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Amultiomic atlas of the aging hippocampus
reveals molecular changes in response to
environmental enrichment

A list of authors and their affiliations appears at the end of the paper

Aging involves the deterioration of organismal function, leading to the
emergence of multiple pathologies. Environmental stimuli, including lifestyle,
can influence the trajectory of this process and may be used as tools in the
pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this
context, we have generated bulk tissue and single cell multi-omic maps of
the male mouse dorsal hippocampus in young and old animals exposed to
environmental stimulation in the formof enriched environments.Wepresent a
molecular atlas of the aging process, highlighting two distinct axes, related to
inflammation and to the dysregulation of mRNAmetabolism, at the functional
RNA and protein level. Additionally, we report the alteration of hetero-
chromatin domains, including the loss of bivalent chromatin and the unco-
vering of a heterochromatin-switch phenomenon whereby constitutive
heterochromatin loss is partially mitigated through gains in facultative het-
erochromatin. Notably, weobserved themulti-omic reversal of a great number
of aging-associated alterations in the context of environmental enrichment,
which was particularly linked to glial and oligodendrocyte pathways. In con-
clusion, our work describes the epigenomic landscape of environmental sti-
mulation in the context of aging and reveals how lifestyle intervention can lead
to the multi-layered reversal of aging-associated decline.

The process of aging involves a gradual decline in physiological
functions which occurs throughout lifespan and is associated with a
host of diseases, including cancer and neurodegeneration. Indeed, the
strong link between aging and neurodegenerative pathologies such as
dementia is evidencedby the clear correspondenceof their symptoms,
for instance with regards to cognitive deterioration1. Furthermore, the
trajectories of both aging and neurodegenerative disorders are clearly
impacted by lifestyle factors such as diet and physical and cognitive
activity2,3 such that lifestyle interventions may help ameliorate or even
prevent the appearance of aging-associated diseases involving cogni-
tive decline4,5. Against this backdrop, epigenetic mechanisms, being
well-known mediators between the environment and the genomic
response6,7, may be of help in the design of targeted clinical inter-
ventions for healthy aging—i.e. aging linked to well-being8. However,

undertaking this task necessitates a better comprehension of the role
of epigenetics in both aging and cognition, and the particular inter-
action between these two phenomena.

Epigenetic mechanisms have important roles across a wide
spectrum of brain-related processes, ranging from core biological
events such as neurogenesis9 or neurodegeneration10 to cognitive
processes such as learning, memory and behaviour11,12, many of which
have been associated with physiological responses to external
stimuli13. On the other hand, aging has also been extensively char-
acterized from the epigenetic perspective14,15, and in consequence,
more recent studies have started to link aging-associated epigenetic
changes with neurodegenerative disease molecular mechanisms10.
Nonetheless, there is a lack of systematic studies which suitably inte-
grate the two processes (brain aging and its environmental
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stimulation) so as to produce an unbiased characterization of their
interrelations at a genome-wide scale16,17.

In this study, we have generated a molecular atlas of the murine
dorsal hippocampus encompassing gene and protein expression, DNA
methylation, chromatin accessibility, histonemodifications, and single
cell expression and accessibility. We have characterized young and
aged mice which were subjected to lifestyle stimulation in the form of
environmental enrichment (EE). We have focused on the dorsal hip-
pocampus because it is an important target of both cognitive and
physical stimulus where adult neurogenesis occurs18,19 and it is known
to suffer aging-associated decline linked to cognitive deterioration20.
On the other hand, the EE paradigm is a well-established system of
general lifestyle stimulation (both cognitive and physical) linked to
hippocampal changes at the cellular and molecular level21. Thus, with
this in-depth dataset of aging and EE at both the bulk-tissue and single-
cell level we have aimed to explore the molecular alterations asso-
ciated with aging and environmental stimulation, and also their puta-
tive interactions.

Results
Aging induces bidirectional transcriptomic and proteomic sig-
natures in the dorsal hippocampus
Our experimental set-up consisted of young and oldmice exposed to a
2-month environmental enrichment (EE) intervention with control
animals being kept under standard housing conditions (Fig. 1a, Meth-
ods; Supplementary Dataset 1; YC young control, YE young enriched,
OC old control, OE old enriched). Following the intervention, we per-
formed structural analyses via magnetic resonance imaging (MRI) and
measured hippocampal dentate subgranular zone (SGZ) size and
dentate gyrus (DG) volume through histology. Both the SGZ area and
the DG volume of the hippocampus increased significantly after
enrichment (Fig. S1a-b) but did not change with age. A similar age-
independent increase of hippocampal volume was observed in MRI
data (Fig. S1c), with total brain volume (Fig. S1d) not changing with
enrichment. These data agree with prior knowledge on the effect of EE
on hippocampal volume22,23, confirming an expected brain region-
specific response to enrichment. To explore the physiological impact
of aging and cognitive stimulation, we performed a battery of beha-
vioural tests and immunohistochemical analyses of the hippocampus
(Methods). First, aging caused a notable disruption of neural markers
in the SGZ (Fig. S1e-i), particularly: reduced levels of SOX2+ /GFAP+
neural stem cells, mitotic pH3+ cells and immature neuron sub-
populations of the neurogenic population (DCX+ /CLR- and DCX+ /
CLR+ cells, Fig. S1e–i), confirming the well-documented decrease in
neuronal progenitor proliferation states in the hippocampus during
aging24,25, though we did not detect relevant changes as a result of
enrichment. Regarding behaviour, actimetry revealed a general
decrease in horizontal and vertical physical activity in aged animals in
the second day session (Fig. S2a). Elevated plus maze (EPM) tests
revealed significantly shorter times spent in open arms for enriched
animals, a finding replicated in two laboratory-independent set-ups of
5- and 10-min exploration times (Fig. S2b-c). With respect to cognitive
features, we implemented a novel object recognition (NOR) test fol-
lowed by a novel object location (NOL) test in the same setting (using
the same first pair of objects). We detected no effects of aging or EE in
short-term (90min) or long-term (24 h) NOR (Fig. S2d), nor in the
associated NOL (26 h, Fig. S2e). Also in a laboratory-independent set-
ting, an additional NOL was carried out (without prior NOR) with
similar results (Fig. S2f). Finally, a contextual fear conditioning (CFC)
test was performed which showed a non-significant trend for an effect
of both age and enrichment on reaction to shock (Fig. S2g, left),
though no differences in the test (Fig. S2g, right). Taken together,
these observations indicate that our study system manifested the
typical features of aging and the expected response to the EEparadigm
in a number of structural and morphological parameters, together

with an enrichment-induced behavioural outcome consisting of
increased anxiety and consequent absence of differences in cognition,
frequent in novelty enrichment protocols using male C57BL/6 J mice.

To delve into the alteration of biological programmes in response
to aging in the dorsal hippocampus, we profiled gene expression levels
via RNA-seq, measuring a total of 19,835 genes with detectable
expression across all samples (Methods). Principal component analysis
(PCA) revealed how aging led to substantial transcriptomic changes
across all subjects (Fig. 1b). For subsequent analyses,wemadeuseof all
the study samples in order to increase the statistical power (Methods).
We performed differential expression analyses to uncover aging-
associated expression signatures (FDR <0.05, Methods, Supplemen-
tary Dataset 2), detecting 1038 upregulated and 1035 down-regulated
differentially expressed genes (DEGs; these signatures were also vali-
dated using only the control samples, OR = 69.7, Fisher’s p <0.001,
Fig. S3a). Up-regulated differentially expressed genes (DEGs) mani-
festedmore intense alterations (Wilcoxonp <0.001, Fig. S3b) andwere
also strongly enriched in canonical aging genes in the GenAge26 and
Digital Ageing Atlas27 databases (ORs = 20.3 and 17.9, all p <0.001,
Fig. S3c, d), while also agreeing with murine brain markers of aging
recently described by Ximerakis and colleagues28 (Fig. 1c), including
well-known cognitive players such as Apod29, Neat130 and Il3331. We
performed gene set enrichment analyses across various databases
(FDR <0.05, Methods, Supplementary Dataset 3), including Gene
Ontology (GO)32, WikiPathways33, Reactome34, ImmuneSigDB35 and cell
type signatures (C8) and chemical and genetic perturbation pathways
(CGP) fromMSigDB36 uncover axes of aging-associated dysregulation.
We first noticed how, across all databases, up-regulation alterations
were muchmore enriched in biological pathways in general (Fig. S3e),
with two distinct core functions being targeted: a general activated
inflammatory response, including a clear microglial response, while
mRNA- and splicing-related pathways, involving neural cells, appeared
down-regulated (Fig. 1d, Fig. S3f–i). Gene expression patterns are cell
type-dependent; thus, to explore whether these responses could be
associated with overall alterations in cellular composition within our
study system, we made use of publicly-available single cell expression
datasets to perform cellular deconvolution on our data (Methods) and
found that there were no extensive changes in cell types during aging
in our model across two independent datasets dissecting murine
hippocampal and cortex tissue37,38 (Fig. S4a), thus suggesting that the
decrease in neurogenesis during aging does not necessarily lead to a
decrease in the ratio of neural populations within the hippocampus, as
has been discussed previously39, nor does the transcriptomic up-
regulation of the inflammatory response imply a relevant increase in
microglial populations.

In order to deepen our understanding of themolecular functional
response during aging, we used SWATH mass spectrometry40 to
characterize the proteome in our study system (Methods), quantifying
a total of 2250 expressed proteins across all samples. In general, pro-
tein expression qualitatively agreed with RNA expression, with the
detectable proteins consisting of a subset of highly expressed genes
(Wilcoxon p < 0.001; Fig. S4b) which by themselves showed a modest
quantitative correlation between the two omics (Spearman’s coef.
0.33,p <0.001; Fig. S4c), as hasbeen reportedpreviously41. Indeed, the
normalization of protein measurements by their half-lives as reported
by Mathieson and colleagues42 greatly improved the correlations
(Spearman’s coef. 0.53, p <0.001; Fig. S4d) and, moreover, a differ-
ential splicing analysis (FDR <0.05, dIF ≥0.1, Methods) revealed aging-
associated alteration of 86 isoforms in up to 71 genes (Supplementary
Dataset 4, Fig. S4e), this mainly involving changes in the usage of
alternative transcription initiation and termination sites, suggesting
how multiple layers of biological regulation exist that separate RNA
and protein expression, and that these technologies target com-
plementary, but not equivalent, molecular layers43. Nonetheless, the
protein landscape was able to differentiate, even more clearly, the
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phenotypes through PCA (Fig. 1e), and abundant, bidirectional aging-
associated alterations were also found (200 up- and 218 down-
regulated proteins; FDR <0.05, Methods, Supplementary Dataset 5;
signatures again validated using only the control samples, OR = 13.7,
Fisher’s p <0.001, Fig. S4f), with down-regulated differentially
expressed proteins (DEPs) displaying stronger alterations in this case
(Wilcoxon p <0.001, Fig. S4g). In spite of the notable baseline

differences and the reduced space of common measurements
between the omic layers (2227 genes), we were able to detect an over-
enrichment in commonly upregulated DEG and DEP expression
alterations, particularly for the most strongly altered genes (log2FC >
50th percentile; OR = 4.3, Fisher’s p =0.001, Fig. S4h). Genes with
robust and coherent RNA and protein alterations (Supplementary
Dataset 5) included established aging-upregulated brain markers such
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asGfap44 and cognitive agents likeCaprin1, which is necessary for long-
term memory formation and healthy brain development45,46, and
which we found to be down-regulated with aging (Fig. 1f). Moreover,
even though SWATH pathway enrichments provided far fewer results,
the top detected pathways (unadjusted p <0.05) also intersected with
the top RNA-seq enriched pathways, particularly at the level of Gene
Ontology, ImmuneSigDB and C8 cell type sets (ORs = 1.7-7.0, all Fish-
er’s p <0.05, Supplementary Dataset 6), thus indicating that aging-
associated RNA expression signatures can also be captured at the
protein level.

To gain insight into the possible transcriptional regulators of the
alterations found, we performed an epigenetic Landscape In Silico
deletion Analysis47 (Lisa, Methods) using Cistrome DB48 mouse data-
sets and detected many chromatin regulators associated with dysre-
gulated aging DEGs (Supplementary Dataset 7), interestingly, with
more functional associations being linked to gene down-regulation in
this case (Fig. S4i). The Lisa analysis, focused on brain-related tissues
(Fig. 1g), revealed the aging-associated bi-directional alteration of
downstream targets of canonical neural factors involving differentia-
tion and identity (e.g. ASCL1, FEZF2, NEUROD2, REST, OLIG2)49–53, and,
additionally, enrichments for a host of epigenetic modifiers covering
diverse mechanisms, including histone modifiers (KDM1A, KMD6B,
SIRT1)54,55, methylation readers (CXXC1, MECP2)56,57 and other players
(H2AZ, CTCF)58,59. When looking at the full enrichments across any
tissue, we observed an enrichment in macrophage-associated tracks
for aging up-DEGs (OR = 2.0, Fisher’s p < 0.001, Fig. S4j), in agreement
with our previous observations of there being an important inflam-
matory response linked to aging upregulation involving macrophage-
like cells. Moreover, 6 of these factors (KDM6B, NFYA, CEBPB, HSF1,
CREB1, FOSL2) were detected as downregulated DEGs, which is con-
siderably more than would be expected by chance (OR = 3.6, Fisher’s
p =0.01), suggesting that at least some of the observed expression
alterations may be driven by the aging-associated loss of chromatin
regulators.

On the whole, these results reveal how aging induces tran-
scriptomic and proteomic alterations in the dorsal hippocampus
which are characterized by specific directional responses involving
inflammatory activation and neural splicing-related repression, some
of which may be linked to the aging-associated dysregulation of epi-
genome modifiers.

