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A versatile automated pipeline for
quantifying virus infectivity by label-free
light microscopy and artificial intelligence

Anthony Petkidis 1,2,4, VardanAndriasyan 1,4, LucaMurer1,3, Romain Volle 1 &
Urs F. Greber 1

Virus infectivity is traditionally determined by endpoint titration in cell cul-
tures, and requires complex processing steps and human annotation. Here we
developed an artificial intelligence (AI)-powered automated framework for
ready detection of virus-induced cytopathic effect (DVICE). DVICE uses the
convolutional neural network EfficientNet-B0 and transmitted light micro-
scopy images of infected cell cultures, including coronavirus, influenza virus,
rhinovirus, herpes simplex virus, vaccinia virus, and adenovirus. DVICE
robustly measures virus-induced cytopathic effects (CPE), as shown by class
activation mapping. Leave-one-out cross-validation in different cell types
demonstrates high accuracy for different viruses, including SARS-CoV-2 in
human saliva. Strikingly, DVICE exhibits virus class specificity, as shown with
adenovirus, herpesvirus, rhinovirus, vaccinia virus, and SARS-CoV-2. In sum,
DVICE provides unbiased infectivity scores of infectious agents causing CPE,
and can be adapted to laboratory diagnostics, drug screening, serum neu-
tralization or clinical samples.

Viruses affect cells in many different ways, including metabolism,
signal transduction, gene expression, intracellular membrane
organization, cytoskeletal integrity, and overall morphology1–3.
Collectively, these changes are known as the cytopathic effect
(CPE). CPE can be highly pathogen-specific, bearing diagnostic
potential4,5. CPE is a hallmark of acute virus infection, and its
detection is key for biological titer determination of inocula, as
exemplified by plaque assay or endpoint dilution assays yielding
tissue culture infectious dose 50 (TCID50) values

6–9. In the labora-
tory, these assays have traditionally been performed using cell
stains, for example crystal violet (CV), or nuclear dyes, such as the
DNA-intercalating Hoechst compounds10–12. In clinical settings,
TCID50 assays are not routinely used due to the requirement of
manual annotation, the lack of virus specificity, and a rather slow
readout that can take several days. Here we deliver a robust pro-
cedure to massively improve accuracy, automation, and marker-

free infection detection. The procedure is based on light micro-
scopy and AI and delivers virus-type-specific results. Light micro-
scopy is suitable to study infected cells in live mode. It monitors
changes in shape, morphology, and physiological state of indivi-
dual cells or population of cells, and is suitable to assess infection
variability13–16. In the past decade, automatic interpretation of
microscopy images has been increasingly enhanced by deep
learning (DL) and convolutional neural networks (CNNs) and
enabled numerous applications in cell and infection biology17,18. For
instance, transmitted light microscopy combined with DL predicts
fluorescent labels19,20, or classifies cell state and type21. Recent
efforts have combined label-free imaging methods with image
processing and artificial intelligence (AI) for automated detection
of viral CPE in populations of cultured cells. For example, Hoch-
dorfer and colleagues described that an automated image proces-
sing pipeline assessing cell confluency in transmitted light images

Received: 22 September 2023

Accepted: 3 June 2024

Check for updates

1Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland. 2Life Science Zurich Graduate School, ETH
and University of Zürich, 8057 Zurich, Switzerland. 3Present address: Roche Diagnostics, Forrenstrasse 2, 6343 Rotkreuz, Switzerland. 4These authors
contributed equally: Anthony Petkidis, Vardan Andriasyan. e-mail: urs.greber@mls.uzh.ch

Nature Communications |         (2024) 15:5112 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4135-9576
http://orcid.org/0000-0002-4135-9576
http://orcid.org/0000-0002-4135-9576
http://orcid.org/0000-0002-4135-9576
http://orcid.org/0000-0002-4135-9576
http://orcid.org/0000-0002-9619-6655
http://orcid.org/0000-0002-9619-6655
http://orcid.org/0000-0002-9619-6655
http://orcid.org/0000-0002-9619-6655
http://orcid.org/0000-0002-9619-6655
http://orcid.org/0000-0002-4442-4652
http://orcid.org/0000-0002-4442-4652
http://orcid.org/0000-0002-4442-4652
http://orcid.org/0000-0002-4442-4652
http://orcid.org/0000-0002-4442-4652
http://orcid.org/0000-0003-2278-120X
http://orcid.org/0000-0003-2278-120X
http://orcid.org/0000-0003-2278-120X
http://orcid.org/0000-0003-2278-120X
http://orcid.org/0000-0003-2278-120X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49444-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49444-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49444-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49444-1&domain=pdf
mailto:urs.greber@mls.uzh.ch


