Such studies
include classical chemical shift perturbation studies, such as, changes
in chemical shifts upon addition of an interacting partner or changes
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Fig. 5 | NOESY spectra of non-deuterated 80kDa MSG. Two-dimensional planes
from the 3D 13C-13C-1H NOESY spectrum for a I5-13Cδ1 and A14-13Cβ. b I327-13Cδ1 and
A321-13Cβ. c A63-13Cβ and L88-13Cδ1. d M415-13Cε and L375-13Cδ1. e Methyl groups of
isoleucine, leucine, valine, methionine, alanine, and threonine showing NOE cross-
peaks in the 3D 13C-13C-1H NOESY spectra are highlighted as cyan spheres on a
cartoon representation of Malate Synthase G (MSG) structure (PDB entry:1D8C).
f Normalised NOE cross-peak volumes (cross-peak volume/diagonal-peak volume)

versus interproton distances. Grey circles represent the normalisedNOE cross-peak
volumes obtained for individual NOE cross-peaks, whereas blue circles represent
the average of normalised NOE cross-peaks volume over interproton-distance
intervals of 0.2 Å, i.e. (Sum of normalised NOE cross-peak volumes) / (Number of
cross-peaks), within each interproton-distance interval of 0.2 Å. The blue line
represents thefitted curve ofNOEcross-peaks volume (V ) and interprotondistance
(r) using the standard equation V =C/r 6, where C is a constant.
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related to varying conditions, e.g. pH. As we have shown above, the
obtained intensities are of a sufficient quality such that the trans-
formed spectra facilitate facile chemical shift assignment of methyl
peaks by either NOESY spectra (as demonstrated here for MSG) or by
point mutations, which often requires several samples. We are cur-
rently in the process of developing and training a DNN that is able to
enhance the resolution of 13C-1H spectra and provide quantitative
mappings, which can be used for downstream analyses, e.g. relaxation
experiments. This work remains ongoing.

A number of approaches have previously been suggested to
overcome the limitations of methyl-TROSY highlighted above, parti-
cularly when making perdeuterated samples is not possible. Recent
examples include the use of delayed decoupling, as has also been used
for very large complexes with molecular weights in the MDa range34,
optimised NMR pulse sequences to probe methionine residues in
proteins with molecular weights up to 240 kDa32, and the use of local
deuteration of leucine residues to probe their methyl groups in
membrane and insect cell derived proteins35. While very powerful,
these methods are limited in that they only consider a single residue
type, thus restricting the number of available probes in the system.
Conversely, the methodology developed here offers simultaneous
access to all methyl bearing side chains in a protein, offering many
more probes of biomolecular behaviour. By decoupling signals in the
13C dimension and sharpening them in both the 1H and 13C dimensions,
the resulting spectra resemble those given by perdeuterated samples
with specific methyl labelling.

We believe that the FID-Net methodology presented here will
significantly lower the barrier to entry for NMR of large systems. While
methods exist for obtaining methionine and threonine assignments
for well-studied systems such as MSG, processing with the FID-Net
DNNs provides a straightforward approach, which does not require
perdeuteration and offers insight into all methyl-bearing residues. We
envisage that the idea of using DNNs for peak sharpening and simul-
taneous homonuclear virtual decoupling within NMR could be applied
in other cases to improve spectra and that processing NMR data with
DNNswill facilitate additional ventures within NMR. As suchwe see the
presented method as paving the way for a plethora of ways for gen-
erally analysing and transforming NMR spectra with deep neural net-
works to push the capabilities and limits of NMR.

Methods
Initial considerations about the neural networks
In the present study our aim was to develop DNNs to map 13C-1H
methyl correlation spectra of large uniformly 13C-labelled proteins
into spectra that are similar to methyl-TROSY spectra of highly
deuterated proteins. Two objectives must be fulfilled to achieve this
aim: (i) the one-bond 13C-13C homonuclear scalar couplings asso-
ciated withmethyl groupsmust be decoupled and (ii) the peaks must
be sharpened, making them more easily resolvable, equivalent to
slowing down the exponential decay of magnetisation in the time
domain. It should be noted that these changes do not increase the
information content in the spectrum, but they do make the infor-
mation contained within the original spectra more easily inter-
pretable by spectroscopists.

