Table 2 Results on JNK3 active molecules using MolGPT with different training epochs
From: t-SMILES: a fragment-based molecular representation framework for de novo ligand design
Model3 | Valid | Novelty | FCD | Active Novel | FBT Novel | Frag Novel |
---|---|---|---|---|---|---|
SMILES[R200] | 0.795 | 0.120 | 0.584 | 0.072 | N/A | N/A |
SMILES[R2000] | 1.000 | 0.001 | 0.765 | 0.004 | N/A | N/A |
DSMILES[R200] | 0.677 | 0.076 | 0.510 | 0.043 | N/A | N/A |
DSMILES[R2000] | 0.999 | 0.001 | 0.778 | 0.001 | N/A | N/A |
SELFIES[R200] | 1.000 | 0.238 | 0.544 | 0.148 | N/A | N/A |
SELFIES[R2000] | 1.000 | 0.008 | 0.767 | 0.050 | N/A | N/A |
TSSA_S[R300] | 1.000 | 0.833 | 0.564 | 0.582 | 2.655 | 0.962 |
TSSA_S[R5000] | 1.000 | 0.817 | 0.608 | 0.564 | 2.534 | 0.049 |
TSSA_S[R50000] | 1.000 | 0.824 | 0.572 | 0.571 | 2.379 | 0.023 |
TSSA_HSV[R200] | 1.000 | 0.483 | 0.680 | 0.350 | 2.086 | 5.044 |
TSSA_HSV[R2000] | 1.000 | 0.447 | 0.716 | 0.319 | 1.810 | 0.365 |
TSSA_Hybrid[R200] | 1.000 | 0.683 | 0.622 | 0.374 | 2.310 | 25.978 |
TSSA_Hybrid[R2000] | 1.000 | 0.657 | 0.619 | 0.437 | 2.672 | 23.745 |
TF_SMILES[R5] | 0.887 | 0.707 | 0.523 | 0.526 | N/A | N/A |
TF_SMILES[R100] | 0.999 | 0.033 | 0.764 | 0.023 | N/A | N/A |
TF_TSSA_S[R5] | 1.000 | 0.932 | 0.483 | 0.710 | 2.897 | 9.105 |
TF_TSSA_S[R100] | 1.000 | 0.849 | 0.570 | 0.569 | 2.431 | 0.208 |
SMILES_Aug50[R10] | 0.807 | 0.570 | 0.566 | 0.483 | N/A | N/A |
SMILES_Aug50[R100] | 0.995 | 0.049 | 0.750 | 0.047 | N/A | N/A |
TSSA_S_Rec50[R10] | 1.000 | 0.962 | 0.389 | 0.829 | 2.414 | 1.757 |
TSSA_S_Rec50[R100] | 1.000 | 0.960 | 0.411 | 0.809 | 2.448 | 0.655 |