can be used to detect infection of BHK-21 cells with vesicular sto-
matitis virus (VSV)22. Unfortunately, this investigation was limited
to only one virus and one cell line. Similarly, work by Wang and
colleagues showed that DL can be employed for the detection of
influenza-induced CPE in MDCK cells23. CPE detection by neural
networks has also been described for influenza virus, parainfluenza
virus, and enterovirus24, but experimental conditions were not
documented, and the code or dataset is not available, limiting
broader useability. Another study proposed that DL can be used for
early detection of viral CPE25, but this approach requires a specifi-
cally trained model for a given cell line, virus, and imaging mod-
ality, making it difficult to use. Here we present a broad framework
for detection of virus-induced cytopathic effect (DVICE) to score
CPE in populations of cultured cells under well-defined experi-
mental settings. We employ the recent CNN EfficientNet-B026 to
achieve robust infection detection for a panel of different cell lines
and viruses. Our procedure is compatible with live-cell imaging. It
specifically recognizes image regions associated with CPE and
opens new ways to standardization and automation of virus infec-
tivity measurements.

Results
Automated transmitted light microscopy combined with AI-
based image classification enables high-throughput virus infec-
tion readout
To establish a workflow for automated scoring of virus infections, we
performed a serial dilution infection protocol, and annotated infection
phenotypes by transmission light (TL) microscopy and crystal violet
(CV) staining to obtain ground truth data. The training of DVICE was
done in the next step, and the results were compared afterward
(Fig. 1A). Ten thousand permissive cancer cells were seeded into 96-
well plates, followed by inoculation with either human adenovirus
species C type 5 (short AdV), herpes simplex virus type 1 (short HSV),
influenza A virus (IAV), rhinovirus type A16 (short RV), vaccinia virus-
WR (short VACV), coronavirus (CoV)−229E, CoV-OC43, or several iso-
lates of severe acute respiratory syndrome CoV-2 (short SARS-CoV-2),
and incubated cells for 7 days to allow for manifestation of CPE. TL
images were acquired using a high-throughput microscope ImageX-
press Micro Confocal (IXM-C, Molecular Devices) with a ×4 magnifi-
cation objective and a plate loading robot. One central site was imaged
for each well, covering approximately one-third of the well. Cells were

Fig. 1 | Workflow for automated readout of viral infection and dataset com-
position. A Classical method (top) for infection readout employs crystal violet
staining followed by manual annotation of virally induced lesions in a cell mono-
layer. Our proposed approach (bottom) uses automated image acquisition and AI-
based detection of virus-induced cytopathic effect (DVICE). The red overlay indi-
cates areas of network attention. Scale bar 1mm. B Composition of acquired
dataset, indicating the proportions of viruses in the images of infected wells, and

cell lines for uninfected wells. C Quantification of cell confluency for different
viruses and for uninfected images. Lines show the medians of the distributions,
boxes show the quartiles, and whiskers are drawn to the farthest datapoint within
1.5*inter-quartile range (IQR) from the nearest hinge. CoV-229E: n = 342, VACV:
n = 1520,HSV:n = 1561, AdV:n = 10,422, RV:n = 5466, CoV-OC43:n = 675, SARS-CoV-
2: n = 2160, IAV: n = 722, uninfected: n = 35,743. Source data are provided as a
Source Data file.
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then fixed with 4% paraformaldehyde (PFA) for 30min, and stained
with 0.25%CV. The infection of the stained samples was independently
annotated by three human experts. Infection-annotated images were
then used to train a CNN based on the EfficientNet-B0 architecture26

for infection state classification. The number of images used from the
different viruses comprised a total of 58,619 images, of which 22,873
images (39%) were from infected, and 35,746 images (61%) from
uninfected wells (Fig. 1B). The dataset comprised five different cell
lines, human lung epithelial A549 cells for infectionwithAdV,HSV, IAV,
VACV, human cervical cancer HeLa-ATCC cells for VACV, HeLa-Ohio
cells for RV, human hepatomaHuh7 cells for CoV-229E and CoV-OC43,
and African green monkey VeroE6 cells for SARS-CoV-2. Example
images areprovided inSupplementaryFig. 1, and viruses, cell lines, and
other reagents are listed inTable 1. Toenhance the infection readout of
SARS-CoV-2, we used three transgenic cell lines expressing the
angiotensin-converting enzyme 2 (ACE2) or the transmembrane pro-
tease (TMPRSS2), namely A549-ACE227, Huh7-ACE227, and VeroE6-
TMPRSS228. We also acquired a total of 3840 images from uninfected
sparsely seeded A549, HeLa-ATCC, HeLa-Ohio, and Huh7 cells, 960
images from each cell line.

