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We make decisions by comparing values, but it is not yet clear how value is
represented in the brain. Many models assume, if only implicitly, that the
representational geometry of value is linear. However, in part due to a his-
torical focus on noisy single neurons, rather than neuronal populations, this
hypothesis has not been rigorously tested. Here, we examine the representa-
tional geometry of value in the ventromedial prefrontal cortex (vmPFC), a part
of the brain linked to economic decision-making, in two male rhesus maca-
ques. We find that values are encoded along a curved manifold in vmPFC. This
curvilinear geometry predicts a specific pattern of irrational decision-making;
that decision-makers will make worse choices when an irrelevant, decoy
option is worse in value, compared to when it is better. We observe this type of
irrational choices in behavior. Together, these results not only suggest that the

representational geometry of value is nonlinear, but that this nonlinearity
could impose bounds on rational decision-making.

Converging evidence suggests that we make decisions by estimating
and comparing the values of available options. But how are values
represented in the brain? Early single-neuron work on value encoding
found neurons whose firing rate changed essentially monotonically in
proportion to the value of an offer’. Since that time, a significant linear
relationship between firing rate and value has become the standard
test of whether or not a neuron is tuned for value’’. However, some
studies have also reported neurons with nonlinear tuning for value in
key value-coding regions®'°", These observations could suggest that
value is no different from other continuous, linear variables like speed,
contrast, and numerosity, where single neurons can be tuned to prefer
specific values of those variables, rather than having uniformly
monotonic response profiles””. In many of these cases, the con-
tinuous range of the variable is represented only at the population
level through the collective patterns of activity across the population
of neurons. However, because nonlinearities in the neural repre-
sentation of value would make it difficult to make rational economic

decisions®, the idea that neurons may be non-linearly tuned for value
remains controversial.

Part of the reason this controversy persists is that we have his-
torically estimated value tuning via fitting tuning functions to the noisy
responses of single neurons. Spiking noise makes it difficult to deter-
mine if a neuron truly has a nonlinear response profile, or else just
happened to fire more than average for some values during a finite
sampling window. It is also not clear whether nonlinear tuning in a
small number of single neurons would have any consequence for
rational decision-making, provided the representation of value at the
neural population level remains essentially linear. Fortunately, recent
advances in neural analysis techniques now allow us to look at neu-
ronal populations holistically and probe the representational geo-
metry of value within decision-making circuits with unprecedented
resolution’®. This means that we can finally empirically determine
whether the representational geometry of value is indeed linear, in line
with the common assumption, or else if it takes on some higher
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dimensional geometry, like a curved manifold”?°
dimensional “tangled” manifold**.

What are the functional implications of linear and nonlinear
representational geometries of value? Or, in other words, why has the
linear hypothesis been so tempting? A linear system is ideally suited for
value-based calculations: in linear representation, each unit change in
value produces a unit change in neuronal activity. Thus, in principle, a
linear system is suitable for generating choices that satisfy axiomatic
requirements of rational decisions®. However, non-linearity (and irra-
tionality) is ubiquitous in value-based decisions, as we well know from
the field of behavioral economics. Many value-based decisions are not
actually rational or else are only rational under the assumption that
accuracy is bounded by some kind of cognitive or computational
limitations****, This latter idea, known as “bounded rationality”?¢,
is generally linked to constraints on specific cognitive capacities such
as working memory or attention, but it is just as plausible that
constraints on how the brain can represent value could impose their
own bounds on rational decision-making.

Here, we first characterized the representational geometry of
value then examined its consequences for rational decision-making,.
We focused on neurons in the ventromedial prefrontal cortex (vmPFC,
area 14). Among value-sensitive regions, the vmPFC is perhaps the
most strongly associated with evaluation and choice processes, and in
representation of value along the kind of common scale necessary for

or even a high-

=3

economic decisions'>”°, We measured vmPFC responses to the value
of offers that were encountered during a menu-search task". This task
was ideal for probing the representational geometry of value because
offers were unidimensional, lacked any ambiguity or risk, were
encountered sequentially (multiple times per trial), and were uni-
formly distributed across value space. We found that relaxing the
assumption that neurons must be linearly tuned for value netted a
larger number of value-tuned neurons, some of which had obviously
nonlinear tuning functions. At the population level, the representa-
tional geometry of value lay along an ordered, but curvilinear manifold
in the neural state space, consistent with emerging evidence that
curvilinear manifolds may be a ubiquitous feature of population codes,
even for linear variables'>?°*"*2, Because of its curvature, this repre-
sentational geometry predicted a specific pattern of mistakes-a spe-
cific and paradoxical type of irrational choices that we also observed in
menu-search task behavior. Together, these results suggest that at
least some aspects of bounded rationality may derive from constraints
on neural population coding.

Results

Two rhesus macaques performed a total of 44,335 trials (subject J:
23,826 trials; subject T: 20,509 trials) of a menu-search task (Fig. 1a).
Some analyses of this data have been presented previously". All ana-
lyses presented here are new. On each trial, a menu of 4 or 7 masked
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Fig. 1| Task design and behavior. a Subjects chose from menus of 4 or 7 masked
offers (4 shown here). Fixating a mask (white diamond) caused it to disappear,
revealing a reward cue (red bar). The filled area of the reward cue indicated juice
magnitude. The subjects could freely search through the offers in any order. Sub-
jects could accept offers by continuing to fixate them or else could reject an offer
and continue to search by saccading away. b Offer values were uniformly dis-
tributed between 0 and a maximum juice value. ¢ Recording sites in vmPFC (area
14). d Probability of choosing an offer as a function of offer value. Grayline = logistic
fit. Each dot represents an offer value. e Distribution of the number of offers viewed
per trial. Cyan line = prediction from an optimal compare-to-threshold model.
Black line = best fit compare-to-threshold model (maximum likelihood).

f Probability of returning to a previously seen offer. Each dot represents one ses-
sion. g Expected value of trials which did (“ret.” =return) or did not (“seq.” =
sequential) contain a return to a previous offer, subject J: mean difference =0.12,
95% Cl=[0.11, 0.15], t(88) =12.01, p < 0.001, two-sample t-test; subject T: mean
difference = 0.22, 95% CI =[0.20, 0.24], t(80) =20.38, p < 0.001, two-sample t-test.

Each dot represents one session. h Average value of offers which were returned to
(“ret.” = return) versus those which were seen only once (“seq.” = sequential), sub-
ject): mean difference =-0.19, 95% Cl = [-0.21, -0.17], t(88) = -15.92, p < 0.001, two-
sample t-test; subject T: mean difference = -0.05, 95% Cl =[-0.07, -0.02],

t(80) =-4.06, p < 0.001, two-sample t-test. Each dot represents one session.

i Probability of a given number of returns in a trial, in trials where multiple unique
offers were revealed (=3). Each dot represents one session. j Probability of the
return in multiple offer trials as a function of the viewing time at which an offer was
finally accepted (at position 0). Each dot represents one session. k Probability of
choosing the best option as a function of value of the best offer revealed within a
trial (left) or as a function of the difference in value between the best and the 2nd
best offer (right), the two collinear factors influencing overall difficulty of the trial,
multiple offer trials, see also Supplementary Fig. S2A. i The same as (k) but for
returning to a previously seen option, see also Supplementary Fig. S2B. Lines = least
squares fit. f~1 Error bars indicate + standard error of the mean across sessions
(SEM), subject J: n sessions = 45, subject T: n sessions =41, *p <0.001.
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“offers” was presented. The subjects could learn about each offer by
fixating it for 400 ms, at which point the mask disappeared and a
reward cue was revealed. Offers were illustrated as filled bars, where
the filled area indicated the magnitude of juice. Offers were uniformly
distributed within the range of O and a maximum juice value, which
differed between subjects (Fig. 1b). When the offer was revealed, the
subjects chose whether to accept it or to reject it and explore the other
offers. To accept an offer, the subjects continued to fixate for an
additional 300 ms. To reject, they saccaded away. Trials were sepa-
rated by a 4 s inter-trial interval. During the experiments, we recorded
responses of neurons in area 14, a potential macaque homolog of
human vmPFC (Fig. 1c).