We employ the FID-Net architecture that we have previously
shown to successfully perform a number transformations on time
domain NMR data, including reconstructing non-uniformly sampled
spectra7,9,14 and homonuclear virtual decoupling8. The FID-Net archi-
tecture currently only transforms a set of 1D spectra, and two separate
FID-Net DNNs were therefore trained: one was optimised for spectral
parameters typically encountered in the 13C dimension and trained to
both decouple and sharpen signals, whereas the second FID-Net DNN
was optimised for spectral parameters in the 1H dimension alone and
was trained to only sharpen signals. A schematic illustration and
summary of the effects of the neural networks is provided in Fig. 1b. In

both cases the networks are trained and validated exclusively on syn-
thetic data and then tested on experimentally acquired data.

Care must be taken when determining how and to what extent
signals should be sharpened using DNNs. For example, signals from
flexible regions of proteins that already give rise to sharp peaks could
result in the presence of truncation artefacts in the spectrum. On the
other hand, broad signals require significant attenuation of their
relaxation to be clearly resolvable in the frequency domain. The
broader the signal, themore attenuation of relaxation that is therefore
desirable. To satisfy these requirements the following function is used
for input Rin

2 and target Rtar
2 transverse relaxation rates in the training

data:

Rtar
2 = max Rmax

2 tanh
Rin
2

Rmax
2

 !
,Rmax

2 1� tanh
Rin
2

Rmax
2

 ! ! !
ð1Þ

The effect of this is to make the linewidths in the target spectrum
relatively uniform similar tomethyl-TROSY spectra, where for theDNN
relaxation rates above Rmax

2 are scaled down towards it, while those
belowRmax

2 are scaled up towards it. A value ofRmax
2 = 25 s�1 was chosen

so that target spectra have linewidths similar to those observed in
relatively structured residues in an ILV sample of a medium-to-large
deuterated protein. Further details of the neural network architecture,
training data parameters, and training procedures are provided in the
supplementary information.

Once trained, the neural networks can easily be applied as part of
processing scripts, examples of which are provided in the supple-
mentary information. The DNNs are trained on a diverse range of NMR
parameters (Supplementary Tables 1 and 2) and thus can be used
without further retraining. The approach can be used with standard
1H-13C HSQC or HMQC pulse sequences (vide infra).

The network architecture and training
Two networks were trained for the study: one for removing 13C-13C
couplings and sharpening spectra in the 13C dimension and the second
solely for sharpening spectra in the 1H dimension (as described above).
Bothnetworks used thepreviously describedFID-Net architecture. The
input size for the 13C network is 1024 × 4 and for the 1H network is
512 × 4. As was the case with previous FID-Net architectures, the net-
works consist of a series of stacked residual units, wherein each resi-
dual unit consists of dilated convolutional layers with kernel size 8 × 4.
The filters are activated by either sigmoidal (50%) or tangent (50%)
functions. The results of the activations are thenmultiplied andpassed
through another convolutional layer with kernel size 8 × 4. The output
from each layer is combined to give the final output and also added to
the input for the residual unit to form the input for the next layer. For
the 13C network, the dilations employed are cycled through the values:
1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, and there are 128
filters for each convolutional layer. For the 1H network the dilations
employed are 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, and there are 64
filters per convolutional layer.

For each network 500,000 test planes were created for training
and 50,000 for testing using the parameters given in Supplementary
Tables 1 and 2. The models were developed and trained using the
Tensorflow library36 with the Keras-front end37. The cost function used
to train the networks is the mean squared error in the frequency
domain between the spectrum produced by the DNN and the target
spectrum wherein the linewidth of peaks are set according to the R2

scaling described above and for the 13C network the scalar coupling is
removed. The RMSprop optimizer38 was used in training. For both
networks the learning rate was initially set to 10−4 until the validation
loss value plateaued and was then reduced to 10−5 until it plateaued
again where training was then ended.