As previous work demonstrated that cell confluency can be a
surrogate for the infection state22, we next quantified the cell con-
fluency in our dataset (Fig. 1C, Supplementary Fig. 2). As expected, the
median confluency was highest for uninfected wells. Yet, it showed
high inter- and intra-class variability for the different conditions.
Intraclass variability may arise from the range of viral concentrations
used in the serial dilution assays, and interclass variability can be due
to the virus-specific manifestation of CPE.

A convolutional neural network achieves human-level accuracy
in infection readout and identifies infection-specific features
We used human expert annotation of the CV-stained plates as ground
truth for the infection state and thereupon trained a light-weight CNN
based on the EfficientNet-B026 architecture to classify the TL images of
infected and uninfected wells. For network training, images were
downscaled to a size of 224 × 224 pixels using bicubic interpolation.
We trained DVICE for the classification of infected images and com-
pared its performance to several conventional machine learning (ML)
algorithms, including support vector machine (SVM), k-nearest
neighbors (k-NN), Gaussian naive Bayes (GNB), decision tree (DT)
classifier, logistic regression (LR), and random forest (RF) classifier.
DVICE achieved an area under the receiver operating characteristic
curve (AUROC) of 0.991 ± 0.001, surpassing canonical ML methods
(Fig. 2A, Supplementary Fig. 2A). Conventional ML methods were
trained on histograms of oriented gradients (HOG)29, which demon-
strated superior performance compared to confluency- or intensity-
based input features (Supplementary Figs. 3 and 4).

Next, we assessed the suitability of DVICE for application in the
readout of TCID50 plates. Entire virus titration plates were withheld
from the training and validation set, and the trained model was used
for infection state classification and subsequent TCID50 calculation
using the specific infection (SIN) method30. Compared with human
annotation, DVICE achieved a squared Pearson correlation coefficient
of R2 = 0.986 (slope 1.00 ±0.01, n = 130, p = 10�120), indicating excel-
lent agreement between actual and predicted labels (Fig. 2B, C). To
determine whether DVICE learned robust features for infection scor-
ing,we used aprocedure known as class activationmapping (CAM)31 to
visualize important regions for infection detection (Fig. 2D). This
procedure harnesses the global average pooling (GAP) layer of the
EfficientNet-B0 architecture, which yields a spatial feature map. This
feature map can be upscaled and overlaid with the originally acquired
image (Fig. 2D). In images with confined regions of CPE, the network
attention was typically focused on regions with virus-induced lesions.
Interestingly, localization was still preserved despite the heavy image
resizing to ~1% of the original pixel count. The network had a tendency

towards disregarding the dark image corners and had a flat attention
map for uninfected wells. These CAM analyses show that DVICE
recognizes robust features associated with CPE, and thereby enables
reliable infection detection.

DVICE is suitable for real-time infection monitoring and trans-
ferable to different imaging modalities
As our framework does not require chemical fixation of the sample and
is compatible with live-cell imaging, we hypothesized that DVICE can be
used for real-time monitoring of virus infections. To test this, ten
thousand A549 cells were seeded in each well of a 96-well plate over-
night and infected with AdV-IX-FS2A-GFP, which expresses GFP under
the control of the promoter of the intermediate-late viral protein IX32. TL
and GFP fluorescence images were acquired each day until day 7 post-
infection (pi) (Fig. 3A). Virus concentration affected both the onset and
magnitude of GFP expression. The onset of GFP expression generally
precededCPE detected byDVICE, suggesting that DVICE scores features
late in infection but not early ones when cells are still fully attached and
do not show lesions in the CV staining. Importantly, DVICE did not score
sparse cells as infected, despite a correlation between infection state
and confluency in the training dataset (see Fig. 1C). We attribute this to
the presence of images of sparsely seeded cells in our dataset, enabling
the network to learn that low cell confluency is not a defining hallmark
of viral infection state. In summary, DVICE can be used to monitor the
progression of infection in live cells and without interference.

A frequent limitation in applications of neural networks is a lack of
generalization beyond the conditions of training33,34. To address this
issue, we performed leave-one-out cross-validations, where we trained
and validated the network on all images, including uninfected samples,
while withholding images from a given virus. The performance of the
network was then assessed on the withheld images. Results showed
high AUROC values > 0.7 up to near 1 (Fig. 3B), suggesting that the
performance variability for the different viruses could be attributed to
thenatureof theCPE or the number of images in the particular training
dataset. Notably, however, the overall high AUROC values in the leave-
one-out cross-validation indicate good generalization, which favors
the DVICE application to new settings. Accordingly, the CV staining for
HSV showed a better spatial separation between infected and unin-
fected wells compared to AdV (Supplementary Fig. 1C and D). These
results suggest that a fast replicating virus, such as HSV35, gives rise to
distinct CPE compared to a somewhat slower replicating virus, such as
AdV species C, for example C2 or C536.

