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Deep representation learning of chemical-
induced transcriptional profile for
phenotype-based drug discovery

Xiaochu Tong1,2, Ning Qu1,2, Xiangtai Kong1,2, Shengkun Ni1,2, Jingyi Zhou1,3,4,
KunWang1,5, LehanZhang1,2, YimingWen1,2,6, JiangshanShi1,2, SulinZhang 1,2 ,
Xutong Li 1,2 & Mingyue Zheng 1,2,6

Artificial intelligence transforms drug discovery, with phenotype-based
approaches emerging as a promising alternative to target-based methods,
overcoming limitations like lack of well-defined targets. While chemical-
induced transcriptional profiles offer a comprehensive view of drug mechan-
isms, inherent noise often obscures the true signal, hindering their potential
for meaningful insights. Here, we highlight the development of TranSiGen, a
deep generative model employing self-supervised representation learning.
TranSiGen analyzes basal cell gene expression and molecular structures to
reconstruct chemical-induced transcriptional profiles with high accuracy. By
capturing both cellular and compound information, TranSiGen-derived
representations demonstrate efficacy in diverse downstream tasks like ligand-
based virtual screening, drug response prediction, and phenotype-based drug
repurposing. Notably, in vitro validation of TranSiGen’s application in pan-
creatic cancer drug discovery highlights its potential for identifying effective
compounds. We envisage that integrating TranSiGen into the drug discovery
andmechanism researchholds significant promise for advancing biomedicine.

The field of drug discovery is experiencing a paradigm shift driven by
artificial intelligence (AI). While target-based approaches have long
dominated the field, their limitations—including a lack of well-defined
targets, off-target effects, and unsatisfactory therapeutic responses—
have driven the rise of phenotype-based methods. These approaches
focus on the comprehensive cellular response to drug candidates,
offering a more holistic understanding of disease mechanisms and
potentially revealing novel drug targets and therapeutic avenues.

Transcriptomics data analysis plays a crucial role in drug dis-
covery and understanding disease mechanisms. By capturing the glo-
bal gene expression landscape across diverse biological contexts, it

offers rich insights into cellular and organismal states. High-
throughput RNA sequencing (RNA-seq) technologies have facilitated
the generation of large-scale perturbational gene expression profiles,
exemplifiedbydatabases likeConnectivityMap (CMap)1, the Library of
Integrated Network-based Cell-Signature (LINCS)2, PANACEA3,
ARCHS44 and ChemPert5. These large-scale perturbational gene
expression profiles provide invaluable insights into how cells respond
to various disruptions. The exploration of these profiles plays a central
role in drug discovery, helping to elucidate mechanisms of action
(MOA)1,6,7. For example, the CMap project proposed a pattern-
matching strategy to identify compounds with shared MOA1.
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Furthermore, machine learning models like our proposed SSGCN can
analyze relationships between chemical-induced and gene
knockdown-induced profiles, offering a powerful method for identi-
fying potential drug targets8,9. Additionally, generativemodels, such as
Pham et al.’s FAME, applied to these perturbational profiles enable
phenotypic molecular design10–12.

Despite the immense value of perturbational gene expression
profiles, the combinatorial complexity of drug-like molecules and cell
lines limits exhaustive exploration through high-throughput experi-
ments. This challenge has spurred the development of deep learning
models capable of predicting transcriptional profiles for novel che-
micals using publicly available data. DLEPS is a deep neural network
designed to predict gene expression responses to new chemicals
without cell-type specificity13. Furthermore, DeepCE14 and CIGER15 uti-
lize one-hot encoding to distinguish between cell types, learning from
diverse perturbational profiles. MultiDCP uniquely extends this by
incorporating cellular context to predict both context-dependent
gene expression and cell viability16, enabling context-specific predic-
tions for novel cell lines.