Article https://doi.org/10.1038/s41467-024-49378-8

Nature Communications |         (2024) 15:5073 8



Benchmarking using synthetic data
Once trained, to validate the performance of the two networks we use
synthetically generated spectra. Rather than using arbitrary spectra as
was done for training the networks, we attempt to generate realistic
13C-1H correlation maps for uniformly labelled 13C proteins using che-
mical shift statistics from the BMRB19. In addition to containing
terminal 13Cmoieties that give rise to doublets in the spectra as a result
of a single 13C-13C scalar coupling these spectra also contain multiplets
due to moieties that have multiple 13C-13C scalar couplings (though
these are usually at higher 1H frequencies as is observed in real
spectra).

We generate 200 synthetic spectra in total: the first 100 spectra
were chosen to have features similar to a 13C-1H spectra of a protein
with a similar size toHDAC8whilst the second 100were chosen tohave
features similar to a proteinwith a similar size toMSG. Example spectra
are shown in Figs. 2a and 2b. The parameters used to generate the
synthetic spectra for benchmarking are detailed in Table 1.

Once the synthetic spectra aremade, they areprocessed using the
deep neural network pipeline. Visual inspection of the transformed
spectra suggests that the method is effective at decoupling and shar-
pening spectra, such that they can be interpretedmore easily. We also
note that wheremultiple 13C-13C couplings are present, the networkwill
remove just one of the couplings such that triplets become doublets.
To evaluate the performance of the pipeline quantitatively, the trans-
formed spectra are peakpickedusing thebuilt-in peakpicker in NMRPIPE.
The results are compared to the known ground-truth values for peak
positions (assuming no couplings were present in the spectra).

We focus on two key parameters in this evaluation: the number of
true positive picked peaks and the number of false positive picked
peaks. Given the difficulty of picking peaks from crowded regions
automatically, and that our aim is to evaluate the performance of our
alternative pipeline for analysing spectra we focus on isolated peaks
where the performance of the peak picker is robust. Here, we define an
isolated peak as any ground truth peak where the minimum distance
from any other ground truth peak is greater than or equal to
0.06 1H ppm (0.24 13C ppm). Furthermore, we ignore peaks that are
part of doublets and that aremore than 1.50 1H ppm from a target peak
originating fromamethylmoiety. Oncepeaks in the FID-Net processed
spectrum have been picked, they arematched with the closest peak in
the target peak list. Each peak can only bematched with a single target
peak and we match in descending order of distance between picked
peaks and target peaks until there are no picked peaks within the
minimumdistance to a target peak (set at 0.03 1H ppm)or there are no
picked nor target peaks left. This process is then repeated for all syn-
thetic spectra.

The true positive rate is defined as the percentage of peaks where
we see a clear correspondence between a picked and target peak. The
false positive rate is defined as the rate atwhich a peak identified in the
FID-Net processed spectrum does not correspond with any peaks in
the actual spectrum. Given the limitations of peakpickers, the true and
false positive rates here likely represent a lower bound on the per-
formance of the FID-Net processing pipeline.

General isotopic labelling
In this study, twodifferent types of labelled protein samples were used
for acquisition of the NMR data: (1) uniformly 13C,15N labelled sample
made in 1H2O. (2) methyl Ile-13Cδ1,1Hδ1, Leu-13Cδ1, 1Hδ1/13Cδ2,1Hδ2, and
Val-13Cγ1,1Hγ1/13Cγ2,1Hγ2 labelled samplemade in deuterated background.
To express uniformly 13C,15N labelled proteins, we used M9media that
was made with 1H2O and supplemented with 1 g/L [1H,15N]-ammonium
chloride and 3 g/L of [1H,13C]-glucose as the sole nitrogen and carbon
sources. For expression of methyl Ile-13Cδ1,1Hδ1, Leu-13Cδ1, 1Hδ1/13Cδ2,1Hδ2,
and Val-13Cγ1,1Hγ1/13Cγ2,1Hγ2 labelled proteins, we used 2H2O M9 media
supplemented with 1 g/L [1H,15N]-ammonium chloride and 3 g/L of
[2H,12C]-glucose as the sole nitrogen and carbon sources. Methyl
labelling was achieved by the addition of 60mg/L alpha-ketobutyric
acid [U-12C/2H, methyl-13CH3] for labelling of isoleucines, and 90mg/L
α-ketoisovaleric acid [U-12C/2H, methyl-(13CH3,