To further assess the versatility of DVICE, TL images from infected
cells were acquired with two different microscopes, the IXM-C
(Molecular Devices), which was used to record the training dataset,
and theCytation 5microscope (Agilent). Ten thousandA549 cellswere
seeded per well in 96-well plates and infected with serial dilutions of
AdV,HSV, or VACV orwere left uninfected. At 7 dpi, DVICE achieved an
AUROC of 0.873 ±0.071 for images acquired at the Cytation 5 micro-
scope, compared to 0.941 ± 0.004 for the IXM-C (Fig. 3C). The pre-
dictions of DVICE for images acquired at the IXM-C and the Cytation 5
were in excellent agreement, as reflected in a value of 0.92 for Krip-
pendorff’s alpha37.

High accuracy of DVICE at scoring infectious SARS-CoV-2 in
human samples
As DVICE successfully scored viral infectivity, we tested the possibility
that our workflow could detect viral infectivity in clinical samples. We
spiked samples of human saliva from a PCR-negative donor with a
laboratory SARS-CoV-2 BA.1 variant stock reaching a virus titer corre-
sponding to genome equivalents seen in hospitalized COVID-19
patients38,39. Samples were diluted with DMEM, passed through a
0.22 µm filter to remove cellular debris as well as bacteria, and then
incubated at different temperatures for different periods of time, fol-
lowed by biological titer determination in TCID50 assays (Fig. 4A). The
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presence of saliva reduced the viral titer in a time- and temperature-
dependent manner compared to virus in DMEM only, but infectious
titer was readily detectable in all conditions, providing proof-of-
concept for investigation of clinical specimens. Human annotation of

infection was compared to DVICE for a total of 3646 images (including
627 infected images) of A549-ACE2, Huh7-ACE2, or VeroE6-TMPRSS2
cells inoculated with serial dilutions of saliva spiked with SARS-CoV-2
BA.1, where DVICE achieved an AUROC of 0.918 ±0.020. DVICE showed

Table 1 | Key reagents and resources used in this study

Reagent or resource Source Identifier

Bacterial and virus strains

Adenovirus C5 Kindly provided by Silvio Hemmi (University of Zurich, Switzerland)

Adenovirus C5-IX-FS2A-GFP Kindly provided by Silvio Hemmi (University of Zurich, Switzerland)45 https://doi.org/10.1016/j.isci.2021.
102543

hCoV-229E-GFP Kindly provided by Dr. Volker Thiel (University of Bern, Switzerland)64 https://doi.org/10.1128/mBio.
00171-10

hCoV-OC43 American Type Culture Collection (ATCC) Cat #VR-1558

SARS-CoV-2 BA.1 (B.1.1.529.1) Obtained from the RIVM (Netherlands) through European Virus
Archive global43

NH-RIVM-71076/2021

RV-A16 Luca Murer51 N/A

VACV_WR E/L-GFP Kindly provided by Jason Mercer (University of Birmingham, UK)

HSV-1-C12-CMV-GFP Kindly provided by Stacey Efstathiou (University of Cambridge,
UK)35,55,56

Influenza A virus (IAV) H1N1 WSN Kindly provided by Yohei Yamauchi35 N/A

Cell culture reagents

DMEM medium Sigma-Aldrich Cat #D6429

Non-essential amino acids (NEAA) Sigma-Aldrich Cat #M7145

Fetal bovine serum (FBS) Gibco Cat #10270-106

Penicillin–streptomycin Sigma-Aldrich Cat #P0781

Trypsin-EDTA Sigma-Aldrich Cat #C-41020

PBS buffer w/o Ca2+ and Mg2+ Animated/Bioconcept Cat #3-05P29-M

Blasticidin InvivoGen Cat #ant-bl-1

Geneticin Merck Cat #G418-RO

Chemicals, peptides, and recombinant proteins

TRIzol Reagent Invitrogen Cat #15596026

Molecular biology, RT-qPCR

Direct-zol RNA Miniprep kit Zymo Research Cat #R2050

Deposited data

Dataset This paper

DVICE models This paper

Experimental models: Cell Lines

Monkey: VeroE6 Kindly provided by Dr. Volker Thiel (University of Bern, Switzerland)

Monkey: VeroE6-TMPRSS2 Kindly provided by Dr. Volker Thiel (University of Bern, Switzerland) NIBSC 100978