Functional remodelling during aging can be partially linked to
methylomic alterations and changes in chromatin accessibility
In light of the aforementioned findings, we set out to map multiple
epigenomic layers in our study system, in order to deepen our
understanding of the mechanistic basis of our observations. We first
profiled genome-wide methylation using Enzymatic Methyl
sequencing60 (EM-seq, Methods), characterizing a total of 18,201,112
CpG sites (≥10 coverage) across all samples. Global CpG methylation
was measured at 76%, with no relevant differences across groups
(Fig. 2a), nor did we observe particular changes in non-CpG methyla-
tion (Fig. S5a, b) or global cytosine methylation levels as measured by
LC-MS/MS in an independent set of samples (Fig. S5c), indicating that

there is no pronounced loss of DNA methylation with aging in our
study system, as has been observed across several tissues using
sequencing technologies61,62. These similarities were also maintained
across genomic elements such as CpG islands and gene locations
(Fig. S5d). We next performed a differential methylation analysis
(FDR <0.05, Methods, Supplementary Dataset 8), uncovering 237
aging-associated differentially methylated regions (DMRs), 148 of
which suffered loss of methylation and tended to be bigger and less
dense in CpGs, and have stronger alterations, than their hypermethy-
lated counterparts (Fig. S5e-g). Aging-DMRs were enriched at CpG
island and promoter locations (Fig. 2b, c; ORs = 3.8–16.4, all Fisher’s
p <0.001) and also at genes detected as expressed in RNA-seq by
permutation testing (Fold Enrichment, FE = 2.4, empirical p < 0.001),
hinting at their putative functionality. Interestingly, when we inte-
grated these regions with our previously defined gene expression
alterations, we found 17 genes (Supplementary Dataset 8) that dis-
played alterations in both omics, including important neural reg-
ulators such as Cbln163 and Parkinson’s-associated Pink164, both of
which showed hypomethylation associated with CpG island or
enhancer elements coupled to an increase in gene expression (Fig. 2d),
as well as other neurodevelopment targets like Myt1l65 and
methylation-expression alterations in inflammatory response genes
such as Irf866, among others. Gene pathway enrichments in the DMRs
were minor, with the particular exception of there being a strong
enrichment in hyper- and hypomethylation ofmurine imprinted genes
collated in the CGP MSigDB database67 (FDR <0.05, ORs = 23.2-41.6,
Supplementary Dataset 9). Interestingly, the Tle3 gene, which has been
associated with imprinting phenomena68 was among the genes with
parallel aging DNA methylation and gene expression changes
(Fig. S5h, i).

To investigate if the reported observations could be related to
aging-associated alterations in chromatin accessibility, we mapped
genome-wide accessibility using Assay for Transposase-Accessible
Chromatin sequencing69 (ATAC-seq,Methods).Wedetected accessible
regions with substantial enrichment (FRiP scores 59% to 71%) and did
not observe any noticeable trend of a general increase or decrease in
accessibility between young and old samples (Fig. S5j). As expected,
regions of accessible chromatin were enriched at promoter and CpG
island locations (Fig. S5k, l; ORs = 9.8–43.2, all Fisher’s p < 0.001) and
displayed similar characteristics across groups (Fig. S5m). Addition-
ally, accessibility showed a strong qualitative correlation (Wilcoxon
p <0.001, Fig. S5n) and moderate quantitative correlation with the
gene expression data (Spearman’s coef. 0.62 and 0.50, both p <0.001,
for correlation across gene bodies or promoters, respectively;
Fig. S5o). We performed a differential accessibility analysis (FDR <
0.05, Methods, Supplementary Dataset 10) and discovered 46 differ-
entially accessible regions (DARs), most of which (65%) presented an
increase in accessibility with aging and were predominantly found at
open sea and intergenic regions (ORs = 3.3, 2.4, Fisher’s p = 0.057,
0.016, respectively), while loss of accessibility was linked to CpG
islands (OR = 3.9, Fisher’s p <0.01) (Fig. 2e, f). Interestingly, 6 of the
aging-DARs intersected with aging-DEGs, 5 of them displaying
increased promoter accessibility coupled to gene upregulation, an

Fig. 1 | Transcriptomic and proteomic signatures of aging in the dorsal hip-
pocampus. a Schematic of the study design. b PCA plot of the transcriptomic
profiles across samples and groups. c Bar plot describing the measured aging
log2(fold change) across a panel of murine brain aging markers from Ximerakis et
al. (2019). The colour of the gene labels indicates up-regulation (orange) or down-
regulation (blue) in the original publication. Bar plots are coloured with regards to
p <0.05 or p adj < 0.05 from two-sidedWald tests. d Bubble plot indicating the top
10 significant pathways (FDR<0.05, one-sidedWallenius tests) found enriched for
aging up- and down-regulated genes, in the Gene Ontology Biological Process
database. The size of the bubbles indicates the odds ratio of enrichment. e PCAplot
of the proteomic profiles across samples and groups. f Boxplots showing the

expressionmeasurements for the RNA-seq and SWATH-MSomic layers for theGfap
and Caprin1 genes across young and old subjects. RNA expression is shown in
variance stabilizing transformation (VST) values, andproteinexpression is shown in
log2-normalized values. (n = 6 for all groups; p adj < 0.05 across all data from two-
sided Wald tests or moderated t-tests for RNA-seq and SWATH-MS data, respec-
tively). All box plots shown indicate median value, interquartile range (IQR), up to
1.5 IQR (whiskers), and individual data points showing minimum and maximum
value. g Heatmap showing significant (FDR <0.05, LISA tests) regulators of aging-
associated DEGs determined by LISA analysis using Cistrome brain-associated
datasets.
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Fig. 2 | Methylomic and chromatin accessibility signatures of aging in the
dorsal hippocampus. a Violin plots showing the distribution of EM-seq methyla-
tion measurements of CpG sites across groups. Plots are based on a 1M sample of
CpGs.b, cBar plots describing theproportion of hyper- andhypomethylated aging-
DMRs mapped to CpG island (b) or gene (c) locations, as compared to the dis-
tribution of all of the profiled CpG sites. d Genomic plots showing the DNA
methylation profiling values in young and old subjects of two regions containing
aging-DMRs (grey boxes) associated with the Cbln1 and Pink1 genes. Below, the
tracks indicate the presence of gene exons, CpG islands and ENCODE murine
forebrain P0 enhancer Pp elements. On the right of the plots, the boxplots indicate
the RNA-seq expression measurements (VST units) for the Cbln1 and Pink1 genes
across young and old subjects (n = 6 for all groups; p adj <0.05 for two-sidedWald
tests across all data). All box plots shown indicatemedian value, interquartile range
(IQR), up to 1.5 IQR (whiskers), and individual data points showing minimum and

maximum value. e, f Bar plots describing the proportion of up- and down- aging-
DARs mapped to CpG islands (e) or gene (f) locations, as compared to the dis-
tribution of the consensus peak set (“All”) or the whole genome (“Gen”, 200bp
bins). g Heatmaps showing the significant (FDR<0.05, one-sided Fisher’s exact
tests) LOLA enrichments in log2(odds ratio) of chromatin states associated with
aging-DARs, either up-DARs defined with FDR<0.05 (two-sided Wald tests) or up-
and down-DARs defined with unadjusted p <0.05 (two-sidedWald tests). The code
for the ENCODE chromatin states shown is: Promoter, Active (Pr-A), Weak (Pr-W),
Bivalent (Pr-B) and Flanking (Pr-F); Transcription, Strong (Tr-S), Permissive (Tr-P)
and Initiation (Tr-I); Enhancer, Strong TSS-distal (En-Sd), Strong TSS-proximal (En-
Sp), Weak (En-W), Poised TSS-distal (En-Pd) and Poised TSS-proximal (En-Pp);
Heterochromatin, Polycomb-associated (Hc-P) and H3K9me3-associated (Hc-H);
No significant signal (NS).
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intersection higher than expected by chance (FE = 3.1, empirical
p <0.01, Supplementary Dataset 10), including inflammation-related
C4b70 and neural-related Lin28b71. Moreover, the top DARs (unadjusted
p <0.05) were also enriched at significant methylation DMRs (FE = 6.3,
empirical p < 0.001), (Supplementary Dataset 10), suggesting an
interplay between the different omic layers. To study the possible
impact of chromatin accessibility changes on the epigenomic struc-
ture, we performed Locus Overlap Analysis (LOLA, FDR <0.05, Meth-
ods) on the aging-DARs (Supplementary Dataset 11) using public
ENCODE3 datasets72 and discovered that gains in accessibility pre-
ferentially occurred at heterochromatic states (Fig. 2g), while loss of
accessibility was more subtly associated with active states (enhancer,
promoter) or Polycomb locations (signatures recovered with unad-
justed p <0.05 DARs). On the other hand, and even though the two
omic layershave somedegreeof anti-correlation (Fig. Fig. S5p), EM-seq
DMRs were associated with different chromatin signatures, though we
did validate that aging DNA hypermethylation was enriched at Poly-
comb loci when compared to hypomethylation (Fig. S5q, Supple-
mentary Dataset 12), a well-known phenomenon occurring during the
aging process73.

Together, these observations highlight how functional aging-
associated changes can be linked to epigenomic features such as DNA
methylation alterations at regulatory loci, and that chromatin com-
paction alterations occurring during aging possess differential sig-
natures whereby increases in accessibility appear linked to
heterochromatic states while condensation occurs at more active and
functionally-defined regions.

The chromatin landscape of aging in the dorsal hippocampus
reveals widespread heterochromatin reconfiguration
We next comprehensively profiled the chromatin landscape in our
study system by characterizing the genome-wide levels of a well-
known set of histone post-translational modifications72 (Methods):
H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K27me3 and H3K9me3.
The distribution of histone signal was associated with the expected
functional elements (e.g. enhancers, promoters, heterochromatin) for
each histone mark (Fig. S6a, b) and we determined regions of con-
siderable enrichment for all modifications, with various degrees of
concentrationdependingon the sparsity of eachmark (FRiP scores 21%
to 78%, Fig. S6c, d). The epigenome-wide profiles, via PCA, anticipated
the histone-specific effect of aging on the histone post-translational
landscape (Fig. 3a), and, indeed, a differential enrichment analysis
using all samples (FDR <0.05, Methods, Supplementary Dataset 13)
uncovered widespread histone-specific reconfiguration during aging:
global heterochromatin alterations were found at thousands of facul-
tative heterochromatin loci (H3K27me3) and hundreds of constitutive
heterochromatin blocks (H3K9me3), while local, less numerous
changes were observed for the rest of the marks (Fig. S6e). In this
scenario, we validated in our study system the well-known loss of
constitutive heterochromatin14 while observing bidirectional altera-
tions in facultative heterochromatin.

Focusing on these differentially enriched regions (DERs), we first
studied the interaction between histone mark alterations and changes
in chromatin accessibility via permutation sampling (Fig. 3b, empirical
FDR <0.05), confirming that changes in active marks (H3K4me1/3,
H3K27ac, H3K36me3) generally correlated positively with changes in
accessibility. This was different to the repressive modifications, where
constitutive H3K9me3 loss was strongly associated with chromatin
decompaction while facultative H3K27me3 gains were linked to chro-
matin condensation, though this latter mark also appeared to play
more of a dual role with respect to chromatin accessibility (Fig. 3b).
Importantly, these observations indicate that the loss of H3K9me3
domains can be linked to chromatin decompaction during aging, as
has been previously suggested74, while facultative H3K27me3 loss may
not necessarily lead to the same molecular effect.

These findings led us to also explore the interactions between
aging-associated alterations in each epigenomic modification, using
our previous strategy (Fig. 3c). First, we confirmed that alterations in
active modifications were largely correlated between themselves and
anti-correlated with repressive marks, with some subtle exceptions
such as the loss of H3K4me3 sometimes coinciding with loss of
H3K27me3. This latter observation could imply the aging-associated
erasure of bivalent chromatin domains, which, in the context of cancer
and regarding H3K4me3, has been posited to sensitize genes to
additional epigenomic dysregulation75. To confirm this observation,
we explored the histone modification dynamics at bivalent loci
(Methods) and observed that the loss of both marks was linked to
bivalent chromatin domains (ORs = 3.5–38.9, all Fisher’s p <0.001,
Fig. S6f), with H3K27me3, in particular, showing a very distinct pattern
where the majority of DERs associated with bivalent regions lost the
modification, while, on the other hand, most non-bivalent loci tended
to gain facultative H3K27me3 with aging (Fig. 3d). Additionally, we
observed a subtle trend whereby DERs of H3K4me3 loss at bivalent
domains were associated with EM-seq DNA methylation gains, and
viceversa, with H3K27me3 playing amore ambivalent role (FDR <0.05,
Fig. S6g).

On the other hand, the relationship between heterochromatin
modifications revealed more complex, and striking, associations
(Fig. 3c): in addition to the expected positive correlation between
aging-associated increases and decreases ofH3K27me3 andH3K9me3,
we also discovered an enrichment of H3K27me3 gains at regions of
H3K9me3 loss. These 154 sizable domains (mean length ~37,000bp) of
chromatin exchange (Fig. 3e, Supplementary Dataset 14) were often
characterized by being grouped in hotspots of facultative H3K27me3
increases coupled to broad constitutive H3K9me3 loss (Fig. 3f). These
regions were enriched at gene locations when compared with the
background of H3K9me3 peaks (OR = 3.1, Fisher’s p <0.001), showing
a distribution similar to the rest of the H3K27me3 peaks, and genes
associatedwith the lociwere enriched in pathways related toG-protein
associated perception of sensory stimuli and chemokines, as well as
Alzheimer’s and cancer pathways (Supplementary Dataset 15). Our
observations suggest that these domains may represent a chromatin
switch activated upon aging-associated constitutive H3K9me3 loss to
re-repress these altered regions using a parallel mechanism based on
H3K27me3 deposition. Indeed, switching of these epigenetic marks
has been described in the context of experimental models involving
transposon repression76 and also inmodels of heterochromatin loss by
mutation77,78. Additionally, though subtly, 78% of the switching regions
presented increased EM-seq DNA methylation levels with aging
(Fig. S6h), which might be expected because of the well-known inter-
action between Polycomb components and DNA methylation
deposition79.

With regards to the functional impact of the observed chromatin
modifications, we confirmed that DERs across all histone marks were
significantly enriched in RNA-seq DEGs (FDR <0.05, Fig. S7a), high-
lighting how aging gene expression alterations are accompanied by
epigenome-wide reconfiguration. These associations followed the
expected trends: changes in active histone modifications were posi-
tively correlated with gene expression alterations, while loss of het-
erochromatin marks was linked to gene up-regulation (Fig. S7a). To
characterize the nature of the chromatin-impacted genes, we per-
formed gene set enrichment analyses (FDR <0.05) with the genes
associated with the top DERs (unadjusted p <0.05) for each histone
mark (Supplementary Dataset 16), revealing various functional rela-
tionships. First, regions of H3K4me3, H3K27me3 and H3K9me3 loss
with aging were more robustly associated with molecular pathways
than domains experiencing gains in thesemarks, with opposite trends
being observed for the other modifications, and H3K36me3 showing
the lowest number of enrichments (Fig. S7b). Regarding the specific
pathways involved, active marks generally showed parallelisms
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involving gains at developmental genes and TF regulatory sites (GO,
CGP) and losses at neural pathways, particularly synaptic signalling
and neural cell identity genes (GO, C8). On the other hand, repressive
marks showed gains subtly associated with G protein and surface
receptors (GO) and marked losses at neural differentiation, transcrip-
tion regulation and chromatin organization (GO) (Fig. S7c, Supple-
mentary Dataset 16). Of note is the fact that the H3K4me3, H3K27me3

and H3K9me3 modifications all showed strong enrichments in deple-
ted DERs at Polycomb associated loci.

