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Optimizing 5’UTRs for mRNA-delivered gene
editing using deep learning

Sebastian Castillo-Hair1,2,7, Stephen Fedak3,7, Ban Wang 4,7,
Johannes Linder 5,6, Kyle Havens3, Michael Certo3 & Georg Seelig 1,5

mRNA therapeutics are revolutionizing the pharmaceutical industry, but
methods to optimize the primary sequence for increased expression are still
lacking. Here, we design 5’UTRs for efficient mRNA translation using deep
learning. We perform polysome profiling of fully or partially randomized
5’UTR libraries in three cell types and find that UTR performance is highly
correlated across cell types. We train models on our datasets and use them to
guide the design of high-performing 5’UTRs using gradient descent and gen-
erative neural networks. We experimentally test designed 5’UTRs with mRNA
encodingmegaTALTM gene editing enzymes for two different gene targets and
in two different cell lines. We find that the designed 5’UTRs support strong
gene editing activity. Editing efficiency is correlated between cell types and
gene targets, although the best performing UTR was specific to one cargo and
cell type. Our results highlight the potential of model-based sequence design
for mRNA therapeutics.

mRNA therapeutics and vaccines provide a safe, effective, and flexible
method of delivering transient genetic instructions to living cells and
tissues1. Compared to plasmid or AAV-based delivery, mRNA offers
several advantages, including simple manufacturing that is indepen-
dent of the encoded therapeutic protein2, lower immunogenicity, and
transient gene expression3,4. As a result, mRNA technology has been
crucial for the rapid development of vaccines against the COVID-19
pandemic5,6, and is currently being developed for applications such as
protein replacement therapy7,8, regenerative medicine9,10, and cancer
immunotherapy11,12, among others13. An intriguing use of the mRNA
platform is the delivery of gene editing reagents3,14, because transient
expression of gene editors avoids deleterious effects from prolonged
exposure, such as off-target editing4 and reduces the likelihood of
forming anti-drug antibodies, thereby allowing for repeated dosing15.
Though there are multiple gene editing platforms, single-chain com-
pact enzymes such asmegaTALs16 are particularly well-suited tomRNA
delivery. megaTALs are fusions of a minimal transcription activator-
like (TAL) effector domain with an engineeredmeganuclease. The TAL
effector addresses themeganuclease, whichhas intrinsic specificity for

a few genomic target sites, to a single site where it catalyzes the for-
mation of a DNA double-stranded break, thereby achieving high
activity and specificity16. Because of these features, megaTALs have
been developed for a number of therapeutically-relevant targets17–19.

The recent success of mRNA vaccines and therapeutics is the
result of decades of research in areas such as lipid nanoparticles for
delivery20, modified nucleosides for decreased immunogenicity21,22, 5’-
cap analogs for improved translation and stability23, and codon
optimization24. Comparably little attention has been directed to opti-
mizing untranslated regions (UTRs) despite their roles in controlling
mRNA translation and stability. ManymRNA therapies currently utilize
UTRs from the alpha- and beta-globin genes or slight modifications
thereof, owing to being well described and associated with highly
expressedproteins1,13. However, increasedprotein expressionhas been
observed in a few studies when using alternative UTRs25–28, demon-
strating the remaining untapped potential to optimize expression. A
major obstacle is the difficulty in predicting the effects of arbitrary
UTR sequences, as some cis-regulatory elements can affect multiple
molecular processes29 and interact with RNA-binding proteins30 and
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microRNAs31,32 thatmayeven bedifferentially expressed across tissues.
Recently, quantitative models based on deep learning that predict
translation efficiency33,34 and mRNA stability35 from sequence have
started to emerge. Using these to guide UTR sequence design for
mRNA therapeutics remains an intriguing yet relatively unexplored
alternative36 (Fig. 1A).

The 5’UTR sequence in particular is a major determinant of
translation efficiency and thus an intriguing target for engineering37–39.
To initiate translation, the ribosomal 43 S pre-initiation complex (PIC)
scans the 5’UTR in the 5’-to-3’ direction until a start codon is found.
Therefore, 5’UTRs can affect translationby capturing PICs prematurely
via upstream start codons (uAUGs) and ORFs (uORFs)38,40, interfering
with PIC scanning via stable secondary structure39, or even directly
recruiting ribosomes via Internal Ribosome Entry Sites (IRESs)41. Some
5’UTR cis-regulatory elements are exclusively located within a few

bases from the 5’ end. For example, 5’-Terminal Oligo Pyrimidine
(5’TOP) motifs consisting of a cytosine at position +1 followed by 4 to
15 pyrimidines42, 5’TOP-like motifs located within four nucleotides of
the transcription start site43, and pyrimidine-rich translational ele-
ments (PRTEs) consisting of a uridine flanked by pyrimidines44,45

upregulate translation in response to mTOR activation during stress
and have been linked to cancer initiation and progression.
Transcriptome-wide translationmeasurements in a panel of cell lines46

and during neuronal differentiation47 have suggested that 5’UTRs
regulate translation in a mostly cell type-independent manner,
whereas 3’UTRs have a greater cell type-specific effect. However, some
5’UTRs have been observed to act in a cell type-specific manner, for
example, during embryo development48,49. To predict the influence of
5’UTR sequence on translation, we previously developed Optimus 5-
Prime, a convolutional neural network trained on translation efficiency
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Fig. 1 |Massively Parallel ReporterAssays (MPRAs) tomeasure cell type-specific
5’UTR regulation of translation. A A model-based design strategy for 5’UTRs in
mRNA therapeutics applications, using neural network-based predictive models
trained on MRPA data. B Summary of polysome profiling MPRA. A library with a
randomized 50nt 5’UTR region was synthesized as in vitro transcribed (IVT)mRNA,
transfected into HEK293T, T cells, and HepG2 cells, and fractionated using a
sucrose gradient to separate mRNAs with different numbers of ribosomes. Frac-
tions were then barcoded and sequenced, and theMean Ribosome Load (MRL) was
calculated for each 5’UTR variant as a proxy of translation efficiency. The resulting
data contained 204,803 5’UTR variants with 100 or more reads in all replicates, in

two replicates in HEK293T, two in T cells, and one in HepG2.C Comparison of MRL
measurements across cell lines. 5’UTR variants were sorted by the minimum
number of reads across all replicates, and the top 20,000 were used for this ana-
lysis. Data from only one replicate per cell line is shown. Data from additional
replicates canbe found in Supplementary Fig. 1.DArchitectureofOptimus 5-Prime,
a convolutional neural network model for predicting MRL from 5’UTR sequence33.
E Optimus 5-Prime predictions compared to MRL measurements in all three cell
lines. The top 20,000 5’UTRs by read count in HEK293, which were not used for
model training, were used for this analysis. Source data are provided as a Source
Data file.
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measurements from a synthetic reporter library of 280,000 random
5’UTRs33. However, there are limitations to Optimus 5-Prime. First, the
reporter design included a constant 25 nt-long region at the very 5’ end
of the transcript and Optimus 5-Prime may not have learned to prop-
erly model the influence of sequence elements specific to this
region42–45. Moreover, the overall length of the tested 5’UTRs was 75 nt
(25 fixed and 50 random nt) in most of our experimental assays, while
for mRNA technology applications, it may be desirable to shorten the
5’UTR to minimize the overall transcript length and to reduce the
likelihood of unintentionally including cis-regulatory information that
impactsmRNA stability or translation. Second, predictivemodels used
for mRNA therapeutics sequence design should aim to be accurate in
all cell types and tissueswhere the therapy is expected to be functional
but it is unclear whether Optimus 5-Prime predictions can generalize
beyond HEK293T cells, where our reporter assays were conducted.
Third, while we previously used Optimus 5-Prime to guide the design
of synthetic 5’UTRs, these sequences were validated through GFP
expression and ribosome loading experiments but not in a functional
assay relevant to mRNA therapy or related applications33.

In this study, we designed de novo 5’UTRs for an mRNA-encoded
gene editing applicationusingOptimus 5-Prime, thereby validatingour
previously established deep learning modeling and sequence design
methods in the context of a functional assay. We first sought to char-
acterize whether Optimus 5-Prime generalized to two new cellular
contexts relevant to mRNA therapeutics. We targeted cultured hepa-
tocellular carcinoma (HepG2) cells as a proxy for liver cells, for which
protein replacement8, regenerative50, and gene editing51 mRNA thera-
pies are currently being developed. Additionally, we characterized
T cells, where therapeutic mRNA has been used for transient expres-
sion of chimeric antigen receptors (CAR)52 and to express gene editors
to knock out specific receptors during manufacturing of allogeneic
CAR T cells53. Moreover, to study 5’UTR regulation specific to the 5’
terminal region, we constructed and characterized new mRNA repor-
ter libraries with shorter, 25nt or 50nt-long, completely randomized
5’UTRs, and used the resulting data to train a new predictor, Optimus
5-Prime(25). We then designed 5’UTRs for mRNA-delivered megaTAL
gene editing therapeutics and conducted gene editing assays in K562
cells to validate them.Weusedboth versions ofOptimus 5-Prime along
with two design methods we recently developed: Fast SeqProp, based
on gradient descent optimization54, and Deep Exploration Networks
(DENs), basedongenerativeneural networks55.We found that 24out of
29 de novo UTRs designed to maximize mean ribosome load (MRL)
resulted in high editing efficiency compared to endogenous controls
for two different megaTALs. Furthermore, maximum editing activity
was achieved with one of the DEN-designed 5’UTRs for one of the
megaTAL targets. Finally, we directly measured the MRL and stability
of megaTAL-encoding mRNAs for a subset of our engineered 5’UTRs,
and found that sequences with high MRL but low gene editing effi-
ciency had a shorter lifetime and a large proportion of ribosome-free
(i.e. translationally inactive) molecules. Our results highlight the
potential of current sequence design methods for mRNA therapeutics
and outline limitations of our current translation predictive models.