However, supervised learning models that directly fit gene
expression valuesmay struggle todistinguish trueperturbation signals
from confounding factors and the inherent noise within expression
profiles. Recent studies highlight the power of variational auto-
encoders (VAEs) in handling high-dimensional, noisy transcriptomics
data17,18. To address the limitations of data and generate novel per-
turbational profiles, we propose Transcriptional Signatures Generator
(TranSiGen), a VAE-based framework leverages self-supervised repre-
sentation learning to denoise and reconstruct transcriptional profiles,
enabling the inference of new perturbational profiles. TranSiGen
simultaneously learns three key distributions: the basal profiles with-
out perturbation, the chemical-induced perturbational profiles, and
the mapping relationship between them. This self-supervised
approach effectively mitigates noise in the data and uncovers the
underlying perturbation signals. TranSiGen offers several key benefits.
(1) Improved inferenceof transcriptional profiles: TranSiGen’s superior
performance in inferring basal profiles, chemical-perturbational pro-
files, and the corresponding differential expression genes (DEGs) was
demonstrated by comparisons with baseline models. (2) Unified
representation for cellular and compound features: TranSiGen’s gen-
erated perturbational profiles effectively capture both cellular and
compound features, as evidenced by visualization analysis differ-
entiating cell lines and drugs’ MOA. (3) Versatile applications in
downstream tasks: TranSiGen-derived representations have proven
effective in various tasks including ligand-based virtual screening, drug
response prediction, and phenotype-based drug repurposing. Its
application in screening compounds against pancreatic cancer, with
subsequent in vitro validation and high hit rates, demonstrates the
power of TranSiGen’s phenotype-based approach for identifying
potent compounds. Importantly, TranSiGen’s integration into
phenotype-based drug discovery pipelines has the potential to sig-
nificantly improve efficiency and reduce costs.

Results
The overview of TranSiGen
TranSiGen is a VAE-based model that simultaneously learns three dis-
tributions: basal profiles without perturbation, perturbational profiles,
and the mapping relationship between them. It utilizes a self-
supervised representation learning strategy to mitigate noise effects
in the transcriptional profile and uncover the signal of perturbation.

The transcriptional profiles used in the model are obtained from
level 3 data of the newly released CMAP LINCS 2020 dataset2,19. These
profiles consist of 978 measured landmark genes per profile. Specifi-
cally, basal profiles (X 1) represent control profiles treated with DMSO,
while perturbational profiles (X2) represent transcriptional profiles
treated with compounds. For each plate, the DMSO-treated control

profile from the same plate is selected as X 1, forming a paired X 1 ~X2.
The dataset includes 219,650 X 1 ~ X2 pairs for 8316 compounds across
164 cell lines. Since L1000 assays are typically conducted with three or
more biological replicates, there may be multiple X 1 ~X2 pairs for a
perturbation-cell combination in the dataset. To ensure only one
X 1 ~ X2 pair per perturbation on each cell line, the repeated X 1 and X2

pairs were further processed using the moderated-Z weighted avera-
ges algorithm (MODZ). The processed data consists of transcriptional
profiles for 8316 compounds on 164 cell lines, including 78,569 X 1 ~ X2

pairs (Fig. 1a).
TranSiGen consists of twoVAEmodels: one encodes basal profiles

X 1, and another encodes perturbational profiles X2 (Fig. 1b and Sup-
plementary Fig. 1). It learns to map from X 1 and the perturbation
representation to X2, which is denoted as X 0

2. During inference, Tran-
SiGen generates X 0

2 from the input X 1 and the perturbation repre-
sentation (Fig. 1b), and finally obtains the inferred DEGs ΔX 0 of the
compound, where ΔX 0 =X 0

2 � X 1. A complete list of the symbols and
notations used here were summarized in Table 1.

In downstream applications, TranSiGen can generate perturba-
tional profiles for numerous compounds, allowing exploration of a
larger space that is not covered by training data. The perturbational
representation derived fromTranSiGen can be applied to ligand-based
virtual screening, drug response prediction in cells, and phenotypic
screening of candidate compounds for disease (Fig. 1c).

TranSiGen enables effective learning for transcriptional
profiling
In this study, TranSiGenwas used to simultaneouslyfit the basal profile
X 1 and the perturbational profile X2. The model’s performance in
learning X 1, X2 and the corresponding DEGs ΔX was evaluated indivi-
dually, where ΔX =X2 � X 1. As shown in Fig. 2a, TranSiGen exhibits
excellent performance in reconstructing X 1 and X2, denoted as X̂ 1 and
X̂2, with the Pearson’s correlation coefficients (PCC) close to 1
(between X̂ 1 and X 1, between X̂2 and X2). It also performs well in
inferring X 0

2, which is predicted by X 1 and compound representation.
Compared to directly evaluating the performance of learning X 1 and
X2, the corresponding performance in fitting DEGs is slightly
decreased, with the PCC 0.734 and 0.619 in reconstructing ΔX̂
(between ΔX̂ and ΔX) and predicting ΔX 0 (between ΔX 0 and ΔX),
respectively. Additionally, the relationship between TranSiGen’s per-
formance and X 1 ∼X2 correlation coefficient (R2) was analyzed. As
shown in Fig. 2b, the sample size of the profiles increases with X 1 ∼X2

R2, aswell as the prediction performance for DEGs. For X 1 ∼X2 R
2 > 0.8,

there is a slight decrease in performance, possibly due to the pertur-
bation effects being too subtle for the model to fully capture. Overall,
the model has learned the meaningful mapping from X 1 and com-
pound to X2.