Human: Huh7 Kindly provided by Dr. Volker Thiel (University of Bern, Switzerland)

Human: Huh7-ACE2 Laboratory-made by stable transfection with a lentivector (pLVX-
ACE2-IRES-BSD)27

N/A

Human: HeLa American Type Culture Collection (ATCC)

Human: HeLa Ohio Obtained from Laurent Kaiser, Central Laboratory of Virology, Uni-
versity Hospital Geneva, Switzerland

ECACC 84121901

Human: A549 American Type Culture Collection (ATCC) ATCC CCL-185

Human: A549-ACE2 Laboratory-made by stable transfection with a lentivector (pLVX-
ACE2-IRES-BSD)27

N/A

Software and algorithms

Anaconda Python v3.9.7 Anaconda, Inc. https://www.anaconda.com/

Tensorflow v2.7.0 Abadi et al. 57 https://github.com/tensorflow/
tensorflow

scikit-learn v1.2.2 Pedregosa et al. 61 https://github.com/scikit-learn/
scikit-learn

Ilastik v1.4.0 Berg et al. 62 https://www.ilastik.org/
download.html

DVICE This paper

Other

GeForce RTX 3090 Nvidia N/A

Automated high-throughput microscope ImageXpress Confocal
Micro (IXM-C)

Molecular Devices N/A

Automated imaging microplate reader BioTek Cytation 5 Agilent N/A
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a sensitivity (true positive rate) of 0.946 ±0.006 and specificity (true
negative rate) of 0.890±0.044 (Fig. 4B). These data suggest that DVICE
provides reliable results with human samples, and can be potentially
considered for virus titer determination in a clinical context, for
example, antiviral drug efficacy studies.

DVICE distinguishes infections by different viruses
As DVICE recognizes viral CPE, we next tested whether it could also be
extended to detect the particular nature of the infecting virus. As not

all cell lines in our study are susceptible to infectionwith all viruses, the
cell line information could provide cues about the infecting virus. To
mitigate any cell line-specific information and incentivize the network
to learn the virus-specific infection signature, we trained DVICE on the
previously generated segmentation maps of the images. Example
images of the segmentation maps are provided in Fig. 5A. DVICE was
trained with the same procedure as described above, using a dense
layer with six output classes (uninfected, AdV, HSV, RV, SARS-CoV-2,
VACV) and categorical instead of binary cross entropy loss. Overall,
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DVICE achieved an accuracy of 0.799 ±0.025, an F1 score (harmonic
mean of sensitivity and specificity) of 0.802 ±0.026, and a Matthews
Correlation Coefficient of 0.757 ± 0.029. Evaluation of the confusion
matrix indicated that DVICE successfully recognized the different
classes, with a slight bias towards AdV (Fig. 5B). Overall, DVICE
achieved high sensitivity for all viruses (Fig. 5C).

To explore which image properties could facilitate class-specific
recognition, wegenerated a synthetic dataset to probe for the network
output across a range of conditions (Supplementary Fig. 5). The
combination of high confluency and spatial autocorrelation was
associated with increased rates of detection of the classes uninfected,
SARS-CoV-2, and VACV, while images with low confluency and spatial
autocorrelation were associated with AdV and RV. This could reflect
the biological phenotype of the viruses, as VACV and SARS-CoV-2
infections lead to the formation of syncytia resulting in clusters of
cells.We conclude that virus-class recognition iswell feasible, although
at present less robust than classification of the infection state.

Discussion
The courseof the SARS-CoV-2pandemic hasdramatically indicated the
global lack of rapidly available and reliable procedures to score the
infectivity of viral pathogens in clinical samples in a standardized
manner. Available PCR-based diagnostics is highly sensitive but may
lead to falsepositive results40,41, as itmeasures genomeequivalents and
falls short of providing reliable infectivity scores in both acute and
persistent infection settings5. In the case of enteroviruses and SARS-
CoV-2, these limitations have been exposed by anti-viral compounds
that reduce the production of progeny without affecting
replication39,42. Further examples include the HIV protease inhibitor
Nelfinavir blocking human adenovirus cell egress, or the
oxidation–reduction modulator Provay Blue broadly inhibiting the
release of infectious coronavirus progeny from infected primary
human airway cell cultures27,36,43,44.

