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Observation of Boyer-Wolf Gaussian modes
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Stable laser resonators support three fundamental families of transverse
modes: the Hermite, Laguerre, and Ince Gaussian modes. These modes are
crucial for understanding complex resonators, beam propagation, and struc-
tured light. We experimentally observe a new family of fundamental laser
modes in stable resonators: Boyer-Wolf Gaussian modes. By studying the
isomorphism between laser cavities and quadratic Hamiltonians, we design a
laser resonator equivalent to a quantum two-dimensional anisotropic har-
monic oscillator with a 2:1 frequency ratio. The generated Boyer-Wolf Gaussian
modes exhibit a parabolic structure and show remarkable agreement with our
theoretical predictions. These modes are also eigenmodes of a 2:1 anisotropic
gradient refractive index medium, suggesting their presence in any physical

system with a 2:1 anisotropic quadratic potential. We identify a transition
connecting Boyer-Wolf Gaussian modes to Weber nondiffractive parabolic
beams. These new modes are foundational for structured light, and open
exciting possibilities for applications in laser micromachining, particle
micromanipulation, and optical communications.

The laser is one of the greatest inventions in optics and photonics.
Lasers drive modern research in physics, chemistry, and biology; they
are a vital tool in manufacturing and medicine, and the heart of
Internet communications. Everything started with the first optical laser
resonator by Maiman', where a ruby crystal excited by a flash lamp
pump generates a resonant spatial mode within a planar-planar cavity.
From there, the laser has exponentially evolved from macroscopic
spherical mirror resonator cavities to microcavities, fiber, and semi-
conductor lasers that are present in almost any modern electronic
device. Although the miniaturization of lasers is vital for technology,
stable macroscopic resonators, where light is confined by a quadratic
phase, remain highly relevant in terms of high power, stability, beam
quality, linewidth, and spectral control.

Stable resonator cavities can support, apart from the fundamental
Gaussian beam, three different fundamental families of transverse
modes: the Hermite-Gaussian modes (HGM) in Cartesian coordinates,
Laguerre Gaussian modes (LGM)* in cylindrical coordinates, and Ince
Gaussian modes (IGM)** in elliptical coordinates. These families of
modes are important not only in optics and photonics but also in
physics and mathematical physics. From the physics point of view, the
modes of stable laser resonators are equivalent to the eigenstates of a

2D quantum harmonic oscillator, i.e., the round trip in the optical
cavity has the same Hamiltonian, with the parabolic cavity mirrors
acting like a quadratic potential. In this regard, the modes of the stable
laser resonator resemble the probability distribution of quantum
particles in a harmonic potential, which is an essential cornerstone in
the study of quantum mechanics as it allows us to investigate more
complicated potentials’. For example, by using a nonplanar twisted
cavity, which induces a “magnetic” coupling between the modes of a
fundamental laser cavity, it has been possible to observe synthetic
Landau levels for photons® and Laughlin states made of light’.

From the mathematical physics side, the study of integrable and
superintegrable Hamiltonians, like the cavity Hamiltonian, is the key to
understanding symmetries and solutions of differential equations.
Indeed, the reason why a stable resonator cavity with spherical mirrors
can only support three separable families of modes is tied to the
mathematical fact that the cavity Hamiltonian only commutes with
three different second-order symmetry operators®™'°, each one asso-
ciated with a different coordinate system and a different physical
conserved quantity, i.e., the LGM in cylindrical coordinates with con-
served angular momentum. Although groups of modes of the stable
laser cavity are degenerate in terms of the resonant frequency, they are

TCREOL, The College of Optics and Photonics, The University of Central Florida, Orlando, FL, USA. 2These authors contributed equally: Konrad Tschernig,

David Guacaneme. . e-mail: bandres@creol.ucf.edu

Nature Communications | (2024)15:5301


http://orcid.org/0009-0006-0412-9735
http://orcid.org/0009-0006-0412-9735
http://orcid.org/0009-0006-0412-9735
http://orcid.org/0009-0006-0412-9735
http://orcid.org/0009-0006-0412-9735
http://orcid.org/0000-0002-7145-8567
http://orcid.org/0000-0002-7145-8567
http://orcid.org/0000-0002-7145-8567
http://orcid.org/0000-0002-7145-8567
http://orcid.org/0000-0002-7145-8567
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49456-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49456-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49456-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49456-x&domain=pdf
mailto:bandres@creol.ucf.edu