Both subjects appeared to understand the task. Both chose the
best offer they had seen nearly all of the time (subject J: 96% of the
time, subject T: 94%) and choice behavior was well-predicted by offer
values in general (Fig. 1d; for 4 parameter logistic function [choice by
value], both subjects together: slope =14.46, intercept = 0.52, scale =
0.89, offset = 0.05, R?=0.57, n=135250 offers; similar results in both
monkeys individually, Supplementary Table S1). Subjects also eval-
uated something close to the optimal number of offers per trial. On
average, the subjects evaluated 2.13 offers (+0.01 standard error of the
mean [SEM] across trials; subject J: 2.09 + 0.01; subject T: 2.17 £ 0.01)
and the number of options viewed appeared geometrically distributed,
consistent with a compare-to-threshold process with a threshold at
0.52 of max reward (Fig. 1e; see “Methods” section). A decision-maker
implementing the optimal threshold for accepting an offer in this task
(i.e., threshold that allows for maximizing the rate of reward) would, on
average, evaluate 2.6 offers per trial (optimal threshold = 0.62"). Thus,
the estimated threshold was slightly lower than strictly optimal.

Importantly, the design of this task allowed subjects to return to
re-evaluate a previously revealed offer at any point. Subjects returned
at least once in ~10% of trials (Fig. 1f; subject J: 12.11 £ 0.97%; subject T:
6.62 +0.55%). Average value of revealed offers (trial expected value,
EV) tended to be lower in trials in which returns occurred (return trials)
than in strictly sequential trials, suggesting that returns happened
when no offer was clearly above threshold or best (Fig. 1g). However,
the returns were not indicative of disengagement or accidental repe-
ated selection because they were more likely to return to high-value
than low-value offers (Fig. 1h; average value of the offers subjects
returned to, subject J: 0.44 +0.011; subject T: 0.33+0.010; average
value of the remaining offers in the return trials, subject J: 0.25 + 0.005;
subject T: 0.28 + 0.007). Further, considering only the trials in which
subjects revealed multiple unique offers (i.e., at least three), we found
that they tended to make one or two returns per trial (Fig. 1i) and that
subjects most often returned to an offer to accept it (though the
probability of return also increased towards the end of a trial; Fig. 1j).
Taken together, the pattern of the subjects’ returns suggested a kind of
“dithering” in the face of uncertainty: a process of doubling back to
reconsider one or two good options prior to committing to one
of them.

Because the subjects could return to a previously-viewed offer,
their strategy in this task was best described as a mixture of 2 kinds of
decision-making processes: a compare-to-threshold process (where
each offer was sequentially evaluated against a threshold and accepted
immediately if it was clearly above threshold) and a value-comparison
process (where newly encountered offers were compared against
previously-viewed and still-available offers). In a compare-to-threshold
process, the decision is most difficult if values are not clearly above or
below the threshold, in particular, if the best option in forward sweep
through the offers is still relatively low. In a value-comparison process,
the decision is most difficult when good options are close in value and
thus harder to discriminate. We found that the subjects were most
likely to make errors (i.e. not choose the best offer) when difficulty,
understood as either low best value and/or small difference between
the best options, was high (Fig. 1k; best offer value effect, subject): 2.17,

95% Cl=1[2.02, 2.33], t(44) = 28.56, p < 0.001; subject T: 2.71, 95% Cl =
[2.55, 2.87], t(40) = 34.23, p < 0.001, logistic regression; best-2nd best
offer value effect, subject J: 2.11, 95% CI=[1.95, 2.26], t(44) =27.48,
p <0.001; subject T: 2.59, 95% Cl = [2.45, 2.74], t(40) = 35.51, p < 0.001).
Both subjects were also most likely to return to previously-viewed
offers when the difficulty was high (Fig. 1I; best value, subject J: -1.65,
95% Cl=[-1.87, -1.43], t(44) =-14.97, p < 0.001; subject T: -1.94, 95%
Cl=[-2.16, -1.72], t(40) =-17.78, p <0.001; best-2nd best, subject J:
-1.33, 95% Cl =[-1.53, -1.12], t(44) = -12.99, p < 0.001; subject T: -1.24,
95% Cl = [-1.42, -1.05], t(40) = -13.72, p < 0.001). Because the two types
of difficulty tended to co-occur (option values tended to be closer
when no option was high; r = 0.72; Supplementary Fig. S12), we further
verified that both forms of difficulty predicted both errors and returns
via regression on the residuals from models that controlled for the
other type of difficulty (Supplementary Fig. S2). In sum, both subjects
evaluated close to the optimal number of unique offers in each trial,
but they did so via a mixed strategy that compared offers both to a
fixed threshold and to previous offers encountered within the trial.

Neuronal activity in vmPFC scales with value

The responses of 122 neurons were recorded from vmPFC (n=70 in
subject J, n=52 in subject T). To analyze value responses in vmPFC, the
trials were broken down into a series of “offer viewing periods”: the
500 ms epochs starting 100 ms after the reveal of each offer, to account
for sensory processing delays®. This epoch was chosen a priori to
match the epoch in which the largest number of neurons were modu-
lated by offer value in previous analyses of this dataset". All results were
robust to the specific choice of epoch, as described below (Supple-
mentary Fig. S3). The following results were also not due to viewing
offers sequentially because all results were also observed just within the
first offer viewing period of each trial (Supplementary Fig. S4).

The firing rates of 46/122 (38%) vmPFC neurons were related to
offer value (Fig. 2a-d; Supplementary Fig. SIA-C; significantly higher
mutual information between the firing rate and value, compared to
shuffled value labels; significantly greater proportion than chance,
p <0.001, one-sided binomial test). On average, across all the neurons,
we found that increasing value predicted an essentially monotonic
increase in the mean neuronal firing rate (Fig. 2e; Supplementary
Fig. S3A, S4C; significant main effect of value bin on the firing rate,
betal=0.84, 95% Cl=[0.71, 0.98], t(23) =12.50, p <0.001, R*=87.17,
AIC=-174.12, n=25, k=3, linear function; betal=0.52, 95% Cl=
[0.01,1.02], t(22) = 2.01, p = 0.057, beta2 = 0.33, 95% CI = [-0.16, 0.82],
t(22) =133, p=0.198, R*=88.12, AIC =-172.12, n=25, k=4, quadratic
function, AIC weights for linear vs quadratic fit = 0.7311 vs 0.2689, ns.).
However, the specific value tuning functions of individual neurons
were more heterogeneous than the averaged neuronal profile. Many
had some curvature (Fig. 2a; 19/46 [41%] of tuned neurons had value
responses better fit by a quadratic function than a linear function,
Mandel’s fitting test; see “Methods” section; verified with piecewise
linear regression, Supplementary Fig. S5). This was not an artifact of
the accept/reject decisions in the task: curvilinear turning was still
observed for single neurons within accepted and rejected offers
(Supplementary Fig. S1).

Because we were largely interested in understanding the popu-
lation geometry of value coding, we turned to population-level ana-
lyses using the whole sample of neurons (i.e. both tuned and untuned;
Fig. 3a-d"®). The majority of the neurons were recorded asynchro-
nously and were combined into pseudopopulations to perform
population analyses (see “Methods” section®**). At the population
level, we found that there were systematic, structured relationships
between the neural responses to different offers. Offers with similar
values were represented by similar patterns of neural activity—patterns
that were closer together in the neuronal state space-compared to
offers with different values (Fig. 3e; Supplementary Fig. S3C, S41; sig-
nificant main effect of the difference between two offers on the
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Fig. 2 | Tuning for value in individual vmPFC neurons. a The firing rates of three
example neurons (rows) that were quadratically tuned for value, plotted as a
function of value quantile bins. b Same as (a) for three example non-quadratically
tuned neurons. ¢ Same as (a) for three example neurons that were not tuned for

offer value:
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value quantile
value. d Proportion of all cells (n =122) within each category. e Average firing rates
from all 122 neurons, plotted as a function of value quantile. Error bars indicate +

standard error of the mean across neurons (SEM).

representational distance between the offers: beta=2.32, 95% Cl=
[2.14, 2.50], t(298)=25.43, p<0.001, R*=0.68, linear regression,
n=300 [all unique pairs of 25 value bins]). Together, these results
indicate that offer values were represented in vmPFC in this dataset,
both at the level of single neurons and at the level of the population.

