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Combining machine learning with high-
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susceptibility in isolates of Salmonella
Typhimurium
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Antimicrobial resistance (AMR) is a growing public health crisis that requires
innovative solutions. Current susceptibility testing approaches limit our ability
to rapidly distinguish between antimicrobial-susceptible and -resistant
organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen
responsible for severe gastrointestinal illness and invasive disease. Despite
widespread resistance, ciprofloxacin remains a common treatment for Sal-
monella infections, particularly in lower-resource settings, where the drug is
given empirically. Here, we exploit high-content imaging to generate deep
phenotyping of S. Typhimurium isolates longitudinally exposed to increasing
concentrations of ciprofloxacin. We apply machine learning algorithms to the
imaging data and demonstrate that individual isolates display distinct growth
and morphological characteristics that cluster by time point and susceptibility
to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using
a further set of S. Typhimurium clinical isolates, we find that machine learning
classifiers can accurately predict ciprofloxacin susceptibility without exposure
to it or any prior knowledge of resistance phenotype. These results demon-
strate the principle of using high-content imaging with machine learning
algorithms to predict drug susceptibility of clinical bacterial isolates. This
technique may be an important tool in understanding the morphological
impact of antimicrobials on the bacterial cell to identify drugs with new modes
of action.

Antimicrobial resistance (AMR) is a mounting global health issue, borne resistance genes, and inducible resistance or hetero-resistance
which on a patient-by-patient basis, narrows the therapeutic options  to drug exposure®”. However, this improved understanding has not
for selecting appropriate antimicrobial agents'”. There have been sig-  increased the ability to rapidly distinguish antimicrobial susceptible
nificant advances in understanding AMR mechanisms in bacteria, and resistant organisms. Conventional phenotypic antimicrobial sus-
including the differential roles of chromosomal mutations, plasmid-  ceptibility testing (AST) is a multi-day process that relies on isolation of
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a single bacterial colony, growth of a bacterial suspension, followed by
incubation of the culture with an antimicrobial and reading and
interpretation by a laboratory technician or by machine in well-
resourced settings®’. Automated AST methods such as the Vitek2 and
BD Phoenix increase throughput and decrease turnaround time but
still rely on conventional readouts of bacterial growth in the presence
of antimicrobial®. This modality for AST results often results in patients
being treated empirically with an inappropriate antimicrobial, with
negative implications for patient outcomes’™. Thus, we still require
adaptable approaches that can rapidly discriminate between suscep-
tible and resistant organisms without the requirement of classical
phenotypic AST.

High-content imaging (HCI) integrates automated high-resolution
microscopy and analysis pipelines to measure a multitude of mor-
phological variables in individual cells within a defined population'.
Therefore, HCI can reproducibly capture the characteristics and het-
erogeneity within a microscopic population without compromising
measurement representativeness. The most common application of
HCI in bacteriology is to measure morphological changes under
exposure to drugs with a known mode of action (MoA)“®. This
approach facilitates the qualitative prediction of the MoA of new
compounds based on their dimensional characteristics. Such techni-
ques can be applied to study how bacterial populations respond to
antimicrobials. Therefore, the subtle scrutiny of standardized mor-
phological features may predict how AMR arises and how an organism
will respond to any given chemical perturbation. Studies have begun to
investigate these links using HCI at bacterial single-cell resolution
paired with image analysis, but the relationship between such mor-
phological characteristics and AMR is not yet well defined'**°, Given
the assumption that bacterial populations do not behave uniformly,
characterizing any variation within and between large bacteria popu-
lations requires complex analytical methods beyond the scope of basic
statistical approaches.

Salmonella enterica subsp. enterica serovar Typhimurium (S.
Typhimurium), a classical enteric pathogen, which can induce gas-
troenteritis, diarrhea, and in some cases, systemic disease’**. Perti-
nently, S. Typhimurium is becoming increasingly resistant to key
antimicrobials, including the broad-spectrum fluoroquinolone, cipro-
floxacin, which acts by stalling replication via permanent double-
stranded DNA breaks* . Ciprofloxacin remains a key antimicrobial
against invasive Salmonella infections, and thus, there is a need to
better characterize Salmonella resistance to ciprofloxacin at the cel-
lular level?®”.

Aiming to better understand the relationship between cellular
morphology and AMR, we sought to link HCI with machine learning
algorithms to identify the key characteristics that may predict how a
bacterial population responds to an antimicrobial. To address this
problem, we selected two laboratory-typed strains and two clinically
relevant S. Typhimurium isolates, expose them to four concentrations
of ciprofloxacin over a 24-hour timeframe, and periodically perform
HCI*?, Using detailed machine learning algorithms on the imaging
data, we show that S. Typhimurium have distinct morphological
characteristics that can be exploited to predict ciprofloxacin sus-
ceptibility without prior knowledge of susceptibility phenotype or
exposure to the antimicrobial.
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Isolates were selected based on ciprofloxacin susceptibility phenotype. Ciprofloxacin susceptibility was assessed using ciprofloxacin test strips using CLSI guidelines to distinguish isolates as sensitive (S), intermediate (I), or resistant (R). In silico AMR analysis was

conducted with ARIBA using the Comprehensive Antimicrobial Resistance Database (CARD) on reads files and with the Resistance Gene Identifier, which also uses CARD, on assemblies. *QRDR quinolone resistance determining region.
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Results

S. Typhimurium isolates display variable growth and morpho-
logical characteristics following ciprofloxacin exposure

We selected two clinical isolates and two isogenic laboratory strains of
S. Typhimurium with a range of ciprofloxacin susceptibilities (D23580,
0.03ug/ml;  VNS20081, 1.0ug/ml; SL1344, 0.015pg/ml;  and
SL1344gyrA, 1.5 ug/ml) to subject to sustained ciprofloxacin exposure
(Table 1). Both VNS20081 and SL1344gyrA have a mutation within the
quinolone-resistance determining region (QRDR) of GyrA, a subunit of