12CD3)] for labelling of
valine and of leucinemethyl groups. These precursors were added one
hour prior to induction.

Expression and purification of Histone deacetylase 8 (HDAC8)
The Human HDAC8 construct described by Vannini et al. with a
C-terminal 6X-histidine tag in ampicillin-resistant pET21b expression
vector was transformed in BL21(λDE3) E. coli cells for protein
expression20,39. A single colony from the transformed plate was
inoculated in 10ml of LBmedia supplementedwith ampicillin (100μg/
ml) at 37 °C. Once the LB culture reached an OD600 between 0.8 and
1.0, it was used to inoculate a 50ml M9 minimal media pre-culture.
This M9 pre-culture was used to inoculate 1 L of M9 media and grown
at 37 °C toOD600 ≈0.8.HDAC8expressionwas induced for > 16 hwith
0.5mM IPTG and 200 µMof ZnCl2 at 21 °C. The cell pellet, collected by
centrifugation, was re-suspended in lysis buffer containing 50mM
Tris‒HCl pH 8.0, 3mM MgCl2, 500mM KCl, 10mM imidazole, 5%
glycerol, and 10mM β-mercaptoethanol. Later, sonication was per-
formed to lyse the cells after addition of small amounts of DNAse,
lysozyme, protease inhibitors tablets (1 tablet per 50ml, Roche), and
0.25 % IGEPAL. The supernatant fraction of the lysate after cen-
trifugation at 40,000 x g for one hour was purified by Ni-NTA affinity
chromatographyusing a linear imidazole gradient (10‒250mM) in lysis
buffer. Further, size-exclusion chromatography using a Superdex-75
column (GE Healthcare) was carried out in buffer containing 50mM
Tris‒HCl pH 8.0, 150mM KCl, 1mM TCEP, and 5% glycerol. Fractions
containing purified HDAC8 was pooled together and concentrated by
10 kDa cut off Amicon (Millipore) ultra-filtration membranes. The
concentrated sample was buffer exchanged into NMR-buffer (50mM
K2HPO4 pH 8.0, 30mMKCl, 4mMDTT, and 1mMNaN3) for NMR data
acquisition.

Expression and purification of Malate Synthase G (MSG)
A small adjustment wasmade to themethods previously described for
producing isotopically labelled MSG26,31,40. Briefly, to produce theMSG
protein, BL21 (DE3) E. coli cells were transformed with a kanamycin-
resistant pET28a vector containing MSG gene with a C-terminal 6X-
histidine tag. The protein expression protocol for MSG is same as
HDAC8 up to induction. MSG expression was induced for >16 h with
1mM IPTG at 21 °C. The cell pellet was collected by centrifugation and
re-suspended in lysis buffer containing 20mM Tris‒HCl pH 7.8,
300mM NaCl, 10mM imidazole, and 10mM β-mercaptoethanol. The
protein purification protocol for MSG is the same as for HDAC8, until

Table 1 | Parameters used for benchmarkinga

Parameter HDAC-like spectra MSG-like spectra

Number of
signals

275 600

Larmor Fre-
quency (MHz)

2 ð600,700,800,950Þ 2 ð600,700,800,950Þ

1H SW (Hz) 2000–5000 2000–5000
13C SW (Hz) 2000–000 2000–5000
1JCC (Hz) 34 (2) 34 (2)

R 1ð Þ
2 (s−1) (1H dim) 50 (10) 60 (15)