Population activity scales with value along a curvilinear
manifold

The vmPFC population represented offer values in a structured way,
suggesting that offer value representations were arranged in some

logical order, rather than being “tangled” in a high-dimensional
representation in the vmPFC population (Fig. 3b**?). However, there
were still at least 2 representational geometries that could produce
this structure. For one, offer values could be arranged in a straight
line, as a simple, linear sequence of neural states (Fig. 3c). A linear
geometry is thought to be important for accurate decoding: for
ensuring that downstream structures can correctly and consistently
infer which option is the best, no matter the precise set of options the
animal is choosing between®. Alternatively, offer values could fall
along a curved manifold, rather than a straight line (Fig. 3d). Recent
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population level. a The neuronal population response to an offer value is a pattern
of firing rates across neurons (top left). These patterns can also be understood as
vectors in a neuron-dimensional space, or, equivalently, as points in the neuronal
state space (top right). We probe the representational geometry of these neuronal
population patterns through measuring the distance between neural responses
(bottom left) or via examining the major axes of co-variability between neurons
with principal components analysis (PCA; bottom right). b-d We considered three
hypotheses about how value could be represented at the population level. First,
value representations could be “tangled” (b): if population value representations
are very high dimensional at the population level, nearby values might not even be
represented by nearby patterns of activity. Second, value representations could be
“linear” (c): population value representations could follow a single straight line
through the neural state space or, equivalently, occupy a single dimension in the
neural state space. Third, value representations could be “curved” (d): value
representations could be structured-with nearby values represented by nearby
patterns of activity-but the population manifold could still occupy more than one
dimension. e The mean distance between neuronal states corresponding to
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different values. f The projection of the neural population onto the first 2 principal
components (PCs). Shades of gray = value bins from low (light gray) to high (dark
gray). Dotted line = best linear fit. Solid line = best quadratic fit. g Percent variance
explained by each PC. Capturing the variance in a curved function would require
more than one PC. h Same as (f, g) for one example linearized dataset (see
“Methods” section). i A comparison of the variance explained by the first 2 PCs in
the real population (vertical line) against bootstrapped distributions of linearized
datasets, PC1: 27.08% vs 37.66%, 95% Cl =[36.36%, 41.24%], bootstrapped estimate,
p <0.001; PC2: 8.60% vs 5.43%, 95% Cl =[4.73%, 5.92%], bootstrapped estimate,
p <0.001. Note that third and higher order PCs also continue to explain more
variance in the vmPFC data compared to linearized controls (see “Results” section).
Jj. k Same as (f, i), but for accepted offers only, PC1: 27.97% vs 41.29%, 95% Cl =
[37.0%, 44.78%], bootstrapped estimate, p < 0.001; PC2: 14.04% vs 10.63%, 95%
Cl=[9.61%, 12.82%], bootstrapped estimate, p = 0.001. I, m Same as (f, i), but for
rejected offers only, PC1: 22.69% vs 36.86%, 95% Cl =[36.23%, 43.73%], boot-
strapped estimate, p < 0.001; PC2: 15.27% vs 12.43%, 95% Cl =[9.65%, 12.67%],
bootstrapped estimate, p <0.001. n=121. ***p < 0.001.

studies find that at least some forms of perceptual information may
be encoded along curved population manifolds®, though it is not
clear whether reward value might be encoded with this kind of
geometry.

One way to arbitrate between the linear hypothesis and the curved
hypothesis is to use principal components analysis (PCA). PCA reduces
the dimensionality of high-dimensional datasets, like neural data via
finding an orthogonal set of linear axes that explain decreasing
amounts of variance in the data (principal components; PCs). By pro-
jecting neural data onto the first few PCs, we can generate a low-

dimensional intuition for the structure of the high-dimensional
population response. Projecting vmPFC population activity onto its
first 2 PCs revealed a curvilinear function (Fig. 3f, g; Supplementary
Figs. S3D, E, S4D, E). The shape of offer values in the reduced-
dimensional-space was better described by a curved, quadratic func-
tion than a linear function (linear function: AIC=74.21, AlICc =74.38,
BIC =77.86, n =25, k=3; quadratic function: AIC=49.16, AICc =49.71,
BIC =54.04, n=25, k=4; all AIC, AlCc and BIC weights for the linear
function <0.001). Curvature was not apparent when offer representa-
tions were first linearized, indicating that this was not some artifact of
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linear geometry would produce biases in the accuracy of a linear decoder. This
cartoon illustrates how the projection of an arc onto a line compresses the values at
the tails of the range. b A linear decoder trained on the vmPFC population and used
to predict value. Note that predicted low values are higher than the true values and
predicted high values are lower. ¢ (top) Comparing the accuracy of a decoder
trained on the real vmPFC data (vertical line) with decoders trained on linearized
control populations (purple bars), 3.49 vs 2.82, 95% Cl =[2.64, 2.99], bootstrapped
test, p < 0.001. RMSE: root mean square error, higher = less accurate. ¢ (bottom)
Points projected from an arc onto a line, as visualized in (a), would have residual
errors that follow a sine function. Difference in the quality of a fit of a linear and sine
function to the residuals from vmPFC (vertical line) and the linearized controls
(purple bars), 0.001 vs -0.003, 95% CI=[-0.006, 0.002], bootstrapped test,

p =0.057. SSE - sum of squared estimate of errors. d Another bias predicted by a

curved-but not by a linear-manifold affects out-of-range observations. A decoder
trained on a portion of the curved function would not make accurate predictions
about the values in the other portion of the curve. e Decoders trained on the
population response to one-half of the values (filled circles) and used to predict
values outside of this range (open circles). Red = trained on high values; blue =
trained on low values. f (top) The angle between the high- and low-value-trained
decoders in real vmPFC population (vertical line) and in linearized controls (purple
bars), 22.33 vs 13.97, 95% Cl = [12.27,15.76], bootstrapped test, p < 0.001. f (bottom)
The change in slope in (e) between within-range and out-of-range values for each
decoder (red = trained on high values; blue = trained on low), high-trained: 0.37 vs
0.12, 95% C1=[0.06, 0.18], bootstrapped test, p < 0.001; low-trained: 0.36 vs 0.1,
95% CI=1[0.04, 0.17], bootstrapped test, p < 0.001. Vertical lines correspond to the
vmPFC data and distributions to the control populations. Error bars indicate +
standard error of the mean across neurons (SEM), n =121. ***p <0.001.

data processing (see “Methods” section; Fig. 3h; linear function:
AIC = 61.38, AICc = 61.56, BIC = 65.04, n=25, k = 3; quadratic function:
AIC=63.43, AlCc=63.97, BIC=68.30, n=25, k=4; AIC and AlCc
weights for the quadratic function >0.3, BIC = 0.2%°).

PCA can also be used to look at curvature in the non-reduced
neuronal state space: via asking how succinctly the population
response can be approximated by a set of linear axes. If offer values
were represented linearly, then we should be able to capture nearly all
of the variance between offers with a single PC. However, the variance
in a curved function would necessarily span 2 or more dimensions:
one to describe the axis spanning the arms of the curved function and
one to describe the axis of curvature. (Note that curved functions
can occupy more than 2 dimensions in which case they will have more
than one axis of curvature; Supplementary Fig. S6) Therefore, to
determine if the data was more curved than we would expect from
noise, we compared the number of PCs needed to explain the variance
in the vmPFC data against linearized control populations (see “Meth-
ods” section). The first PC explained significantly less variance in the
vmPFC data than in linearized data (Fig. 3i; Supplementary Figs. S3F,
S4F; see “Methods” section). Higher order PCs explained significantly
more (PCs 2-4, p <0.001; PCs 5-14, p < 0.01; PCs 15-24, ns.). This was
not an artifact of the fact that the task design required subjects to
either accept or reject an offer as we observed the same pattern within
both accept (Fig. 3j, k, PC1, p < 0.001, PC2, p=0.001; PCs 3-9, p< 0.02)
and reject (Fig. 31, m; PCs 1-8, p < 0.001, PC9 ns.) decisions separately.
Together, these results suggested that offers were represented curvi-
linearly in the vmPFC population.