Ciprofloxacin (S,I,LR) Ciprofloxacin MIC (ug/ml) GyrA mutation in QRDR*

S
R
S
R
|
S
|
S
S
|
|
|
S
|
S
|
S

5390_4

831412

859913
3198

SL1344gyrA
1304

Isolate
SL1344
D23580
VNS20081
VNB1779
VNB2315
gha113289
gha200597
2101
16755_3
D23580gyrA
10433_3

Table 1| Isolates, ciprofloxacin susceptibility, and in silico analysis of genetic mutations related to fluoroquinolone susceptibility
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Fig. 1| S. Typhimurium responses to ciprofloxacin treatment. a Time-killing
curves of the four isolates (n =3 biological replicates) at OXMIC (left subplot) and
IXMIC (right subplot) against exposure time (horizontal axis). Vertical axis is the
average of colony forming units in logarithm scale. Vertical bars represent standard
deviation. b Morphological responses of S. Typhimurium isolates at 1xMIC against
increasing exposure time (from left to right). CSA, SYTOX Green, and DAPI stains

give red, green, and blue fluorescence, respectively. Representative images were
chosen from one well of one experiment of three biological replicates. ¢ Averaged
length over all bacterial individuals at IxMIC. Horizontal axis is exposure time in
hours. Vertical axis is averaged length in micrometers. Dark purple line is D23580,
blue line is SL1344, green line is SL1344gyrA, and yellow line is VNS20081. Source
data are provided as a Source Data file.

DNA gyrase. A mutation within the QRDR of GyrA is the primary
mechanism of fluoroquinolone resistance in Gram-negative
bacteria®®*. We performed time kill curves with the MIC of cipro-
floxacin, referred to as “1x MIC”, and without antimicrobial as a base-
line comparator, enumerating colony-forming units (CFU) every two
hours for eight hours and after 24 h (Fig. 1a).

All four strains displayed comparable growth dynamics in the
absence of ciprofloxacin, but we observed greater variation in the
growth trajectories between strains at 1 x MIC of ciprofloxacin. Overall,
growth was slower in the presence of ciprofloxacin, with D23580 (dark
purple line) showing the greatest reduction in growth rate compared
to other strains and to D23580 without the drug (Fig. 1a). Despite a
reduced growth rate over the initial 8 h of ciprofloxacin exposure, all
strains treated with 1xMIC ciprofloxacin rebounded to a CFU com-
parable to the no ciprofloxacin control by the 24 h time point. These
dynamics show that the four bacterial strains with their different
genetic compositions exhibit distinct growth trajectories in the pre-
sence of ciprofloxacin. We postulated that the observed differences
may be measured more precisely by assessing changes in cellular
morphology and detailed phenotypes; therefore, we subjected the
strains to HCI to identify morphological differences associated with
ciprofloxacin exposure.

The four S. Typhimurium strains were again grown aerobically in
liquid media at 0%, 1x, 2x, and 4 x MIC ciprofloxacin for 24 h; sam-
ples were taken every two hours for imaging. Cells were treated with
three stains to capture multiple cellular compartments and features:

CSA (bacterial membrane), DAPI (nucleic acids), and SYTOX Green
(“SG”) (dead/damaged cell)*’. Over the course of the experiment, we
observed a temporal change in bacterial length under 1x MIC cipro-
floxacin treatment for up to 24 h, due to the cell’s inability to septate,
as has been observed in previous studies>">'¢'%** (Fig. 1b). This change
in bacterial cell length was more pronounced between 2 and 8h,
although strain SL1344gyrA (containing a GyrA mutation that confers
resistance to ciprofloxacin) could be distinguished by sustained cel-
lular elongation at 24 h (Fig. 1b).

Our HCI platform captured 65 morphological, intensity, and tex-
ture features for each individual bacterial cell within the selected field-
of-view?, generating the power to quantify mean bacterial cell length
for an entire field at each time point. At 1 x MIC ciprofloxacin, the mean
cellular length peaked at 9.51+ 0.20 um (mean + standard error) within
six hours, which was a predicted consequence of fluoroquinolone
exposure**, and subsequently decreased below the initial length
(Fig. 1c). We observed several strain-specific disparities: D23580
exhibited greater cell elongation within six hours, and strain
SL1344gyrA exhibited only a modest decrease in mean cellular length
after eight hours of exposure to 1xMIC of ciprofloxacin. Notably,
D23580 and VNS20081 grown with ciprofloxacin supplementation
displayed considerable heterogeneity in cell length over the course of
the experiment, with the degree of cell length heterogeneity being
dependent on the strain, the ciprofloxacin concentration, and also the
exposure time (Fig. S1). Overall, the general trend across all isolates at
1xMIC of ciprofloxacin was CFU counts by 24 h comparable to no
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ciprofloxacin, a significant increase in bacterial length with time fol-
lowed by a decrease, which was quantified and visually prominent.

Development of a random forest classifier to discriminate
between isolates and between growth conditions

We next sought to disaggregate the role of bacterial strain from
treatment condition. For every strain, the ciprofloxacin exposure,
morphology, intensity, and texture features were averaged across
individual bacteria on a single focal plane within a microwell. The
averaged data was then collated as one datapoint, hereafter referred to
as imaging data/features. Subsequently, we normalized the imaging
data to z-scores, which was visualized on a heatmap plot with hier-
archical clustering (Fig. 2a). The resulting data was segregated into two
main groups, with the majority of the 0 x MIC and 1x MIC imaging
datapoints in one major cluster and the 2 x MIC and 4 x MIC datapoints
in a second cluster (Fig. 2a). To compare the contribution of time to
patterns of the data, these data were projected into two-dimensional
space using principal coordinate analysis (PCoA) (Fig. 2b). The two
principal axes explained 98.6% variation of the data, and we observed a
time-associated left-to-right (purple to yellow) pattern for the four
strains with increasing exposure time to ciprofloxacin. These heatmap
and PCoA clustering suggested that, of the factors measured, drug
concentration and exposure time had the greatest effect on the cel-
lular response to ciprofloxacin treatment.