Article

https://doi.org/10.1038/s41467-024-49456-x

not degenerate with respect to the second-order eigenoperator that
commutes with the cavity Hamiltonian. This explains why the cavity
generally lases in a single mode of a given family, LGM, HGM, or IGM,
and not in a superposition of a degenerate frequency group within
each family"™,—where any small misalignment of the cavity dictates
which family is more favorable to lase.

From the perspective of optics and photonics, the three funda-
mental families of modes of spherical stable resonators, the HGM,
LGM, and IGM, are of paramount significance. Besides being the modes
of the most elemental laser cavity, they are key in our understanding of
more complex cavities'*'°, beam propagation, and most importantly,
they serve as a cornerstone of structured light. Over the last decade,
our ability to tailor optical fields, both spatially and temporally, has
significantly advanced. These advances have been driven by both
fundamental science as well as engineering applications. Beams that
carry orbital angular momentum?”, as the Laguerre Gauss modes are
perhaps the most well-known example of structured light'®. Two
main families of structured light, the nondiffractive beams®* %, and the
accelerating beams* %, have flourished in applications during the last
decade, from biomedical imaging®® and free space
communications”°, to micromanipulation®* and
micromachining®~%, To understand how the fundamental families of
Gaussian beams are a cornerstone of structured light, we should
examine closely the most recent addition to the known families of
fundamental modes of stable laser resonators, the Ince Gaussian
beams. The IGMs constitute the third complete family of transverse
modes of stable resonators, they were theoretically introduced® and
experimentally observed* in 2004. Due to their inherent elliptical
symmetry, they form a complete family of resonator modes for each
value of the focal distance of the elliptical coordinate system. For this
reason, although at the beginning they were thought of as an elusive
solution, it was quickly realized that they are more common in any
resonator than the HGM and LGM*. Indeed, the LGMs and HGMs
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Fig. 1| Fundamental modes of stable laser resonators. Middle panel, the three
families of modes of spherical stable laser resonators: Laguerre-Gaussian, Ince-
Gaussian, and Hermite-Gaussian beams. The Ince-Gaussian modes converge to the
Laguerre-Gaussian and Hermite-Gaussian when the focal distance tends to zero and
infinity respectively. Left panel, the transition of the Gaussian beams to accelerating
beams. The transformation occurs as the order, p, and the waist size, w, go to

correspond to limiting cases of the IGMs when the focal distances tend
to zero or to infinity, respectively, as depicted in Fig. 1. IGMs have been
generated in many different laser architectures and have quickly found
a plethora of applications such as manipulation of microparticles®,
nonlinear two-wave mixing*°, microlaser resonators*, quantum angu-
lar momentum*, quantum entanglement*?, and single-cell biological
lasers**, among many others.

Notably, in a similar way that an IGM can transition to an HGM or
LGM mode by changing the focal distance, these three families of
fundamental cavity modes can transform into nondiffractive beams or
accelerating beams by altering their mode number and waist in specific
ways* ¥, These transitions are clearly depicted in Fig. 1. In this way,
one can generate modes that closely resemble nondiffractive or
accelerating beams directly from a spherical stable resonator under
the right conditions. Considering the significance of the fundamental
families of modes in spherical laser resonators, it is intriguing to con-
sider the possibility that a new family of lasing modes exists.