Warped decoding from the curvilinear manifold

If offer values are encoded curvilinearly in vmPFC, it would affect our
ability to accurately decode value. Linear decoders are ubiquitous in
population analyses'®*®, They are computationally tractable, approx-
imate most of the variance in many curved functions, and mirror the
linear weighted sum over a population that a real downstream struc-
ture would perform®“°, However, even in the best linear approxima-
tion to a curved manifold, decoding accuracy would be warped
(Fig. 4a). If we compared, against their true value, values that had been
encoded along a curve, then decoded from a linear projection, we
would see a subtle, but systematic compression at the tails. High values
would appear lower than they actually are, and low values would
appear higher. To determine if decoding accuracy was compromised
in this way, we compared the predictions of a linear decoder with the
true underlying values (Fig. 4b; see “Methods” section). Although
inaccuracies in model fitting mean that one might see compression at
the extreme values even if the underlying value-coding axis was linear,
the best decoder on the real vmPFC data was significantly less accurate
than decoders trained on linearized control populations (Fig. 4c; larger
root mean squared error [RMSE]).

Because the projection of an arc onto a line is a sine function, if
values were encoded along a curved manifold, we might expect our
residual decoding errors to follow a sine function (Fig. 4a). In contrast,
if compression is just due to inaccuracies in model fitting, residual
errors should still be linear (indeed they were in linearized popula-
tions: linear RMSE = 0.022; sine RMSE: 0.024; the linear function fit
better in 897/1000 bootstrapped samples). In the vmPFC data, the

Nature Communications | (2024)15:6424



Article

https://doi.org/10.1038/s41467-024-49568-4

shape of residual errors was better described by a sine function than a
linear function, though this was not significantly outside the distribu-
tion of linearized populations (Fig. 4c). However, an arc might be a
poor approximation to the quadratic functions that appeared to fit the
population manifold in 2 dimensions (Fig. 3f). Although we found no
closed form solution for the projection of a quadratic function onto a
line, the simulation suggested that we might expect the distribution of
residuals in that case to asymptote vertically, rather than horizontally,
consistent with what visual inspection suggested might be true for
high values (Fig. 4b).

If values were represented linearly, we would be able to extra-
polate a decoder trained on any portion of the manifold to predict the
ordering of values on another. Conversely, in a curvilinear manifold, a
decoder trained on one “arm” should offer little information at all
about the values on the other (Fig. 4d). Therefore, we next split the
values in half and trained 2 separate linear decoders-one on the high
values and one on the low values. We then used these decoders to
predict the held-out low or high values, respectively. These decoders
were significantly less accurate in the vmPFC data than in the linearized
control populations (Fig. 4e; high-trained, held-out low RMSE, vmPFC
data=9.94, linearized data=7.29, 95% Cl=[6.5, 8.06], bootstrapped
test, p <0.001; low-trained, held-out high RMSE, vmPFC data =11.50,
linearized data=6.64, 95% Cl=[5.86, 7.44]; p<0.001). The best
decoding axis for the high values and low values differed more in the
vmPFC data, compared to the linearized data (Fig. 4f). Further, while
there was little change in the relationship between true and predicted
values across test and train in linearized data, this was not the case in
the vmPFC population (Fig. 4f). In fact, there was essentially no rela-
tionship between the decoder’s predicted value and the true value for
out-of-range values in the vmPFC data (high-trained r=-0.01; low-
trained r=-0.0002). In sum, we found systematic inaccuracies in
decoding values from the vmPFC population that were consistent with
the idea that values were encoded along a curved, rather than linear
manifold.

Irrational choices from a curvilinear manifold

If a downstream neuron was taking a weighted sum of the activity in
vmPFC neurons, it would be acting as a linear decoder: its input would
be some linear projection of the curved vmPFC manifold. However,
linear approximations to curved functions are only accurate locally:
they are perfect approximations in the limit of instantaneous seg-
ments, but increasingly inaccurate over wider portions of the curve.
This implies that there is an upper bound on how accurately value can
be decoded from vmPFC by a downstream neuron and that this upper
bound would change with the range of values that must be decoded.
For narrow ranges, decoding would be fairly accurate, and nearby
values easy to discriminate (Fig. 5a). However, as the range of values
increases, even the best possible decoder would begin to produce
systematic errors, like confusing nearby offers or confusing the precise
value of near-threshold offers.

In the context of economic decision-making, one systematic error
we would expect from a curved manifold is a specific violation of one
of the principles of rational choice theory: the independence of irre-
levant alternatives axiom***, Rational decision-making requires that
choices should not be affected by the availability of irrelevant, “decoy”
offers whose value is low enough that they are unlikely to ever be
chosen. However, the curved manifold implies that especially low-
value offers should actually interfere with our ability to make good
decisions because they decrease the upper bound on the accuracy of
decoding higher-value offers from vmPFC activity (Fig. 5a).

We began to test the idea that decoy offers should compromise
value-based decision-making through decoding different sets of offers
from vmPFC activity. We found that curvature in the value-encoding
manifold was sufficient to produce strong decoy effects in decoding
accuracy (Fig. 5b). Linearized populations also produced a weaker but

positive decoy effect, suggesting that the linearized population still
maintained a level of curvature capable of affecting the readout, likely
due to the Poisson spiking close to the noise floor®. This result was not
an artifact of considering some especially wide range of values: cur-
vature in value-encoding manifold was sufficient to produce strong
effects on decoding accuracy when we only considered a narrower
range of values (Supplementary Fig. S7). To test the role of curvature in
producing the decoy effect we additionally simulated 50 curved and
linear populations with slightly elevated baseline firing rates to remove
them from the noise floor (Supplementary Figs. S8, S9). Here, we found
that curvature in the manifold was necessary to produce decoy effects
in decoding accuracy, as the decoy effect was absent in simulated
linear populations (Fig. 5¢). In short, a curved value manifold predicts a
paradoxical behavioral phenomenon where high decoy offers would
make it easier to discern which offer in a given set is best. (Note that
this is the inverse of what a divisive normalization account would
predict, where low-value [not high-value] decoys would improve
decoding good offer values because lower decoys reduce the magni-
tude of the divisor component***%),

In addition to being better at choosing the best option as it got
larger with respect to the threshold and/or in comparison to the
second-best option, the subjects were also better at choosing the best
option as the value of the worst, decoy option in each set got higher
(Fig. 5d, e; GLM included terms for choosing the best option by best
value, best-2nd best value, decoy value, and pairwise interactions with
decoy value, similar results for individual subjects, and different
parameterizations of the GLM, Supplementary Tables S2 and S3,
Supplementary Fig. S11). While accuracy for very high best offer values
approached the ceiling, a strong effect of decoy value was observed for
lower best offer values and best offer values that were close to the 2nd
best offers (Fig. 5f; both subjects: decoy by best interaction, mean
slope =0.27, 95% Cl=[0.26, 0.29], t(85) =33.94, p<0.001; decoy by
best-2nd best interaction, mean slope = 0.35, 95% CI=[0.32, 0.38],
t(85) =24.04, p<0.001; similar results for individual subjects, Sup-
plementary Table S2, Supplementary Fig. SI0A-C).