Results
Optimus 5-prime predictions generalize to cells relevant to
mRNA therapeutics
We performedMassively Parallel Reporter Assays (MPRAs) tomeasure
translation efficiency from our previously developed 5’UTR reporter
library in HepG2 and T cells (Fig. 1B), following an identical procedure
as we did with HEK293T33 (Methods). Briefly, our library comprised
in vitro transcribed (IVT) mRNAs, with a 5’UTR containing an initial
constant 25nt-long segment followed by a 50nt-long fully random
region, an EGFP CDS, and a 3’UTR derived from the bovine growth
hormone (BGH) gene. We transfected the IVT mRNA library and, after
an 8 h incubation period, extracted cell lysates in the presence of the

translational inhibitor cycloheximide, performed polysome profiling
to separate polysome fractions, and sequenced each fraction. As a
proxy for translation efficiency, we calculated the Mean Ribosome
Load (MRL) for each 5’UTR, by multiplying the normalized read count
on each fraction by the corresponding number of ribosomes33.

After filtering for sequences with at least 100 reads in all datasets,
we obtained translationmeasurements from204,803 5’UTRvariants in
common across five replicates over three cell types, with similar
quality and read coverage (Supplementary Fig. 1A, B). Analyzing a
subset of the 20,000 sequences with the highest coverage, we found
MRLs to be highly correlated across cell lines (Fig. 1C, Supplementary
Fig. 1C), with coefficients of determination between cell lines
(r2 = 0.837–0.870 for HEK293T versus T cells and r2 = 0.847–0.871 for
HEK293T versus HepG2) comparable to those across T cell replicates
(r2 = 0.814, Supplementary Fig. 1C). While these were lower than the
HEK293T inter-replicate correlation (r2 = 0.938), this difference could
be at least partially explained by the higher HEK293T data quality
resulting from a larger number of cells ( > 4 million vs 1 million) and
amount of IVT RNA (14.5 ug vs 1 ug) used in our previous study.
Moreover, while r2 decreased as we included more sequences with
lower coverage, likely an artifact of decreasing data quality, their
relationship across cell lines was maintained (Supplementary Fig. 1D).

Next, we compared these measurements to Optimus 5-Prime
predictions (Fig. 1D). While the highest correlation was observed with
HEK293T measurements (r2 = 0.937 on 20,000 sequences with the
highest read coverage held out from training, Fig. 1E), correlationswith
measurements in T cells and HepG2 were also high (r2 = 0.841 and
0.840 respectively). For both HEK293T and T cells, performance was
close to inter-replicate correlation, thus absolute differences in r2 are
likely due to the higher data quality in HEK293T. Prediction accuracy
did not consistently increase when retraining Optimus 5-Prime indivi-
dually in each cell line (Supplementary Fig. 2) or when training a single
multi-output model to predict on all cell lines simultaneously (Sup-
plementary Fig. 3). Finally, given that the most influential known reg-
ulatory elements are composed of three letters (AUG, CUG, GUG, etc),
we investigated whether any 3-mers could have differential effects
over MRL in different cell types. To this end, we trained simple 3-mer-
with-position linear models on each replicate (Supplementary
Fig. 4A, B) and analyzed the resultingweights, but failed to find any cell
line differences beyond those present in replicates of the same cell line
(Supplementary Fig. 4C). Together, these results show that observa-
tions from our polysome profiling MPRA in HEK293T, as well as pre-
dictions from Optimus 5-Prime, generalize to HepG2 and T cells.

De novo designed 5’UTRs enable high gene editing efficiency
from megaTAL-encoding mRNAs
Next, weusedOptimus 5-Prime todesign denovo 5’UTRs,with the goal
ofmaximizingmegaTAL expression frommRNA vectors and therefore
improving gene editing efficiency. Specifically, we used megaTALs
designed to disrupt two genes whose knockout in engineered T cells
enhance antitumor activity56,57. The first megaTAL targeted exon 6 of
the TGFBR2 gene, which codes for the TGF-β receptor II, a receptor for
the TGF-β cytokine with prominent roles in development, regenera-
tion, immune cell differentiation, and cancer58,59. Our secondmegaTAL
targeted exon 1 of the PDCD1 gene, which codes for the signaling
receptor Programmed Cell Death Protein 1 (PD-1) which acts as an
inhibitory checkpoint during T cell activation60.

We designed 19 de novo 5’UTRs and selected 11 control sequen-
ces, incorporated them into megaTAL-encoding mRNAs, and quanti-
fied their performance via gene editing assays (Fig. 2A, B). Our controls
included eight sequences previously measured in our polysome pro-
filing MPRA33, including four with low or medium measured MRLs as
well as four selected from the top 0.02% by measured MRL (Supple-
mentary Fig. 5A). As additional controls, we included the 5’UTR
sequences of the human VAT1 and LAMA5 genes which were identified
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in a prior gene editing screen as the best performing natural 5’UTRs. In
previous MPRA measurements33 these UTRs showed high translation
efficiencies similar to the commonly-used beta-globin UTR (top ~20%
among ~17,000 short endogenous UTRs, Supplementary Fig. 5B). We
also included a minimal 5’UTR consisting of nothing more than a
strong Kozak sequence61, which we had previously found to result in
high editing efficiency. All UTRs were preceded only by the initial
guanine triplet inserted by IVT.

De novo 5’UTRs were designed using either Fast SeqProp54 or
DENs55 (Fig. 2A). To preserve Optimus 5-Prime prediction accuracy,
5’UTR architecture was kept identical to the MPRA library used for
training: a constant 25nt-long initial region followed by a variable 50nt
segment. In Fast SeqProp, a candidate sequence is iteratively refined
by following the gradient of the Optimus 5-Prime-predicted MRL with
respect to a continuous representation of the sequence. By following
the gradient instead of scoring multiple random mutations at each
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step, Fast SeqProp can design high-performing sequences hundreds of
times faster than simulated annealing or genetic algorithms, though it
may still get stuck in local optima or overfit the predictor54. Although
out-of-frame uAUGs are unlikely to occur in high fitness sequences, in-
frameuAUGs could result inhighpredictedMRLbutwould producean
incorrect N-terminus. Therefore, we included a penalty against gen-
erated uAUGs (Methods). To reduce the possibility of overfitting, we
scored designed sequences using an independently trained linear
k-mer model (Methods, Supplementary Fig. 6). By following this pro-
cedure, we generated ten candidate sequences, from which we ran-
domly selected four to be tested in our gene editing assays.

To design sequences with DENs, we trained a generative neural
network with the objective of maximizing Optimus 5-Prime-predicted
MRL while minimizing the similarity across generated sequences
(Methods, Supplementary Fig. 7A, B). By explicitly minimizing simi-
larity,we force the generator to capture a large section of the sequence
space, thereby reducing thepossibility of overfittingor getting stuck in
local optima55. We generated 1,024 5’UTRs and selected 5 from the top
20 by predicted MRL for gene editing experiments (Supplementary
Fig. 7C–E). In addition, to validate the accuracy of the design method
and predictor, we trained a DEN in inverse regressionmode, where the
generator receives an additional input that specifies a target MRL
(Supplementary Fig. 8A, B), and designed four 5’UTRs with predicted
MRLs of 2, 3.5, 5, and 6.5 for experiments (Supplementary Fig. 8C–F).

As design algorithms seek to maximize performance, they may
drift into low-confidence sequence space regions of the predictor,
where sequences are too dissimilar from the training data and pre-
dictions are less accurate. To prevent this, we trained a Variational
Auto Encoder (VAE)62, a neural network that learns the marginal dis-
tribution of the training data and estimates the likelihood of any new
sequencewith respect to this distribution.We then used the estimated
likelihood as a regularization penalty to the cost function in both Fast
SeqProp and DEN (Fig. 2A, Supplementary Fig. 9A–F, Methods). Spe-
cifically, we trained a VAE on a subset of 5,000 5’UTRs selected from
our MPRA dataset for their high-measured MRL and read depth
(Supplementary Fig. 9G). We then designed ten additional sequences
via Fast SeqProp with VAE regularization and selected four for gene
editing assays. Finally, we trained a new DEN with VAE regularization,
generated 1,024 sequences with high predicted MRL, and picked two
from the top 10 for gene editing assays (Supplementary Fig. 10). In
summary, 19 de novo 5’UTRs were selected for gene editing assays,
including 15 sequences designed for maximal MRL (4 with Fast Seq-
Prop, 4 with Fast SeqProp + VAE, 5 with DEN, 2 with DEN+VAE), as well
as 4 UTRs with low andmedium targetMRLs designedwith a DEN. The
sequences of all 5’UTRs tested in gene editing assays can be found in
Supplementary Data 1.