Results

Here, we present the experimental observation of a new family of
fundamental laser modes of stable resonators: the Boyer-Wolf Gaus-
sian modes. By studying the isomorphism between stable laser reso-
nator cavities and quadratic Hamiltonians, we designed a laser
resonator equivalent to a quantum two-dimensional anisotropic har-
monic oscillator with a 2:1 frequency ratio*. The Boyer-Wolf Gaussian
modes emerge in a parabolic coordinate system and are constructed
by a product of solutions to the sextic anharmonic oscillator. Due to
their inherent parabolic symmetry the Boyer-Wolf Gaussian modes
break the symmetry around the y-axis that is present in the HGM, LGM,
and IGM, and create a dark parabolic region around the x-axis. We
observed the first 18 Boyer-Wolf Gaussian modes lasing from our
cylindrical lens resonator; the experimental results exhibit an excellent
agreement with the theoretical predictions. Furthermore, we show
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infinity while keeping the ratio k =w, /p"/°, which becomes the transverse scale of
the accelerating beam, constant, and by shifting the coordinates to the left peak of
the beam. Right panel, transmutation of the Gaussian beams to nondiffracting
beams. The metamorphosis takes place when the order, p, and the waist size, w,,
tend towards infinity, while maintaining the ratio k, =2./p/w, constant, which
becomes the transverse wavevector of the nondiffractive beam.
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that the Boyer-Wolf Gaussian modes are also eigenmodes of an ani-
sotropic gradient refractive index medium with a 2:1 ratio between the
parabolic index of refraction profile at each axis. This implies that the
Boyer-Wolf modes must also be present in any physical system—such
as ultracold atoms, mechanical and acoustic systems—with a 2:1 ani-
sotropic quadratic potential. Finally, we find a transition that connects
the Boyer-Wolf Gaussian modes to the Weber nondiffractive parabolic
beams?, showing that Boyer-Wolf modes are a foundational element of
structured light. The new Boyer-Wolf Gaussian modes demonstrated
here open the door to new applications in laser micromachining,
particle micromanipulation, and optical communications.

Theory

We begin by analyzing the duality between rays and wave optics in
optical resonators. As is well known, a paraxial cavity can be analyzed
based on its total ABCD matrix, which describes the complete round
trip evolution of all light rays in the resonator. This “geometrical” ray
analysis unfolds many important properties of the cavity, such as its
stability structure® To find the transverse modes, one needs to find the
beams that self-reproduce after propagating a round trip in the laser
resonator. This propagation is described by the Collins diffraction
integral given by the ABCD matrix of the resonator, and the eigen-
modes of such integral operator are the modes of the cavity. Finding
the eigenmodes of such linear integral operators is an analytically
challenging problem; therefore, this approach is usually limited to
numerical simulations®.

Recently, a new formalism has shown that by considering the
periodicity of a round trip in the resonator, it is possible to find a
Floquet Hamiltonian that describes the transverse cavity modes®.
More importantly, the parameters of this transverse quadratic Hamil-
tonian only depend on the total ABCD matrix of the resonator, and
solutions for such Hamiltonians have been studied extensively in
mathematics®'*"". This outcome establishes a significant link between
the ray optics and wave optics within an optical laser resonator. Fol-
lowing this formalism, one can show that the transverse modes of
stable spherical resonators are eigenmodes of the quantum two-
dimensional isotropic harmonic oscillator, V(x, y) = k?(x* +)?), where
K is given in terms of the parameters of the resonator, see Supple-
mentary Note 1. From the theory of separation of variables, it is known
that such Hamiltonians are only separable in cartesian, circular and
elliptical coordinates'. For this reason, spherical optical cavities only
support three separable families of fundamental modes, the Hermite,
Laguerre and Ince-Gaussian modes®*.

We emphasize that the primary limitation of this formalism® is
that the theoretical description of ABCD systems only considers
“quadratic optics” and does not include higher-order aberrations, such
as mirror imperfections and non-paraxial corrections. Here, and gen-
erally, the paraxial approximation is entirely adequate because devia-
tions from this approximation are usually small when the resonator
mode waist wy, is significantly larger than the wavelength A. Therefore,
for our paraxial resonator, these corrections only become important
for misalignments outside the paraxial regime, for very higher-order
modes, and for resonator configurations with very small waist. A
complete theory of resonator aberrations for nonparaxial beam pro-
pagation and optical elements beyond-quadratic mirrors and lenses
can be found in ref. 52.