Errors of reward maximization are only one of the consequences
of uncertainty about the best option in the task. As described in Fig. 1,
the monkeys were also more likely to return to previous options on
trials where the best decision was uncertain. Therefore, we reasoned
that any effect of decoys on the discriminability of good options or of
good options from threshold might also result in an increase in
returns. As predicted, subjects were less likely to dither between
options (i.e. they made fewer returns) when the value of the worst
option in the set got higher (Fig. 5g-i). This was true even after taking
into account the best offer value and the difference between the best
and 2nd best offers (same GLM as for accuracy, similar results for
individual subjects, Supplementary Table S2). Again, the decoy effect
was most pronounced for lower best offer values and best offer values
close to the 2nd best offers (Fig. 5i; both subjects: decoy by best
interaction, mean slope = -0.43, 95% Cl = [-0.48, —0.37], t(85) = -15.83,
p < 0.001; decoy by best-2nd best interaction, mean slope = —0.18, 95%
Cl =[-0.20, —0.15], t(85) =-16.10, p < 0.001; similar results for indivi-
dual subjects, Supplementary Table S2; Supplementary Fig. SIOD-F).
Together, these results converge to suggest that the subjects were
more uncertain about which offer to choose when irrelevant decoy
offer values were lower, tracking the upper bound on decoding
accuracy predicted by the curved manifold.

Nonetheless, because the task was not designed to test for decoy
effects, we considered the possibility that the decoy effects were an
artifact of some confounding variable that might be correlated with
decoy value. We found decoy value consistently improved choice
accuracy and decreased the probability of returns in a way that could
not be explained by any differences in set size, decoy order effects,
decoy recency effects, distraction by the decoy, or some interaction
between accuracy and returns. First, while subjects were more likely
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Fig. 5 | Curvilinear manifolds suggest a specific pattern of irrational decisions.
a A cartoon illustrating how the ability to discriminate good offers could depend on
the value of a worst, “decoy” offer in a curved manifold. The linear decoder
represents an upper bound on the accuracy of a downstream neuron’s readout
from vmPFC. The inset graph shows how the probability of choosing the best
option changes as a function of decoy offer value in an example vmPFC pseudo-
population; the slope here is the “decoy effect”: the effect of the worst offer’s value
on the accuracy of the choices (marked in [b] with an open arrow). b Distributions
of decoy effect slopes from vmPFC pseudopopulations (black) and their linearized
version (purple), vmPFC: mean slope of the decoy effect =0.17, 95% Cl =[0.14,
0.20], t(49) =13.42, p < 0.001; linearized population: mean slope of the decoy
effect = 0.05, 95% CI=[0.03, 0.07], t(49) =4.89, p <0.001, one-sample t-test from
0. Filled arrows = means, open arrow = the example effect illustrated in (a). c Same
as (b) but the distributions of decoy effects were obtained from simulated popu-
lations that had either a curved (black) or linear (purple) value manifold; curved
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population: mean slope of the decoy effect =0.19, 95% Cl=[0.16, 0.22],

t(49) =13.91, p < 0.001; linear population: mean slope of the decoy effect=0.005,
95% Cl=[-0.007, 0.017], t(49) = 0.79, p = 0.436, one-sample t-test from 0.

d Probability of choosing the best offer seen as a function of the worst offer seen
(decoy offer quantile). Lines = least squares fit. e Distribution of decoy effect slopes
across sessions, mean decoy effect slope = 0.17, 95% Cl =[0.12, 0.23], t(85) = 6.50,
p <0.001, one-sample t-test from 0. f Probability of choosing the best option as a
function of the decoy value and other variables that affect accuracy: (left) the best
value seen; (right) the difference between the best and 2nd best option. g-i Same as
(d-f), but for the probability of returning to a previously seen offer, mean decoy
effect slope =-0.45, 95% Cl = [-0.52, -0.38], t(85) =-13.42, p < 0.001, one-sample t-
test from O. Insets in (g) show which options tended to be the target of returns.
Each dot represents one session. Error bars indicate + standard error across ses-
sions (SEM), subject J: n sessions =45, subject T: n sessions = 41. These may be
smaller than the symbols. ***p < 0.001.

to see low-value decoys when they viewed more offers in a trial (sig.
correlation, r=-0.33, p < 0.001), the decoy value effect was present
also after accounting for the number of offers revealed (Supple-
mentary Fig. S11A-C). Second, decoy value influenced choices and
returns across decoy’s position in the trial sequence (Supplementary
Fig. S11D-F) and its recency to the time of the choice (Supplementary
Fig. S11G-I). Third, neither the accuracy nor return effects were due
to distraction by the worst value. The majority of the returns went to
the best or 2nd best option (Fig. 5g, insets; subject J: 84 + 6%, subject
T: 72 + 2%), with no more attention paid to the worst option than any
other options (subject J: 6.42+0.61% vs 9.44 + 0.73%, mean differ-
ence other - worst=3.02%, 95% Cl=[1.70%, 4.34%], t(44)=4.60,
p <0.001, subject T: 13.42 +1.17% vs 13.57 +1.04%, mean difference
other - worst = 0.15%, 95% CI = [-3.15%, 3.45%], t(40) = 0.09, p = 0.927)
and the likelihood that the subjects chose the worst option was
negligible (subject J: 2.09 £ 0.16% subject T: 3.65 + 0.20%). Finally,
while choice accuracy and the probability of returns were related
(Supplementary Fig. S12), returns did not explain the errors of reward
maximization. Decoy effect was still present in choice accuracy
within only those trials that did not contain any returns (both sub-
jects: mean slope of decoy effect=0.05, 95% CI=[0.00, 0.10],
t(85) =2.04, p < 0.044; decoy by best interaction, mean slope = 0.20,
95% Cl1=[0.18, 0.22], t(85) =18.58, p < 0.001; decoy by best-2nd best

interaction, mean slope =0.23, 95% CI=[0.20, 0.27], t(85)=13.23,
p<0.001 [choosing the best option by best value, best-2nd
best value, decoy value, and pairwise interactions with decoy
value]). Together, these results suggest that errors and returns both
arose when the choices were uncertain and constitute converging
pieces of evidence that low-value decoys warp the discriminability of
offers.

Again, these effects did not appear to be the simple consequence
of divisive normalization. The curvature in single-cell and population
data is similar when we only consider the first offer viewing period
when the context of other offers in the trial is not yet present (Sup-
plementary Fig. S4). We found some evidence for divisive normal-
ization when considering sequential effects in this dataset
(Supplementary Fig. S13): namely, in trials in which the first offer
viewed was higher than average, we found a shift in the representation
of low-value options such that they would be decoded as slightly
higher-value than they were. Because value normalization is linked
with the inverse of the decoy effects we report here (i.e. higher decoy
values causing worse performance, not better performance), normal-
ization effects would only cause us to underestimate the magnitude of
the effect of the curved value manifold on decision-making. In sum,
what should have been an irrelevant decoy-the worst option in the
set-interfered with decision-making the most when it was furthest
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from the best available options, exactly as we would expect if values
were decoded from a curved manifold.

Discussion

Value is the key variable of economic decision-making, so its repre-
sentation in the cortex likely has consequences for value-based deci-
sions. In vmPFC, a region causally implicated in value-based decision-
making*®™*%, we found that the average firing rates across neurons
scaled positively and monotonically with value. However, many indi-
vidual neurons were reliably, but non-linearly tuned for value. At the
population level, the patterns of neuronal activity that encoded value
traced a curvilinear manifold, rather than a straight line. This curvi-
linear geometry could explain why not every vmPFC study finds robust
value tuning***°, Random samples of neurons are low-dimensional
projections of the underlying population and a curvilinear value
manifold would have many low-dimensional projections that would
lack even monotonic tuning with respect to value®. The neuronal code
for value has long been assumed to be linear and at least quasi-linear
tuning for value has been reported in single neurons in many brain
regions®’. However, our results reinforce the idea that single neurons
can be meaningfully tuned for value without being linearly tuned for
value'®", They also suggest that the population-level representational
geometry of value can be strongly nonlinear, even when the average
response across neurons is not.