Here we introduce an accurate automated framework for the
broad detection of viruses using light microscopy. The DVICE

framework holds a fully automated, label-free, robust procedure for
quantification of virus-induced CPE. It allows live monitoring of virus
infections alone or in combination with fluorescence microscopy.
DVICE is highly versatile and readily adaptable to new experimental
settings, including new pathogens, cell lines, and imaging conditions.
The current workdemonstrates thatDVICE can efficiently discriminate
between viral lesions in a confluent monolayer and subconfluent
conditions upon sparse cell seeding. This reflects the notion that virus-
induced cell lesions are uniquely suited to be recognized by our fra-
mework.Ourworkextendsprevious analyses of subnuclearpatternsof
infected cells and the shape of cell lesions to predict lytic, cell-free, or
non-lytic, cell-based viral transmission12,44–46. DVICE has the power to
determine the nature of the virus based on a particular CPE signature.
We propose that PCR-based assays are complemented with cell
culture-based automated scoring of infectious units. Absence of
detectable infectivity may provide important clinical milestones in
disease management and diagnosis, including continuation, interrup-
tion, or change of treatment. In this sense, DVICEmay complementML
models to analyze diverse viral sequence data towards developing a
range of new diagnostic tools47. Yet importantly, DVICE provides viral
infectivity data and thereby enhances personalized anti-viral treatment
options. If combinedwith anti-viral treatments, thiswill allowon-target
therapies and may contribute to reducing the propagation of drug-
resistant viruses appearing in nature as well as in virus- and host-
directed anti-viral treatments48–51.

In addition to classical infection assays, an infection readout by
DVICE can facilitate the quantification of neutralizing antibody titers,
for example, in human samples using microneutralization or plaque
reduction neutralization tests. Neutralizing antibodies are an indicator
of protective immunity and provide essential information for vaccine
development and public health52,53. Our framework can be used to
detect virus-induced CPE in populations of cultured cells based on
transmitted lightmicroscopy images. To score virus infection, the cells
must be susceptible to the particular virus. For optimal throughput,
the workflow benefits from an automated microscope. In our time-
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Images of wells inoculated with the indicated virus were left out during network

training. The performancewas evaluatedon the left-out images. Data are presented
asmeans anderror bars indicate standarddeviations.n = 3.CComparisonofDVICE’
performance between two microscopes, including ImageXpress Micro Confocal
(IXM-C, Molecular Devices) and Cytation 5 (Agilent). n = 480 (216 infected and 264
uninfected images). Data are presented as means and error bars indicate standard
deviations. Source data are provided as a Source Data file.
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resolved infection analysis, the onset of viral gene expression occurred
before infection detection by DVICE, indicating that DVICE may be
unable to detect the presenceof a virus early in infection or a virus that
persists in cells without overt cytopathic effects. This limitation is,
however, compensated by the ultra-high sensitivity of DVICE, which
allows for thedetectionof a single plaque-formingunit perwell of a 96-
well dish containing about 2 × 104 cells, equivalent to an MOI of
<0.0001. We acknowledge that DVICE may not reach the same accu-
racy under experimental conditions different from the training con-
ditions. Experimental variations may, for example, include different
label-free imagingmodalities, such as differential interference contrast
microscopy, different magnifications, different cell lines, viral strains,
or culture conditions. Nonetheless, and despite the widely recognized
difficulty to generalize DL-based procedures, our framework is versatile
and adaptable to unequivocally score different viruses in cell lines and
imaging microscopes. This owes to robust learning of features asso-
ciated with CPE, as shown by class activation mapping. To further
enhance the adaptability of DVICE, we provide the user with resources
for fine-tuning and transfer learning, broadly known procedures to
increase AI accuracy with minimal additional input data54.

Methods
Cell culture
Cell lines were cultivated in a T75 flask in Dulbecco’s modified Eagle
medium (DMEM, D6429; Sigma-Aldrich, St. Louis, USA) supplemented
with 10% fetal bovine serum (FBS, 10270-106; Gibco, Carlsbad, USA)
and non-essential amino acids (M7145; Sigma-Aldrich, St. Louis, USA).
Cells were incubated in an environment of 37 °C, 5% CO2, and 95%
humidity. Cultures of VeroE6-TMPRSS2were supplementedwith 1mg/
mL geneticin (G418-RO, Merck), and cultures of A549-ACE2 and Huh7-
ACE2 with 10 µg/mL blasticidin (ant-bl-1, InvivoGen) to preserve the
expression of the transgenes. All cultures were passaged twice per
week by washing with PBS and trypsinization (C-41020; Trypsin-EDTA,
Sigma-Aldrich, St. Louis, USA).

Viruses
AdV-C5 and AdV-C5-IX-FS2A-GFP were kindly provided by Silvio
Hemmi (University of Zurich, Switzerland). CoV-229E-GFP, CoV-OC43,
and SARS-CoV-2 were obtained as described previously27.