To find new modes of a laser resonator, we begin by identifying
quantum Hamiltonians with quadratic potentials that are integrable,
meaning they have analytic solutions in a given coordinate system.
Such Hamiltonians have been extensively studied and classified in
mathematics in the area of integrability and superintegrability®'°*,
The simplest option to introduce a new potential is to promote the
quantum harmonic oscillator Hamiltonian, which describes spherical
resonators, to a quantum anisotropic harmonic one, where the x
and y axis parabolic potential have different strengths,

V(x,y):l(}(x2 +K)2,y2,1<x #k,. However, the solutions of such a poten-
tial are a product of two orthogonal Hermite-Gaussian beams with
different waist sizes, bringing us back to the known families of
modes. Here it is important to point out that, although any quadratic
Hamiltonian can be mapped to an ABCD matrix, not every ABCD
matrix can represent the round-trip propagation of an optical cavity
with a simple configuration and conventional optical elements. For
instance, if we implement the anisotropic oscillator using an astig-
matic spherical mirror, the resonator will only exhibit the desired
ratiok, : k, for one specific cavity size (see Supplementary Note 2).

Interestingly, the quantum two-dimensional anisotropic harmo-
nic oscillator with a 2:1 frequency ratio is separable in parabolic
coordinates’. The corresponding time independent Schrédinger
equation is given by

Hyp= — (a}z(+a;)(p+1(2(4x2 +)2)P=Ey, D

where « is the “strength” of the potential and £ is the “eigenenergy” of
the mode. From the optics point of view, as we will explain below, k is
given in terms of the parameters of the resonator and the lasing
wavelength and it characterizes the waist of the lasing modes; while E,
is proportional to the resonant frequency which is related to the Gouy-
shift phase—the total phase accumulation during a round-trip in the
resonator. Boyer and Wolf studied the separation of variables,
solutions, and symmetries of Eq. (1) extensively in*®. The solution to
Eq. (1) in parabolic coordinates (u,v), x= (u* —v?)/2, y=uv, ueR,
ve R" is given by, BWG, (U, v) = @ (W) (iv),

Vauw\" ut+ vt w1 A
o) o~ e [ss] Jru(-[o] )

where w3 =2/k is the beam waist, and c, is a normalization constant,
@n(e) are solutions to the sextic anharmonic oscillator, and P(e) is a
“parabolic” polynomial of degree [n/2], see Supplementary Notes 2, 3,
and 5 for more details. The modes are characterized by the mode
numbers n=0,1,2,..., and |{|<1/2|n/2|. We will call these solutions
the Boyer-Wolf Gaussian modes (BWG). In Fig. 2 we show the
theoretical intensity pattern of the Boyer-Wolf Gaussian modes, where
their parabolic nature is clearly depicted by their parabolic nodal lines.
The modes with the same ordern=0,1,2, .., are | n/2| +1 degenerate,
and for this reason they will have the same resonant frequency and
Gouy phase shift. In contrast to the fundamental families, HGM, LGM,
IGM, the BWG modes break the symmetry around the y-axis and create
a dark parabolic region around the x-axis.

BWG,,(u,v)=cy (

Experiments

The next important task is to find an optical resonator whose round
trip ABCD matrix could be mapped to the quantum two-dimensional
anisotropic harmonic oscillator with a 2:1 frequency ratio, as given in
Eq. (1). Consequently, the resonator will generate the BWG modes
inside the cavity. To achieve this, we work backwards, given Eq. (1), we
find its corresponding total ABCD matrix, and afterwards a cavity that
is described by such a ray transfer matrix. One could find few options
of such systems; however, they usually have major drawbacks. Firstly,
they require unconventional optical elements such astigmatic mirrors,
which are quite challenging to manufacture. Secondly, the resonators
usually only exhibit the desired 2:1 ratio for one specific distance of the
mirrors, which further complicates the assembly of such a resonator.
We found an elegant solution that overcome these constraints by
exploiting the symmetries of the equation as described in the Sup-
plementary Note 2. Our BW resonator, depicted in Fig. 3a, uses a
cylindrical lens with focal distances f, in the x-axis, and a cylindrical
mirror with focal distance f), =2f,, in the y-axis. The y-axis cylindrical
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Fig. 2 | Theoretical Boyer-Wolf Gaussian modes. Beam intensity pattern of the
first eighteen Boyer-Wolf Gaussian modes of the 2:1 anisotropic laser cavity. The
mode order and degree (n,l) are displayed in the bottom right corner of each panel.
Modes with the same order n=0,1,2, ..., have the same resonating frequency and