If a set of option values is represented linearly, it is trivial for a
downstream region to decode these values in a way that respects
fundamental axioms of rational value-based decision-making, like
transitivity, completeness, and the independence of irrelevant alter-
natives. The last of these, independence of irrelevant alternatives, is
the dictum that decisions between good alternatives should be unaf-
fected by the value of low-value, decoy options**’, However, if the
representation of value were curved, decoys would affect decision-
making. Because curvature both (1) warps the representation of values,
and (2) scales positively with the range of values, the lowest-value
decoys would introduce a systematic bound on the upper limit of
decoding accuracy for choice-relevant, high-value options. Indeed, we
found that subjects exhibited exactly the pattern of choices predicted
by their curvilinear manifold: the lower the value of the decoy option in
the set, the less accurate the subjects were at choosing among better
offers. This result resonates with a broad literature showing that vio-
lations of the independence of irrelevant alternative axioms are sur-
prisingly common in real-world decision-makers**'~’. However, it is
important to note that high-value decoys can sometimes compromise
decision-making more than low-value decoys™*’. This may occur
because divisive normalization effects dominate when offers are pre-
sented simultaneously, rather than sequentially®. Future work is nee-
ded to fully understand the consequences of curvilinear value
encoding for rational decision-making.

The links we draw between the curved value-coding manifold and
irrational decision-making may seem predicated on some provocative
premises. The first of these is the notion that a downstream region
would decode value in a way that is essentially linear. There is pre-
cedent for this view. Linear decoders parallel the weighted sum over
neurons that a downstream neuron would receive as input®*%*® and
both neuronal activity****“° and behavior®®! are often well-described
as a linear decoding of some more complex pattern of brain activity'.
Further, though this study cannot say what decoding scheme might be
used by any downstream region(s), linear functions offer a good
approximation to many nonlinear functions, so our approach may
make reasonable predictions even if the true decoding scheme is not
strictly linear. The second premise that our hypothesis may appear to
depend on is the idea that a different downstream neuron would be
responsible for decoding different sets of options. That is, one could
imagine that a downstream region might flexibly alter its decoding
strategy in order to maximize information about the currently

available set. Given that we know that neural representations are
constantly evolving, both spontaneously®>** and according to internal
states, task contexts, and value ranges*'***’, this does not seem like
an unreasonable idea. However, it is worth clarifying that our argument
is not predicated on flexible decoding. Instead, we argue only that the
curved manifold creates a bottleneck in information transmission: an
upper bound on the decoding accuracy possible in all of the neurons
downstream from vmPFC. We struggle to see how it would be possible
to compensate for an information bottleneck like this, even allowing
nonlinearities and complex network effects, but future work is cer-
tainly needed to determine how regions downstream from vmPFC
decode from this curved manifold.

There is precedent for the idea that single neurons have flexible,
context-dependent value representations in the literature on divisive
normalization***>** and range adaptation***®, In fact, one might even
wonder if the decoy effects here could be due to set-dependent
changes in value encoding in single neurons rather than the nonlinear
value manifold in vmPFC. However, context or set had only minimal
effects on the vmPFC manifold that would have only made the decoy
effects weaker, not stronger. Further, neither form of flexible encoding
seems like a sufficient alternative explanation for the effects reported
here. First, while value normalization can certainly cause interference
from low values, it is typically linked with the inverse of these decoy
effects: worse performance with higher decoy values, not better
performance®. Normalization-like effects are also more typical of task
designs when options are presented simultaneously, rather than
sequentially, perhaps because divisive normalization is related to
competition for visual attention’. Second, while range adaptation
could produce decoy effects with the same sign as those reported
here, range adaptation effects typically take place at longer timescales
(across blocks or tasks rather than within trials***%). Significant
adaptation would have also compromised the ability to compare
sequentially viewed offers against a stable threshold, but the subjects
reliably accepted offers that were above a threshold here. Intriguingly,
a curved manifold in vmPFC—a region upstream from the orbitofrontal
regions in which range adaptation is maximal™ could actually be part of
the as-yet-unknown mechanism(s) for range adaptation. That is, per-
haps downstream neurons range-adapt in part because doing so
maximizes the information they can decode from nonlinear, curved
representational structures. Simultaneous population recordings in
vmPFC and orbitofrontal range-adapting neurons might be the key to
addressing this question.

In a fixed, quasi-linear decoding from a curved manifold, the
separation between nearby values is maximal at the center: at precisely
the values that are closest to the accept/reject threshold the animals
adopted here. In fact, because the difficulty of the accept/reject dis-
crimination is aligned with the axis of curvature, another possible
interpretation of this result is that vmPFC encodes difficulty as well as
value. However, we would argue that it is more parsimonious to ima-
gine that vmPFC “encodes difficulty” as a byproduct of the inherent
curvature in the representation of value. Curvature emerges naturally
from fundamental constraints on the dynamic range of neuronal firing
rates (i.e. the lower bound at zero and an upper bound at the neuron’s
metabolic limits?®) and appears even in tasks where there is no natural
alignment with any difficulty axis'®*'. Further, even when the axis of
curvature does align with task difficulty, position along the “difficulty”
axis does not appear to predict the experienced difficulty of the ani-
mals’ decisions?®. However, just because information is not used for a
specific judgment does not mean that it is not used and future work is
needed to determine if the apex of the curvature is sensitive to chan-
ges in threshold or else if other neural correlates of decision difficulty
could be an artifact of curved value representations’>’>.

The idea that curvature can exist even in a circumstance where it
compromises behavior lends credence to the notion that curvature is a
ubiquitous feature of the population encoding of many variables,
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including linear ones. This study stands alongside growing evidence
for curved representational geometries across several brain structures
for several linear variables, including those underlying perceptual
decisions?®, motor control’*, and interval reproduction’. Curvature
could be a powerful way to maximize information coding within the
bounded dynamic range of neuronal firing rates®. While linearity
might be essential for rational decision-making, a linear information-
coding manifold in a bounded space represents a significant com-
promise in the discriminability of states along its length compared to
coding manifolds that have more dimensions®**>’*, As the curvature of
information-coding manifolds expands into more dimensions, the
number of representations that can be discriminably encoded along
that manifold will also increase'®. However, future work is needed to
determine whether the curvilinear value manifold has some functional
benefits or if it exists as a byproduct of constraints on neuronal firing
rates. In either case, the curvilinear geometry of value represents a
constraint in the hardware used for value-based decision-making that
could explain some types of seemingly irrational decisions.

Methods

All procedures were designed and conducted in compliance with the
Public Health Service’s Guide for the Care and Use of Animals and
approved by the University Committee on Animal Resources at the
University of Rochester. Subjects were two male rhesus macaques
(Macaca mulatta: subject J age 10 years; subject T age 5 years).
Although our ethical mandate to minimize the number of animals
meant that sex was not considered in the design of this specific study,
future work using the same methods in female macaques would be
invaluable. Initial training consisted of habituating animals to labora-
tory conditions, to head restraint, and then to perform oculomotor
tasks for liquid reward. Standard surgical techniques were used to
implant a small prosthesis for holding the head and Cilux recording
chambers (Crist Instruments) over the vmPFC. Position was verified by
magnetic resonance imaging with the aid of a Brainsight system
(Rogue Research Inc.). Anesthesia was induced with 5 mg/kg ketamine
and 0.02 mg/kg buprenorphine, and it was maintained using gaseous
isoflorane at 2%. After all procedures, animals received appropriate
analgesics and antibiotics: acutely immediately following surgery and
in the recovery treatment over the next 14 days (50 mg/kg dose of
cefazolin). Throughout all sessions, the chamber was kept sterile with
regular washes and sealed with sterile caps. Previous analyses of
these data have been included in earlier work", together with subjects’
previous training history; all analyses presented here are new.
Data were recorded over 45 separate sessions in Subject J and 41 ses-
sions in Subject T. This allowed for collecting the recordings from
122 neurons. Sample size was determined based on previous publica-
tions that obtained reliable single-neuron and population effects on a
similar number of cells (e.g.*°). One neuron was excluded from
population analyses due to lack of spiking activity in the selected time
window.

Recording sites

We approached vmPFC through a standard recording grid (Crist
Instruments), guided by a Brainsight system and structural magnetic
resonance images taken before the experiment. Neuroimaging was
performed at the Rochester Center for Brain Imaging, on a Siemens 3 T
MAGNETOM Trio Tim using 0.5mm voxels.The accuracy of the
Brainsight guidance was confirmed by listening for characteristic dif-
ferences between white and gray matter during electrode penetra-
tions. Gray-white matter transitions occurred at the penetration
depths predicted by the Brainsight system in all cases. We defined
vmPFC according to the Paxinos atlas”. This meant we recorded from a
region of interest lying within the coronal planes situated between 42
and 31 mm rostral to interaural plane, the horizontal planes situated
between 0 and 7 mm from the brain’s ventral surface, and the sagittal

planes between 0 and 7 mm from the medial wall. This region is within
the boundaries of Area 14 according to the atlas.