All of the aforementioned interactions highlight how the epigen-
ome is a dynamic system in which aging-associated alterations of
chromatin marks can drive parallel or opposite responses in other
modifications. To expand on this concept, we integrated our
epigenome-wide data to discover chromatin state segmentations
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using ChromHMM80 (Methods). We learned 15 chromatin states in our
data, which we classified into 4 promoter states (Pr-A, Pr-W, Pr-F), 4
transcription states (Tr-S, Tr-S2, Tr-P, Tr-I), 3 enhancer states (En-Sd,
En-Sp, En-Pd), 3 heterochromatin states (Hc-P, Hc-Pw,Hc-H) and 1 non-
signal (NS) state (Fig. S7d, Supplementary Dataset 17). Our biological
annotationwashighly consistentwith that defined formouse forebrain
in recent ENCODE3 datasets72 (Fig. S7e), demonstrating how the
functional identity of chromatin states is robust and can be recovered
even when epigenome-wide profiling does not target the same chro-
matin modifications81. Using our segmentations, we observed how the
previously discovered regions of aging-associated heterochromatin
switching present an increase in Polycomb-associated chromatin
states in old samples (Fig. S7f).

All in all, the results presented in this section provide an extensive
characterizationof the chromatin reconfigurationwhich occurs during
aging in the murine dorsal hippocampus. This phenomenon specifi-
cally involves the re-arrangement of heterochromatin modifications,
with bidirectional changes in facultative H3K27me3 and a general loss
of constitutive H3K9me3. Importantly, we link the paired loss of
H3K27me3 and H3K4me3 to the erosion of bivalent domains and,
strikingly, we uncover a heterochromatin switch whereby regions of
aging-associated constitutive heterochromatin loss present an
enrichment in gains of facultative heterochromatin, suggesting a
molecular mechanism of chromatin re-repression during the process
of aging.

Molecular rejuvenation of the dorsal hippocampus in enriched
environments
Up to this point, we had painted a deep, multi-omic landscape of the
process of aging in the murine dorsal hippocampus, identifying mul-
tiple dimensions across which aging can lead to molecular changes.
Thus, we next set out to explore the putative effects, at the molecular
level, of a lifestyle intervention based on the EE paradigm in our study
system (Methods).

First, through a differential expression analysis (Methods), we
identified 94 RNA-seq DEGs (FDR <0.05) associated with EE across all
samples,with 60 and 36DEGs, respectively, being found for young and
for old samples (Fig. 4a, Supplementary Dataset 18). The trends of the
changes across DEGs were mostly consistent between young and old
samples, though a small number of changes displayed opposing
directions depending on age, suggesting the existence of age-specific
effects (Fig. S8a). Furthermore, our EE transcriptomic signatures
clearlymatched those recently described byWassouf and colleagues82,
providing validation of our experimental model (Fig. 4b). This valida-
tion is particularly relevant in the context of enrichment in mouse
models and because our system used male animals. While males are
very responsive to enrichment in laboratory settings, both the beha-
vioural and the adult neurogenic niche outcomes can show an absence
of differences or even increased anxiety (as in the present work),
because of the increased eustress induced by some types of enrich-
ment environments in some mouse strains83. We performed gene set

enrichment analyses (FDR <0.05) on the EE-associated signatures (top
genes with unadjusted p <0.05, Supplementary Dataset 19). Across all
subjects, and particularly for young individuals, EE-associated down-
regulation appeared to play more functional roles (Fig. S8b): while EE
up-regulation was linked to NGF, TFG and NTRK signalling pathways
(Reactome, CGP), down-regulation was associated with neural func-
tions and glial differentiation, including synaptic and myelin sheath
pathways (GO, Fig. 4c), neural and oligodendrocyte cell types (C8,
CGP) and also, very interestingly, to markers upregulated in the aging
brain (CGP) (Supplementary Dataset 19). These results suggest that EE
influences hippocampal function at both the neural and glial level, and
that EE-induced changes may interact with aging alterations.

We thus turned to examining the intersections between aging- and
EE-associated gene expression changes (FDR<0.05) and, remarkably,
observed that practically all of the common alterations displayed
opposite directions of change in the two processes (Fig. 4d), with the
intersections being extremely enriched (ORs = 11.7 and 14.7, Fisher’s
p <0.001), a finding which held for the top signatures (unadjusted
p <0.05, Fig. S8c), suggesting a transcriptome-level phenomenon.
Indeed, when we looked at the direction of change in response to EE of
all the previously defined aging-DEGs, we observed the EE-associated
reversion of the majority of the aging changes (Wilcoxon all p <0.001,
Fig. 4e), which occurred in both young and old samples (Fig. S8d). To
validate this major finding, we profiled the transcriptome of an inde-
pendent set of samples including young and old subjects exposed to
EE. Again, and particularly regarding EE-down-regulation, we demon-
strated the reversal of aging-associated alterations (Fig. S8e, f).
Expanding on this functional characterization, a differential expression
analysis of the proteomic data revealed a widespread reconfiguration
of the proteome in response to EE (Fig. 4f, Supplementary Dataset 20),
with the responses again being similar across both age groups
(Fig. S8g). Significantly, when looking at the intersections between
aging- and EE-DEPs (Fig. 4g), we again discovered the strong reversal of
aging-associated alterations by EE (ORs = 5.3 and 12.5, Fisher’s
p <0.001), with the great majority of aging-DEPs showing a reversed
direction of change with those from EE (Wilcoxon all p <0.001, Fig. 4h)
for both young and old samples (Fig. S8h). This latter observation is of
particular interest because, as previously mentioned, there is not a
complete correlation between transcriptomic and proteomic levels,
such that these two molecular layers appear to undergo clear, but
partly independent, aging-reversal effects in response to environ-
mental enrichment.

Considering the aforementioned results, we defined EE “reversed”
changes as those molecular changes that went in the opposite direc-
tion of aging-associated alterations in both young and old individuals,
while we considered “rejuvenation” changes as those which were
reversed specifically in the old group and did not show alterations in
young subjects. Thus, we curated a list of 163 genes displaying the EE-
associated reversal of aging expression alterations (Fig. 4i, j, Methods,
Supplementary Dataset 21), most of which suffered age-independent
effects across all samples, with an independent selection (N = 353)

Fig. 3 | Chromatin dysregulation of the dorsal hippocampus during aging.
a PCA plots of the epigenomic profiles involving the levels of H3K4me3, H3K4me1,
H3K27ac, H3K36me3, H3K27me3 and H3K9me3 across samples and groups. His-
tone signal is quantified across a consensus peak set for each mark. b Heatmaps
showing the log2-fold enrichment of significant intersections (FDR<0.05 within
each set for one-sided permutation regioneR tests) between ChIP-seq aging DERs
andATAC-seq agingDARs, filtered either at FDR <0.05 or p-value < 0.05 (from two-
sided Wald tests). c Heatmaps showing the log2-fold enrichment of significant
intersections (FDR <0.05within each set for one-sidedpermutation regioneR tests)
between the ChIP-seq aging DERs. DERs are filtered either at FDR<0.05 or p-
value < 0.05 (from two-sided Wald tests). d Heatmaps indicating the levels of
H3K27me3 signal at aging DERs (FDR <0.05, two-sided Wald tests) in young (left)
and old (right) samples. The regions are grouped into those with overlapping

bivalent domains (top) or not (bottom). Histone signal is represented with BigWig
RPGC-normalized values (10 bp bins). e Heatmaps indicating the levels of
H3K27me3 (left) and H3K9me3 (right) signal at aging chromatin switching regions,
defined as the intersection between aging H3K27me3 up-DERs (FDR <0.05, two-
sided Wald tests) and aging H3K9me3 down-DERs (FDR<0.05, two-sided Wald
tests). The regions are represented for young (top) and old (bottom) samples.
Histone signal is represented with BigWig RPGC-normalized values (10 bp bins).
f Circos plot describing the distribution of various epigenomic marks across an
aging heterochromatin switching genomic region (chr4:144233500-144601999)
where global loss of H3K9me3 is coupled with a hotspot of H3K27me3 gains during
aging. The “fold” tracks represent the difference in log-CPM values (500bp bins)
between old and young samples, where aging decreases inH3K9me3 and increases
in H3K27me3 are coloured, while the opposite trend is coloured in grey.
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displaying rejuvenation specifically in old samples (Fig. 4i, j). We also
defined similarly reversed and rejuvenated genes at the protein level,
and, for a selection of 48 geneswith subtler changes, wedemonstrated
RNA- and protein-level validation (Fig. S8i, Supplementary Dataset 21).
At the level of gene expression, the effects of EE reversal were stronger
in young subjects when compared with their aged counterparts (Wil-
coxon both p < 0.001, Fig. S8j), suggesting that these individuals could

be more plastic or sensitive to EE stimulation, a finding in agreement
with the well-known loss of plasticity occurring during brain aging84.
Intriguingly, this was not the case for protein changes (Wilcoxon both
p >0.05, Fig. S8k), indicating that, in terms of protein regulation, old
subjects could retain responses more comparable to young indivi-
duals. Gene set analyses (FDR <0.05) for the transcriptomic reversal
genes revealed noticeable enrichments in oligodendrocyte markers
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and neural and myelin pathways (C8, CGP, GO), with age-up-EE-down
genes showing the main functional associations and no enrichments
for inflammatory pathways (ImmuneSigDB) (Fig. S8l, Supplementary
Dataset 22), while the specific selection of old-rejuvenation genes
showed scant enrichments in general. Interestingly, reversal genes
were also enriched in bivalent/Polycomb chromatin-associated brain
pathways (Fig. S8l, bottom). Significantly, these observations suggest
that, even though there is a major inflammatory component in aging
up-regulation alterations (see previous Fig. 1d), the EE-associated
reversal of aging signatures appears to mostly target brain-specific
pathways involving both neurons and glial cells, along with bivalent
chromatin locations, which are known to be involved in aging-
associated epigenetic dysregulation73.

Next, we sought to explorewhether the observedphenotype-level
(RNA and protein) reversal of aging alterations could be traced back to
epigenomic dynamics. Focusing on the chromatin landscape, we per-
formed differential analyses and observed minor changes in response
to EE in both young and old samples (Supplementary Dataset 23). As
with the transcriptomic observations, it is not surprising that amodest,
non-pharmacological intervention such as environmental enrichment
did not lead to the drastic chromatin remodelling observed during
aging. We selected the top (unadjusted p < 0.05) EE-associated chro-
matin DERs and performed intersection testing to investigate if aging-
and EE-associated chromatin changes could target common genomic
loci. Notably, we did indeed detect enrichments in overlaps between
aging- and EE-changes: for all the active histone modifications, aging-
DERswere enriched (Fisher’s FDR <0.05) inoverlapswith EE-DERswith
the opposite direction of change (Fig. 5a, b). This unbiased approach
suggests that environmental enrichment also generates a chromatin
response which tends to counteract aging-associated dysregulation.
Because intersecting aging- and EE-opposite regions often showed
stronger reversal effects within old samples, we curated a list of his-
tone modification peaks that showed rejuvenation in old samples
(FDR <0.05, Methods, Supplementary Dataset 24). The majority of
rejuvenatedDERs corresponded toH3K27me3 changes (Fig. 5c), in line
with this modification being the one that was most altered during the
aging process (see previous Fig. S6e), and most of them involved
changes where EE raised the modification back to young levels. We
intersected these reju-DERs with the previously defined RNA-seq reju-
DEGs, finding 28 epigenome-rejuvenation regions overlapping 21
rejuvenated genes (Supplementary Dataset 24). Significantly, 27 of
these regions (96%) showed changes consistent with the observed
gene expression trends whereby the rejuvenation of active modifica-
tions positively correlated with expression, while the rejuvenation of
H3K27me3 was accompanied by a gene expression reversal in the
opposite direction, and, moreover, permutation testing (empirical
FDR <0.05) revealed significant enrichment of the histone reju-DERs in
reju-DEGs, though the number of intersections was low (Fig. 5d). These
genes included several candidates of interest, such as Protocadherin 15

(Pcdh15), associated with oligodendrocyte progenitors and the in vitro
suppression of their proliferation85, which we found suffered an age-
dependent increase in gene expression coupled to a reduction of
H3K27me3 levels which was reversed with EE in old individuals
(Fig. 5e), along with the Receptor Tyrosine Kinase Like Orphan
Receptor 1 gene (Ror1), which is a synapse-formation- and neural
progenitor regulator86,87 found decreased in cellular models of
Alzheimer’s88, forwhichweobserved the EE-associated recuperationof
its expression and opposing H3K27me3 levels (Fig. 5f). Other relevant
examples involve Lrrc10b, which has paired expression, H3K27ac and
H3K4me3 rejuvenation and is known to be dysregulated in mouse
models of addictive behaviour89, neural-related Pbx390, dentrite
trafficking-associated Sorcs191 and the glutamate-like receptor Grid292,
among others (Supplementary Dataset 24).

Collectively, these observations indicate that a lifestyle interven-
tion based on the environmental enrichment paradigm leads to func-
tional transcriptomic and proteomic changes in the hippocampus
which largely tend to oppose or revert those alterations accumulated
during aging, and that this rejuvenating effect can also be revealed at
the level of epigenomic dynamics, providingmechanistic explanations
of how an environmental stimulus can lead to molecular changes in a
higher-order biological system.