We next sought to identify imaging features associated with the
drug concentration and exposure time. We trained a random forest
classifier on the imaging data from merged data of all strains to classify
the treatment conditions, which were a combination of exposure time
and ciprofloxacin concentrations (i.e., 0x-2h, 0x—4h,..., 4x-24h,
etc). The random forest yielded an acceptable predictive performance
with an out-of-bag (OOB) error rate of 0.25, signifying that this model
would allow us to effectively identify important imaging features in our
data (Fig. 2¢). The ten most important features for the combined strain
dataset, corresponding to the highest calculated prominence, were
determined by the random forest classifier (Fig. 2d). The importance
score (x-axis) calculated for each feature displays how much the
identified feature contributes to the predictive performance of a
machine learning model, most notably the random forest model in this
study. Seven of these features were associated with fluorescence
intensity and texture (SG intensity mean, SG intensity SD, SG relative
radial deviation, SG profile 2.2, SG profile 1.2, CSA radial mean, and
DAPI compactness); three features were associated with bacterial
morphology (bacterial cell area, spot area (a size boundary used to
identify bacteria), and bacterial cell length).

We next plotted the mean bacterial cell length at different
ciprofloxacin concentrations and exposure time to build upon our
earlier analysis of mean bacterial length at 1xMIC of ciprofloxacin
(Fig. 1c and S2a). These results exhibited a time-dependent trend for
bacterial cell length. Specifically, strains D23580, VNS20081, and
SL1344 responded to ciprofloxacin exposure in a biphasic manner: (1)
bacterial cells initially elongated, and then (2) reduced in length with
time. In contrast, the bacterial length trend for the SL1344gyrA mutant
was uniform. These trends in bacterial cell length were comparable for
the conditions of 1x, 2%, and 4 x ciprofloxacin MIC. We observed a
linear correlation (p =0.72) between drug concentration and the time
for isolates D23580, SL1344, and VNS2008]1 to reach its peak average
length (Fig. 2e). This finding demonstrated how the interrelatedness of
exposure time and concentration impacts bacterial length. We addi-
tionally observed that bacterial cell length became more similar over
time for individual cells belonging to strains D23580, VNS20081, and
SL1344, suggesting that there were more morphological differences
within and between S. Typhimurium strains treated with different
ciprofloxacin concentrations earlier during ciprofloxacin exposure
(Fig. S2a). Images of D23580 and VNS20081 from discrete time points
and across all ciprofloxacin concentrations indicated in most cases a

convergence of bacterial cell length, although this was the most pro-
nounced in VNS20081, and D23580 at 4x MIC from 18 h was a notable
exception (Fig. S2b, c). Overall, we could train a random forest classi-
fier to identify important features common across bacterial strains,
and, using cell length as an exemplar of an important feature, we were
able to examine how cell length changed over time and differed
between concentrations of ciprofloxacin.

S. Typhimurium SL1344 and its GyrA mutant display distinct
differences in imaging features

While it was important to recognize that these four strains of S.
Typhimurium had distinct morphological features, we additionally
wanted to investigate whether SL1344 and its ciprofloxacin-resistant
GyrA mutant derivative exhibited observable differences in cellular
morphology. To identify the treatment condition that segregated
SL1344 and SL1344gyrA with the highest degree of distinction, we
plotted their distance ratio of the four ciprofloxacin concentrations
against exposure time. The distance ratio was minimized at 4 x MIC
and 20h (4xMIC-20h), corresponding to the most separation
between the two isolates (Fig. 3a). Therefore, subsequent analyses
were conducted at 4xMIC at the 20 h time point. We found that
SL1344 and SL1344gyrA segregated well at 4 xMIC-20h, with two
independent 95%-confidence ellipses (Fig. 3b). A random forest clas-
sifier was trained to classify the two organisms, yielding an OOB error
rate of 0, equivalent to 100% predictive performance. We then derived
the ten most important features from the trained random forest clas-
sifier and plotted them against the corresponding highest calculated
importance, shown for SL1344 and SL1344gyrA combined, and for each
strain (Fig. 3c). We plotted the ten most important features of SL1344
and SL1344gyrA individually, finding that each pairwise comparison
was highly significant (p = 0.00075) (Fig. S3). A comparison of repre-
sentative images from 4xMIC-20h showed that SL1344 and
SL1344gyrA were distinct (Fig. 3e).

These ten important features were combined into a radar chart as
observable differences between organisms (Fig. 3d). These data indi-
cated that while SL1344 and SL1344gyrA are isogenic, the GyrA muta-
tion resulted in substantial morphological differences when the
bacteria were exposed to ciprofloxacin. More broadly, these data
suggest that a mutation in the quinolone resistance determining
region (QRDR) of GyrA may have further global effects in addition to
reduced ciprofloxacin susceptibility, and the ability to identify
important morphological features for a given isolate, may provide
novel insights for inferring ciprofloxacin susceptibility.

Ciprofloxacin susceptible and resistant S. Typhimurium isolates
can be distinguished by imaging features

Having quantitatively distinguished S. Typhimurium SL1344 from a
ciprofloxacin resistant SL1344gyrA mutant strain, we sought to dis-
criminate between ciprofloxacin susceptible and resistant isolates with
diverse genetic backgrounds. Notably, ciprofloxacin resistant S.
Typhimurium exhibited the most distinction from susceptible isolates
after 22 h of culture without exposure to ciprofloxacin, which was
quantified by the lowest distance ratio at the condition of O x MIC-22h
(Fig. 4a). This observation suggests that DNA gyrase mutations may
interact with other cellular pathways, which ultimately impact directly
on cellular morphology.