To evaluate the performance of our designs, we synthesized IVT
mRNA containing candidate 5’UTRs followed by the megaTAL CDS,
transfected these at four dosage levels (0.25, 0.5, 1, and 2 pmol IVT

mRNA) intoK562 (lymphoblast) cells, and quantified the percentage of
successful non-homologous end joining (NHEJ)-mediated gene dis-
ruption via sequencing (Fig. 2B, Methods). As expected, editing effi-
ciency increasedwithmRNAdosage for all 5’UTRs,with several designs
exceeding 40% for the TGFBR2 and 80% for the PDCD1megaTALs at 2
pmol mRNA (Fig. 2C top, Supplementary Fig. 11A top, Fig. 2D). Editing
efficiencies normalized against the Strong Kozak control (hereafter
Kozak-normalized efficiencies) were highly consistent across all
dosage levels (Fig. 2C bottom, Supplementary Fig. 11A bottom). Most
of the assayed sequences showed editing efficiencies comparable to
the Strong Kozak control. However, 50% of the Fast SeqProp-
generated sequences showed lower editing efficiencies despite hav-
ing high predicted MRL, regardless of VAE regularization. Kozak-
normalized editing efficiencies were highly correlated with predicted
MRL over all designed 5’UTRs (Fig. 2E, Supplementary Fig. 11B),
although Fast SeqProp-derived sequences with low editing efficiency
deviated from the linear trend the most. While we found these
observations to hold for both TGFBR2 and PDCD1megaTALs (Fig. 2F),
the specific 5’UTRs resulting in maximal editing differed: LAMA5 per-
formed the best and VAT1 performed similarly to the Strong Kozak
control with the TGFBR2megaTAL, whereas the opposite was true for
PDCD1 (Fig. 2F). Finally, we repeated our assay in HepG2 cells and,
while the general trends in Kozak-normalized efficiency were main-
tained (Fig. 2G), absolute efficiency was lower and measurement
variability was higher (Supplementary Fig. 12).

Measuring translation efficiency of short, fully variable 5’UTRs
5’UTR regulation may differ when sequence elements are placed
close to the 5’ terminus. For example, various pyrimidine-rich
motifs have been found to influence translation in response to
stress when located within a few bases of the 5’ end42–45. Our pre-
vious 5’UTR MPRA was unable to interrogate this region, as a fixed
25nt segment was placed at the 5’ end to facilitate library pre-
paration (Fig. 1B). To overcome this limitation, and to enable
design of shorter 5’UTRs, we performed polysome profiling MPRAs
on two new “random-end” mRNA libraries, where the 5’UTR con-
sisted only of a variable 25nt or 50nt region preceded only by the
guanine triplet introduced by IVT (Fig. 3A). As with our previous
50nt “fixed-end” library (Fig. 1B), we transfected these random-end
mRNA libraries into HEK293T cells and collected lysates 12 h later.
To compensate for a lack of a constant 5’ end for PCR-based
incorporation of sequencing adapters, we used template switching
(TS), wherein a reverse transcriptase derived from the Moloney
murine leukemia virus appends three non-templated deox-
ycytosines after reaching the 5’ end of the template mRNA. Then, a
template switching oligo with three riboguanines (rGrGrG) in its 3’
end binds to the non-templated overhang, thereby becoming the
new reverse transcription (RT) template and providing a fixed
cDNA sequence for subsequent adapter incorporation (Fig. 3A,

Fig. 2 | Model-based design of 5’UTRs for gene-editing mRNA therapeutics.
A Top: schematic of megaTAL mRNA vector. 5’UTRs have the same architecture as
our MPRA (Fig. 1B). Bottom: variable 5’UTR regions are designed via a combination
of two design algorithms (Fast SeqProp54 or Deep Exploration Networks (DENs)55)
and two regularization strategies (no regularization or Variational AutoEncoders
(VAEs)62). B Schematic of gene editing experiment. megaTAL mRNA with each
5’UTR was individually synthesized via IVT and transfected into K562 cells. After
72 h, gene editing efficiency was assessed via sequencing of the target genomic
region (Methods). C Editing efficiencies for mRNAs with a megaTAL targeting the
TGFBR2 gene, for 30 different 5’UTRs, including designs and controls. Each group
of four bars represents the editing efficiency of one 5’UTR transfected at four
mRNA doses (0.25, 0.5, 1, or 2 pmol). Two biological replicates were performed per
5’UTR andmRNAdosage, and are represented by individualmarkers. Top: absolute
efficiencies. Bottom: efficiencies normalized to the Strong Kozak control at the
corresponding mRNA dosage. Editing efficiencies for the first High MRL MPRA

control, the first No VAE Fast SeqProp design, the second No VAE DEN design, and
the third VaryingMRL DEN design were close to zero only at 0.25 pmol mRNA, and
were deemed to be caused by experimental error and excluded from subsequent
analysis. D Absolute editing efficiency as a function of mRNA dosage for 5’UTRs
indicatedwith a vertical arrow in thebottompanel ofC.EKozak-normalizedediting
efficiency of the TGFBR2megaTAL vs. Optimus 5-Prime predictions. F Comparison
of Kozak-normalized efficiencies with megaTALs targeting the TGFBR2 or the
PDCD1 genes. G) Kozak-normalized efficiencies for the TGFBR2 megaTAL in K562
versus HepG2. In (E), (F), and (G), markers and error bars represent the mean and
standard deviation of Kozak-normalized efficiencies ((C), Supplementary Fig. 11A,
and Supplementary Fig. 12A, C) across all mRNA dosages for each 5’UTR (n = 8 for
most 5’UTRs: 2 replicates and 4 dosages. The 0.25 pmol dosage was excluded for
four sequences as described above, therefore n = 6 for these). Source data are
provided as a Source Data file.
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Methods). We then performed Illumina sequencing and data pro-
cessing (Methods), and calculated MRLs from read counts as
previously33.

Weperformed twobiological replicateswith the 25nt random-end
library and obtained good-quality (sum of reads across replicates
greater than 100) MRL measurements from 168,000 distinct UTRs
(Supplementary Fig. 13A, B). Inter-replicate MRL correlation was good
(r2 = 0.692 for the top 20,000 sequences by read coverage, Supple-
mentary Fig. 13C, D), although lower than our previous fixed-end 50nt
library (r2 = 0.938, Supplementary Fig. 1D). Similarly, we performed
one replicate with the 50nt random-end library, and obtained MRL
measurements from 149,000 sequences at the same quality level
(Supplementary Fig. 14). As with our previous fixed-end library, we
found that 5’UTRs with uAUGs out of frame with respect to the
intended AUG had significantly lower MRL compared to the median of
the library and with sequences with in-frame uAUGs (Supplementary
Fig. 15A). A similar effect, although of much lower magnitude, was
observed for upstream non-canonical start codons (Supplementary
Fig. 15B, C). Interestingly, MRL attenuation was noticeably lower when
the uAUG was located near the 5’ end in the random-end libraries,
suggesting distinct regulation at the very 5’ end compared to the rest
of the 5’UTR that could not be captured in our previous fixed-end
library (Supplementary Fig. 15A, Fig. 3B).

Next, we evaluated the effect of short pyrimidine tracts (5 x C/U)
at different locations within the 5’UTR on measured MRL, using data
from both random-end and fixed-end library data (Fig. 3C, Supple-
mentary Fig. 16). We found that pyrimidine tracts generally led to a
small but statistically significant MRL increase compared to the library
median (Supplementary Fig. 16). For both libraries, we observed a

noticeable decrease in effect size with increasing distance of the pyr-
imidine tract from the 5’ end (Fig. 3C, Supplementary Fig. 16). There-
fore, our data is consistent with oligopyrimidine tracts at the start of
the transcript resulting in slightly increased translation in HEK293 cells
even in the absence of stressors.