The single-cell dynamics of aging and environmental enrich-
ment in the dorsal hippocampus
Because the central nervous system is an extremely complex structure,
we turned our attention to exploring the regulatory dynamics of our
experimental system at the single-cell level by characterizing tran-
scriptomic and genome-wide accessibility levels (Methods). We pro-
filed a total of 16,136 high-quality cells with paired RNA-seq and ATAC-
seq measurements and took advantage of the multimodal data to
perform joint clustering using Seurat’s weighted-nearest neighbour
(WNN) strategy93, resulting in a total of 26 clusters (Fig. S9a). Then, we
made use of two recent single-cell atlases to annotate our cell clusters
(Methods): a map of the aging mouse brain by Ximerakis and
colleagues28 (37,069 cells) and a characterization of the mouse iso-
cortex and hippocampal formation by Yao and colleagues38 (73,347
cells). These two datasets provided us with complementary informa-
tion and permitted the robust annotation of our cell clusters at both
the functional and brain-region levels, with a high level of agreement
between the two (adjusted rand index, ARI = 0.97 for the annotation in
major cell types between the two atlases, Fig. S9b, c, Methods).
Moreover, our clusters showed an average purity in cell types of 95%,
indicating that our single-cell data were able to efficiently discriminate
between different brain cell types. After curation, we distinguished 15
major cell type clusters in our data (Fig. 6a; NEU: neuron; OLG: oligo-
dendrocyte; OPC: oligodendrocyte progenitor; ASC: astrocyte; MIG:
microglia; END: endothelial cell; PER: pericyte; VLM: vascular and
leptomeningeal cell; see Supplementary Dataset 25 for extended

Fig. 4 | Functional rejuvenation of the dorsal hippocampus in enriched envir-
onments. a Bar plots indicating the total number of DEGs (FDR<0.05, two-sided
Wald tests) with increased or decreased levels in response to EE in young, old or all
samples.bBar plots describing themeasured EE log2(fold change) across a panel of
EE-associated DEG markers from Wassouf et al. (2018). Each column indicates the
change for the effect of EE on all, young or old samples (two-sidedWald tests). The
colour of the gene labels indicates up-regulation (orange) or down-regulation
(blue) in the original publication. c Bubble plot showing the top 10 significant
pathways (FDR <0.05, one-sided Wallenius tests) found enriched for the top EE
down-regulated DEGs (unadjusted p <0.05, two-sided Wald tests) in the Gene
Ontology Biological Process database. The size of the bubbles indicates the
log2(odds ratio) of enrichment. d UpSet plot describing the intersections between
aging and EEall DEGs (FDR<0.05, two-sidedWald tests). e Violin plots showing the
log2(fold change) values for the aging up- and down-DEGs (FDR <0.05, two-sided
Wald tests) and also, for the same sets of genes, the fold change values with EE

(***p < 2.2e-16 for two-sided Wilcoxon rank sum tests). Box plots shown indicate
median value, interquartile range (IQR), up to 1.5 IQR (whiskers), and have been
cropped at their 2nd and 98th percentiles. f Bar plots indicating the total numbers
of DEPs (FDR <0.05, two-sided moderated t-tests) with increased or decreased
levels in response to EE in young, old or all samples. g UpSet plot showing the
intersections between aging and EEall DEPs (FDR<0.05, two-sided moderated t-
tests). h Violin plots describing the log2(fold change) values for the aging up- and
down-DEPs (FDR<0.05, two-sidedmoderated t-tests) and also, for the same sets of
genes, the fold change values with EE (***p < 2.2e-16 for two-sided Wilcoxon rank
sum tests). Box plots as described in (e). i, j Line plots showing the RNA-seq gene
expression values (scaled VST units) of curated genes which show opposing aging
and EE changes (i) or rejuvenation specifically in old subjects (j). Box plots shown
indicate median value, interquartile range (IQR) and up to 1.5 IQR (whiskers), and
individual data lines showing minimum and maximum value.
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annotations), which expressed well-known markers associated with
their annotated identities (Fig. 6b). The majority of cells (~40%) con-
sisted of dentate gyrus neurons, followed by oligodendrocytes (~18%)
and CA1/3 area neurons (~15% and 5%, respectively), with the lower,
although noticeable, presence of microglia and astrocytes (~4–5%)
(Fig. 6c), while the numbers of detected genes were similar across all
types (Fig. 6d). When examining the observed group-wise proportions

in cell types, we first confirmed that aging did not lead to large-scale
changes in cell composition in the dorsal hippocampus, validating our
previous predictions using bulk RNA-seq cell type deconvolution
analyses (see previous Fig. S4a) and suggesting that functional
alterations taking place during the aging process may be more related
to cell-intrinsic changes rather than population-level alterations. An
exploratory analysis of smaller alterations revealed the age-associated
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increase of CA3 neurons, partially reversed by EE, and a reduction in
minor populations (Cajal-Retzius cells) (Fig. 6e, f). On the other hand,
environmental enrichment led to an increase in vascular cells and also
in oligodendrocyte progenitors, coupled with a decrease in mature
oligodendrocytes (Fig. 6e, f). This last finding is of particular interest
because we had previously pinpointed glial and myelin pathways as
being targets for both EE transcriptomic remodelling (see previous
Fig. 4c) and the EE-associated rejuvenation of aging alterations (see
previous Fig. S8j). As such, these observations indicate that, though
aging and EE do not particularly impact cell population dynamics,
some changes can be linked to previously detected functional gene
expression alterations, and they further confirm that some part of the
EE-caused rejuvenation of aging phenotypes may be mediated by
oligodendrocyte-dependent pathways.

Next, we performed differential expression analyses within major
cell types (Methods) to try and understand the possible functional
impact of aging and EE across different populations. Using all groups,
we detected numerous changes (adj. p < 0.05, logFC >0.25, Methods,
Supplementary Dataset 26) in response to aging and EE, with the for-
mer having a stronger effect, as expected (Fig. S9d). Both processes
affected themajor NEU types (CA1, CA3, DG), and aging also presented
numerous MIG and ASC alterations, as well as OLG-related changes,
while EE appeared to particularly target a subtype of inhibitory neu-
rons (GABA MGE) (Fig. S9d). Nonetheless, aging and EE alterations
were spread across cell types, and we did not observe marked differ-
ences in cell type prioritization through these processes using Augur94

(Fig. S9e). An important proportion of the expression changes were
cell type specific, suggesting population-dependent effects of both
aging and EE, as has been previously observed for aging28, with com-
mon changes being mostly observed across similar cell types (e.g.
CA1, CA3, DG) (Fig. S9f). To investigate if we could extract, as pre-
viously observed in the bulk omics, evidence of the EE-associated
reversal of aging alterations from the sparse single cell data, we per-
formed permutation testing using the top DEGs (p <0.05) to agnosti-
cally check the intersections between aging and EE alterations.
Significantly, we observed that the majority of enrichments (empirical
FDR <0.05), across all cell types, corresponded to opposing altera-
tions in the two processes (Fig. 6g), thus indicating that EE-associated
aging-reversal signatures are induced in multiple hippocampal popu-
lations, with, interestingly, OPC-associated changes being the most
enriched.

To extend our exploration to the chromatin level, we carried out
differential accessibility analyses of the scATAC data and detected
moderate changes (adj. p < 0.05, logFC > 0.25, Methods, Supplemen-
tary Dataset 27) in response to both aging and EE. Once more, aging
had a stronger effect (Fig. S10a), which was present in excitatory
populations (CA1, CA3, DG), astrocytes, microglia and oligoden-
drocytes, while EE mostly targeted glutamatergic neurons (CA1, CA3,
DG). The alterations were mostly independent across cell types,
though common regions of aging-induced increased accessibility were
observed with aging (Fig. S10b). We performed enrichment testing

using the top DERs (p < 0.05) to explore the putative associations
between aging- and EE-induced accessibility changes and, again, dis-
covered that the bulk of intersections (empirical FDR <0.05) repre-
sented opposing changes between the two phenomena (Fig. 6h).

On the whole, these results indicate that signatures of the EE-
reversal of aging alterations in both transcriptomic and chromatin
accessibility layers can be recovered at the single-cell level.

Discussion
The aging process involves the accrual of internal and external damage
across lifespan. Environmental stimuli, such as lifestyle, can impact the
trajectory of this life-long decline, at least partly, through epigenetic
modifications, though the precise mechanisms at play remain to be
clarified. To tackle these issues, here we set up a murine model of
hippocampal aging which was stimulated by a medium-term lifestyle
intervention based on environmental enrichment. The EE paradigm
used involves an unspecific stimulation which entails alterations in
physical, cognitive, and social activity21,95. As such, the molecular
changes observed in this study comprise a mixture of stimuli which
cannot be narrowed down to specific behavioural pathways, and
better-controlled interventions should be used to dissect the different
molecular signatures attributable, for example, to exercise or
cognition96. Nonetheless, here we have used EE as a laboratory proxy
for general lifestyle or environmental stimulation, which is indeed a
very complex phenomenon in humans but for which EE is frequently
used as a model97. We extensively characterized the molecular
dynamics of this model by profiling multiple layers of epigenomic
regulation, thus generating a molecular map resource to aid under-
standing of these processes.

Focusing on aging, we first observed that functional gene
expression alterations follow twomajor axes of regulationwhereby up-
regulation, more intense, involved an inflammatory response, while
down-regulation was associated with less numerous, mRNA
metabolism-related pathways (Fig. 1d), partially in agreement with
current gene expression analyses acrossmultiple tissues98,99 and being
suggestive of the fact that depletion of the splicing machinery may be
explanatory in terms of the recurrent splicing-related alterations
described during the aging process across multiple systems100. On the
other hand, as has been recently described in other tissues such as
kidney43, we observed quite independent age-signatures in the pro-
teome, indicating the involvement of other regulatory layers in linking
these two omics–for instance, simply normalizing by protein half-lives
increased the observed correlation between RNA and protein levels by
60% (Fig. S4d). We detected numerous epigenetic modifiers as being
putatively involved in the regulation of the aforementioned functional
alterations (Fig. 1g) and thus profiled DNAm and accessibility levels to
find minor changes, including no evidence of age-associated genome-
wide demethylation, as is increasingly being reported73 (Fig. 2a),
although we were able to link both DNAm and accessibility changes to
the differential expression of certain gene candidates, such as Cbln163,
Pink164, C4b70 and Lin28b71. Through locus overlap enrichment, we

Fig. 5 | Epigenomic rejuvenation of the dorsal hippocampus in enriched
environments. a UpSet plots showing the intersections between aging and EEall
ChIP-seq DERs (unadjusted p <0.05, two sided Wald tests) for each histone mod-
ification. b Heatmap summarizing the significant (FDR <0.05, one-sided Fisher’s
exact tests) intersections between aging and EEall ChIP-seq DERs (unadjusted
p <0.05, two sided Wald tests) across all histone modifications. Significant inter-
sections are coloured on the basis of their odds ratio. c Bar plots describing the
numbers of curated DERs which display EE-associated rejuvenation of aging
alterations in old samples. d Heatmap showing the significant intersections
(FDR<0.05 for one-sided permutation regioneR tests) between curated rejuvena-
tion DERs and curated rejuvenation DEGs. Significant intersections are coloured by
log2(fold enrichment). e, f Genomic plots indicating, in the upper panels, the dis-
tribution of epigenomic marks (5mC, ATAC-seq, histone post-translational

modifications) across the bodies of the Pcdh15 (e) and Ror1 (f) genes. The mea-
surements shown are either DNA methylation values for EM-seq profiled CpGs or
log-CPMvalues (200bpbins and normalized to [0–1] scale) for ATAC-seq andChIP-
seq, while the lower tracks represent genes, CpG Islands and ENCODE murine
forebrain P0 enhancer elements. Below, highlighted from the upper plots are
regions curated as rejuvenated in old samples, and the log-CPM values are shown
across the groups accompanied by the difference in log-CPM between old samples
and the rest of samples. Finally, the bottom boxplots show the RNA-seq and ChIP-
seq values for the gene and the whole region in VST units (n = 3 for all RNA-seq
groups and n = 2 for all ChIP-seq groups, the reju-DERs and reju-DEGs were defined
as stated in Methods). All box plots shown indicate median value, interquartile
range (IQR), up to 1.5 IQR (whiskers), and individual data points showingminimum
and maximum value.
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observed that aging accessibility gains were preferentially located at
heterochromatin regions (Fig. 2g).

Hence, we characterized the aging-associated histone modifica-
tion changes of six well-known histone marks (H3K4me1, H3K4me3,
H3K27ac, H3K36me3, H3K27me3 and H3K9me3) and uncovered
widespread facultative (H3K27me3) and constitutive (H3K9me3) het-
erochromatin alterations (Fig. 3). Specifically, (a) we observed a

generalized loss of constitutive heterochromatin domains, linked to
chromatin decompaction (Fig. 3b), as has been recently described in
the aging murine brain74 and which has been associated with neuro-
degeneration in experimental models101,102; (b) we detected bidirec-
tional changes in H3K27me3 (Fig. 3d), which presented a differential
behaviour whereby loss of this mark, and also of H3K4me3, was par-
ticularly linked to bivalent chromatin, suggesting the aging-associated
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erosion of bivalent domains, an event hardly ever studied in cancer or
aging but which could help explain other epigenetic alterations
observed in these processes75 and which may be different between
stem and differentiated cell types103; and (c) strikingly, we detected a
subset of constitutive H3K9me3 loss regions which displayed robust
enrichment in facultative H3K27me3 gains (Fig. 3e, f). This phenom-
enon of “chromatin switching”, which has some parallelisms with
certain experimental models76–78, has very recently been described in
the aging liver104. Whereas Yang N. and colleagues reported a gen-
eralized H3K27me3-associated heterochromatinization with aging104,
here we describe more balanced, bidirectional H3K27me3 changes.
Nonetheless, our results are in linewith their observation that localized
loss of H3K27me3 is associated with developmental gene promoters
while gains of H3K27me3 are linked to H3K9me3 loss at lamin-
associated domains104. We hypothesize that in the brain this latter
phenomenon could be caused by the cellular re-repression, using
facultative heterochromatin, of the constitutive heterochromatin loss
during aging.

Finally, we turned to examining how a lifestyle intervention of
cognitive stimulation, which has been widely reported to have health
benefits21, could interact with the observed agingmolecular dynamics.
Significantly, we observed robust evidence of the EE-associated
reversal of aging alterations at multiple levels: first, both the tran-
scriptome and the proteome displayed generalized, and often inde-
pendent, reversal or rejuvenation effects (Fig. 4e, h). Interestingly, we
had initially observed that inflammation was a major player in func-
tional aging alterations,withmultiplegeneric andmicroglia-associated
pathways being detected in the gene set enrichment analyses (see
Fig. 1d, Fig. S3e, Supplementary Dataset 3). However, the EE-
rejuvenation changes were more closely linked to neuronal and glial
pathways (Fig. S8l), with no C8 cell type enrichments related to
microglia being observed (Supplementary Dataset 22), contrary to the
case of aging (Fig. S3h), suggesting that cognitive simulation coun-
teracts specific axes of aging dysregulation which do not involve the
age-associated brain inflammatory state105. Moreover, our results
pointed towards the importance of oligodendrocyte functions in
mediating these rejuvenation effects, thus supporting theses dis-
cussed elsewhere regarding the putative role of oligodendrocyte
pathways in aging and rejuvenation106–109. Myelin function is known to
be influenced by both neuronal and physical activity110,111, hence it
makes sense that the complex stimulationbrought onby EE could have
an impact on these pathways. Furthermore, there is evidence that glial
cell generation ismaintained throughout a great fraction of themurine
lifespan (up to 2 years of age)112, so it is possible that, especially for
middle- or old-aged subjects, the glial component is more targetable
by environmental stimulation than the neural component of the
brain. Notably, reversed genes were also linked to Polycomb/bivalent
chromatin pathways, which are widely reported to be epigenetically
dysregulated during aging73 (Fig. S8l). A great number of gene and
protein expression EE-reversal changes were found in both young and
old individuals. This a priori counterintuitive finding could be
explained in the light of recent evidence showing that molecular aging
starts very early in life113,114, so that young subjects could already have
accumulatedmolecular damage amenable to EE reversal. The strength

of the gene expression reversal was stronger in young individuals, as
expected due to their increased plasticity84, but this was not the case
for the reversal of protein levels, with older subjects displaying similar
levels of change.