We subsequently investigated how susceptibility to ciprofloxacin
affects the distribution of imaging data at O x MIC-22h. Projecting all 65
imaging features at O x MIC-22h onto a PCoA plot (explaining 98.6%
variation), we found that the resistant organisms clearly segregated
from susceptible organisms (Fig. 4b). We next trained a random forest
model to select the ten most important features associated with
ciprofloxacin resistance at 0 x MIC-22h for further analysis. The ran-
dom forest model possessed a high predictive performance at 0 x MIC-
22h in the best segregation of ciprofloxacin susceptible and resistant
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Fig. 4 | Discrimination of resistant and susceptible isolates at OxMIC-22h.

a Distance ratio (vertical axis), of data grouped by antimicrobial susceptibility, at
different drug concentration against exposure time (horizontal axis). b PCoA plot
for all datapoints at 0xMIC-22h. A subset from PCoA data (Fig. 2b) at 0xMIC-22h
was reused for this plot. Yellow (susceptible) and dark purple (resistant) ellipses are
95%-confident ellipses. ¢ The ten most important features derived from random
forest, with 1,000 decision trees, identifying resistant isolate at OxMIC-22h. Vertical
axis is the important features against the importance on horizontal axis. d Heatmap
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was reused for the plot. e Representative images of D23580, SL1344, SL1344gyrA
and VNS20081 at 0xMIC-2h (left column) and OxMIC-22h (right column) taken from
one well of one of two biological replicates. Source data are provided as a Source
Data file.
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Fig. 5 | Machine learning classifiers to identify resistant isolates at 0OxMIC-22h.
a Predictive performance of machine learning models set against number of most
important features. Horizontal axis is number of features ranked by importance
and vertical axis is accuracy on validation set. b Boxplots and violin plots for pre-
dictive performance of machine learning models on n=1000 random training/
validation/test partitions. Vertical axis is the values of performance metrics. For
each boxplot, the central bar represents median of a metric, the box represents 25%
(Q1) and 75% (Q3) quartile, the lower whisker represents Q1 - 1.5xIQR (interquartile

range), and the upper whisker represents Q3 + 1.5xIQR. c Partial Dependence Plot of
the five most important features (color lines) against resistance probability calcu-
lated by the neural network. Gray lines are Individual Conditional Expectation plot
of each datapoint, which shows responses of the resistance probability as the
feature values change. Horizontal axis is z-score of the features and vertical axis is
corresponding resistance probability. Source data are provided as a Source

Data file.

isolates (Fig. S4a). Therefore, the feature-selection interpretation from
the model was associated with high confidence; the ten most relevant
important features were measurements of fluorescence intensity and
texture (Fig. 4c). These important imaging features were plotted on a
heatmap with hierarchical clustering (Fig. 4d). We again found that
ciprofloxacin resistant S. Typhimurium intrinsically segregated from
susceptible organisms and had distinctive imaging data patterns
(Fig. S4b, Fig. 4e), suggesting that the clustered structure of the data
was driven principally by these key features. These data indicate that
ciprofloxacin-susceptible and -resistant isolates can be distinguished
based on a small number of imaging features without ciprofloxacin
exposure.

Machine learning classifiers can distinguish between cipro-
floxacin susceptible and resistant isolates without ciprofloxacin
exposure

To generalize the distinction between ciprofloxacin-susceptible and
resistant isolates using an extended dataset covering most of the
common ciprofloxacin resistance determinants, we generated new
imaging data of 13 additional clinical strains and three of the four prior
S. Typhimurium strains at 0 x MIC-22h (Table 1). Data from these 16
strains were combined and analysed (Fig. S5). All important features of
these strains were ranked in descending order based on their relative
contribution from the random forest model. The ranked features were
then input stepwise into machine learning classifiers in an increment of
five features to identify the best classifiers for these data. The classi-
fiers included the Naive Bayes classifier, K-nearest neighbour classifier,
support vector machine (SVM), random forest, gradient boosting of
decision trees (CatBoost), and artificial neural networks. Incorporating

many features in the machine learning classifiers diminished the pre-
dictive performance of those models, and the accuracy of most of the
classifiers declined as features were added. Ultimately, we found that
only five morphological features were required to reliably distinguish
antimicrobial susceptibility (Fig. 5a).

To compare predictive performance among the classifiers, the
machine learning models were trained with the five most important
features, and performance metrics were recorded accordingly on
1,000 randomly split training, validation, and testing sets (Fig. 5b). The
metrics consisted of accuracy, sensitivity, specificity, precision, F1
score, and area under the receiver operating characteristic curve
(AUC) (Table S1). Among all experimental classifiers, the neural net-
work exhibited the highest performance metrics compared to other
classifiers. Specifically, on the testing sets, the neural network exhib-
ited an average accuracy of 0.87 £ 0.08 (mean + standard deviation),
sensitivity of 0.87+0.11, specificity of 0.89+0.12, precision of
0.90+0.1, F1 score of 0.87 +£0.08, and AUC of 0.91+ 0.07 (Fig. 5b).

We then sought to interpret the causal relationship between input
features and the output of resistance probability from the neural
network classifier (Fig. 5c). Given imaging features of an isolate, the
neural network classifier predicted the corresponding resistance
probability, with a higher probability indicating a greater likelihood of
an isolate being resistance to ciprofloxacin. Overall, the complex
neural network suggested that resistance probability responded to the
important features in a nonlinear fashion, which is difficult to model
with traditional statistics. Notably, the signal from SYTOX Green stain
comprised 60% of the important features. As SG, a DNA stain, cannot
penetrate intact cells, SG intensity is associated with bacterial cell
permeability. Specifically, low SG intensity, indicating membrane
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analysis. Flowchart of the steps used to test bacteria for antimicrobial resistance.
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study. The third step (blue box) is the intended application of this method: to apply
the imaging and analysis process to other bacterial isolates of interest to predict
antimicrobial susceptibility. The Opera Phenix icon (top right) was created by
BioRender.com, released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license https://creativecommons.org/licenses/by-nc-nd/
4.0/deed.en. The Erlenmeyer flask icon was produced by brgfx on Freepik.

integrity, was associated with high resistance probability (Fig. 5c). This
finding suggests thateven without ciprofloxacin exposure, resistant
isolates might have inherently different membrane permeability than
susceptible isolates.