Predicting translation efficiency from short, fully
variable 5’UTRs
We next sought to obtain a model that generates accurate predictions
on 25nt-long 5’UTRs. We evaluated candidate models via their pre-
diction accuracy on the top 2,000 sequences by read coverage from
the random-end 25ntMPRA library, which showed good inter-replicate
correlation (r2 = 0.844, Supplementary Fig. 13D). We first tested Opti-
mus 5-Prime, for which 25nt-long input sequences were one-hot
encoded and zero-padded on the left to reach the required input
length. However, we found its accuracy to be relatively low (r2 = 0.564
for 50nt Optimus 5-Prime, Supplementary Fig. 17A, r2 = 0.600 for
25–100ntOptimus 5-Prime, Supplementary Fig. 17B).We hypothesized
that these models, trained on data from 5’UTRs with a constant 5’
region, could not properly account for differential regulatory effects
that sequence elements can have when located near the start of the
transcript (Fig. 3B, C). Thus, we developed Optimus 5-Prime(25), a
model traineddirectly on the random-end 25ntMRPAdata. Inspired by
the convolutional network VGG-1663, Optimus 5-Prime(25) contains
two blocks with two convolutional layers and one pooling layer each,
followed by two fully connected dense layers that ultimately compute
the predicted MRL (Fig. 3D, Methods). This model showed good per-
formance on the same test set which was held out from training
(r2 = 0.806 on the top 2000 sequences by read coverage, Fig. 3E).
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Source data are provided as a Source Data file.
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Designed short 5’UTRs enable high megaTAL-induced gene
editing activity
Finally, we used Optimus 5-Prime(25) to design 14 shorter 5’UTRs for
our megaTAL mRNAs. As before, we used Fast SeqProp to design ten
new 5’UTRs with maximal predicted MRL, validated these against an
independent k-mer linear model (Supplementary Fig. 18, Methods),
and randomly selected four for gene editing assays. We then trained a
DEN to generate 1024 25nt-long 5’UTRs that maximize both sequence
diversity and predicted MRL, and selected 5 from the top 25 by MRL
(Supplementary Fig. 19, Methods). To test the effect of VAE regular-
ization, we trained a new VAE on 5000 high-coverage, high MRL
sequences from the 25nt random-end library (Supplementary Fig. 20,
Methods). We then used VAE estimated likelihood as a regularization
term to design ten additional 5’UTRs using Fast SeqProp (Supple-
mentary Fig. 18), and randomly selected two for gene editing assays.
Similarly, we trained a new DEN with VAE regularization to generate
1024 5’UTRswithmaximal predictedMRL, fromwhichwe selected two
from the top 10 (Supplementary Fig. 21). Notably, despite optimizing
based on MRL only, our designed sequences predominantly started

with an oligopyrimidine repeat: from our final selection, 5 out of 7 Fast
SeqProp and 4 out of 7 DEN-generated sequences contain TTY after
the initial GGG required by IVT, indicating that our methods captured
and exploited the enhancing effect of this sequencemotif (Fig. 3C). As
controls specific to this shorter 5’UTR design, we included four 5’UTRs
from the random-end 25nt library with MRLs within the top 0.25% of
the library (Supplementary Fig. 22).

We then evaluated the gene editing performance of these designs
in K562 as above (Fig. 2B). In practice, we assayed defined-end
(Fig. 2C–G) and random-end (Fig. 4) sequences simultaneously to
enable direct comparisons across 5’UTR architectures (Methods). As
with our previous designs, editing efficiency increased with mRNA
dosage (Fig. 4A, Supplementary Fig. 23 top).When normalizing against
the Strong Kozak control, we found that most of our designed 5’UTRs
performed comparably to the high-performing controls at all mRNA
dosages, with the exception of one of the Fast SeqProp designs
(Fig. 4B, Supplementary Fig. 23 bottom).Moreover, when targeting the
TGFBR2 gene, one DEN-designed sequence outperformed all other
UTRs, including defined-end designs, at all mRNA dosages (absolute
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segment as in Fig. 3. Bottom: Absolute editing efficiencies for mRNAs with a
megaTAL targeting the TGFBR2 gene, for 21 different 5’UTR including designs and
controls. Each group of four bars represents one 5’UTR sequence transfected at
four mRNA doses (0.25, 0.5, 1, or 2 pmol mRNA). Two biological replicates were
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Editing efficiencies for the first No VAE Fast SeqProp design and the second +VAE
DEN design were close to zero only at a dosage of 0.25 pmol mRNA, and were
deemed to be the result of experimental error and excluded from subsequent
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dosage for a few selected 5’UTRs indicated with a vertical arrow in (B). (D) Com-
parison of Kozak-normalized editing efficiencies when using a megaTAL targeting
the TGFBR2 gene vs. the PDCD1 gene. (E) Comparison of Kozak-normalized editing
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(Fig. 2 and relevant Supplementary Figs.) are also included in (D) and (E). Source
data are provided as a Source Data file.
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efficiency of 55.6% at 2 pmolmRNA), improving over the previous best
performer LAMA5by 18–33% (Fig. 4C).When considering both defined-
end and random-end designs, Kozak-normalized editing efficiencywas
highly correlated across the TGFBR2 and PDCD1 megaTALs (Fig. 4D).
However, the DEN-designed sequence that showed the highest effi-
ciencywith the TGFBR2megaTAL performed only as well as the Strong
Kozak control when combined with the PDCD1 megaTAL (absolute
efficiency of 80.8%at 2 pmolmRNA),with theVAT1 control performing
best in this context (absolute efficiency of 91.4% at 2 pmol mRNA,
Fig. 4D, Supplementary Fig. 23). Finally, we repeated these experi-
ments inHepG2 cells and foundhighKozak-normalized efficiencies for
all new designs, although high replication noise prevented us from
identifying a single best performing sequence (Fig. 4E, Supplementary
Fig. 24). In conclusion, by using model-based design methods with
Optimus 5-Prime(25), we successfully generated de novo 5’UTRs that
supported high gene editing activity, including one that outperformed
all others for the TGFBR2 megaTAL.

Differences in the ribosome-free mRNA fraction and in decay
kinetics explain performance discrepancies in maximal MRL
5’UTRs designs
While most 5’UTRs designed to maximize MRL resulted in high gene
editing activity, a fewhadworseperformance thanexpected from their
predicted MRL. This discrepancy was particularly pronounced for
some of the fixed-end Fast SeqProp designs (Fig. 2C–G). To explain
these inconsistencies, we performed polysome profiling on all
megaTAL-encoding mRNAs with fixed-end 50nt 5’UTRs (Fig. 5A,
Methods), hypothesizing that the actual MRL for FastSeqProp designs
might be lower than predicted. Overall, measured MRLs had a higher
baseline and a reduced range compared to those from our MPRA
experiments and Optimus 5-Prime, possibly due to the longer CDS
(2.7 kb vs. 733 bp in EGFP) capable of holding more translating ribo-
somes and the lower sensitivity of quantifying heavier polysome
fractions. Nevertheless, when including submaximal MRL designs,
measured MRLs were well correlated with Optimus 5-Prime predic-
tions (r2 = 0.53, Supplementary Fig. 25A) and with editing efficiencies
for both the TGFBR2 (r2 = 0.64) and PDCD1 (r2 = 0.80) megaTALs.
Within sequences designed to maximize MRL, correlation with editing
efficiency was lower (r2 = 0.40 for TGFBR2, Fig. 5B; r2 = 0.35 for PDCD1,
Supplementary Fig. 26A), with underperforming FastSeqProp designs
having slightly but not dramatically lower measured MRLs. Overall,
measured MRLs were not more predictive of editing efficiency than
Optimus 5-Prime predictions, and could not adequately explain the
lower editing of FastSeqProp designs.

Next, wequantified theproportion ofmRNAs in the ribosome-free
fraction of the polysome profile. (Fig. 5C). Our MRL definition only
considers mRNAs with one or more ribosomes, and a high ratio of
ribosome-free to total mRNA abundance could explain low protein
output despite a high MRL. For sub-maximal 5’UTR designs, we
observed a strong negative correlation between the free-to-total ratio
and the measured (Fig. 5D) or predicted (Supplementary Fig. 25B)
MRL. This observation is consistent with a model wherein inefficient
translation initiation results in both high levels of free mRNA and
overall reduced translation. Within maximal MRL designs, the free-to-
total ratio was also negatively correlated with editing efficiency
(TGFBR2: r2 = 0.65, Fig. 5E, PDCD1: r2 = 0.51, Supplementary Fig. 26B),
although following a different trend line than the submaximal designs.
Notably, Fast SeqProp designs with low editing efficiency had the
highest free-to-total abundance ratio (Fig. 5E), even above submaximal
MRL designs, and even though they were associated with fairly high
MRLs. The lower editing efficiency of FastSeqProp designs is thus at
least partially explained by the accumulation of the corresponding
mRNA in the free mRNA fraction.

Additionally, we characterized mRNA stability by quantifying
cellular mRNA abundance at multiple timepoints after transfection

(Fig. 5F, Methods). Protein output is proportional to both mRNA
abundance and translation, thus variation in mRNA stability could
explain variation in editing efficiency. Surprisingly, decay kinetics
showed a biphasic behavior which could not be accurately fit to a
single exponential decay curve (Supplementary Fig. 27). As an alter-
native metric for stability, we calculated the integrated mRNA abun-
dance over time (Fig. 5G), reasoning that it should be proportional to
the overall synthesized megaTAL protein under a simple protein pro-
duction kinetic model (Methods). Integrated abundance was generally
higher for submaximal MRL 5’UTRs, and, within maximal MRL designs
it waswell correlated with editing efficiency (TGFBR2: r2 = 0.55, Fig. 5H;
PDCD1: r2 = 0.73, Supplementary Fig. 26C), with low performing Fas-
tSeqProp designs showing the lowest abundances. Therefore, the
comparably lower stability of FastSeqProp designs further explains
their lower editing efficiency.