Recombinant HSV-1-C12-CMV-GFP55,56 was kindly provided by Stacey
Efstathiou (University of Cambridge, UK). VACV_WR E/L-GFP was
kindly provided by Jason Mercer (University of Birmingham, UK).

Transmitted light and fluorescence live cell microscopy
Transmitted light images were acquired at 7 dpi using the high-
throughput microscope ImageXpress Micro Confocal (IXM-C, Mole-
cular Devices) with a ×4 air objective. Images had a resolution of
2048 × 2048 pixels and a depth of 16 bit. Fluorescence microscopy
images were likewise acquired at the IXM-C. Images acquired at the
Cytation 5 (Agilent) had a resolution of 1992 × 1992 pixels and a depth
of 16 bit. Cells were imaged in a BSL-2 environment without fixation.
Cells infected with SARS-CoV-2 were fixed by addition of paraf-
ormaldehyde to a final concentration of 4%. Plates were decontami-
nated and transferred to a BSL-2 laboratory for image acquisition.

Infection assay and readout by crystal violet staining
For infection experiments, T75 flasks of 90% confluent cell cultures
were trypsinated, and cells were re-suspended in 10ml DMEM. Cells
were diluted to a concentration of 100,000 cells per ml. 10,000 cells
were seeded in 100 µl medium overnight. For sparsely seeded wells,
1000 cells were seeded in 100 µl, and images were acquired the
next day.

Infection experiments were performed in a biosafety level (BSL)-2
laboratory, except for experiments with SARS-CoV-2, which were
performed in a BSL-3 laboratory. 8 different virus concentrations were
preparedby serial dilutions, and cellswere infectedby additionof 20 µl
inoculum with 10 replicates per condition per plate. The first and last
columns of each plate were left uninfected and supplemented by 20 µl
fresh medium.

After image acquisition, cells were fixed by adding 30 µl of a 16%
paraformaldehyde (PFA) solution for 30min, except for SARS-CoV-2,
where fixation was performed prior to acquisition. PFA was then dis-
carded, and 50 µl of a 0.25% crystal violet (CV) staining solution pre-
pared in an aqueous solution with 10% methanol was added for one
hour.TheCV staining solutionwasdiscarded, and cellswerewashedby
submerging the plate in water, after which the plates were left to dry.
The infection phenotype was independently assessed by three human
experts, and image annotations were obtained by majority vote.
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SARS-CoV-2 infectious particle stability in saliva
Saliva samples were collected from healthy, adult individuals who
provided written informed consent. Saliva specimens (250 µl) were
spiked with 50 µl of SARS-CoV-2 BA.1 variant. Spiked salivas were then
diluted in DMEM medium at a final volume of 1ml and filtered with a
0.22 µm Millex-GV Filter (Mercks) to eliminate bacteria. As a control,
50 µl of SARS-CoV-2 BA.1 were spiked in 950 µl DMEM medium and
filtered similarly. SARS-CoV-2 spiked suspensions were then incubated
at −80, 20, and 4 °C for 24 h; at 37, 20, and 4 °C for 2, 1, or 5min. Each
time point and temperature was tested with two independent biolo-
gical replicates of spiked saliva and DMEM control. At the end of the
incubation time, the respective virus suspensions were serially diluted
in tenfold steps and inoculated on VeroE6-TMPRSS2 cells for virus
TCID50 titration. In parallel, 50 µl of the respective incubated virus
suspensions were mixed with 150 µl of TRIzol reagent (Thermo Fisher)
and subjected to RNA extraction with Direct-zol RNA Miniprep kit
(Zymo Research) according to the manufacturer’s protocol. Extracted

SARS-CoV-2 RNAs were then quantified by RT-qPCR according to a
previously described method27,43. The procedures involving human
saliva did not fall under the Human Research Act according to the
Ethical Board of the Kanton Zurich, Switzerland (BASEC number Req-
2022-01020) and, therefore, did not require specific permission by a
particular ethical board.

Densitometric analysis of crystal violet staining
Toquantify the absorbanceof 96-well plates stainedwith crystal violet,
a spectral scan of fully confluent wells was performed at a Tecan plate
reader. Subsequent measurements of absorbance were performed at
the spectral range with the highest absorbance, which was at
555 ± 4.5 nm.