R 2ð Þ
2 (s−1) (13C dim) 50 (10) 60 (10)

a Where values are given as a range, for each spectrum the true value is taken as a randomvalue
from a uniform distribution of the range. Where values are given as a number followed by a
bracketed number, for each signal the value used is randomly chosen from a normal distribution
centred on the first number and with a standard deviation given by the bracketed value. For all
synthetic spectra, half of the peaks are chosen as resulting fromamethylmoiety, while the other
half come from non-methyl 13C-1H moieties, i.e., leading to triplets in the 13C dimension.
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the Ni-NTA affinity chromatography. The fractions containing MSG
from Ni-NTA affinity chromatography were further purified by size
exclusion chromatography using a Superdex-200 column (GE
Healthcare) in buffer containing 20mMSodiumphosphate pH 7.1, and
5mM dithiothreitol. After gel filtration, the fractions containing pure
protein were pooled, concentrated, and buffer exchanged into NMR-
buffer (20mM Sodium phosphate buffer pH 7.1, 5mM DTT, 20mM
MgCl2, 1mM NaN3) for NMR data acquisition using 30 kDa cut off
Amicon (Millipore) ultra-filtration membranes.

Expression and purification of α-subunit complex (α7α7) of
proteasome from T. acidophilum
In order to express the α-subunit complex (α7α7) proteasome from T.
acidophilum, the αWT clone with N-terminal Histidine tag and a TEV
protease site was transformed into BL21 (λDE3) E. coli cells31,41. The
protein expression protocol for MSG was followed for the α-subunit
complex up to the induction step. The α-subunit complex culture was
induced atOD600 ≈0.9with 1mM IPTGat 37 °C for 5 h. Afterwards, we
lysed the cells with sonication in a lysis buffer (50mM NaH2PO4 pH
8.0, 0.2M NaCl, 10mM imidazole) and purified them using Ni-NTA
chromatography as described above for the purification ofHDAC8 and
MSG. After Ni-NTA affinity chromatography, TEV protease was intro-
duced to cleave the 6X-histidine tag before dialyzing the protein
against 2 L of dialysis buffer (50mMTris-HCl pH8.0, 1mMEDTA, 5mM
β-mercaptoethanol) overnight at 4 °C. The TEV cleavage of the protein
was followed by another Ni-NTA affinity chromatography to eliminate
the histidine tag and un-cleaved protein. Afterwards, size exclusion
chromatography was performed using a Superdex 200 column (GE
Healthcare) in a buffer containing 50mM NaH2PO4 pH 7.5, and
100mM NaCl. The fractions containing pure protein were con-
centrated and buffer exchanged into the NMR buffer (20mM potas-
sium phosphate pH 6.8, 50mM NaCl, 1mM EDTA, 2mM DTT, 0.03%
NaN3) for NMR data acquisition using 30 kDa cut off Amicon (Milli-
pore) ultra-filtration membranes.

NMR Acquisition of Two-dimensional 13C-1H correlation spectra
The 2D HSQC spectrum of HDAC8 used as input for FID-Net was
recorded on a uniformly [13C,15N]-labelled sample using a standard
pulse programme with presaturation on a Bruker 700MHz Avance III
spectrometer equipped with Z-gradient triple-resonance TCI cryop-
robe at 298K and running Topspin 3.6.3. The data was acquired with
1024 and 256 complex points in the 1H and 13C dimensions, respec-
tively, with spectral widths of 10000Hz and 5000Hz. 16 scans were
obtained per individual FID. 2D Methyl-TROSY spectrum of HDAC8
used for experimental verification was recorded on an ILVM specifi-
cally labelled sample on a Bruker 800MHz Avance III spectrometer
equipped with Z-gradient triple-resonance TCI cryoprobe. The data
was acquired with 1024 and 256 complex points in the 1H and 13C
dimensions, respectively, with spectral widths of 12500Hz and
4500Hz. 4 scans were obtained per individual FID.