Regarding the epigenome, we also recovered evidence, though
subtler, of the opposing nature of EE and aging alterations through
agnostic approaches (Fig. 5a–d), generating a selection of EE-
rejuvenation genes with paired epigenomic rejuvenation events,
suchasPcdh15, a suppressor ofOPCproliferation85, whichwas elevated
in agingwithpairedH3K27me3gains and rejuvenatedbyEE. It is alsoof
interest to mention that protocadherins have been suggested to be
targets of stochastic DNAm variation115, which could reflect an
increased sensitivity towards environmental influence. Thus, our
results indicate that EE induces a partial, multi-omic reversal of the
aging phenotype in the murine dorsal hippocampus. It must be noted
that the nature of this reversal appears to be mostly independent
across the different omic layers. Indeed, it is known that different
molecular layers often display low levels of correlation43,116, although
we did observe significant intersections across several inter-omic
changes (see for instance Fig. S4h, Fig. 3b, c or Fig. 5d). Nonetheless,
these observations point towards the existence of an omic-specific
response of rejuvenation in response to environmental stimulation. To
expand on these findings, we additionally profiled the single-cell
dynamics of our experimental system (Fig. 6). In general, aging did not
cause profound changes in cell type composition in the hippocampus,
as has been discussed elsewhere39, but we did observe a slight increase
in the proportion of OPCs, coupled to loss of OLGs, in response to EE
(Fig. 6e, f), again suggesting that OLG/OPC pathways are targeted by
this stimulation. Finally, by looking at the associations between aging
and EE alterations in gene expression and chromatin accessibility, we
observed further evidence of the EE-associated reversal of aging
changes at the single-cell level (Fig. 6g, h).

To sumup, wehave profiled the epigenomic landscape of aging in
the dorsal hippocampus and shown that cognitive stimulation by way
of environmental enrichment leads to multi-omic rejuvenation in this
system.

Methods
Animal handling and interventions
Male C57BL/6JRj mice of 9weeks and 17months old were acquired
from Janvier Labs. Male mice were used because of their longer life-
span which better suited the aging model. Animals from each age
group were randomly assigned to control or enriched groups (YC
young control, YE young enriched, OC old control, OE old enriched),
always housing 5 or 6 animals per cage, and they were acclimated for
2–4weeks prior to the start of the experiments. The animals were
exposed to control or enriched environments for 2months.Mice were
housed under standard laboratory conditions including ad libitum
access to food and water, light/dark cycles (12 h/12 h) and stable tem-
perature (20-22 °C), in accordance with the European Union Directive
2010/63/EU. All experiments were performed following the European
Community Guidelines (Directive 2010/05/2016) and the Spanish
Guidelines (Real Decreto 53/2013) for animal research, and were
approved by the ethical committees of the Cajal Institute (Committee

Fig. 6 | The single-cell dynamics of aging and environmental enrichment in the
dorsal hippocampus. a Dimensional reduction plot showing the distribution of
cells, labelled by major cell type annotations for the multimodal WNN UMAP
reduction (NEU: neuron; OLG: oligodendrocyte; OPC: oligodendrocyte progenitor;
ASC: astrocyte; MIG: microglia; END: endothelial cell; PER: pericyte; VLM: vascular
and leptomeningeal cell). b Heatmap describing the mean gene expression values
([0–1] row-normalized SCTransformunits)within each cell typeannotation across a
representative panel of marker genes. c, d Bar plots showing the total numbers of
profiled cells (c) and detected genes (d), segregated by cell type (“L5/6, SUB”
contains NP L5/6, PT L5 and SUB cells). e, f Bar plots indicating the percentages (e)

or normalized percentages (by maximum value for each cell type) (f) of cell type
counts across each cell type and experimental group. g Heatmap describing the
significant intersections (FDR<0.05, one-sided permutation tests) between top
(unadjusted p <0.05, two-sided likelihood ratio tests) scRNA-seq DEGs for the
aging and EE comparisons (using all samples) across each cell type. Significant
intersections are colour-coded according to fold enrichment.hHeatmap indicating
the significant intersections (FDR<0.05, one-sidedpermutation tests) between top
(unadjusted p <0.05, two-sided likelihood ratio tests) scATAC-seq DERs for the
aging and EE comparisons (using all samples) across each cell type. Significant
intersections are colour-coded according to by fold enrichment.
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of Ethics and Animal Experimentation), the Spanish Research Council
(Subcommittee of Ethics), the Animal Protection Area of the Ministry
of Environment of the Community of Madrid (code: PROEX 222/16)
and the Research Ethics Committee of the University of Oviedo (Sub-
committee on animals and genetically modified organisms, code:
PROAE 08/2021). For tissue collection, animals were deeply anaes-
thetized with pentobarbital and perfused with 0.9% saline. One hemi-
sphere was removed from the skull and the hippocampal formation
was isolated in an iced dish and immediately fresh-frozen. The other
hemisphere was fixed into 4% paraformaldehyde in 0.1M phosphate
buffer overnight at room temperature. See Supplementary Dataset 1
for information on all of the omics experiments performed.

Environmental enrichment
The enriched groups were homecaged in groups of 5 or 6 in large PVC
cages where multiple objects and toys of different textures, sizes and
shapes were placed randomly. The cages also contained ramps, tun-
nels and different bedding materials. The objects and structures were
changed every 2 days or on weekends to form new environments. The
bedding was changed every one or two weeks. The control groups
were kept in the same room in groups of 5 or 6 in standard conditions
with no access to toys.

Immunohistochemistry
Animals were deeply anaesthetized with pentobarbital and perfused
with 0.9% saline and fixed in 4% PFA. Brains were collected and post-
fixed over-night. Coronal sections (50μm) were obtained on a Leica
VT1000S vibratome. One random series was chosen for each immu-
nohistochemistry. Another randomly chosen series was used for Nissl
staining to measure the area of the subgranular zone (SGZ) via the
Cavalieri method.

For immunohistochemistry, primary antibodies (DCX, goat anti-
doublecortin, 1:500, Santa Cruz #sc-8066; CLR, rabbit anti-calretinin,
1:3000, Swant #7697; SOX2, goat anti-sex determining region Y-box 2,
1:200, R&D Systems #AF2018; GFAP, Rabbit anti-glial fibrillary acidic
protein, 1:2000, Abcam #ab7260; pH3, Rabbit anti-phospho-histone
H3, 1:500, Millipore #06-570) were incubated in PB 0.1M, 1% Triton-
X100, 1% Bovine Serum Albumin (PBT-BSA) for 1 h at room tempera-
ture and 72 h at 4 °C. Secondary antibodies (Donkey anti-goat alexa
fluor 594 #A-11058; Donkey anti-rabbit alexa fluor 594 #A-21207;
Donkey anti-rabbit alexa fluor 488 #A-21206; Donkey anti-rat alexa
fluor 594 #A-21209; all used 1:1000 and obtained from Invitrogen)
were incubated in PBT-BSA for 1 h at room temperature and 24 h at
4 °C. Cell nuclei were counter-stained with 4’,6-diamino-2- pheny-
lindole (DAPI, 1:1000, Sigma-Aldrich #D9542).

The physical-dissector method adapted to confocal microscopy
(Leica TCS SP5) was used to estimate the total number of neural pre-
cursors, i.e. SOX2+ /GFAP+ cells, that displayed radial glia-like mor-
phology (cell body located in subgranular zone and apical dendrite
extended to the molecular layer). 7 confocal stacks per animal posi-
tioned randomly along the rostro-caudal axis of thedentate gyruswere
taken ( ~ 13 photos per stack, 1024×1024, 40x oil immersion objective,
step-size of 2.01, zoom 2.4). Cell density per area of the SGZ was cal-
culated in each stack and the mean density was obtained for each
animal. The total number of neural precursors was extrapolated using
the total area of the subgranular zonemeasured for each animal in the
Nissl staining. A similar methodology was used to calculate the total
number of progenitor cells (DCX + /CLR-, DCX + /CLR+ andDCX-/CLR+
cells) in dentate gyrus (6 stacks along rostro-caudal axis, 11 confocal
photos per stack, 512×512, 63x oil immersion objective, step-size of
1,76, zoom 2,46).

The fractionator method was used for the estimation of the total
number of pH3+ cells that were located in the SGZ. Briefly, the number
of pH3+ cells positioned in the SGZ was counted in 1 of each 8 hip-
pocampal sections and multiplied by the fraction.

Behavioural testing
Activity measurements
To study basal locomotor activity, a VersaMax Legacy Open Field
activity box (Omnitech Electronics, In.) was used. Activity levels were
measured on two consecutive days in the same cage to ascertain the
activity displayed in a novel environment (first day) and in a known
environment (2nd day). The animals freely explored the cage during
5min on both days. Behavioural measures were automatically scored
by the VersaMax system.

Elevated plus maze (EPM) tests
The animals wereplaced at the centre of themaze, facing an open arm,
and were allowed to explore the maze freely for 5min. The duration
and the number of entries into each arm were recorded on video and
manually scored. The apparatus was cleaned between trials with a
dilution of water with 0.03% acetic acid. In an independent-laboratory
setting, a 10min exploration test was also performed in similar con-
ditions, with the duration and the number of entries being recorded
with a Basler Ace acA1300-60gm camera and semi-automatically
computed with the Ethovision XT 16 analysis software. The device was
cleaned between trials with 70% ethanol.

Novel object recognition (NOR) test coupled with novel object
location (NOL) test
A rectangular cage (1815 cm2) was used to carry out the NOR test in 3
phases: training (TR), short-term (ST) and long-term (LT). The duration
of each phase was 5min, and mice were habituated (5min free
exploration) to the cage 24 h prior to the first phase. During the TR
phase, mice were reintroduced to the cage and exposed to two iden-
tical objects (A0 and A1) positioned in two opposing cage quadrants.
For the ST phase, 90min later, object A1 was replaced by a new object
(B) andmicewere given freedom ofmovement to explore (A and B; ST
test phase). For the LT phase, 24 h later, a third object (C) replaced
object B and, again, mice were left to explore (A and C; LT test phase).
The apparatus was cleaned between trials with 70% ethanol. Thewhole
test was recorded using a Basler Ace acA1300-60gm zenithal camera
and semi-automatically computed with the Ethovision XT 16 analysis
software. ST and LT were inferred by measuring the time spent
exploring each object and computing a discrimination index (DI):
(N –A) / (N +A), where N stands for B at ST and C at LT.

The NOL test for short-term memory was integrated in the same
experimental setting of the aforementionedNOR test, made use of the
samehabituationphase, andwascarried out 90min after the LTphase.
Mice were again exposed to two already-known identical objects (A0
andA1), but this timeobjectA1wasdisplaced 30 cm towards the centre
of the homolateral quadrant. Mice were left to explore for 5min. The
arena and objects were cleaned between trials with a dilution of water
with 70% ethanol. All phases were video-recorded with a Basler Ace
acA1300-60gm and the time exploring each object was semi-
automatically computed with the Ethovision XT 16 analysis software.
Pattern separationwas inferred bymeasuring the time spent exploring
each object and computing a discrimination index (DI): (M – F) /
(M + F), where M is time spent with moved object and F is time spent
with fixed object.

Novel object location (NOL) test, independent setting
The test comprised twophases: Training (TR) andTest (TS). During the
TR phase, mice were left for 4min to explore a circular arena that
contained two identical columns located symmetrically at its centre.
For the TS phase, 40min later, animals were returned to the arena
where one of the columns was displaced diagonally by a distance
equivalent to two diameters of the column. As mice normally notice
displacements of 3 diameters or higher, in this test the column was
moved a shorter distance to evaluate any cognitive improvement
derived from treatment, as has been used previously117. Mice were
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again left to explore for 4min. The arena and objects were cleaned
between trials with a dilution of water with 0.03% acetic acid. All
phases were video-recorded and the time exploring each column was
manually scored. Pattern separation was inferred by measuring the
time spent exploring each object and computing a discrimination
index (DI): (M – F) / (M+ F), where M is time spent with moved object
and F is time spent with fixed object.

Contextual fear conditioning (CFC) test
A fear conditioning chamber (Ugo Basile Fear Conditioning 2.1, 46003
MouseCage)was used to test contextual aversivememory and context
discrimination abilities. The test consisted in two phases: acquisition
(ACQ) and short termmemory (STM). The duration of each phase was
5min. In the ACQ phase, animals were left to freely explore the con-
ditioning chamber (17 × 17 × 25 cm) whose walls had a pattern of black
and white squares (context A). At minutes 3, 3:30 and 4, a floor shock
(0.5mA, 2 s duration) was administered through the floor grid. The
animal was left another minute in the cage before the test ended. The
STMphase was conducted 24 h after the ACQ phase. Animals were put
back in the conditioning chamber, which had the same walls (context
A) and left to explore for 5min. No shock was applied. The con-
ditioning cage was cleaned between trials with a dilution of water with
0.03% acetic acid. Freezing time was automatically scored with the
software ANY-MAZE (v6.0).

Magnetic resonance imaging
Magnetic resonance imaging (MRI) studies were conducted using a
9.4 T horizontal boremagnet (Bruker BioSpin)with 12 cmwide actively
shielded gradient coils (440mT/m). Radiofrequency transmission was
achieved with a birdcage volume resonator and signal was detected
using a two-element arrayed surface coil (RAPID Biomedical) posi-
tionedover thebrainof the animal, whichwasfixedwith adhesive tape.
MRI procedures were carried out under sevoflurane anaesthesia (4.5%
induction and 2.5%maintenance in a gas mixture of 70% NO2 and 30%
O2). During MRI studies, each animal was fixed in a Plexiglas holder
using a tooth bar, ear bars and adhesive tape tominimize spontaneous
movement during imaging acquisition. Respiratory frequency was
monitored throughout the experiment.

MRI sequences: the protocol of the study consisted of covering
the whole brain with T2-weighted image (T2-wi) in axial and coronal
orientations. Also, T1-weighted images (T2-wi) were acquired in order
to evaluate any possible artifacts in the images. A Rapid Acquisition
with Refocused Echoes (RARE) sequence with the following para-
meters was used to obtain a T2-weighted anatomical image: 23 axial
orientation slices, echo time (TE) = 11ms, repetition time (TR) = 2.5 s,
rare factor (RF) = 8, slice thickness 0.5mm, no slice separation, field of
view (FOV) = 20 × 20 mm2, matrix size 256 × 256 (isotropic in plane
resolution of 0.078mm/pixel). The RARE-T2 in coronal orientation has
the same parameters with 16 slices. Images were processed using the
software FIJI: ImageJ (v1.50i)118, and themousehippocampus atlas from
Badhwar A and colleagues (https://scalablebrainatlas.incf.org)119.