Dataset preparation and deep learning
Images were rescaled to an 8-bit range using min-max normalization,
resized to 224 × 224 pixels using bicubic interpolation, and converted
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to RGB format. Images were split into training, validation, and test sets
in a stratified way while ensuring that the images reserved for the test
set came from plates not present in the training or validation set. For
infection, phenotype classification with DVICE, the tensorflow57 (ver-
sion 2.7) implementation of the EfficientNet-B0 architecture26 was
used. The model contains 7 distinct mobile inverted bottleneck con-
volution (MBConv)58 blocks with squeeze-and-excitation (SE)59 layers
as attention mechanism. A custom head was added that comprises a
global average pooling (GAP) layer, a dropout layer with a rate of 0.3,
and a two-way dense layer for the final classification or a 6-way dense
layer for virus class-specific classification. The network has 4 million
parameters, which were randomly initialized. The comparatively low
number of trainable parameters facilitates training and finetuning.
Training was performed with a batch size of 128 on anNVIDIAGeForce
RTX 3090. An Adam optimizer was used to minimize a class-weighted
binary (or categorical in the case of virus class-specific classification)
cross-entropy loss functionwith an initial learning rate of 0.001 for the
first 10 epochs, after which the learning rate decayed by a factor of
e�0:1 every epoch. Training images were augmented by horizontal and
vertical reflections. For the evaluation, the model from the epoch with
the lowest loss on the validation set was selected.

Training of machine learning models
For training of additional machine learning (ML) algorithms, histo-
grams of oriented gradients (HOG)29 were computed using scikit-
image60, resulting in 2592 features per image. HOG features were
standardized, scaled to unit variance, and split to training and test data
in a stratifiedwaywith threefold cross-validation. 90% of the data were
selected for training and 10% for test purposes. ML algorithms inclu-
ded Gaussian naive Bayes (GNB), logistic regression (LR), k-nearest
neighbor (k-NN), random forest (RF), decision tree (DT) classifier, and
support vector machine (SVM) in their scikit-learn61 implementation.
Optimal parametersweredetermined by an initial grid search. SVMdid
not converge and was stopped after 1000 epochs when the present
state of the model was used for evaluation. Statistical evaluation was
performed using the nonparametric Kruskal–Wallis test with Dunn’s
correction for multiple tests in GraphPad PRISM (version 9.3.1).

Model evaluation
Model performance was evaluated using the area under the receiver
operating characteristic curve (AUROC). Ensembles of models were
trained from different random seeds, which affected data selection
and parameter initialization.

Binary segmentation and cell density quantification
For cell density quantification, images were initially converted to 8-bit
PNG images usingmin-max-normalization and rescaled to 1024 × 1024
pixels using bicubic interpolation. Pixel classification was performed
using a decision tree model trained in ilastik62 to perform semantic
segmentation. Confluency was calculated by dividing the number of
foreground pixels by the total pixel number. For training of the virus
class-specific DVICEmodels, the segmentationmaps were downscaled
to 224 × 224 pixel images using bicubic interpolation.

TCID50 and plaque forming unit value calculation
TCID50 and plaque forming unit (pfu) values were calculated using the
specific infection (SIN) method, which provides a probabilistic esti-
mate of a sample’s infectivity30. The relationship between SIN or pfu
values and TCID50 values is provided by the Poisson distribution and
was calculated as 1 SIN = 1 pfu = 1

lnð2ÞTCID50≈1:44TCID50, where ln is
the natural logarithm. The theoretical infection index is also provided
by the Poisson distribution and was calculated as the probability P of a
well receiving at least one infectious particle n and is provided by
P n ≥ 1ð Þ= 1� P n=0ð Þ= 1� expð�pfuÞ, where exp is the natural

exponential function. For Fig. 4, TCID50 values were calculated using
the Reed–Muench method7.

Resource availability
Further information and requests for resources and reagents shouldbe
directed to and will be fulfilled by the lead contacts, Prof. Dr. Urs
Greber (urs.greber@mls.uzh.ch) and Dr. Anthony Petkidis
(anthony.petkidis@uzh.ch).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The imaging data are available under restricted access due to legal
considerations involving a patent application by the University of
Zurich. Access can be obtained for non-commercial research and
validation purposes upon agreement under an MTA by contacting the
corresponding authors, U.F.G. (urs.greber@mls.uzh.ch) and A.P.
(anthony.petkidis@uzh.ch) and will be provided within four weeks for
academicuseand restricted to the particular institution that requested
access. Source data are provided with this paper.

Code availability
The code used in this study is deposited at Zenodo at https://doi.org/
10.5281/zenodo.1105962163 and is available under restricted access due
to legal considerations involving a patent application by the University
of Zurich. Access can be obtained for non-commercial research and
validation purposes upon agreement under an MTA by contacting the
corresponding authors, U.F.G. (urs.greber@mls.uzh.ch) and A.P.
(anthony.petkidis@uzh.ch) and will be provided within 4 weeks for
academic use and restricted to the particular institution that 400
requested access.
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