The 2D HSQC spectrum of MSG used as input for FID-Net was
recorded on a uniformly [13C,15N]-labelled sample using a standard
pulse programmewith presaturation on a Bruker 800MHz Avance III
spectrometer equipped with Z-gradient triple-resonance TCI cryop-
robe at 310K and running Topspin 3.6.3. The data was acquired with
1024 and 256 complex points in the 1H and 13C dimensions, respec-
tively, with spectral widths of 12500Hz and 5000Hz. 16 scans were
obtained per individual FID. The 2Dmethyl-TROSY spectrum of MSG
used for experimental verificationwas recorded on an ILV specifically
labelled sample on a Bruker 800MHz Avance III spectrometer
equipped with Z-gradient triple-resonance TCI cryoprobe and run-
ning Topspin 3.6.3. The data was acquired with 1024 and 192 com-
plex points in the 1H and 13C dimensions, respectively, with spectral
widths of 10500Hz and 5000Hz. 16 scans were obtained per
individual FID.

The 2D HSQC spectrum of α7α7 used as input for FID-Net was
recorded on a uniformly [13C,15N]-labelled sample using a standard pulse
programme with presaturation on a Bruker 950MHz Avance HD spec-
trometer equipped with Z-gradient triple-resonance TCI cryoprobe at
323K. The datawas acquiredwith 1024 and 256 complex points in the 1H
and 13C dimensions, respectively, with spectral widths of 15200Hz and
5263Hz. 80 scans were obtained per individual FID. 2D Methyl-TROSY
spectrumofα7α7 used for experimental verificationwas recorded on an
ILV specifically labelled sample using a standard pulse programme on a
Bruker 800MHz Avance III spectrometer equipped with Z-gradient tri-
ple-resonance TCI cryoprobe at 323K and running Topspin 3.6.3. The
data was acquired with 768 and 132 complex points in the 1H and 13C
dimensions, respectively, with spectral widths of 12000Hz and 4100Hz.
16 scans were obtained per individual FID.

NMR acquisition of three-dimensional NOESY spectra
The 3D HSQC-NOESY-HSQC NMR experiment on MSG was performed
on a ~ 400 µM MSG sample on a Bruker 950MHz Avance HD spectro-
meter equipped with Z-gradient triple-resonance TCI cryoprobe at
310K. The data was acquiredwith 1024, 142, and 124 complex points in
1H, 13CHSQC, and

13CNOESY dimensions, respectively, with spectral widths
of 15244Hz (1H), 6667Hz (13C), and 6667Hz (13C). Eight scans were
collected per increment with a recycle delay of 1 s. The mixing time
was 60ms.

NMR data processing
All experimental NMR spectra were processed with NMRPIPE

42 version
2018.184.13.26 or using the python libraries NMRGLUE

43 0.9 and NUMPY

1.23.5 and visualised/analysed with CARA 1.8.4.2 (http://cara.nmr.ch/)
and NMRDRAW 2018.184.13.26.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Training data for the two DNNs generated in this study have been
deposited at Zenodo (www.zenodo.org), Hansen, D. F. (2024) “Solu-
tion-State Methyl NMR Spectroscopy of Large Non-Deuterated Pro-
teins Enabled by Deep Neural Networks”. Zenodo. https://doi.org/10.
5281/zenodo.10022405. Synthetic spectra used for assessment of FID-
Net are available as PDF files. The full spectra used for experimental
assessments, including, (i) input 13C-1H HSQC, (ii) FID-Net processed
13C-1H HSQC, and (iii) methyl-TROSY for HDAC8, MSG, and α7α7-
proteasome are also available from Zenodo, along with the full
13C-13C-1H NOESY spectrum of MSG. There reference PDB code used in
this work is 1D8C. Source data are provided with this paper.

Code availability
Python code for using the networks described here (including pre-
trained networks, examples and scripts for training the two DNNs) is
available on GitHub: https://github.com/gogulan-k/FID-Net. Training
scripts are available from Zenodo: https://doi.org/10.5281/zenodo.
1108058144.
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