RNA-seq analyses
RNA extraction, RNA library preparation and sequencing
For RNA sequencing, total RNA from fresh-frozen dorsal hippocampi
(animals were deeply anaesthetized with pentobarbital and perfused
with 0.9% saline) was extracted and DNAse-treated with a silica-
membrane column protocol (RNeasy, Qiagen #74104). Concentration
of the RNA was determined with the Qubit RNA HS Assay kit (Thermo
Fisher Scientific, #Q32852), and integrity on a 2100 Bioanalyzer system
(Agilent). Library preparationwas carried outwith 500ngof input RNA
using the Illumina TruSeq Stranded mRNA protocol (Illumina,
#20020594), including polyA selection, following the manufacturer’s
instructions. Finally, the mRNA-seq libraries were sequenced,

generating 51 bp paired-end reads on an Illumina NovaSeq 6000 sys-
tem. 3 biological replicates were used per condition.

For the validation cohort, libraries were prepared with 250ng of
input RNA using the NEBNext Ultra II Directional RNA Library Prep kit
(NEB, #E7760) including polyA selection with the NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB, #E7490). Finally, the mRNA-
seq libraries were sequenced, generating 75 bppaired-end reads, on an
Illumina HiSeq 3000/4000 system.

RNA-seq data preprocessing
FASTQ files were preprocessed and quality controlled with fastp
(v0.20.1)120 using the following options: -r -M 10 -l 20 -p -x --adapter_-
fasta. Transcript-level quantification was obtained using Salmon
(v1.5.0)121 with the options: --libType A --validateMappings --seqBias
--gcBias. For thepseudo-alignment, a decoy-aware index gentromewas
built from the mm10 genome and transcriptome. Further preproces-
sing and statistical analyses were performed within R: transcript-level
estimated counts from Salmon were imported and normalized or
aggregated to the gene level through the R/Bioconductor package
tximport (v1.14.2)122. Different analyses used either raw counts, TPM
values or VST-normalized values (see below). Ensembl IDs were
annotated to gene symbols or other IDs using the R/Bioconductor
package biomaRt (v2.42.0)123.

Differential gene expression analyses
Transcript-level RNA-seq quantification files from Salmon were
imported into R and aggregated to the gene-level through the R/Bio-
conductor package tximport (v1.14.2). Next, low-expression genes
were filtered out with the filterByExpr() function of the R/Bio-
conductor package edgeR (v3.28.1)124. Finally, the R/Bioconductor
package DESeq2 (v1.26.0)125 was used on the filtered gene-level esti-
mated counts to define differentially expressed genes (DEGs) using
generalized linear models, based on various comparisons: effect of EE
in young, old, or all samples (YC vs YE; OC vs OE; YC +OC vs YE +OE),
effect of aging in control or all samples (YC vs OC; YC +YE vsOC +OE).
For the comparisons involving all samples, the effect of age or EE was
controlled for in the EE and aging comparisons, respectively. An FDR
significance level of 0.05 was used to call DEGs. Other analyses or
visualization of results were carried out using VST-normalized values,
obtained using the vst function in DESeq2.

Differential isoform and splicing analyses
Isoform-level analyses were handled within the R/Bioconductor
package IsoformSwitchAnalyzeR (v1.8.0)126. First, transcript-level
data were imported and scaled (internal tximport). Then, the pre-
Filter function was used to filter out single-isoform genes and iso-
forms with low usage and low expression (<1 TPM, <1% usage). Next,
differential isoform usage analyses were carried out using the DEX-
Seq method127, based on various comparisons: effect of EE in young,
old, or all samples (YC vs YE; OC vs OE; YC +OC vs YE +OE), effect of
aging in control or all samples (YC vs OC; YC + YE vs OC +OE). For the
comparisons involving all samples, the effect of age or EE was con-
trolled for in the EE and aging comparisons, respectively. An FDR
significance level of 0.05 and aminimum change in usage of 10% (dIF)
were required to call differentially used isoforms. Alternative splicing
analyses were performed by integrating the differential isoform
usage results with functional and sequence information, through the
analyzeAlternativeSplicing method in IsoformSwitchAnalyzeR128.
In this way, different types of alternative splicing events were anno-
tated and quantified across the differentially used isoforms (DUIs):
intron retention (IR), alternative acceptor or donor sites (A3, A5),
alternative transcription start or termination sites (ATSS, ATTS),
single or multiple exon skipping (ES, MES) and mutually exclusive
exons (MEE).
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Cell type deconvolution from bulk RNA-seq
Cell type proportions were predicted from the bulk RNA-seq data by
weighted non-negative least squares regression (W-NNLS) imple-
mented in the R packageMuSiC (v0.2.0)129. In this method, an external
single-cell RNA-seq reference dataset with annotated cell types is used
to deconvolve cell composition in the input bulkRNA-seq data. To take
into consideration possible between-study variability, two indepen-
dent single-cell RNA-seq datasets, covering different areas of the brain,
were used as references for the cell type deconvolution: (1) The Zeisel
dataset includes scRNA-seq data for mouse cortex and hippocampus
across ~3000 cells37 (accessed through the R/Bioconductor package
scRNAseq (v2.0.2)); (2) The Yao dataset contains scRNA-seq data for
mouse isocortex and hippocampal formation across ~75,000 cells38

(accessed through the Allen Brain Atlas database130). Genes with no
expression across all cells and those cells labelled as outliers in the
datasets were removed.

Quantification of global 5mC by LC-MS/MS
Total DNA from fresh-frozen dorsal hippocampi (animals were deeply
anaesthetized with pentobarbital and perfused with 0.9% saline) was
extracted and RNAse-treated following a standard phenol-chloroform
protocol. Concentration of the DNAwas determinedwith the Quant-iT
Picogreen dsDNA assay kit (Thermo Fisher Scientific, #P7589) at 480/
520nmonaFluostarOptimaplate reader (BMGLabtech), and integrity
was checked on an E-Gel EX Agarose gel 2% (Thermo Fisher Scientific,
#G401002). To analyse global levels of 5-methylcytosine (5mC) by
mass-spectrometry, 200 ng of genomicDNAper samplewere digested
to a final concentration of 1 ng/μL with DNA Degradase Plus (Zymo
Research, #E2020) and subjected to mass spectrometry (liquid chro-
matography electrospray ionization tandem mass spectrometry). All
samples were analysed using an Agilent 1200 liquid chromatograph
(Agilent Technologies) coupled to an API 4000 Liquid Chromato-
graphy Tandem−Mass Spectrometry (LC-MS/MS) system (AB Sciex). A
Zorbax Eclipse XDB C18 column (2.1mm* 150mm, 5μm; Agilent
Technologies) was used, with a two-phase flow of formic acid 0.1% in
H2O (A) and formic acid 0.1% in MeOH (B). Three biological replicates
were pooled for each condition and 3 technical replicates were mea-
sured for each sample.

EM-seq analyses
DNA extraction, EM-seq library preparation and sequencing
For enzymatic methyl sequencing (EM-seq), total DNA from fresh-
frozen dorsal hippocampi (animals were deeply anaesthetized with
pentobarbital and perfused with 0.9% saline) was extracted and
RNAse-treated following a standard phenol-chloroform protocol.
Concentration of the DNA was determined with the Qubit dsDNA HS
Assay kit (Thermo Fisher Scientific, #Q32854) and integrity on a 2100
Bioanalyzer system (Agilent). Library preparation was carried out with
100ng of input DNA using the NEBNext Enzymatic Methyl-seq Kit
(NEB, #E7120) following the manufacturer’s instructions. Finally, the
EM-seq libraries were sequenced, generating 151 bp paired-end reads,
on an Illumina NovaSeq 6000 system. 3 biological replicates were
pooled for each condition.

EM-seq data preprocessing
Quality control of FASTQ files was performed with FastQC (v0.11.9),
and an average 99% conversion rate was determined using BCREval
(v0)131. Reads were trimmed with Trim Galore! (v0.6.7) using the
options --gzip --paired and --2colour 20. Preprocessed reads were
aligned to the bisulfite-converted- and indexed mm10 genome via
Bismark (v0.23.1)132 running Bowtie2133 under default parameters.
Aligned reads were deduplicated using Bismark and methylation call-
ing was performed with Bismark’s methylation extractor, using the
options --paired-end --comprehensive --no_overlap --gzip --bedGraph
--ignore_r2 2 --cytosine_report to obtain methylation counts for

cytosines belonging to CpG sites. The methylation callings were fil-
tered to remove thosemapping to alternative contigs and scaffolds as
well as to blacklisted regions defined by ENCODE (mm10, v2)134. Next,
methylation counts from both strands belonging to the same CpG site
were pooled so as to have onemethylationmeasurement per CpG site.
Subsequently, the CpG sites werefiltered to remove low coverage (<10
counts) and high coverage (>99.9th percentile counts) sites. Finally,
for each position, methylation values were computed as the percen-
tage of methylated cytosines with respect to total cytosines on a
scale of 0–1.

Differential methylation analyses
Differentially-methylated regions (DMRs) were computed using meti-
lene (v0.2.8)135 with options -c 2 -d 0.05 -f 1. The called DMRs were
required to contain a minimum number of 10 CpGs with a mean
methylation difference of at least 5% in 5mC, with an FDR significance
level of 0.05.

ATAC-seq analyses
Nuclei extraction, ATAC-seq library preparation and sequencing
For the assays of transposase-accessible chromatin using sequencing
(ATAC-seq), cell nuclei from fresh-frozen dorsal hippocampi (animals
were deeply anaesthetized with pentobarbital and perfused with 0.9%
saline) were extracted by first homogenizing the tissue with a Dounce
homogenizer and filtering through a 40 µm Nylon cell strainer (Corn-
ing). Then, the nuclei were isolated using an iodixanol gradient and
counted with trypan blue on a TC20 automated cell counter (Biorad).
The transposition assay was performed on 50,000 pelleted (500 g)
nuclei per condition, using the prokaryotic Tn5 transposase system
(Nextera DNA Library Prep Kit, Illumina, #FC-121-1030) for 30min at
37 °C. Next, transposed DNA was purified on DiaPure columns (Diag-
enode, #C03040001).

Library preparationwas performedusing theNexteraDNALibrary
Prep Kit (Illumina, #FC-121-1030) protocol. Amplification was eval-
uated using qPCR with NEBNext High-Fidelity PCR MasterMix (NEB,
#M0541) on a LightCycler 96 System (Roche). Library purification and
selection was conducted using Agencourt AMPure XP (Beckman
Coulter, #A63881). The quality of the resulting libraries was checked
with Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, #Q32854)
and their size assessedwithHigh Sensitivity NGS Fragment Analysis Kit
on a Fragment Analyzer (Agilent). Samples were pooled prior to
sequencing. Finally, ATAC-seq libraries were sequenced, generating
50 bp paired-end reads, on an Illumina NovaSeq 6000 system. Two
biological samples were pooled for each biological replicate, and 2
biological replicates were sequenced for each condition.

ATAC-seq data preprocessing
FASTQ files were preprocessed and quality controlled with fastp
(v0.20.1)120 using the following options: -l 20 -p --adapter_fasta. In brief,
Illumina Nextera adaptor sequences were trimmed using a custom
FASTA file and reads containing >5N nucleotides, reads containing
>40% proportion of <15 Phred nucleotides and reads of <20bp in
lengthwerefiltered out. Next, readswere aligned to the indexedmm10
genome via Bowtie 2 (v2.4.2)133 with the options -X 2000 --very-sensi-
tive-local. Raw mappings to the mitochondrial genome ranged from
1.5% to 8.7%. Alignments were deduplicated using Picard (v2.23.9) and
filtered using SAMtools (v1.7)136 to retain only properly paired reads
with MAPQ> 10 mapping to autosomal and sex chromosomes. Sub-
sequently, ENCODE blacklisted regions (mm10, v2)134 were filtered out
from the alignments using BEDTools (v2.29.2)137. Finally, the alignment
coordinates were shifted 9 bp (+4 and −5 bp for positive and negative
strands) to adjust for the transposition cut location69 using deepTools
alignmentSieve (v3.5.0)138. bigWig visualization files were generated at
different resolutions with deepTools bamCoverage (v3.5.0) using the
RPGC normalization138.
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Chromatin accessibility analyses
Regions of accessible chromatin (peaks)were called for eachbiological
replicate using the epic2 reimplementation (v0.0.48)139 of SICER140 and
including the following parameters: --false-discovery-rate-cutoff 0.05
--bin-size 200 --gaps-allowed 3. The peaks of biological replicates were
combined by taking the union of overlapping peaks.

Differentially accessible regions (DARs) were defined using the R/
Bioconductor package DESeq2 (v1.26.0)125: first, a consensus peak set
was defined by reducing the aforementioned replicate-combined
peaks from each group; next, accessibility at consensus peaks for each
biological replicate was quantified using featureCounts as imple-
mented in the R/Bioconductor package Rsubread (v2.0.1)141; finally, the
quantifications were imported to DESeq2 to perform differential ana-
lyses. DARs were called using generalized linear models, based on
various comparisons: effect of EE in young, old, or all samples (YC vs
YE; OC vs OE; YC +OC vs YE +OE), effect of aging in control or all
samples (YC vsOC; YC +YE vsOC+OE). For the comparisons involving
all samples, the effect of age or EE was controlled for in the EE and
aging comparisons, respectively. An FDR significance level of 0.05 was
used to call DARs. Other analyses or visualizations of results were
carried out using VST-normalized values, obtained using the vst
function in DESeq2. Quantification of accessibility at other genomic
regions was also performed using the aforementioned method.