In contrast to SG intensity, low DAPI intensity, indicating bacterial
DNA content, correlated with low resistance probability, which may be
explained by the membrane integrity and hypothetically by competi-
tive DNA binding with SG (Fig. 5¢). The neural network showed that
high SG profile and CSA profile were associated with a low probability
of resistance and high SG radial relative deviation correlated with a
high probability of resistance. Overall, classification using the neural
network on the additional S. Typhimurium strains of differing cipro-
floxacin susceptibilities confirmed that ciprofloxacin-resistant S.
Typhimurium strains are morphologically distinct from the
ciprofloxacin-susceptible strains, and this distinction can be identified

by assessing specific imaging features without any prior antimicrobial
exposure or knowledge of their susceptibility. Based on our optimized
methods and results using the combination of HCI and machine
learning, we developed a generalized workflow that could be used
across a broader set of bacterial isolates (Fig. 6). This novel method can
thus be tested and trained across more diverse organisms to extend its
applicability.

Discussion

AMR is a critical public health problem, and novel methodologies for
screening and predicting AMR that more rapidly determine AST and
drug pharmacokinetics/pharmacodynamics (PK/PD) are urgently
needed. The ability to predict bacterial behaviour from morphology
could have a wide-ranging set of applications beyond AMR detection in
clinical microbiology and drug discovery, particularly for diagnostics
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and vaccine target identification. Here, we used HCI to determine
morphological differences between isolates of S. Typhimurium
exposed to differing inhibitory concentrations of ciprofloxacin and
then used machine learning models to classify the observed pheno-
types. The proposed machine learning classifiers can infer the inter-
relation between morphological data and the ciprofloxacin-treatment
conditions which were combinations of different ciprofloxacin con-
centrations and different exposure times. We found that ciprofloxacin-
resistant and -susceptible isolates have distinct imaging-based char-
acteristics, independent of ciprofloxacin exposure, which can be dis-
tinguished using machine learning classifiers. To our knowledge, this is
a unique example of machine learning techniques being used to pre-
dict antimicrobial-resistant and -susceptible bacterial isolates using
high-content imaging data without exposure to antimicrobials.
Compared to many other methods to study AMR**, HCI analysis
is high-throughput and can be performed using small culture volumes
to provide a high-resolution view of bacterial populations at the scale
of an individual organism. Our study has shown that HCI does not
require prior knowledge of resistance mechanisms or phenotypic
susceptibility by traditional AST to identify resistant isolates. This
differs from current high-throughput and rapid AST technologies,
including the Vitek2 and the Sysmex P-100 AST platform, which rely on
bacterial growth in the presence of antimicrobial and lack single-cell
resolution. This makes HCI a potentially valuable AST and PK/PD
determination technology. Given that other Gram-negative rod-
shaped bacteria undergo similar phenotypic changes in response to
ciprofloxacin and antimicrobials of other classes™***, it may be pos-
sible to extrapolate our findings to infer the responses of other Gram-
negative bacteria to ciprofloxacin and other antimicrobials. For that
reason, an imaging database at the family level may be sufficient to
train machine learning models to predict resistance of an infection
caused by AMR organisms, without labour-intensive efforts requiring
the development of databases for individual species or subspecies.
The majority of contemporary studies have coupled HCI with
dimensional analyses to distinguish antimicrobials with different
MoA"”"1¢!® and pathogenic isolates with different AMR profiles®. The
disadvantage of such methods is that they do not allow quantitative
prediction of new queried data points, especially ones that lie in the
middle of pre-defined clusters. For example, dimensional analysis is
unable to predict the resistance profile of an isolate with corre-
sponding imaging datapoint falling between resistant and susceptible
clusters. However, very few studies have employed machine learning
classifiers to quantitatively predict antimicrobial MoA™" and target
proteins®®, and machine learning prediction of AMR without exposure
to drugs is non-existent. Due to their high complexity, machine
learning, especially nonlinear, models are considered to be ‘black-box’
tools lacking interpretability, which might prevent scientific under-
standing of the results®. In this study, we designed and implemented
various ‘white-box’ machine learning classifiers to identify AMR iso-
lates of S. Typhimurium and interpreted nonlinear relations between
morphological features and AMR probability. The interpretable
machine learning analysis proposed in this study could be a model for
other HCI analyses, promoting more widespread use of machine
learning in the field of biology, particularly clinical microbiology.
This study has limitations. While we created an HCI analysis
pipeline suitable for single strain bacterial cultures, it likely needs
further refinement to optimally segment bacterial cells, and our use of
a proprietary analysis software may have limited the parameter flex-
ibility. However, similar initial image segmentation and analysis can be
performed using state-of-the-art deep learning architecture, including
U-net*® and Autoencoder®. An improved image analysis algorithm
specialized for bacterial imaging data may provide improved differ-
entiation between resistant and susceptible organisms at the single-
cell level. Our study is also limited by experimental sampling methods
in which averaged morphological data was extracted from images

acquired on cross-sectional samples of S. Typhimurium populations at
discrete time points. As a result, it was not possible to measure the
longitudinal transformation of specific bacterial morphologies, which
reduces the single-cell resolution of the assay. Furthermore, pure
bacterial cultures were grown in liquid medium in a laboratory setting,
which arguably makes the study less clinically relevant, as we do not
know how accurately our classifier would work on polymicrobial
infections or suboptimal laboratory conditions. However, this
approach facilitates further studies on S. Typhimurium at the mole-
cular and cellular levels, which could be leveraged for rapid AST.
Additionally, our study exclusively focused on S. Typhimurium and
ciprofloxacin because ciprofloxacin is a first-line treatment for invasive
Salmonella infection*>** not investigating inter-species variability and
drug-specific morphological changes that may be important for drug
resistance. It is possible that this methodology may require refinement
for other bug-drug combinations. However, prior studies have shown
the similarities in morphology between different Gram-negative bac-
terial species subjected to antimicrobials”¢*®, suggesting that these
trends may be generalizable across Gram-negative bacteria. Addi-
tionally, while we were aware of the efflux pumps and porins found in
the strains we used, we did not investigate their relative contributions
to resistance, which may be important factors. Lastly, we recognize
that this system in its current form would be prohibitively complex and
expensive in most clinical laboratory systems; however, we anticipate
that novel diagnostic devices could leverage the small number of
important imaging features identified by this method for accurate
AMR prediction.