Gouy-shift phase. Due to the parabolic nature of the modes, the nodal lines form
parabolas. The parity of n indicates the symmetry of the mode with respect to the
y-axis. Modes with negative [ are a reflection around the y-axis (x — —x) of the
positive [-modes depicted here.

mirror, f, =2f ., together with the output coupler flat mirror, creates a
1D cavity of length L in the y-axis—this leads to a harmonic oscillator
potential in the y-direction with x,=k=Kk[L(2f), — D™Y2, where
k=2m/A, and A is the wavelength. Now, the crucial step is to place an
x-axis cylindrical lens, f,, in the middle of the cavity at a distance,
L,=L/2, as shown in Fig. 3a. Considering the equivalent unfolded
resonator, note that one round trip of the whole resonator, corre-
sponds to one Fabry-Pérot resonator of length L in the y-axis, but
two resonators of length L/2 in the x-axis. As a result, this leads to a
harmonic  oscillator potential in the Xx-direction with
Ke=k[L/2(2f — L/2)]’1/2 =2k, —achieving  the  desired ratio
Ky : ky=2:1 of the two-dimensional anisotropic harmonic oscillator.
The advantage of this cavity design is that for any pair of cylindrical
lenses with f), = 2f,, the resonator is stable for any L <4f,.. The waist of
the modes at the flat mirror output coupler, where the phase front is

plane, is wg =2k~ L(ny - L). The resonant condition depends on

the “energy” of the modes, that is given by the mode number n. The
resonance occurs when the phase shift for a round trip in the cavity is a
multiple of m. As a result, the transverse mode frequency spacing
between consecutive Boyer-Wolf modes is given by

1
Av= (i) 5y (1 +3/2) arccos (1~ L/Ry), €

where c is the velocity of the light. We highlight further properties of
the BWG modes and the 2:1 cavity in the Supplementary Notes 4 and 6.

To generate the Boyer-Wolf Gaussian modes we build the solid-
state laser cavity depicted in Fig. 3a. Our laser resonator consists of an
Nd:YAG crystal that acts as a gain medium and output coupler, an
x-axis cylindrical lens, f, =100mm, at the middle of the cavity and a
Yy-axis cylindrical mirror, f,, = 200mm, at the end of the cavity. We used
different resonator lengths from L =12cm to 30cm. The laser is opti-
cally pumped by a high-power laser diode (808 nm) that is focused on
the Nd:YAG crystal which has a high transmission at the diode

wavelength (808 nm) and high reflectance at the lasing wavelength
(1064 nm). All details about the laser resonator are given in the
Methods section. The perfectly aligned cavity quickly lases in the
fundamental Boyer-Wolf Gaussian mode—an elliptical Gaussian mode
with waist ratio +/2 : 1. To generate higher-order Boyer-Wolf Gaussian
modes, we slightly misaligned the cavity in different ways. This was
achieved by adjusting the cavity length and shifting the position of the
optical axis relative to the pump beam, through slight tilting and dis-
placement of the cylindrical mirror and lens, see Supplementary
Notes 9, 10. We observed the first eighteen Boyer-Wolf Gaussian
modes lasing in the cavity—our experimental results are shown in
Fig. 3b. The observed modes clearly show their characteristic parabolic
nature, with mode profiles that are markedly distinct from those of the
fundamental HGM, LGM, and IGM modes. All the modes have a waist
size that aligns with the parameters of the resonator, and the higher
order n modes have larger extents than those with lower n indices, as
expected. We emphasize the excellent agreement between the mea-
sured and theoretical patterns shown in Fig. 3b and Fig. 2.