ChIP-seq analyses
Chromatin extraction, ChIP-seq library preparation and
sequencing
For chromatin immunoprecipitation and sequencing (ChIP-seq), total
chromatin from fresh-frozen dorsal hippocampi (animals were deeply
anaesthetized with pentobarbital and perfused with 0.9% saline) was
extracted, preprocessed and immunoprecipitated using the iDeal ChIP-
seq kit for histones (Diagenode, #C01010059). Fragmentation was
performed with a Bioruptor Pico sonication device (Diagenode). The
quality of the sheared chromatin was checked with the High Sensitivity
NGS Fragment Analysis Kit on a Fragment Analyzer (Agilent). DNA was
quantified after reverse cross-linking via the Qubit dsDNA HS Assay kit
(Thermo Fisher Scientific, #Q32854). ChIP efficiency was measured via
qPCR using KAPA SYBR FAST (Sigma-Aldrich, #KK4601). The following
antibodies were used for immunoprecipitation: H3K4me3 (Diagenode,
#C15410003, Lot. A1051D), H3K4me1 (Diagenode, #C15410194, Lot.
A1862D), H3K27ac (Diagenode, #C15410196, Lot. A1723-0041D),
H3K9me3 (Diagenode, #C15410193, Lot. A0219P), H3K27me3 (Diag-
enode, #C15410195, Lot. A0821D) and H3K36me3 (Diagenode,
#C15410192, Lot. A1845P). 1% of total chromatin was set aside to be used
as Input control in the ChIP-seq experiments. Library preparation was
performed with the MicroPlex Library Preparation Kit v3 (Diagenode,
#C05010002) with 24 UDI forMicroPlex v3 - Set I and Set II (Diagenode,
#C05010008 and #C05010009). The amplification was assessed with
qPCR and capillary electrophoresis using the aforementioned equip-
ment. Library purification (double size selection) was carried out using
Agencourt AMPure XP (Beckman Coulter, #A63881). The quality of the
resulting libraries was checked by Qubit dsDNA HS Assay kit (Thermo
Fisher Scientific, #Q32854) and their size assessed with High Sensitivity
NGS Fragment Analysis Kit on a Fragment Analyzer (Agilent). Samples
were pooled prior to sequencing. Finally, ChIP-seq libraries were
sequenced, generating 50bp paired-end reads, on an Illumina NovaSeq
6000 system. 3 biological samples were pooled for each biological
replicate, and 2 biological replicates were sequenced for each condition.
If the enrichment efficiencies were subsequently found to be disparate
between the samples, biological replicates were replaced with pseudo-
technical replicates (see Supplementary Dataset 1).

ChIP-seq data preprocessing
FASTQ files were preprocessed and quality controlled with fastp
(v0.20.1)120 using the following options: -l 20 -p --adapter_fasta. In brief,

Illumina TruSeq adaptor sequences were trimmed using a custom
FASTA file and reads containing >5N nucleotides, reads containing
>40% proportion of <15 Phred nucleotides and reads of <20bp in
lengthwerefiltered out. Next, readswere aligned to the indexedmm10
genome via Bowtie 2 (v2.4.2)133 with the options -X 2000 --very-sensi-
tive-local. Alignments were deduplicated using Picard (v2.23.9) and
filtered using SAMtools (v1.7)136 to retain only properly paired reads
with MAPQ> 10 mapping to autosomal and sex chromosomes. Sub-
sequently, ENCODE blacklisted regions (mm10, v2)134 were filtered out
from the alignments using BEDTools (v2.29.2)137. In addition, the Input
control samples were used to define experiment-specific greylists with
the R/Bioconductor packages GreyListChIP (v1.18.0) and BSgeno-
me.Mmusculus.UCSC.mm10 (v1.4.0) by detecting regions of high and
probably spurious signal in the Input samples. These regions were also
removed from the alignments using BEDTools (v2.29.2)137. bigWig
visualization files were generated at different resolutions with deep-
Tools bamCoverage (v3.5.0) using the RPGC normalization138. The
enrichment of histone signal at chromatin states and CpG islands was
computed using featureCounts as implemented in theR/Bioconductor
package Rsubread (v2.0.1)141. Then, the percentage of readsmapped to
each region was computed and compared to the percentage in the
input samples.

Histone enrichment analyses
Regions enriched in histonemodifications (peaks)were called for each
biological replicate using the epic2 reimplementation (v0.0.48)139 of
SICER140 and optimized parameters for each histone mark: --bin-size
100 --gaps-allowed 2 for sharpmarks (H3K4me3); --bin-size 200 --gaps-
allowed 3 for narrowmarks (H3K4me1, H3K27ac); --bin-size 500 --gaps-
allowed 4 for broad marks (H3K36me3, H3K27me3, H3K9me3). All
peaks were called with --false-discovery-rate-cutoff 0.05. The peaks of
biological replicates were combined by taking the union of
overlapping peaks.

Differentially enriched regions (DERs) were defined using the R/
Bioconductor package DESeq2 (v1.26.0)125: first, a consensus peak set
was defined by reducing the aforementioned replicate-combined
peaks from each group; next, accessibility at consensus peaks for each
biological replicate was quantified using featureCounts as imple-
mented in the R/Bioconductor package Rsubread (v2.0.1)141; finally, the
quantifications were imported to DESeq2 to perform differential ana-
lyses. DERs were called using generalized linear models, based on
various comparisons: effect of EE in young, old, or all samples (YC vs
YE; OC vs OE; YC +OC vs YE +OE), effect of aging in control or all
samples (YC vsOC; YC +YE vsOC+OE). For the comparisons involving
all samples, the effect of age or EE was controlled for in the EE and
aging comparisons, respectively. An FDR significance level of 0.05 was
used to call DERs. Other analyses or visualizations of results were
carried out using VST-normalized values, obtained using the vst
function in DESeq2. Quantification of accessibility at other genomic
regions was performed using the aforementioned method.

Chromatin state analyses
Chromatin states were learned by integrating the ChIP-seq data for
histone modifications using ChromHMM (v1.23)142. A single 15-state
model was learned to produce specific annotations for each sample
following the “concatenated” strategy, and control Input samples
were included to adjust the binarization threshold locally80. To learn
themodel, first, filtered BAM files were binarizedwith the BinarizeBam
function including the -paired parameter and default settings. Then,
the 15-chromatin state model was learned using the LearnModel
function, including the -printstatebyline and -printposterior para-
meters and the mm10 assembly. Next, enrichments of the states in
genomic regions, across all groups, were computed with the Over-
lapEnrichment and NeighborhoodEnrichment functions with the
-posterior parameter, using mm10 genomic locations, as well as
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ENCODE3 chromatin state tracks for mouse postnatal P0 forebrain72.
Finally, the states were annotated to biological functions (Pr-A, Pr-W,
Pr-F, Tr-S, Tr-S2, Tr-P, Tr-I, En-Sd, En-Sp, En-Pd, Hc-P, Hc-Pw, Hc-H, NS)
by using prior biological knowledge and the aforementioned
ENCODE3 chromatin state annotations for mouse postnatal
forebrain72,81.

Mass spectrometry analyses
Protein extraction, digestion and LC-MS/MS runs
For sequential window acquisition of all theoretical mass spectra
(SWATH-MS) proteomic analyses, total protein from fresh-frozen
dorsal hippocampi (animals were deeply anaesthetized with pento-
barbital and perfused with 0.9% saline) was extracted using a standard
RIPA buffer and was precipitated overnight in 80% acetone / 10% TCA.
Protein extracts were resuspended in 0.2% RapiGest SF Surfactant
(Waters, #186002123) and quantified via the Qubit Protein Assay kit
(Thermo Fisher Scientific, #Q33211). Next, 25 µg of protein were incu-
bated in 4.5mMDTT for 30min at 60 °C and in 10mM iodoacetamide
for 30min at RT. Subsequently, a trypsin digestion was performed
overnight at 37 °C in a 1:40 (enzyme:protein) proportion, which was
stopped with formic acid. After incorporating SWATH alignment
peptides at 40 fmol/μL (Sciex), LC-MS/MS runs were performed with
injections of 1 µg of protein on a hybrid mass spectrometer TripleTOF
5600+ System (Sciex) coupled to a NanoLC 425 System (Sciex), using
the Analyst TF (v1.7) software for equipment control, data acquisition
and processing. Each biological sample was run 3 times generating 3
technical replicates.

LC-MS/MS runs, library preparation and SWATH-MS
quantification
Peptides were first loaded into a trap column (Acclaim PepMap 100
C18, 5 µm, 100Å, 100 µm id × 20mm, Thermo Fisher Scientific) iso-
cratically in 0.1% formic acid/2% acetonitrile (v/v) at a flow rate of 3μL/
min for 10min. Next, elutionwas performed in a reverse-phase column
(Acclaim PepMap 100 C18, 3 µm, 100Å, 75 µm id × 250mm, Thermo
Fisher Scientific) coupled to a PicoTip emitter (NewObjective, #FS360-
20-10-N-20-C12) using a lineal gradient of 2-35% (v/v) of the B solvent in
120min at 300 nL/min. As A and B solvents, 0.1% formic acid (v/v) and
acetonitrilewith0.1% formic acid (v/v)were used, respectively. Voltage
was set to 2600V and temperatures maintained at 100 °C. Gas 1 was
selected at 15 psi, gas 2 at 0, curtain gas at 25 psi.

For library preparation, data acquisition was performed via DDA
(data-dependent acquisition) using a TOF MS scan between
400–1250m/z, accumulation time of 250ms, followed by 50 MS/MS
(230–1500m/z), accumulation time of 65ms and a total cycle time of
3.54 s. Ten runs were used for spectral library preparation, in which
samples were mixed in pairs and injected using the aforementioned
DDA method. The ProteinPilot software (v5.0.1, Sciex) was used for
peptide identification in a joint search across the 10 runs. For the
Paragonmethod, the following parameterswere used: trypsin enzyme,
iodoacetamide as alkylating agent, and the mouse UniProt proteome
as reference (17/12/2021) with Sciex’s contaminant database. Proteins
were selected under an FDR significance level of 0.01.

For the final SWATH runs, data acquisition used a TOFMS scan of
between 400–1250m/z, accumulation time of 50ms, followed by a
DIA (data-independent acquisition) method with 60m/z windows of
variable size (230–1500m/z) with 60ms acquisition time and a cycle
time of 3.68 s. The gradient used was the same as for the DDAmethod.
Between samples (1 µg of digested protein), a standard control (Pep-
calmix, Sciex, #5045759) was used to calibrate the equipment and
control sensitivity and chromatographic conditions. Finally, the data
were preprocessed using PeakView (v2.2, Sciex) with the SWATH 2.0
microapp, generating total area-normalized measurements for each
protein.

SWATH proteomics data postprocessing
UniProtKB IDs from the SwissProt and trEMBLdatabases weremapped
to Ensembl IDs and gene symbols via the R/Bioconductor package
biomaRt (v2.42.0)123. UniProtKB IDs mapping to >1 different Ensembl
ID or not mapping to any Ensembl ID were considered unmapped and
filtered out. In addition, intensity values for proteins with UniProtKB
IDs mapping to the same gene were averaged. Normalized-area data
were log2-transformed prior to statistical analyses.

Differential protein expression analyses
The R/Bioconductor package limma (v3.42.2)143 was used on the log2-
transformed area-normalized protein measurements to define differ-
entially expressed proteins (DEPs) using linear models, based on var-
ious comparisons: effect of EE in young, old, or all samples (YC vs YE;
OC vs OE; YC +OC vs YE +OE), effect of aging in control or all samples
(YC vs OC; YC +YE vs OC+OE). For the comparisons involving all
samples, the effect of age or EE was controlled for in the EE and aging
comparisons, respectively. An FDR significance level of 0.05 was used
to call DEPs. Technical replicates were averaged into biological repli-
cateswithin limma.Other analyses or visualizations of resultswere also
carried out using log2-transformed area-normalized values.

Other analyses
Epigenetic landscape in silico deletion analysis. To find transcrip-
tional regulators of gene sets of interest, epigenetic landscape in silico
detection analysis (Lisa) was performed47, using the Python Lisa2
implementation (https://github.com/liulab-dfci/lisa2). Cistrome data
representing ChIP-seq and DNase-seq tracks associated with tran-
scriptional regulators were retrieved for the mm10 genome (http://
cistrome.org/~alynch/data/lisa_data/mm10_1000_2.0.h5)48 and instal-
led into Lisa2. Next, gene sets of interest were assayed via the From-
Genes and predict functions, using default parameters and the filtered
list of RNA-seq genes as custom background. Finally, the summary p-
values obtained were adjusted for multiple testing and significant
results were filtered for FDR <0.05 while only retaining tracks corre-
sponding to brain-associated tissues.

Canonical aging gene sets. Canonical aging gene sets were retrieved
from different databases: (1) the Digital Ageing Atlas database (https://
ageing-map.org/)27 was used to retrieve the mouse genes with aging-
associated changes in >1 tissues. (2) The GenAge database (https://
genomics.senescence.info/genes/microarray.php)26 was used to
retrieve the set of genes commonly altered during ageing across
mammalian species. (3)Genes associatedwithmurinebrain agingwere
retrieved fromXimerakis et al.28. and correspond to the brain-level cell-
type aggregated results. The top aging-associated genes with at least a
20%-fold change difference were selected.

Pathway enrichment analyses. Gene sets of interest such as detected
DEGs, or genes associated with regions of interest, were evaluated for
their enrichment in the pathway collections of the MSigDB v7.4
(Molecular signatures database)36. The collections were accessed
through the R/CRAN package msigdbr (v7.4.1), which provides the
Mus musculus orthologous sets defined using the HUGO Comparison
of Orthology Predictions tool (HCOP) by choosing, for each human
gene, the mouse ortholog supported by the largest number of data-
bases. Over-enrichment tests were performed with the R/Bio-
conductor package goseq (v1.38.0)144, which was used to correct
for biases due to expression levels (for expression data) or gene
length (for genes associated with genomic regions). Appropriate fil-
tered lists of genes were used as backgrounds for each case, and the
over-enrichment p-values obtained were adjusted for multiple testing,
with significant pathways being selected at an FDR significance
level of 0.05.
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Annotation of genomic regions. Genomic loci were annotated to
different genomic features using various tools. For CpG island anno-
tation, the unmasked CpG island track for the mm10 genome was
retrieved using the UCSC Table Browser tool145, and CpG shores and
shelves were defined as flanking regions next to CpG islands com-
prising the 0–2000bp and 2000–4000bp intervals, respectively.
Then, regions of interest were annotated to CpG islands using the R/
Bioconductor package GenomicRanges (v1.39.3)146. To annotate
regions to genes, transcripts and gene parts, the Gencode tran-
scriptome annotation GTF was used with the R/Bioconductor package
ChIPseeker (v1.22.1)147. Promoters were considered to be those regions
1000 bp upstream and 100 bp downstream from transcript-level
transcription start sites, with regions 1000–3000bp upstream being
considered distal promoters.

To generate a genomic background annotation to be used in
certain comparisons involving regions of interest (e.g. ATAC peaks),
the mm10 chromosome coordinates were retrieved. These were then
filtered for masked regions (AGAPS and AMB) retrieved from the R/
Bioconductor package BSgenome.Mmusculus.UCSC.mm10.masked
(v1.3.99) and ENCODE blacklisted regions (mm10, v2)134. Then, the final
genomewas binned into 200bp bins and annotated to genomic loci as
described above.