Using various machine learning algorithms, we have conceived an
analysis pipeline for interpreting and predicting ciprofloxacin resis-
tance phenotypes of S. Typhimurium based on high-content confocal
imaging data, which can serve as a framework for further studies. This
framework can be generalized to bridge the gap between molecular
information and bacterial cellular responses, spanning from novel
compound or antibody targets to predicting unknown protein func-
tions to novel resistance mechanisms. In the field of diagnostics, this
could be exploited to develop high-accuracy machine-learning classi-
fiers for rapid AST**** that do not rely on traditional clinical micro-
biology techniques. Moreover, this framework, coupled with
increasingly accessible microfluidic technology*®, could facilitate high-
throughput diagnoses, thus streamlining clinical lab workflows.
Although the clinical application may still be distant, this imaging and
machine learning-based approach may be an important tool in the
future for rapidly and accurately assessing drug resistance in the
hospital context. Whilst innovative rapid AST approaches have
advanced recently”, the development of novel antimicrobials has
declined in the last three decades*®. This bleak outlook demands novel
technologies to speed up the development of antimicrobial therapies.
Particularly, HCI can be used to predict the MoA of new antimicrobial
agents'* providing data-driven guidance for further characterization of
the agents. The technology has been employed to screen monoclonal
antibodies against multi-drug resistant bacteria?®, which opens an
opportunity to assess the efficiency of antibodies binding to hetero-
geneous populations of bacteria at individual scale. While living
organisms are driven by complex molecular mechanisms, our current
understanding of biological (particularly microbial) systems has been
limited by how humans observe and interpret experimental data.
Beyond the application of clinical microbiology, HCI aided by ML
algorithms could help observe and explain nuanced cellular mor-
phology, and, combined with genomic data, could vastly increase our
understanding of the genotype-phenotype linkage. HCI, integrated
with other high-throughput and automation technologies, is expected
to produce massive multi-modality data. These can be combined with
interpretable machine learning to generate novel hypotheses and
provide biological insights to address AMR and other global
health needs.
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Methods

Ethical approval

Ethical approval for the isolates from the Democratic Republic of the
Congo study was granted by the Institutional Review Board of ITM (ref.
613/08), the Ethics Committee of Antwerp University (ref. 8/20/96),
and the School of Public Health of Kinshasa in DRC (ref. 074/2017).
Isolates were shared via Material Transfer Agreements with ITM, INRB,
and IVI, and shipments were performed according to IATA norms.
Ethical approval for the surveillance study in Ghana from which iso-
lates were obtained was granted by the IVI Institutional Review Board
(IRB) and the local research ethics committee. Ethical approval for the
isolates from Vietnam was provided by the scientific and ethics com-
mittees of the collaborating institutions and the Oxford Tropical
Research Ethics Committee.

Bacterial isolates and growth conditions

Prior to experimentation, all isolates (Table 1) were grown on Iso-
sensitest agar (Oxoid, CM0471) and subjected to ciprofloxacin M.I.C.E.
(Oxoid, MAO104F) or Etest (BioMerieux, 412311) to determine baseline
ciprofloxacin susceptibility. Isolates were maintained on Isosensitest
agar and streaked fresh weekly from frozen stocks. To prepare for
imaging experiments, isolates were always inoculated into 10 ml Iso-
sensitest broth (Oxoid, CM0473) from plates, followed by overnight
shaking at 37 °C for 16-18 h.

GyrA spontaneous mutants

To isolate spontaneous nalidixic acid mutant lines from S. Typhimur-
ium isolates SL1344 and D23580, bacterial cultures were grown over-
night in L-broth, and 100 yl of this was spread onto L-agar containing
100 pg/ml nalidixic acid for initial spontaneous mutant generation.
After overnight incubation at 37 °C, single colonies that had grown
were re-plated on L-agar also containing 100 pg/ml nalidixic acid. Any
colonies that were present on these agar plates were then streaked
serially onto agar plates harbouring increasing concentrations of
nalidixic acid up to 400 pg/ml, then these were switched to plates
containing ciprofloxacin, harbouring from 0.1 ug/ml ciprofloxacin up
to 1.0 ug/ml ciprofloxacin. Once colonies were able to grow stably on
1.0 pg/ml ciprofloxacin, pure cultures were established and saved as
frozen stocks. From the frozen stocks, overnight cultures were grown
for genomic DNA purification and were purified using the Promega
Wizard DNA Purification Kit (Promega, A1120). Following purification,
DNA was PCR-amplified to check for single nucleotide polymorphisms
(SNP) in the QRDR of gyrA using primers obtained from a prior study
and manufactured by IDT: 5-GAGATGGCCTGAAGC-3’ for nucleotides
108 to 127 and 5-TACCGTCATAGTTATCCA CG -3’ for nucleotides 435
to 454, forward and reverse, respectively*’. A C>A SNP change was
found = in gyrA. To evaluate genetic differences between parent and
isogenic strains, the isogenic and parent strains were grown for 24 hin
Isosensitest broth prior to genomic DNA isolation for whole genome
sequencing (detailed below).