Finally, we attempted to identify regulatory sequence elements
that may drive these behaviors via motif enrichment analysis. Within
the six 5’UTRs with the highest free-to-total ratio, we found significant
enrichment of motifs CCGUA and UWAGUAG (E value = 2.9e-2) com-
pared to all other sequences assayed here (Methods). Similarly,
sequences with the lowest integrated abundance were significantly
enriched on motif HCCGUA (E value = 2.9e-2). Further work with a
larger number of sequences will be needed to confirm whether these
are true drivers of stability and accumulation in the ribosome-free
fraction.

Discussion
In this study, we first obtained MRL measurements from approxi-
mately 200,000 5’UTRs across T cells and HepG2 cells; each 5’UTR
contained a 25nt constant segment followed by a 50nt fully random
region. We found that measurements were highly correlated between
the two cell types and with measurements previously performed in
HEK293T cells (Fig. 1C, Supplementary Fig. 1C). Accordingly, all mea-
surements were accurately predicted by Optimus 5-Prime, a model
trained onHEK293T cell data only. RetrainingOptimus 5-Primeondata
from each cell line did not consistently improve performance (Sup-
plementary Fig. 2). Therefore, our results suggest that synthetic 5’UTRs
regulate translation from IVTmRNAwith little specificity acrosshuman
cells relevant for mRNA therapeutics. This is further supported by our
gene editing results: sequences designed using a model trained on
HEK293T data resulted in MRLs in K562 cells that were highly corre-
lated with predictions (Supplementary Fig. 25A) and showed, for the
most part, high editing efficiencies (Fig. 2 and Fig. 4). Our observations
agree with previous endogenous MRL measurements in human cell
lines46 and differentiating embryonic stem cells47, where cell type-
specific translation effects were mostly driven by 3’UTRs. However,
one study found that 5’UTRs may have a diminished regulatory capa-
city in developing brains compared to cell lines64. Therefore, tissue-
specific effects may still need to be considered when designing UTRs
for certain targets.

To quantify the impact of the very 5’end of the message we
then developed MPRAs with shorter, fully randomized 5’UTRs,
where only three guanines at the 5’ end are kept constant due to
restrictions in T7-based IVT (Fig. 3A). This approach allowed us to
observe that out-of-frame uAUGs have a smaller inhibiting effect
when located close to the 5’ end (Fig. 3B), whereas poly-C/T tracts
have a small enhancing effect that increases with proximity to the 5’
end as well (Fig. 3C, Supplementary Fig. 16). Previous work has
observed that multiple types of oligo pyrimidine tracts have a
marked effect over translation when located at or near the 5’ end,
especially in response to stress or mTOR activation42–45. Possibly
because of these 5’-proximal regulatory effects, Optimus 5-Prime
predictions were unsurprisingly not quite as accurate as for the
original libraries which contained a constant 25nt region at the
5’end to facilitate library preparation (Supplementary Fig. 17).
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However, we were able to train a new model, Optimus 5-Prime(25),
specific to 25 nt-long fully variable 5’UTRs (Fig. 3D, E).

We used model-based design to generate de novo 5’UTRs for
strong expression of mRNA-encoded megaTALs, supporting absolute
gene editing efficiencies in K562 cells exceeding 40% when targeting
the TGFBR2 gene (Figs. 2C, D and 4A, C) and 80% for PDCD1 (Supple-
mentary Fig. 11, Supplementary Fig. 23). Notably, most of our designs
resulted in high editing efficiencies, matching or exceeding the per-
formance of 5’UTRs taken from the top 0.02% of the random MPRA
libraries (Fig. 2C, Fig. 4B). Furthermore, one of our designs resulted in a

TGFBR2 editing efficiency up to 50% higher than all controls (Fig. 4B),
though this effect was not maintained with the PDCD1-targeting
megaTAL (Fig. 4D, Supplementary Fig. 23). Interestingly, a minimal
5’UTR with only an optimal Kozak sequence achieved editing effi-
ciencies close to the best designed or native 5’UTRs, possibly sug-
gesting that a primary role of naturally occurring 5’UTR sequence-
mediated translation regulation is to tune down protein expression to
a physiological level. Designs targeting intermediate MRLs also were
found to conform to their target values, providing further support for
the design approach (Fig. 2E). Together, these results suggest that
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transfection and sequenced. Reads are normalized to spike-in controls and to the
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are provided in Supplementary Data 2. Source data are provided as a Source
Data file.
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model-based design can very reliably maximize a computational pre-
dictor. Furthermore, even thoughweused unmodifiedRNA,we expect
the performance of our designs to be preserved in pseudouridine- and
N1-methylpseudouridine-contaning RNA, since we previously showed
that thesemodifications have little effect on MRL33. Additionally, gene
editing experiments, in agreement with translation MPRAs, showed
that the impact of 5’UTR sequences are highly correlated across dif-
ferent cell types, but mechanisms that fully maximize expression may
be ORF- and possibly even cell type-dependent. Lu and coworkers
recently used a high-throughput assay to test a library of 5’UTRs
designed via a randomforestmodel and a genetic algorithm65, and also
observed that the strongest performers varied across CDSs and cell
lines. However, their 5’UTRs were placed in the context of a DNA
expression cassette and could therefore also influence transcription,
making direct comparisons with our results difficult.

Unexpectedly, some Fast SeqProp designs with high predicted
MRL resulted in low editing efficiencies (Fig. 2C–G). Furthermore,
while VAEs are supposed to help prevent overfitting, they failed to
improve the success rate of Fast SeqProp-generated sequences. To
directly test whether any of our methods generated poorly predicted
sequences orwhether the poor performance is due to an effectdistinct
from MRL, we measured MRLs of all fixed-end 5’UTRs in megaTAL-
encoding mRNAs (Fig. 5A, B) and compared them to Optimus 5-Prime
predictions. However, we found that prediction error was not sub-
stantially larger in Fast SeqProp sequences compared to those
designed with DENs or selected from the MPRA (Supplementary
Fig. 25A), indicating that all methods were successful at maximizing
MRL but that this does not guarantee high functional activity.

To further understand these discrepancies, we investigated other
processes that may affect total protein output beyond MRL. For
example, our definition of MRL does not include the ribosome-free
mRNA fraction. Thus, it is possible, even if counterintuitive, that
sequenceswith highMRLmay alsohave a high fraction of untranslated
mRNA, thereby affecting total protein output. Moreover, previous
work has shown that mRNA can be destabilized by 5’UTRs with both
low29 and high28,66 translation efficiencies, which can negatively affect
total protein production as well. To better understand these relation-
ships, we quantified mRNA stability and abundance in the free ribo-
some fraction for a subset of our designs and controls and compared
these results to their editing efficiency as a proxy of overall protein
abundance (Fig. 5C–H). Focusing on the sequences designed to max-
imize MRL, we found a positive correlation between editing efficiency
and stability (Fig. 5H) and a negative correlation with abundance in the
ribosome-free mRNA fraction (Fig. 5E). These correlations are driven
by the low-performing Fast SeqProp designs which are notably less
stable than higher performing 5’UTRs and more likely to be found in
the freemRNA fraction. On theother hand, submaximaldesigns, which
as intended had low and intermediate editing efficiencies, were found
to bemore stable than successfulmaximal designs and not particularly
enriched in the free ribosome fraction.

We can summarize a few design rules for designing or selecting
5’UTRs thatmaximize protein output. First, regulatory elementswithin
5’UTRs seem to mostly repress translation (upstream stop codons,
secondary structure, G quadruplexes, etc.). Therefore, even a minimal
5’UTR consisting of a strong Kozak will likely provide a strong initial
baseline. As an exception, we found that a T-richmotif at the 5’end has
a slightly enhancing effect (Fig. 3C), and accordingly, our algorithms
placed suchmotif inmost of our 25nt-long designed 5’UTRs, including
the sequence that performed best with the TGFBR2 megaTAL (Fig. 4).
Outside of this initial region, however, additional sequence may risk
introducing unintended repressive elements, and thus shorter 5’UTRs
should be preferred. Second, 5’UTRsdesigned or selected tomaximize
translation may still perform poorly at total protein synthesis due to
other mechanisms, the most important of which may be low mRNA
stability (Fig. 5F–H). Thus, until the emergence of multi-modal

predictors that capture both translation and stability, model-based
5’UTR designmethods that generate diverse sequences, such as DENs,
should be preferred to avoid introducing similar artifacts intomultiple
designs. Third, in most cases, 5’UTRs regulate translation similarly
across different cell types (Figs. 1C, 2G and 4E) and CDSs (Figs. 2F
and 4D). Even though there might be specific effects in some situa-
tions, our results suggest that, for the most part, a strong 5’UTR
designed for one context will likely be strong in a different context.