Genomic region intersection permutation tests. Genomic region
intersection tests were carried out using permutation testing via the
regioneR package (v1.18.1)148. To test for over-enrichment in the over-
lap between sets of genomic regions (for example, between sets of
histone DERs), their intersections were compared to those with ran-
domly sampled genomic regions of an equivalent size distribution
(randomizeRegions function). The background genome used for the
samplingwasdefined asdescribed in the previous section. For the case
of testing over-enrichment of genomic regions in pre-defined regions
of interest (for example, in gene locations), their intersections were
compared to those with randomly sampled regions from the appro-
priate universe of regions (for example, all the gene coordinates;
resampleRegions function). Regardlessof the approach taken, for each
test, null distributions were built by running 1000 permutations of the
samplings to obtain an empirical p-value, and one-sided tests were
performed. When performing multiple tests, the p-values were adjus-
ted for multiple testing within each set of comparisons and declared
significant at FDR <0.05. The fold enrichment of the intersections was
computed as observed_interesection / mean(permuted_intersection).

Gene intersection permutation tests. In order to test intersections
between gene sets retrieved from different backgrounds (e.g. RNA
DEGs versus protein DEGs, or single-cell DEGs across different cell
types), permutation tests were used. Over-enrichment in the overlap
between sets was computed by randomly sampling sets of equivalent
size from the corresponding universes andmeasuring the intersection.
Null distributions were built by running 1000 permutations of the
samplings to obtain an empirical p-value. When performing multiple
tests, the p-values were adjusted formultiple testing within each set of
comparisons and declared significant at FDR <0.05. A measure of fold
enrichmentwas defined as the ratio of the observed intersection to the
mean intersection of the null distribution.

Locus overlap analyses. Locus overlap analysis (LOLA) was per-
formed with the R/Bioconductor package LOLA (v1.16.0)149 using cus-
tom databases. Sets of regions were tested for over-enrichment in
specific genomic regions using one-sided Fisher’s exact tests (FDR <
0.05) with appropriate filtered backgrounds being used in each case.

The chromatin state tracks used in the LOLA analyses for
mouse postnatal P0 tissues from ENCODE372 were obtained from
http://renlab.sdsc.edu/renlab_website/download/encode3-mouse-
histone-atac.

Protein half-life normalization. Protein half-lives for mouse embryo-
nic neurons, as estimated byMathieson and colleagues42, were used to
normalize protein measurements. The half-lives of any reported
quality for the two replicates provided were averaged, and missing or
infinite values were filtered out. Finally, log2-transformed area-nor-
malized protein measurements were divided by their respective pro-
tein half-life to produced life-normalized values.

Definition of bivalent and chromatin-switching chromatin domains.
Bivalent chromatin domains were defined as regions of intersecting
H3K4me3 and H3K27me3 consensus peaks. Chromatin-switching
domains were defined as regions of intersecting H3K27me3 aging
up-DERs and H3K9me3 aging down-DERs.

Curation of rejuvenating genes and regions. To curate RNA-seq
reversal genes (see Supplementary Dataset 21), aging DEGs (FDR <
0.05) were selected with log2(FC) > 0.25 which displayed opposite
changes associated with EE with log2(FC) > 0.25. To select genes spe-
cifically rejuvenated in old samples, differential analyses were per-
formed with DESeq2 to compare OC vs YC +YE +OE. Then, significant
genes (FDR <0.05) with log2(FC) < 0.25 and which, additionally, did
not display evidence of change with EE in young samples (p ≥0.05)
were selected.

To curate proteomic reversal and old-rejuvenation genes (Sup-
plementary Dataset 21), the same procedure was followed, except that
limma was used for the differential protein analyses. Finally, rejuve-
nation genes with consistent measurements of RNA and protein
alterations were defined by choosing aging DEGs and DEPs (unad-
justed p <0.05) which changed in the same direction and showed a
parallel but opposite direction with EE.

To curate ChIP-seq regions rejuvenated in old samples (see
Supplementary Dataset 24), differential analyses were performed with
DESeq2 to compare OC vs YC+ YE +OE. Then, significant regions
(FDR <0.05) with at least a log2(FC) > 0.25 change in OC
samples compared to OE samples and which, additionally, did not
display evidence of change with EE in young samples (p ≥0.05) were
selected.

With regards to the direction of change of rejuvenating genes and
regions, “down” changes refer to events in which the rejuvenation
brings back down the expression or epigenomic levels, while “up”
changes refer to the opposite trend.

Single cell sequencing analyses
Single cell profiling of gene expression and chromatin
accessibility
Fresh-frozen dorsal hippocampi (animals were deeply anaesthetized
with pentobarbital and perfused with 0.9% saline) were homogenized
in 4ml of lysis solution (Tris-Hcl 20mMpH: 7.5, Tween20 0.1%,
Sucrose 0.25M, KCl 25mM, MgCl2 5mM) using a douncer (Fisher
Scientific) 10-15 times on ice. Resulting homogenates were centrifuged
at 4 °C 500×g for 5min and the debris-containing supernatants
removed. Nuclei pellets were further cleaned using a mixture of 4ml
lysis solution and 2ml Optiprep (ProteoGenix, #1114542) and cen-
trifuging at 4 °C 1500×g for 10min. Samples were resuspended in
300 µL of lysis solution and the concentration of nuclei quantified
using a Neubauer counting chamber (Karl Hecht). Per condition, the
equivalent nuclei quantities of three samples (1.5M nuclei each) were
pooled and centrifuged at 4 °C 500×g for 5min. The rest were kept at
-80 °C in amixture of 70% lysis solution, 30%DMSOand2%BSA. Nuclei
were permeabilized in 100 µL of 0.1X lysis buffer (10x Genomics,
#CG000375) for 2min on ice. Permeabilizationwas stopped by adding
1ml 1X Wash buffer (10x Genomics, #CG000375), mixing and cen-
trifuging at 4 °C 500×g for 5min. Permeabilized nuclei were then
resuspended in 100 µL 1X Diluted Nuclei Buffer (10x Genomics,
#CG000375), filtered using a pluriStrainer Mini 20 µm (Pluriselect,
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#43-10020-40) and finally quantified using a Countess 3 FL Automated
Cell Counter (Thermo Fisher Scientific).

Single-nuclei RNA- and ATAC-seq libraries were generated using
the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sion kit according to the manufacturer’s instructions (10x Genomics,
#CG000338). The transposed nuclei suspensionwas loaded ontoNext
GEM Chip J targeting 16,000 nuclei and then run on a Chromium
Controller instrument to generate GEM emulsion (10x Genomics).
Libraries were quantified using Agilent Bioanalyzer High Sensitivity
DNA kit (Agilent). Finally, the libraries were sequenced on an Illumina
NovaSeq 6000 system.

Single cell data preprocessing
The scRNA and scATAC FASTQ reads generated were jointly analysed
using the Chromium Multiome Cell Ranger ARC pipeline (v2.0.1, 10X
Genomics). Each sample was run independently to perform alignment
(mm10 genome), quantification and joint cell calling using the paired
RNA and ATAC information. The output filtered HDF5 matrices were
subsequently processed within R using Seurat, SingleCellExperiment
and ChromatinAssay objects from the R packages Seurat (v4.3.0)93,
SingleCellExperiment (v1.20.0)150 and Signac (v1.8.0)151.

Preprocessing was performed individually for each sample. First,
cell doublets were inferred from the scRNA data using the R/Bio-
conductor packages scds (v1.14.0, hybrid method)152 and scDblFinder
(v1.12.0)153, the latter also being used to infer cell doublets from the
scATAC data by activating the aggregateFeatures parameter. Those cell
barcodes marked as doublets across the two omic layers were filtered
out. In addition, standard filtering steps were used within Seurat to
remove low quality cells across both omics: for scRNA, those cells with
library counts >99th percentile, mitochondrial percentage >99th per-
centile, ribosomal percentage <1st percentile, containing <1000 total
counts and <200 total features were filtered out, while genes mapping
to >1 Ensembl symbol or expressed in <3 cells per groupwere removed.
For scATAC, those cells with library counts >99th percentile, feature
counts >99th percentile, TSS enrichment score <2, nucleosome signal
>4, blacklist percentage > 5%, containing <1000 total counts and <500
total features were filtered out, while peaks mapping to blacklisted
regions defined by ENCODE (mm10, v2)134 were removed.

Next, the scRNA or scATAC individual samples were integrated
into a common dataset for each omic layer. For the scRNA data,
samples were first normalized using the SCT method154 implemented
in Seurat and then integrated within Seurat by finding integration
anchors and using the IntegrateDatamethod. To integrate the scATAC
data, peaks were first re-quantified across a common set of peaks
across all samples. Sampleswere thennormalized using the LSI (TF-IDF
followed by SVD) method155 implemented in Signac and then inte-
grated within Seurat by finding integration anchors and then inte-
grating the embeddings using the “lsi” reductions of the pre-merged
samples.

Joint multimodal single cell data clustering
First, omic-independent clustering was conducted within Seurat: for
scRNA, PCA was run across the first 50 components and UMAP was
performed on the PCA reduction for the first 30 dimensions (selected
by the Elbow method), to find nearest neighbours (k = 20) and then
identify 29 clusters via shared nearest neighbours (resolution =0.8,
algorithm= 1). For scATAC, UMAP was performed on the “integrated
lsi” reduction for the first 30 dimensions excluding the first dimension
(highly correlated with sequencing depth), to find nearest neighbours
(k = 20) and then identify 25 clusters via shared nearest neighbours
(resolution =0.8, algorithm= 3). Using this initial clustering, proble-
matic clusters were identified as those with > 50% cells belonging to
the same sample or those depleted with <5% cells of any sample. The
cells belonging to these clusters were filtered out and clustering was
again performed using the aforementioned parameters.

Next, scRNAand scATACwere integrated into the samedataset by
retaining barcodes present across both layers and joint multimodal
clustering was performed using the information from both omics, via
the weighted-nearest neighbour (WNN) method in Seurat, using the
FindMultiModalNeighbors function which combines the PCA scRNA
reduction (first 50 dimensions) and the scATAC “integrated lsi”
reduction (first 30 dimensions excluding the first). UMAP was subse-
quently run, and 26 clusters were found via shared nearest neighbour
analysis (resolution =0.8, algorithm= 3).

The agreement between clustering or cell type annotations was
measured by computing adjusted rand indices (ARI)156.

Cell type annotation of single cell data
To annotate the WNN clusters to cell types, two recent single cell
expression atlases were used: a murine brain aging profiling by
Ximerakis and colleagues28 spanning 37,069 cells (accessed through
the Single Cell Portal from Broad Institute, https://portals.
broadinstitute.org/single_cell) and a single-cell characterization of
the mouse isocortex and hippocampal formation by Yao and
colleagues38 across 73,347 cells (accessed through the Allen BrainAtlas
database130). The useof two separate atlases allowed for the robust and
high-confidence calling of cell types and also provided reciprocal
validation of the annotated identities.

To achieve this, the atlaseswere independently used as references
to annotate the study dataset by projecting their data structure to the
query dataset using transfer anchors and UMAP projection via the
MapQuery method within Seurat. Two parallel annotations were thus
generated which showed extremely high concordance across major
cell types (ARI = 0.97, see Fig. S9b, c). The WNN clusters were then
independently annotated to cell types using the two references by
assigning a cell type when detected in >75% of the cluster’s cells.
Mixed-cell clusters were subclustered using Seurat’s FindSubCluster
method and re-annotated. The two final annotations were then com-
bined to produce a definitive annotation which leveraged information
from both atlases (see Supplementary Dataset 25): for instance, oli-
godendrocyte progenitors were identified with the Ximerakis dataset,
while hippocampal region subtypes, not distinguished in this atlas,
were resolved with the Yao dataset.

Differential expression analyses within cell types
Differential gene expression analyses were performed to find aging-
and EE-associated changes withinmajor cell types: NEU (CA1; CA3; DG;
CR; L5/6, Sub; GABAMGE; GABA CGE), MIG, ASC, OLG, OPC and VASC
(containing END, PER andVLM). A negative binomial generalized linear
model was used within Seurat’s FindMarkers function to test the effect
of EE in young, old, or all samples (YC vs YE; OC vs OE; YC +OC vs
YE +OE) and the effect of aging in all samples (YC vs OC; YC + YE vs
OC+OE). For the comparisons involving all samples, the effect of age
or EE was controlled for in the EE and aging comparisons, respectively.
Differentially expressedgenes (DEGs)weredefined as thosewith logFC
>0.25 and Bonferroni-adjusted p-value < 0.05 and which were expres-
sed at least in 10% of cells in one of the compared groups.

Cell type prioritization
The R package Augur (v1.0.3)94 was used with default parameters to
measure and compare the sensitivity of thedifferentmajor cell types in
response to EE and aging by computing “area under the receiver
operating characteristic curve” (AUC) values.

Differential accessibility analyses within cell types
Differential region accessibility analyses were performed to find aging-
and EE-associated changes withinmajor cell types: NEU (CA1; CA3; DG;
CR; L5/6, Sub; GABAMGE; GABA CGE), MIG, ASC, OLG, OPC and VASC
(containing END, PER andVLM). A negative binomial generalized linear
model was used within Seurat’s FindMarkers function to test the effect
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of EE in young, old, or all samples (YC vs YE; OC vs OE; YC +OC vs
YE +OE) and the effect of aging in all samples (YC vs OC; YC + YE vs
OC+OE). For the comparisons involving all samples, the effect of age
or EE was controlled for in the EE and aging comparisons, respectively
and additionally, the total number of reads in peaks was included as a
covariate. Differentially accessible regions (DARs) were defined as
those with logFC >0.25 and Bonferroni-adjusted p-value < 0.05 and
which were expressed in at least 5% of cells in one of the compared
groups.

Visualization of results
Visualization of results was carried out using IGV (v2.9.4)157, deepTools
(v3.5.0)138 and the R packages ggplot2 (v3.3.5)158, ComplexHeatmap
(v2.8.0)159, EnrichedHeatmap (v1.22.0)160, circlize (v0.4.10)161, GViz
(v1.30.3)162, ComplexUpset (v1.3.3), eulerr (v6.1.0) and ggallu-
vial (v0.12.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data underpinning this article are available in the article and in its
Supplementary Material. Additionally, the raw sequencing data have
been deposited in the European Nucleotide Archive (ENA) under the
following accessionnumbers: PRJEB58981 (RNA-seq), PRJEB59326 (EM-
seq), PRJEB59328 (ATAC-seq), PRJEB59330 (ChIP-seq) and PRJEB59404
(single cell RNA-seq and ATAC-seq). The raw proteomics data have
been deposited in the Proteomics Identification Database (PRIDE)
under the accession number PXD045567. Finally, preprocessed and
extended data sets, including chromatin state annotations and pre-
processed single cell data (Seurat objects), are available in a Zenodo
repository at https://doi.org/10.5281/zenodo.8372431.

Code availability
All code underlying this study is publicly available at Zenodo: https://
doi.org/10.5281/zenodo.8372431.
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