Ciprofloxacin susceptibility testing by MIC eTest

Isolates were streaked from frozen stocks on Isosensitest plates and
grown at 37 °C. Three serial streaks on fresh plates were subsequently
performed. For M.L.C.E. or Etest application, a few colonies from each
plate were inoculated in ~3 ml PBS and vortexed well to create a slightly
cloudy solution. 100 pl of the solution was spotted on Isosensitest
plates and spread well before gently laying down the MIC test strip.
Inoculated and control plates were incubated overnight at 37 °C and
then visually analysed. Each S. Typhimurium isolate was tested a
minimum of two times to ensure an accurate reading.

Time Kkill curves
Four S. Typhimurium isolates were chosen for the initial time kill curve
analysis, performed as in Sridhar et al. *. These were D23580, SL1344,

SL1344gyrA, VNS20081°°%, Initially, colonies from plates were inocu-
lated into 10 ml of Isosensitest broth, and these were shaken at
200 rpm at 37 °C overnight. 10 pl of the subsequent culture was then
added to 990 pl of 1x PBS to make a 1:100 dilution for the inoculum.
100 pl of this preparation was added to 10 ml of Isosensitest containing
different levels (0x, 1x, 2x, 4x MIC) of ciprofloxacin according to the
predetermined MIC of each isolate (ul). The starter inoculum was
between 1 and 5x10° CFU/ml. Cultures were incubated shaking at
37°C, and aliquots were taken to determine colony forming units
(CFU) at 0, 2, 4, 6, 8, and 24 h. For this analysis, serial dilutions were
made using samples of each culture, and a total of 50 ul of each dilution
was plated using 10 ul spots of inoculum onto L-agar. CFUs were
counted and determined as CFU/ml. Means and standard deviations
(SD) of three replicates per isolate were calculated.

Bacterial whole genome sequencing

Library preparation for Illlumina sequencing was undertaken at the
Wellcome Sanger Institute using automated systems using the IHTP
WGS NEB Ultra Il library kit. Libraries were sequenced on an Illumina
HiSeq platform (Illumina, San Diego, USA) using standard running
protocols. lllumina adapter content was removed from the reads using
Trimmomatic v.0.33. Reads mapping was undertaken using the WSI
bacterial mapping pipeline, which uses bwa, and de novo assembly was
performed using Velvet**. For SL1344gyrA and D23580gyrA mutants,
lllumina HiSeq reads for the isogenic mutants and parental strains
were mapped to the parental reference strain: SL1344 (FQ312003.1)
and D23580 (FN424405.1), respectively, using SMALT v0.7.4 (sanger.-
ac.uk/resources/software/smalt/) to produce a BAM file’. Briefly,
variant detection was performed as detailed here: SAMtools mpileup
v0.1.19 with parameters -d 1000 -DSugBf and bcftools v0.1.19°° were
used to generate a BCF file of all variant sites. The bcftools variant
quality score was set as greater than 50, mapping quality was set as
greater than 30, the allele frequency was determined as either O
for bases called same as the reference or 1 for bases called as a SNP
(afl < 0.95), the majority base call was set to be present in at least 75%
of reads mapping at the base (ratio <0.75), the minimum mapping
depth was four reads, a minimum of two of the four had to map to each
strand, and strand_bias was set as less than 0.001, map bias less than
0.001, and tail bias less than 0.001. Bases that did not meet those
criteria were called uncertain and removed. A pseudogenome was
constructed by substituting the base calls in the BCF file in the refer-
ence genome. Recombinant regions in the chromosome, such as
prophage regions, were removed from the alignment and checked
using Gubbins v1.4.107. SNP sites were extracted from the alignment
using snp-sites and analysed manually. SNPs in gyrA identified by PCR
were confirmed. For SL1344gyrA, a SNP (C~>A) at position 2373805 was
found to confer a D87Y mutation in GyrA. Isolate accession numbers
are in Table S2.

Opera Phenix imaging

Two separate Opera Phenix experiments were performed. The first
experiment was a 24 h evaluation of bacterial growth under four
ciprofloxacin concentrations (0x, 1x, 2x, 4xMIC) at two-hour
increments (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24) conducted on four
isolates SL1344, SL1344gyrA, D23580, and VNS20081, which has been
previously described in ref. 32. 150 ul of each isolate was inoculated
1:1000 in 150 ml Isosensitest broth with each appropriate concentra-
tion of ciprofloxacin in a 200 ml flask and incubated at 37 °C shaking at
200 rpm. Following 2 h of growth, 10 ml of each culture was removed
from the flask, and the flask was returned to the incubator. The 10 ml
fraction was centrifuged at 3200 x g for 7 min at 4 °C, and the super-
natant was decanted. The pellet was resuspended in 100 ul PBS, and
50 ul was added to two wells of a vitronectin-coated Opera CellCarrier
Ultra-96 well plate (Perkin Elmer, 6055302). The plate was statically
incubated at 37 °C for 10 min, after which the bacterial cultures were
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aspirated, fixed in 4% paraformaldehyde (PFA) for 10 min, and washed
with 1x PBS. After fixation, the plate of fixed bacteria was kept at 4 °C
until the next time point. The same protocol was followed for each
time point with this exception: once there was sufficient bacterial
growth (as assessed visually), 10 ml of bacteria was still removed from
the flask at each time point; however, the culture was either cen-
trifuged and resuspended in 250 ul or 50 ul dense cultures were added
neat to wells. An average of 5x10° bacteria was added to each well.
Upon completion of the 24 h period, wells were incubated with 2%
bovine serum albumin (BSA) for 30 min and then for 1h at ambient
temperature in the dark with CSA-Alexa Fluor 647 (Novus Biologicals,
NB110-16952AF647) at 1:1000 in BSA. Wells were aspirated and then
incubated with solutions containing 1:100 4/,6-diamidino-2-pheny-
lindole (DAPI) (Invitrogen, D1306) and 1:200 SYTOX Green (Invitrogen,
S$7020) for 20 min. Wells were washed 1x with PBS; plates were sealed
and imaged. Imaging was performed using the 63x water immersion
objective in confocal mode on an Opera Phenix high content imaging
platform. For each well, 40 fields across two planes (distance of
0.5 nm) were evaluated. Number of bacteria imaged per well varied by
experiment and isolate, but the average per well was between 600 and
2000, and the lowest number of bacteria captured in any well across all
isolates and replicates was 80. Three biological replicates of this
experiment were performed for D23580 and VNS20081; two biological
replicates were performed for SL1344 and SL1344gyrA. Two technical
replicate wells were used for each condition in every biological
replicate.