In summary, we used deep learning methods to engineer 5’UTRs
that resulted in strong gene expression of a genome editing mRNA
therapy. While most of our designs enabled strong gene editing
activity, our ability to identify and design outperformers for all ORFs
and cell lines of interest is still restricted. By directly measuring
translation and stability in a subset of our designs, we were able to
identify factors that affect gene editing but are not currently captured
by our MRL-based methods. Future work on interrogating the inter-
play between these phenomena, as well as the interactions between
5UTR, ORF, and 3’UTR sequences constitute promising avenues for
further improving UTR design.

Methods
Ethical statement
All human PBMC lots were purchased from Key Biologics (currently
Charles River), where they were collected from healthy donors under
an IRB-approved protocol.

Polysome profiling in HepG2 cells
HepG2 cellswere cultured in EMEM+ 10%FBS. The cellswere in culture
prior to the experiment, passage conditions were 20mL media and
cells at 2e5/mL into a T-75 flask, and cells were allowed to expand for
3 days prior to transfection. Cells used were at passage 6. IVT mRNA
corresponding to the 5’UTR 50nt fixed-end library was synthesized
during our previous study33 as follows: Linear DNA containing a T7
promoter, the random 5’UTR, an EGFP CDS, and a truncated BGH
poly(A) signal sequence was PCR-amplified from plasmid pET28-IVT-
Fixed-N50-EGFP-NheI33 using primers Pri255 IVT F (GCGAAATT
AATACGACTCACTATAGGG, all oligos from IDT) and Pri254_-
truncBGH_polyT ([T70]CAAACAACAGATGGCTGGCA). A 70nt-long
polyA tail was introduced via the reverse PCR primer. IVT was per-
formed using the HiScribe T7 high-yield RNA synthesis kit (NEB
E2040), with 3′-O-Me-m7G(5′)ppp(5′)G RNA cap (NEB S1411) as the cap
structure analog. After the reaction, the DNA template was digested
with DNase I (NEB M0303) and the IVT mRNA was purified using RNA
Clean & Concentrator (Zymo Research R1016). 1 ug IVT mRNA was
transfected into one million cells with the Lonza 4D Nucleofector,
following the manufacturer’s protocol.

Cell lysis was performed 8 h later, followed by polysome profil-
ing, library preparation, and Illumina sequencing as follows33: We
prepared 10x salt solution (100mM NaCl, 100mM MgCl2, 100mM
Tris-HCl pH 7.5 and RNase-free water) and lysis buffer (1 × salt solu-
tion, 1% of 20% Triton X-100, 1mMdithiothreitol, 0.2 U/uL SUPERase-
In (Thermo Fisher Scientific AM2694) and 100 µg/mL cycloheximide).
For cell lysis, we removed cell media and incubated cells in RNase-
free Dulbecco’s PBS with 100 ug/mL cycloheximide at 37 C for 5min,
then placed them on ice, washed with cold DPBS with cycloheximide,
resuspended in lysis solution, scraped and triturated with a 25-gauge
needle, incubated on ice for 10min, and centrifuged at 16,000 g for
5min. The supernatant was incubated with 0.005U / uL DNase I (NEB
M0303) on ice for 30min and stored at −80C. For polysome profil-
ing, lysates were placed on top of 20–55% sucrose gradients and
centrifuged for 3 h at 151,000 g using a Beckman SW-41 Ti rotor.
Fractions corresponding to ribosome peaks were collected and
stored at −80C. RNA was purified via trizol/chloroform (Thermo
Fisher Scientific 15596018). Reverse transcription was performed
using SuperScript IV (Thermo Fisher Scientific 18090200) and
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primer Pri289_EGFP_RT (GACGTGTGCTCTTCCGATCT[N10 UMI]
AGATGAACTTCAGGGTCAGC). cDNAwas amplifiedwith primers AAT
GATACGGCGACCACCGAGATCTACAC[8nt i5 index]AGCGTGACAGG
GACATCGTAGAGAGTCGTACTTA and CAAGCAGAAGACGGCATACG
AGAT[8nt i7 index]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
which contain overhangs P5 and P7 for Illumina sequencing and
fraction-specific index sequences. Products were sequenced with the
Illumina NextSeq platform using NextSeq 500/550 v2 High Output 75
cycle kits. The following custom primers were used: read 1: AGCG
TGACAGGGACATCGTAGAGAGTCGTACTTA. Number of cycles were
as follows: read 1: 59, read 2: 10, index 1: 8, index 2: 8. Read 1 data
should contain variable region of the 5’UTR, whereas read 2 should
contain the random UMI.

Polysome profiling in T cells
T cells were enriched from peripheral blood mononuclear cells
(PBMCs) isolated via Ficoll-Paque gradient centrifugation fromhealthy
donors. Activation was performed with anti-CD3/CD28 antibodies in
the presence of IL-2. Salt solution and lysis buffer for polysome pro-
filing were prepared as previously described33. IVT mRNA corre-
sponding to the 5’UTR 50nt fixed-end library synthesized as part of our
previous work33 was used here as well (see section “Polysome profiling
in HepG2”). 1 ug IVT mRNA was transfected into one million cells with
the Lonza 4D Nucleofector, following the manufacturer’s protocol.
Transfected cells were plated in T cell growth medium (TCGM) at 1
million cells/mL and incubated at 37 C, 5% CO2. 8 h later, cyclohex-
imide was added dropwise to themedia to a final concentration of 100
ug/mL and incubated for 5 additional minutes. Cells were then spined
down at 1500 rpm for 5minand the supernatantwasdiscarded. 300uL
of cold lysis buffer was used to resuspend the cells, and the mixture
was incubated on ice for 10min. Cells were then triturated by passing
the mixture through a 25-gauge needle ten times. The mixture was
spined down at 16,000 rpm for 5min at 4C and the supernatant was
transferred to another tube. 1.5 uL of 1U/uL DNAse was added, the
mixture was set on ice for 30min, and stored at −80C. Polysome
profiling, library preparation, and Illumina sequencing were per-
formed as described above for HepG2.

Construction of random-end 5’UTR MPRA libraries
Our previously constructed vector pET28-IVT-Fixed-AgeI-EGFP-NheI33,
containing a T7 promoter followed by the 25nt-long defined 5’UTR
prefix and the EGFP CDS, was amplified with primers Bri035 FP EGFP
START (TGGGCGAATTAAGTAAGGGC) and Bri042_RP_T7 (CCCT
ATAGTGAGTCGTATTAATTTCGCG). This resulted in a linear dsDNA
backbone with the complete original vector sequence except for the
25nt-long defined 5’UTR fragment. Random 50nt- and 25nt-long
5’UTRs were introduced by assembling 200ng of backbone with 10
pmol of primer Bri036_T7_N50_ATG (TAATACGACTCACTATAGGG
[N50]ATGGGCGAATTAAGTAAGGG) or Bri043_T7_N25_ATG (GCGAAA
TTAATACGACTCACTATAGGG[N25]ATGGGCGAATTAAGTAAGGGCG
AGGAGCTGT), respectively, using the NEBuilder HiFi DNA Assembly
Master Mix (NEB E2621). 20 uL reactions were incubated at 50C for 1 h
to increase assembly yield. Next, water was added to reach a total
volume of 100 uL per reaction, and purification was performed using
the column-based DNA Clean & Concentrator 5 (Zymo D4014) with
elution in 7uL dH2O. Each library was split in two and transformed
separately into 5-alpha cells (NEB, 3.5uL DNA in 35uL cells). IVT tem-
plate synthesis and IVT were performed as described above for the
fixed-end library.

Polysome profiling of random-end 5’UTR libraries
Transfection, cell lysis, polysome profiling, and RNA extraction were
performed as described above for the fixed-end library. Extracted RNA
was eluted in 11 uL RNase-free water. Library preparation comprised
reverse transcription, template switching, and qPCR amplification, all