The full round-trip propagation of the Boyer-Wolf Gaussian
modes inside the “unfolded” laser resonator is simulated and depicted
in Fig. 4a. From the x and y cross-sections of the propagation, it is clear
that the cavity behaves like a single resonator of length L along the
y-axis, while along the x-axis, it behaves like two resonators, each of
length L/2. Note that the Bower-Wolf Gaussian modes are not scale-
invariant under propagation due to their 2:1 anisotropic nature. We
study their free-space propagation as well as their Fourier transform,
i.e., far field, in detail in the Supplementary Note 4.

The 2:1 GRIN medium

Interestingly, there is another optical system whose paraxial wave
equation is also described by Eq. (1); this is a 2:1 anisotropic gradient
index medium (GRIN). This situation parallels the cases of the funda-
mental HGM, LGM, and IGM, which are not only modes of a stable
spherical resonator but also eigenmodes of an isotropic GRIN
medium®, The index of refraction of a 2:1 anisotropic GRIN medium is
given by n*=nj [1 —a? ((Zx)2 + yz)}, where n, is the reference
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f
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Fig. 3 | Observation of Boyer-Wolf Gaussian modes. a Experimental setup of the
2:1 anisotropic resonator cavity that lases in Boyer-Wolf Gaussian modes. The laser
cavity of length L is composed of a Nd:YAG flat crystal that acts as an output coupler
and gain medium, a vertical cylindrical lens of focal length f, in the middle of the
cavity, and a horizontal cylindrical mirror with R=2(2f). The cavity is pumped by
focusing a 808nm light from a laser diode into the Nd:YAG crystal. b Measured laser

beam intensity patterns of the first eighteen Boyer-Wolf Gaussian modes with >0,
at the output coupler of the resonator. The mode order and degree (n,l) are dis-
played in the bottom right corner of each panel. The scale of the modes is nor-
malized to their width wy, (inset of the bottom-right panel). The specific resonator
length and width for each mode are provided in the Supplementary Information.

refractive index of the medium, and its eigenmodes are
2w\ u*+ vt 2

-1
<_ {4 Lz:| >eiﬁnz,
Wg

where w? =2/knga, B,=a2n+3)/2, and k=2m/A.

The propagation of the Boyer-Wolf modes in an anisotropic GRIN
medium is simulated in Fig. 4b. There, we can clearly see that the
modes propagate without any diffraction within such media. Inter-
estingly, these modes also present self-healing properties similar to
structured beams in lens like media™, see Supplementary Note 7.

“)

Transition to Weber parabolic beams

Finally, similar to how the LGM and IGM can transform into the Bessel
and Mathieu nondiffractive beams?*’, we found that the Boyer-Wolf
Gaussian modes can transform into the Weber parabolic non-
diffractive beams?. This metamorphosis occurs when the order, n, and

the waist size, w,, tend towards infinity, while maintaining the ratio
k;=2./n/w, constant. This ratio becomes the transverse wavevector
of the nondiffractive beam, k.. In Fig. 4c, we show this transition, there
we can clearly see how, as the order and waist size of the Boyer-Wolf
mode increase, it increasingly resembles a Weber parabolic non-
diffractive beam. This transition enables the generation of high-power
quasi-nondiffractive beams with parabolic geometry right at the laser
source.

Discussion

In summary, we have experimentally observed Boyer-Wolf Gaussian
modes in a laser resonator. We designed a new class of laser resonator
equivalent to a quantum two-dimensional 2:1 anisotropic harmonic
oscillator by studying the isomorphism between stable laser cavities
and quadratic Hamiltonians. The generated Boyer-Wolf Gaussian
modes exhibit an inherent parabolic geometry that breaks the sym-
metry around the y-axis that is present in the HGM, LGM, and IGM, and
creates a dark parabolic region around the x-axis. The observed Boyer-
Wolf Gaussian modes not only represent a new fundamental family of
modes of a laser resonator, but also the first realization of the eigen-
solution of the 2D 2:1 anisotropic quantum harmonic oscillator in any

Nature Communications | (2024)15:5301
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b 2:1 Anisotropic Gradient Index Medium