Electrophysiological techniques, eye tracking, and reward
delivery
A microdrive (NAN instruments) was used to lower single electrodes
(Frederick Haer & Co., impedance range 0.7-5.5 MU) until waveforms
of between one and four neurons were isolated. Individual action
potentials were isolated on a Plexon system (Plexon, Inc.). We only
selected neurons based on their isolation quality; never based on task-
related response properties. All collected neurons for which we man-
aged to obtain at least 300 trials were analyzed. In practice, 86% of
neurons had over 500 trials (this was our recording target each day).
An infrared eye-monitoring camera system (SR Research) sam-
pled eye position at 1000 Hz, and a computer running Matlab (Math-
works) with Psychtoolbox and Eyelink Toolbox controlled the task
presentation. Visual stimuli were colored diamonds and rectangles on
a computer monitor placed 60 cm from the animal and centered on its
eyes. We used a solenoid valve to control the duration of juice delivery,
and established and confirmed the relationship between solenoid
open time and juice volume before, during, and after recording.

Experimental design

Subjects performed a menu-search task (Fig. 1a). To begin each trial,
the animal fixated on a central dot (50 ms), after which either four or
seven white diamonds (“offers”) appeared in randomly selected, non-
overlapping positions on the screen. The number of offers per trial was
either 4 or 7, and was chosen at random on each trial. Continuous
fixation on one diamond for 400 ms caused it to disappear and reveal a
reward offer. Offers were orange bars, partially filled in to indicate the
value of the riskless offered reward. The percentage of the offer bar
that was filled in corresponded to the offer value in terms of percent of
the maximum value possible per offer (e.g., an offer bar that was 10%
orange and 90% black would indicate an offer worth 10% of the max-
imum value; 20 uL for subject T and 23 uL for subject J). Continuous
offer values were discretized by the pixel resolution of the display.
Reward values for each offer were generated randomly from a uniform
continuous distribution ranging from 0% to 100% of the maximum
possible reward value for the individual subject (although con-
tinuously varying rewards were generated, the need to represent offers
in pixels did discretize offers into approximately -200 steps).

The subject could freely search through the diamonds in any
order and could accept any offer. Acceptance led to the end of the trial;
rejection led to a return to the initial state (viewing an array of dia-
monds). To accept the offered reward, the animal had to maintain
fixation on the offer for 300 ms, after which the screen would go black
and the offered amount of liquid reward would be delivered immedi-
ately. Thus, selecting a given offer required 700 ms: 400 to unmask it
and an additional 300 to obtain it. If the subject broke fixation on the
reward stimulus at any point between 0 and 300 ms from the initial
reveal, the reward stimulus would disappear and the diamond would
return in its place (a “rejection” of the offer). The subject could then
resume freely inspecting other offers. There was no limit to how many
offers a subject could inspect, nor to how many times a subject could
return to re-inspect a particular offer. The trial only ended (and a liquid
reward was only delivered) after the subject accepted an offer. Reward
delivery was followed by a 4 s inter-trial interval.

General data analysis techniques

Data were analyzed with custom software, written in Matlab. Neural
activity was analyzed in the fixed 500 ms epoch beginning 100 ms after
the offer was revealed. This epoch was chosen a priori, matching the
previous publication. To verify that the results are not primarily dri-
ven by the post-decision factors, additional analysis (analogous to
population analyses in Figs. 2 and 3) was performed for the epoch
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beginning 100 ms and ending 300 ms after the offer was revealed (i.e.
the epoch beginning after vmPFC neurons responded to the offer
reveal, but before any offer was accepted; Supplementary Fig. S3). All
comparisons using t-test were two-tailed. No corrections for multiple
comparisons were necessary because the tests were independent.
Formal analyses of the normality of distributions were not performed.

Analysis of choice behavior

The menu-search task was inspired by optimal stopping problems,
like the well-known “secretary problem”’®. These tasks encourage
subjects to balance the goal of choosing the best offer
possible against the time costs of evaluating each offer. One rea-
sonable strategy in optimal stopping problems is to compare each
offer against some fixed threshold, then choose the first offer that
exceeds this threshold. Because offers were uniformly distributed in
value and presented at random, there was an identical probability
that each offer would exceed a fixed threshold (1 minus the thresh-
old). The distribution for a stopping process with a fixed probability
of stopping at discrete steps is a geometric distribution. The max-
imum likelihood fit of a geometric distribution to the subjects’
behavior is illustrated in Fig. le (model fit via the expectation-
maximization algorithm). The geometric distribution has a single
free parameter, which can be expressed equivalently as 1 minus the
probability of stopping (here, as the threshold), or its inverse: the
average duration of the stopping process (here, the number of offers
evaluated per trial). Previously, we calculated the optimal, reward-
rate maximizing threshold in this task". Here, we used these mathe-
matical insights to illustrate the distribution over the number of offer
evaluations that we would expect from this optimal threshold.
Although the geometric distribution was a good fit to the data and
the subjects’ curve was close to optimal, this task does differ from the
classic “secretary problem” because the subjects could return to, re-
evaluate, and choose a previously-rejected offer at any time, which
they often did (Fig. 1f). In short, while the subjects often viewed
something close to the optimal number of unique options per certain
models of task performance, they were suboptimal in returning to re-
evaluate previous options and they also appeared to at least occa-
sionally compare options with each other rather than always against a
fixed threshold (Fig. 1i, j).

To determine how well choice behavior was predicted by offer
values, we fit a four-parameter logistic model. The probability of
accepting an offer was modeled as a function of the value of that offer
according the following equation:

scale
1+ exp(—slope(value — intercept))

p(chosen) = + offset 1)

Where “value” was the objective value of the offer on the screen, the
intercept captured the value where choices were evenly split between
accept and reject, the slope reflected the noise around this intercept
(i.e., decision temperature), and the scale and offset reflected the
tendency to reject or accept offers by chance, respectively. The model
was fit with the default settings of the Matlab fit.m function (mini-
mizing nonlinear least squares, trust region algorithm) and the adjus-
ted R? was taken as an index of the quality of model fit.

Neuronal tuning

To identify which neurons were tuned for value, we used an approach
that makes no assumptions about the shape of neuronal value tuning,.
Specifically, we calculated mutual information between the firing rate
and the values for each individual neuron:

W= p(x,y))
IX;Y)= ) log(-2XY)
X:Y) Xg%:eyp(xw 0g<p(x)p(y) @

Where X are the firing rates and Y are the values. Firing rates and values
were both divided into quantile bins, where the number of bins (3
each) was chosen to minimize the number of empty cells (unobserved
combinations of firing rate and value) while still allowing for tuned
neurons with U-shaped value tuning functions. We wanted to avoid
empty cells because these can inflate mutual information estimates: it
is not clear whether the probability of an empty combination of
variables is truly zero or if it simply was not observed within the finite
sample of data. We then compared the mutual information in the
vmPFC data against a distribution in which the labels had been shuffled
(n=1000 shuffles).

To determine the shape of tuning functions within the set of tuned
neurons, we used Mandel’s fitting test’””%. This method asks if a mean
firing rate model that permits curvature (i.e., includes a quadratic term)
is a significantly better fit than a model that does not (i.e., a model that
includes only linear terms) via calculating the following F-statistic:

2

linear — (7~ 3)RMSEquadratic
2
RMS'Equadraltic

(n — 2)RMSE?
F=

€)

Where RMSE stands for root mean squared error of the linear and
quadratic regression models, respectively, and n is the number of
value bins. Because this analysis assumes normally distributed data,
offers were quantile-binned into 25 distinct values and the models
were fit to average firing rates in each bin.