of which were performed separately for each polysome fraction.
For reverse transcription, we first mixed 10.5 uL of purified RNA with
2 uL of 2 uM primer Bri044_EGFP_RT_primer (AGGGACATCGTAG
AGAGTCGTACTTA[N10UMI]AGATGAACTTCAGGGTCAGC) and2uLof
10mM dNTP mixture (NEB N0447), incubated the mixture at 65 C for
5min, and placed on ice for at least one minute. Then, we added 4 uL
Maxima RT buffer, 0.5 uL Superase-In RNAse inhibitor (Thermo Fisher
AM2694), and 1 uL Maxima RT RNaseHminus Enzyme (Thermo Fisher
EP0751), incubated at 50C for 15min, then 85C for 10min, and
transferred back to ice. Next, we added 1 uL RNase (from bovine
pancreas, DNase free, Roche 11119915001) and 1 uL RNase H (NEB
M0297) and incubated at 37 C for 15min. Finally, the product was
cleanedwithKAPAPurebeads (RocheKK8002)with a 3x ratio of beads
to DNA volume, and resuspended in 25 uL dH2O. For template
switching, we added 8 uL Maxima RT buffer, 6 uL 50% PEG-8000, 0.5
uL Superase-In, 1 uL Maxima RT RNaseH minus enzyme, and 0.5 uL of
10 uM template switching oligo (AAGCAGTGGTATCAACGCAGAGTA-
CATrGrGrG). This mixture was incubated at 42 C for 30min, then 85 C
for 10min. Next, 1uLRNase (Roche) and 1uLRNaseH (NEB)wereadded
and the mixture was incubated at 37C for 15min. Finally, the product
was cleanedwith 3x KAPA Pure beads and resuspended in 20 uL dH2O.
qPCR amplification was performed using the KAPA HiFi HotStart
ReadyMix (Roche 09420398001) with forward primers AATGATA
CGGCGACCACCGAGATCTACAC[N8 index]AGCGTGACAGGGACATC
GTAGAGAGTCGTACTTA and reverse primers CAAGCAGAAGACGGC
ATACGAGAT[N8 index]AAGCAGTGGTATCAACGCAGA, where the
barcodes were specific to each polysome fraction. qPCR reactions
were stopped before reaching saturation and purified via gel extrac-
tions. Prepared and barcoded libraries corresponding to all polysome
fractions of both random-end 25nt replicates and the one 50nt repli-
cate were pooled into a single library for sequencing. Sequencing was
performed in an Illumina NextSeq 500 with the NextSeq 500/550 v2
High Output 75 cycle kit. The following custom primers were used:
read 1: GCTCCTCGCCCTTACTTAATTCGCCCAT, read 2: CACCTA
CGGCAAGCTGACCCTGAAGTTCATCT, index 1: CCCATGTACTCTG
CGTTGATACCACTGCTT, index 2: TAAGTACGACTCTCTACGATGTCC
CTGTCACGCT. Number of cycles were as follows: read 1: 59, read 2: 10,
index 1: 8, index 2: 8. Read 1 data should contain the reverse comple-
ment of the variable 5’UTR followed by the reverse complement of the
template switching oligo, whereas read 2 should contain the
random UMI.

Processing of polysome profiling sequencing data
Sequencing data from the fixed-end MPRAs in HepG2 cells and T cells
(Fig. 1) was processed similarly to our previous HEK293T data33 as
follows: fastq files were generated from the raw instrument output via
bcl2fastq with the following options: --no-lane-splitting --minimum-
trimmed-read-length 9 --mask-short-adapter-reads 9 --ignore-missing-
bcls.We then used cutadapt to retain thefirst 50nt of read 1. Finally, we
clustered UMIs using starcode-umi. For the random-end MPRAs
(Fig. 3), we first generated fastq files from the raw instrument output
via bcl2fastq as indicated above. We then used a custompython script
to retain reads with a mean q-score greater than 25 and where the 3’
end of the read 1 sequence matched the expected template switching
oligowith amaximumedit distance of 5.We then used starcode-umi to
collapse UMIs. For all libraries, we calculatedMRL fromUMI counts on
all polysome fractions as in our previous work33 by 1) normalizing each
fraction library to its total number of reads, 2) summing the product of
each fraction’s normalized count with their associated number of
ribosomes, and 3) dividing by the unweighted sum of normalized
counts across all fractions,

Synthesis of megaTAL mRNA
Ultramers were synthesized encoding the T7 sequence, a 5’ UTR, and
the first 20 bases of the megaTAL CDS. Template for in vitro
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transcription was generated via PCR with the 5’ UTR-containing ultra-
mers as the forward primer and anultramer encoding the last 20 bases
of the megaTAL CDS and a 125-base polyA tail as the reverse primer.
Following plasmid degradation via DpnI, the resulting amplicon was
isolated and purified using Ampure beads (Beckman Coulter). In vitro
transcription was performed with ARCA co-transcriptional capping.
Following DNase treatment to remove residual template, the resulting
mRNAwas purified using RNase-free Ampure beads.mRNAwas run on
the Fragment Analyzer (Agilent) to verify expected size and purity,
then normalized to 500 nM and stored at −80 C until needed.

MegaTAL gene editing assay
mRNAs containing fixed-end (Fig. 2) and random-end (Fig. 4) designs,
as well as all controls, were assayed simultaneously in the same
experiment to facilitate direct comparisons across 5’UTRperformance.
mRNA at amounts ranging from 2 pmol to 0.25 pmol was electro-
porated in duplicate into 100,000 K562 or HepG2 cells per well using
the Lonza 4D Nucleofector 96-well shuttle attachment. Electropora-
tion conditions were optimized for mRNA transfection of the respec-
tive cell type. Following electroporation, cells were cultured at 37 C for
72 h. Cells were lysed in Viagen DirectPCR lysis reagent (cell) following
manufacturer protocol to extract gDNA.

Assessment of gene editing efficiency by amplicon sequencing
Amplification of a ~ 150bp region surrounding themegaTAL target site
was performed in two PCR reactions. In PCR1, 1.5 uL of genomic DNA
was amplified in 30 cycles using gene-specific primers containing
Illumina overhangs. In PCR2, P5/P7 sequences and unique combina-
tions of i5 and i7 index sequenceswere appended to yielddual-indexed
amplicons in 10 PCR cycles. Samples were pooled, cleaned up with
ampure xp beads, and normalized to 16 pM, then run on an Illumina
MiSeq with 25% PhiX. BCL data was converted to fastq format and
paired ends were merged with PEAR. Reads were demultiplexed and
aligned using bowtie2. Editing frequencywas calculated as the number
of reads that contained insertions ordeletions that includedpart of the
10 base window around the expected breakpoint divided by the total
reads with a MAPQ score >20 and quality score >30.

Polysome profiling and stability measurements of
megaTAL mRNAs
mRNAs with all 5’UTRs in Fig. 2 and Fig. 4, with both the TGFBR2 and
PDCD1 megaTAL CDSs, were pooled together in equal amounts at a
total concentration of 500 ng/uL. Both megaTALs were combined to
average out CDS effects and only focus on 5’UTR-dependent behavior.
K562 cells were grown in RPMI media (Gibco 11875093) with 10% FBS
and 1% Penicillin/Streptomycin following standard cell culture meth-
ods. For polysome profiling, 20 ug pooled megaTAL mRNA were
transfected into 20 million K562 cells using the Neon Electroporation
System (Invitrogen MPK5000), transfecting 5 million cells at a time
with 5ugmRNAusing the 100 uLNeon tip, and otherwise following the
manufacturer’s instructions. 8 h later, cycloheximide was added to the
media at a final concentration of 100 ug/mL. After 10min at 37 C, cells
were centrifuged at 4 C, the supernatant was discarded, and cells were
washed twice with DPBS containing 100 ug/mL cycloheximide by
resuspension and centrifugation. Cells were then resuspended in
200uL lysis buffer (see the “Polysome profiling in HepG2 cells” section
for the composition of the lysis buffer), incubated on ice for 10min,
triturated by passing 10 times through a 25-G needle and syringe, and
centrifuged at 4 C. The supernatant was transferred to a new 1.5mL
tube, incubatedwith 1 unit DNase I (NEBM0303) for 30min on ice, and
stored at −80C. On a different day, the lysate was subject to ultra-
centrifugation and fractionation to obtain polysome fractions as
described in the “Polysome profiling in HepG2 cells” section. In addi-
tion to all ribosome-associated peaks, we collected fractions corre-
sponding to the ribosome-free peak. Finally, to quantify total cell

mRNA, 50uL of the lysate was retained and not subjected to polysome
profiling. For stability measurements, 5 million K562 cells were trans-
fected with 5 ug of pooled megaTAL mRNA following the manu-
facturer’s instructions, and transferred to 10mL RPMI media with 10%
FBS (no antibiotics). At each timepoint after transfection (30min, 1 h,
2 h, 4 h, 8 h, 24 h), 1mL media with cells was extracted, centrifuged at
4 C for 2min, and carefully washedwith cold PBS via resuspension and
centrifugation twice to remove residual non-transfected mRNA. Cell
pellets were stored at −80C.

Library preparation was performed via a similar procedure as in
the “Polysome profiling in HepG2 cells” section, which allowed us to
measure abundances of all fixed-end, 50nt 5’UTRs. RNA was extracted
from frozen cell pellets or polysome fractions using trizol/chloroform
(Thermo Fisher 15596018). To compare mRNA abundances across
timepoints, RNA extracts from the stability experiment were spiked in
with identical amounts of a mixture of 5 IVT mRNA controls of known
sequence, with concentrations proportional to 1, 10, 100, 1,000, and
10,000. RNA extracts were reverse-transcribed using Maxima H Minus
RT enzyme (Thermo Fisher EP0753) and an RT primer with sequence
GACGTGTGCTCTTCCGATCT[N10 UMI]GGTTTGATCTTCTCTTGCTGC.
Samples were then subject to RNase digestion, purified with the DNA
Clean & Concentrator (Zymo Research D4014), and eluted in 13uL
dH2O. cDNA was amplified with KAPA HiFi master mix (Roche
07958935001) and primers CAAGCAGAAGACGGCATACGAGAT[N8 i7
barcode]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT and AA
TGATACGGCGACCACCGAGATCTACAC[N8 i5 barcode]AGCGTGACAG
GGACATCGTAGAGAGTCGTACTT, where barcodes corresponded to
polysome fractions or timepoints. 500ng of the untransfected IVT
megaTAL mRNA mixture was processed under an identical protocol
starting from the RT step. Libraries were combined and sequencedwith
an Illumina MiSeq with a MiSeq Nano Kit v2. MRL was calculated from
the polysome profiling data as described above. The free-to-total ratio
was calculated by dividing the read counts in the ribosome-free frac-
tion by those in the total RNA fraction for each sequence.