The second Opera Phenix imaging experiment used 16 of the 17
isolates detailed in Table 1, including all except D23580. Here, the only
time point assessed was 22 h, and no ciprofloxacin treatment was used.
However, to maintain experimental consistency with the previous
experiment, cultures were grown like before in 150 ml Isosensitest, and
10 ml of culture was removed every two hours to mimic the change in
growth condition. At the 22 h time point, 50 ul of each culture was
added (neat) to two wells of a vitronectin-coated Opera CellCarrier
Ultra-96 well plate, and the same fixation and staining protocol as
above was used.

Opera Phenix analysis

Analysis was performed using a Perkin EImer Harmony software ana-
lysis pipeline designed for S. Typhimurium, as previously described*,
Briefly, inputted images were subjected to flatfield correction, and
images were calculated using the DAPI and CSA (AlexaFluor 647)
channels. Image calculations were refined by size and shape char-
acteristics. A linear classifier was applied to the filtered population,
single bacteria were identified, and morphology and intensity char-
acteristics were calculated Feature names outputted were in some
cases specific to the Harmony software (e.g. “SG Profile 2.2”.) The
output of the Harmony analysis was tabulated by plate and object, and
results were further analysed and visualised in R (v 3.6.1)* using
packages ‘dplyr’ and ‘ggplot2”*°. Adobe Illustrator was used to format
images and graphs for presentation.

AMR in silico analysis

ARIBA (v2.14.6)*° using the Comprehensive Antimicrobial Resistance
Database (CARD, v3.1.3)®" with default parameters was used on reads
data of all isolates to determine AMR genes. Results were cross-
checked using ResFinder®’.

Machine Learning data analysis

Averaged morphological data was analysed using Matlab (R2021a),
Python (version 3.5), and R (version 4.0.5)°® programming language
based on toolbox, package, and library availability. PCoOA was per-
formed using ‘vegan’ package®. Heatmap and spider plots were gen-

Kruskal-Wallis tests were performed using ‘ggpubr’ package®. For
feature selection, ‘randomForestSRC’ package®® was utilized to train a
random forest model with default parameters and 1,000 decision
trees. Features were selected and ranked decreasingly by importance
index®’ extracted from the random forests.

To assess segregation of the isolates, we defined an index named
distance ratio r(Xy,...,Xy,...,X,) as the following equation

_E(Ix®@ —x0),)x0ex; xVeX

r(Xq... = - - - -
% E([le® — x0) xOeX XDEX
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where X, is data group, e.g., resistant versus susceptible, x® is a
datapoint, Ii(.) is statistical mean, and |l.|l, is Euclidean norm. A low
distance ratio indicates data points within one group are closely rela-
ted while well separated from ones in other groups.

The ‘Statistics and Machine learning’ toolbox on Matlab was used
to train the Naive Bayes classifier, KNN classifier, SVM, and random
forest. Neural network and CatBoost were trained with the ‘Neural
network’ toolbox on Matlab and ‘CatBoost’ library’® on Python,
respectively. Data were split randomly into training, validation and test
sets with a ratio of 50:25:25. Training sets were used to estimate
parameters of the machine learning models, while validation sets were
used to choose hyperparameters. Finally, models’ performance was
calculated on the test sets. Hyperparameters are the configurations to
control the learning process and cannot be estimated from data. Grid-
search algorithm was employed to optimize the hyperparameters of
all the machine-learning models. Optimal hyperparameters were cho-
sen, on the validation set, corresponding to the highest accuracy
defined as

ACC= ——— ()]

where P was the number of actual resistant isolates in the data, N was
the number of actual susceptible isolates, TP was the number of
accurately predicted resistant isolates, and TN was the number of
accurately predicted susceptible isolates. Other metrics for perfor-
mance evaluation, including sensitivity (SEN), specificity (SPE, preci-
sion (PRE), and F1 score, can be described as the follows

SEN= % 3)
SPE= % “)
PRE = % Q)

where PP was number of predicted resistant isolates. AUC was calcu-
lated with ‘perfcurve’ function on Matlab. For interpretation of the
machine learning models, particularly neural networks, an in-house
code was built to generate Partial Dependence Plot (PDP)”" and
Individual Conditional Expectation (ICE)”* plot. In the ICE plot, for each
;V:l, the curve (Si) representing models’ output is
plotted against x?, while x{”’ remains fixed, where N is the size of the
dataset, i is index of the ith datapoint, xs is the interpreted feature, x
is other input features. PDP was defined as average of ICE

datapoint in {(x x)}

erated with ‘pheatmap™* and ‘fmsb’®® packages respectively. Other ﬁ(xs) -E, [f(x&xc)] - /f(xsxc)dp(xc) %)
plots were created with ‘ggplot2”® and ‘ggsci’®® packages in R. Pairwise s s
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In practice, the partial function fx\s is estimated by calculating
averages on the dataset

~ 1M .
fry(x5) = NZf(xs:x(c”> ®)
i=1

Statistics and Reproducibility. No statistical method was used to
predetermine sample size. No data were excluded from the analyses.
The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

High-content imaging data will be provided upon request. Source data
used to generate figures are provided with this paper as file “Source
Data.xlIsx”. Isolate accession numbers are listed in Supplementary
Table 2. Source data are provided with this paper.

Code availability
Code used in this study is available at https://github.com/Tuan-
AnhTran/Cip_STM (https://doi.org/10.5281/zenodo0.11004491).
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