To determine the shape of the curvilinear tuning across individual
neurons, we fit piecewise linear models to each neuron. This allowed
us to identify neurons in which curvature was caused by floor effects
(downward rectified, with a O slope for low values), ceiling effects
(upwards rectified, with a 0 slope for high values), or peaking at some
intermediate value (opposing slopes for high and low values). The
piecewise regression model was fit with the breakpoint as a free
parameter, constrained to fall between the 20% lowest and the 20%
highest values of the full value range (bins 5-21) to ensure that a suf-
ficient number of datapoints were included to estimate the slope of
each half of the function. These results are included in Supplementary
Fig. S5. We repeated Mandel’s fitting test to compare piecewise linear
and quadratic fits.

Pseudopopulations
Neurons in this study were recorded largely separately, so to gain insight
into the representational geometry of value coding at the population
level, we built pseudopopulations from non-simultaneously recorded
neurons®?, The pseudopopulation approach does not permit a
reconstruction of the covariance structure between simultaneously
recorded neurons, but it can still be useful for generating first-order
insights into how population activity changes across various conditions.
Offers were first quantile-binned into 25 distinct values, a level at
which each value bin spanned a +2% change in reward. Within each bin,
firing rates from separately recorded neurons were randomly drawn
with replacement to create a pseudotrial firing rate vector, with each
entry corresponding to the activity of one neuron when an offer within
that quantile bin was on the screen. Pseudotrial vectors were then
stacked into a trials-by-neurons pseudopopulation matrix. Twenty-
eight pseudotrials were drawn from each cell for each condition
because at least 95% of pairs of cells and conditions had at least this
number of observations. One neuron was excluded because it did not
spike within the selected epoch. All pseudopopulation results are
reported for a single, randomly-seeded pseudopopulation, but were
later confirmed with a range of different random seeds. For analyzing
only accepted and only rejected offers, accept-only and reject-only
offers were quantile-binned into 10 distinct values. The number of bins
was chosen to account for the smaller number of observations per bin
when the data was split according to choice (95% of pairs of cells and
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conditions contained at least 28 observations, as for the analysis of all
choices together). In order to determine if value encoding depended
on the value of early offers within the trial (Supplementary Fig. S13), we
made two separate pseudopopulations by splitting trials into 2 groups,
based on whether the first offer revealed was below or above 0.5. Two
pseudopopulations were then constructed as normal within each of
these subsets.

Linearized control populations

In order to determine if the apparent curvature in vmPFC populations
was just an artifact of some data processing step(s), we generated 1000
bootstrapped estimates of the distributions of certain statistical mea-
sures under the null hypothesis that the neural representation of value
was linear. We did this via linearizing pseudopopulation responses
(after®™). A line was fit to the neural population data, then interpolation
was used to identify an evenly spaced set of neural states along that line.
To generate realistic trial-to-trial noise, spiking observations were then
drawn from Poisson distributions parameterized by the neural states.

Decoding models
To decode offer values from the neural population data, we fit general
linear models of the form:

value=Xp 4)

Where X is the matrix of population data (n-trials by k-neurons), aug-
mented by a column of ones to serve as an intercept, f is a vector of
weights for each neuron (or intercept), and value is one of 25 value
bins, with the range rescaled between 0 and 1. Decoding models were
trained via maximum likelihood using standard Matlab libraries
(glmfit). Decoding was performed via projecting the vmPFC data onto
the optimized B vector. In order to maximize the accuracy of the
models’ predictions-and thus the accuracy of our estimate of their
residual errors-decoding models were trained and tested on complete
data unless otherwise specified.

Simulated curved and linear populations

In order to test the hypothesis that curvature could introduce sys-
tematic biases in choice decoding accuracy (Fig. 5a), we simulated data
from populations of neurons that either had curvature or did not have
curvature. For the linear population (no curvature), neuronal respon-
ses were modeled as a linear function of value:

A=p,+p;(value), spike count ~ Poisson (1) )

To introduce curvature into the neurons in the second popula-
tion, a quadratic term was added:

A=B, + B;(value) + 3, (valuez) (6)

Simulated populations contained 100 cells with 50 observations
drawn at each value level (25 value bins, 1250 total observations). The
cells’ slope and curvature parameters were drawn uniformly at random
from the approximate range of values in the vmPFC data (f; € [-0.2,
0.2], B> € [-0.02, —0.02]). Note that the baselines (8,) were slightly
elevated (B € [10, 30]) in order to control for the curvature that can be
produced by Poisson spiking when close to the noise floor®.

Decoy effects in neural activity

To determine if curvature in the vmPFC population was necessary and
sufficient to cause the decoy effect on choice accuracy, we decoded
option values from 50 randomly drawn pseudopopulations and their
linearized counterparts, and then from 50 simulated populations that
were either linear or curved by design. From each population we
randomly drew 200 sets of neural population responses to between 3

and 7 unique options. Sets (or “trials”) always included two good offers
(e.g., value bins 24 and 25 at the high end of the range (Fig. 5) or value
bins 12 and 14 [Supplementary Fig. S7]) with the remaining offers
chosen at random from the lower portion of the value range. To find
the upper bound on choice decoding accuracy for each choice set, we
used the decoding model described above. The “decoding accuracy”
was defined as the percent of “trials” where the model correctly
identified the best option as being more valuable than the 2nd best
option, i.e., the likelihood that the decoded highest-value option
matched the objectively best option. Decoding accuracy was calcu-
lated within each population, for each choice set. The measured
“decoy effect” for each population was then the effect of the worst
option’s value on decoding accuracy (i.e., the slope of decoding
accuracy by the minimum value in the set).

Decoy effects in behavior

To determine whether the subjects had the same irrational decoy
effects we found in the neural and simulated data, we asked if the value
of irrelevant decoy options also altered choice. We first isolated the
trials in which subjects viewed at least 3 options (16,933 total trials;
subject J: 9196; subject T: 7737; 26.5% of trials) because these were the
only trials in which the subject had seen a non-overlapping best option,
second-best option, and a worst, decoy option.

Because subjects had little difficulty choosing the best option
when the best option was very high and/or the difference between best
and second-best option was large (e.g. they chose the best option 99%
of the time when its reward was at least 0.2 units greater than the
second-best, but only 70% of the time within this range; see Fig. 1 and
Supplementary Fig. S12), we additionally repeated our analyses on the
trials where the difference between the best and second-best option
were within 0.2 (Supplementary Fig. S10; 8157 total trials; subject J:
4037; subject T: 4120; 5,803 trials which had at least 3 options
revealed, subject J: 2937; subject T: 2866).

To determine whether the value of the irrelevant decoy option
affected the probability of choosing the best option, we fit a GLM
that included the best option’s value, the difference between the
best and second-best options, and the main effects of the decoy option’s
value, together with its pairwise interactions with the two other factors:

p(chose best) \ _
log (1 — p(chose best) =Bo*PiVpest * (Vbest - l/an) *Bs |/decoy
+Bs (Vbest X l/decoy) +Bs ((Vbest - Van) X l/decoy)
)

Where Vpes, is the value of the best option, V5,4 is the value of the
second-best option, and Vgecoy is the value of the decoy option. To
ensure that potential errors in choosing the best option are made
among the good options, and not caused by choosing the decoy, we
excluded trials in which subjects chose the decoy option (n =472, 3%).
The model was fit with L2 regularization (lambda=1) to ensure the
stability of parameter estimates. Analogous analyses were also
performed for probability of making a return within a trial, i.e. making
a repeated reveal of a previously seen option.

Several additional factors were taken into account to rule out the
possibility that the decoy value effects were an artifact of some aspect
of our task design. We tested the effects of the set size (3-7), the order
in which the decoy option was presented (first, second, etc.), and the
recency of the decoy option with respect to the final choice (one-back,
two-back etc.) by adding each of these factors, and its pairwise inter-
actions with the decoy effect, to the GLM described above (Supple-
mentary Fig. S11).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All the data used in this study has been deposited on OSF (https://doi.
0rg/10.17605/0SF.10/8MKRD’). The data was previously used in".

Code availability
All the code used for data analysis in this study is available on OSF
(https://doi.org/10.17605/0SF.10/SMKRD).
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