For kinetics measurements, at each timepoint, a calibration line
was fitted to the spike-in controls to relate sequencing reads counts to
themost abundant control. This curvewas thenused tonormalize read
counts of designed 5’UTRs. A second normalization step was per-
formed to the relative read counts in the untransfected IVT library to
account for differences in initial loading. Under a simple kinetic model
of protein production from mRNA, d

dt protein = rtranslationmRNA,
protein =

R tf
t0
mRNA tð Þdt and therefore the integral of mRNA abun-

dance over time should be proportional to megaTAL protein produc-
tion. Therefore, we integrated normalized abundances from our first
(30min) to our last (24 h) datapoint, assuming linear changes between
timepoints (Fig. 5G).

Toperformmotif enrichment analysis,weused theMEME tool67 in
differential enrichment mode with the following options: primary
sequences: the six sequences with either the largest free-to-total
abundance ratio or the lowest stability; control sequences: all
remaining assayed sequences; maximum number of motifs to find: 10;
minimumwidth: 5;maximumwidth: 10; fraction of sequences held out
to estimate significance (hsfrac): 0.666666. Only significant hits
(E value < 0.05) are reported here.

Training of Optimus 5-Prime (25)
For every 5’UTR sequence in the random-end 25nt library, a weighted
averaged MRL was obtained across replicates, with weights given by
the total number of UMI reads per replicate. Sequences were then
sorted by read depth, and those with fewer than 100 reads were dis-
carded. The top 2000 sequences by read depth were held out for
testing, the next 2000were used for validation/early stopping, and the
remaining 193,341 were used for training.

Model training and evaluation were done in Python 3 with ten-
sorflow 2. Optimus 5-Prime(25) architecture was based on VGG-1663:
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it contains a number of convolutional blocks – each with two con-
volutional layers, one max pooling layer with size and stride 2, and
one dropout layer – followed by a fully connected dense layer and a
final linear node that computes the MRL. All activations except for
the final node are ReLU. The number of convolutional filters in each
block is twice the number of filters in the previous block. Models
were trained using an MSE loss, and early stopping based on the
validation loss was used. Hyperparameter tuning was performed
with Amazon Sagemaker using their default Bayesian strategy, with
the following parameter ranges: number of convolutional blocks: 1 −
5, kernel size: 2−7, number of filters in the first convolutional block:
16−128, convolutional dropout: 0−0.5, number of units in the final
dense layer: 10−100, dropout: 0−0.5. The final architecture is shown
in Fig. 3D.

5’UTR sequence design using Fast SeqProp
All relevant codewas run in Python 3with keras 2.2 and tensorflow 1.15.
Fast SeqProp v0.1 was downloaded from https://github.com/johli/
seqprop/. For designs with the 50nt fixed-end architecture (Fig. 2), we
used a retrained version of Optimus 5-Prime initially trained on the
fixed 50nt MPRA data and finetuned on sequences designed to max-
imize MRL that contained long poly-U stretches and ultimately
underperformed33. The loss function to minimize was the sum of a
fitness loss plus a sequence loss. The fitness losswas set to the negative
of the predicted MRL. The sequence loss was set to the number of
occurrences of AUGs across the generated sequence.We also included
a term that was set to one if an UG was present at the beginning of the
designed region and zero otherwise. This is to penalize an initial uAUG
since the last nucleotide of the fixed-end region was A. When VAE
regularization was used, an additional term corresponding to the VAE
loss was computed by passing the VAE-estimated pVAE(seq) through a
margin function max(0, margin_vae – log(pVAE(seq))), where margin_-
vae = −30. The VAE loss wasmultiplied by a weight of 0.2 and added to
the overall loss function. The number of gradient updates (iterations)
was 20,000 for the non-VAE designs and 5000 for the VAE-regularized
designs.

Fast SeqProp designs with the 25nt variable-end architecture
(Fig. 4) were performed as above, with the following changes: 1) we
used Optimus 5-Prime(25) (Fig. 3), 2) we did not include a penalty for
an initialUGdinucleotide, 3)margin_vaewas set to−15.6, and4) the vae
loss weight was set to 0.4.

Training of k-mermodels for validation of Fast SeqProp designs
A linear k-mer model was trained on a subset of the HEK293T 50nt
fixed-end MPRA data and used as an additional oracle to validate Fast
SeqProp designs (Supplementary Fig. 6). Models were trained using
the linear_model module of the scikit-learn python package. As train-
ing data, MPRA sequences were filtered by discarding thosewith fewer
than 250 reads, those with uAUGs, and those starting with UG to avoid
creating an uAUG with the last nucleotide of the fixed 5’ region which
was an A. From the remaining 125,931, sequences, 100,000 were used
for training and 25,931 for testing. Next, counts of 2, 3, 4, 5, and 6-mers
were calculated, and log2(1 + kmer counts)were computed, resulting in
a feature vector of size 5,456. A Lassomodel with α =0:001 was trained
on a random subset of 50,000 sequences from the training data,
resulting in 272 non-zero feature weights. Finally, a Ridge regression
model with α =0:0 was trained using only the non-zero features from
the Lasso regression model. Performance on the test set is shown in
Supplementary Fig. 6B (Pearson r = 0.5213), and model predictions for
sequences designed with Fast SeqProp are shown in Supplemen-
tary Fig. 6C.

A similar model was trained for validating Fast SeqProp designs
with the 25nt random-end architecture (Supplementary Fig. 18).
Training sequences were taken from the 25nt random-endMPRA data,
then retained only if their read count was greater than 150 and if they

did not contain uAUGs. From the remaining 81,552 sequences, 70,000
were used training and 11,552 for testing. Calculation of feature vectors
from kmer counts, Lasso regression, and Ridge regression were per-
formed as above. 268 features with nonzero weights resulting from
Lasso regression were used for Ridge regression. Performance on the
test set is shown in Supplementary Fig. 18A (Pearson r = 0.4094), and
model predictions for sequences designed with Fast SeqProp are
shown in Supplementary Fig. 18B.

5’UTR sequence design using Deep Exploration Networks
All relevant codewas run in Python 3with keras 2.2 and tensorflow 1.15.
Deep Exploration Networks (DENs) v0.1 was downloaded from https://
github.com/johli/genesis/. In total, we trained five DENs: two for
maximizing MRLs in a fixed-end 50nt architecture (Fig. 2), without
(Supplementary Fig. 7) and with (Supplementary Fig. 10) VAE reg-
ularization, one for designing sequences with submaximal MRLs
(inverse regression, Supplementary Fig. 8), and two for maximizing
MRLs in a variable-end 25nt architecture (Fig. 4), without (Supple-
mentary Fig. 19) and with (Supplementary Fig. 21) VAE regularization.
DEN generator architectures, a short description of the loss function
components, and training parameters can be found in the corre-
sponding Supplementary figures.

Training of Variational AutoEncoders
VAE training and evaluation were done in Python 3 with keras 2.2 and
tensorflow 1.15. Model architectures for the fixed-end 50nt and the
random-end 25nt VAEs are shown in Supplementary Fig. 9 and Sup-
plementary Fig. 20 respectively. A high level description of how VAEs
are trained and evaluated can be found in Supplementary Fig. 9A, B.
Detailed information on the loss function, including equations and
derivations for each term, can be found in our previous publication55.
For the fixed-end 50nt VAE, sequences for training and testing were
extracted from our published fixed-end 50nt MPRA dataset33, by first
filtering by read coverage (>2000 reads) and then randomly selecting
5000 (train) and 1000 (test) sequences from the top 10,000 by MRL
(~top 25%). For the random-end 25nt VAE, sequences for training and
testing were extracted from the random-end 25nt MPRA dataset
(Fig. 3), by filtering by read coverage (>500 reads) and then randomly
selecting 5000 (train) and 1000 (test) sequences from the top 10,000
by MRL (~top 25%).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The polysomeprofiling data generated in this study (raw fastq files and
processed UMI counts) has been deposited in the Gene Expression
Omnibus under accession code GSE232927. The polysome profiling
data from the fixed-end N50 library from our previous publication33

can be found in the Gene Expression Omnibus under accession code
GSE114002. The processed megaTAL gene editing data is provided in
Supplementary Data 1. The processed megaTAL polysome profiling
and stability UMI counts areprovided in SupplementaryData 2. Source
data for every figure in this paper has been deposited to Zenodo
[https://doi.org/10.5281/zenodo.11398662].

Code availability
All code for model training, sequence design, and data analysis has
been deposited to github [https://github.com/castillohair/paper-5utr-
design] and Zenodo [https://doi.org/10.5281/zenodo.11403014].
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