3L/2
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Boyer-Wolf
nondiffactive

Fig. 4 | Simulated propagation of Boyer-Wolf Gaussian modes in the 2:1 ani-
sotropic laser cavity and in a 2:1 anisotropic GRIN medium. a Left, amplitude of
the transverse mode of the laser cavity at the output coupler. Right, x and y-cross
sections of a full round-trip propagation of the lasing mode inside the resonator
cavity. The y-cylindrical mirror and the output flat mirror create a single cavity in
the y-axis. While the x-cylindrical lens at the middle of the resonator creates two
cavities, one with the flat mirror and one with the y-cylindrical mirror, as one can

Weber Parabolic

L/2 3L/2

L/2 L 3L/2 2L

Boyer-Wolf
quasi-nondiffactive regime

zZpl2

clearly observe from the propagation cross-sections. b Propagation of a Boyer-Wolf
Gaussian mode in an anisotropic 2:1 GRIN medium. The Boyer-Wolf Gaussian
modes are eigenmodes of such a GRIN medium and therefore propagate without
diffraction. ¢ Transmutation of the Boyer-Wolf Gaussian beams to a Weber para-
bolic nondiffracting beams. The metamorphosis takes place when the order, n, and
the waist size, w,, tend towards infinity, while maintaining the ratio k, =2n/w,
constant, which becomes the transverse wavevector of the nondiffractive beam.

physical system and demonstrate experimentally the mathematical
integrability of such system. We show that the Boyer-Wolf Gaussian
modes are also eigenmodes of a 2:1 anisotropic gradient index med-
ium, and therefore they must be present in any physical system—such
as ultracold atoms, mechanical and acoustic systems—with a 2:1 ani-
sotropic quadratic potential. We also find a transition that connects
the Boyer-Wolf Gaussian modes to the Weber nondiffractive parabolic
beams?, allowing the generation of quasi-nondiffractive beams with
parabolic geometry right at the laser source. The new Boyer-Wolf
Gaussian modes serve as a fundamental element of structured light
and open the door to new applications in laser micromachining, par-
ticle micromanipulation and optical communications.

Methods

We generate the Boyer-Wolf Gaussian modes by building the laser
resonator as depicted in Fig. 3a. The output coupler and gain medium
is a 1.2% doped Nd:YAG crystal rod with dimensions of 5 mm length by
5 mm diameter, with a high-reflection coating at emission wavelength
1064 nm and an antireflection coating for the pump wavelength on one

facet and an antireflection coating for both wavelengths on the second
facet. To cool the Nd:YAG crystal, we wrap its perimeter with indium
and place it inside a copper mounting attached to a water-cooling
system at 16 £. The crystal was end-pumped with a nLight Model Ele-
ment e09i wavelength stabilized diode laser operating at 808 nm,
which was collimated and focused into the Nd:YAG crystal, from out-
side the cavity. The incident pump power ranges from 0.5to 3.5 W, and
the output power is of the order of 10 mW, see Supplementary Note 8.
The other mirror of the cavity is a y-axis silver-coated concave
cylindrical mirror @1” with f =200mm. At the middle of the cavity, we
place a plano-convex cylindrical lens @1” with f =100mm. We experi-
mented with different lengths for the resonator, specifically,
L=12,15,17,20,30cm. To excite different BWG modes, we system-
atically changed the tilt angles of the cylindrical mirror and lens, see
the Supplementary Notes 9, 10 for more details. We image the modes
at the output coupler, by using a dichroic mirror (R >99.5%@1064 nm
T>95%@808 nm @45°), a single lens, and a BladeCam-XHR CMOS
(DataRay Inc.) camera (=355 to 1150 nm, 6.5 x 4.9 mm, 3.2 um pix-
els). We numerically filter the image noise by removing any spectral

Nature Communications | (2024)15:5301
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frequency smaller than one percent of the peak spectral amplitude. A
silicon wafer to cut off wavelengths below 1 um was used to suppress
the remaining pump light.

Data availability

All data that support the findings of this study are available within the
paper and the Supplementary Information and are available from the
corresponding author upon request.
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