Furthermore, we evaluated the profiling capabilities of TranSiGen
by analyzing its effectiveness in learning cellular and compound
representations in ΔX 0. Figure 2c presents a visualization of dimen-
sionality reduction for both experimental ΔX and TranSiGen-derived
ΔX 0, with each point color-coded by cell type. In the case of ΔX , there
was some clustering of the same cells, but also significant mixing
between different cell types. In contrast, TranSiGen-derived ΔX 0

exhibited clear clustering of same cells and sharper distinctions
between different cell types. This suggests that the representation
derived from TranSiGen can more effectively differentiate between
various cell types compared to experimental profiling, which is subject
to high level of noise. Moreover, for compounds like decitabine,
hydroxyurea and fludarabine, the ΔX 0 for different cells are closely
grouped together, indicating their similar perturbation effects across
different cells, as they all directly induce cell death due to
cytotoxicity20. In addition to cytotoxic compounds, we expect other
compounds sharing the same MOA to display similar effects on tran-
scriptional profiling. The correlation between compounds with the
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same MOA was analyzed and is showed in Fig. 2d. TranSiGen-derived
representations have higher PCC for compounds with the same MOA
than ΔX . Meanwhile, when compared to random MOA, TranSiGen-
derived representations of the same MOA also exhibit relatively high
PCC (Supplementary Fig. 2).

Overall, TranSiGen’s self-supervised representation learning helps
denoise and reconstruct transcriptional profiles, effectively identifying
and learning meaningful cellular and compound representations
from data.

Comparison with existing models in inferring differential
expression genes
This section evaluates TranSiGen’s performance in predicting DEGs
compared to established baseline models. We benchmarked TranSi-
Gen against DLEPS13, DeepCE14, CIGER15 and MultiDCP16. Notably,
DLEPS, DeepCE, and CIGER primarily focus on de novo chemical pro-
filing, with DeepCE and CIGER employing one-hot encoding for cell
type distinction. In contrast,MultiDCP is the solemethod among these
baseline models that considers cellular context and specializes in
predicting perturbational profiles for novel cell lines. Consequently,
we assessed TranSiGen’s performance in two settings:
(1) Chemical-blind splitting: this scenario includes two tests (Fig. 3a).

In scenario 1-1, TranSiGen is compared to all models for its ability
to predict DEGs of new compounds, using a dataset with 355
compounds across 7 cells to ensure comparability amongmodels.

Fig. 1 | TranSiGen’s architecture and application. a The data processing flow for
TranSiGen. b The architecture and inference process of TranSiGen. c The applica-
tionsofTranSiGen-derived representation.X 1 represents the control profile treated
with DMSO, X2 represents the transcriptional profile treated with the compound,
X̂ 1 represents the reconstructed control profile, X̂2 represents the reconstructed
transcriptional profile, X 0

2 represents the predicted transcriptional profile, ΔX 0

represents the predicted differential expression profile, Z 1 represents the latent
representation of X 1, Z2 represents the latent representation of X2, Zmol represents
the hidden representation of the compound, Z2FZ 1 represents the latent repre-
sentation from X 1 and perturbation representation, encoderx1 represents the
encoder for X 1, decoderx1 represents the decoder for X 1, encoderx2 represents the
encoder for X2, and decoderx2 represents the decoder for X2.

Table. 1 | List of symbols and notations used in the paper

Symbol Description

X1 The control profiles treated with DMSO

X2 The transcriptional profiles treated with compounds

ΔX The differential expression genes X2 � X1

� �
X̂1

The reconstructed control profiles

X̂2
The reconstructed transcriptional profiles

ΔX̂ The reconstructed differential expression genes X̂2 � X1

� �
X0

2 The predicted transcriptional profiles from X1 and perturbation
representation

ΔX0 The predicted differential expression genes X0
2 � X1

� �
Z1 The latent representation of X1

Z2 The latent representation of X2

Z2FZ1 The latent representation from X1 and perturbation representation

Cmol The input representation of the compounds

Zmol The hidden representation of the compounds

encoderx1 The encoder for X1

decoderx1 The decoder for X1

encoderx2 The encoder for X2

decoderx2 The decoder for X2
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Fig. 2 | Transcriptional profiling representation learning by TranSiGen.
a Performance of TranSiGen in transcriptional profiling reconstruction and pre-
diction (n = 15,713). Box-and-whisker plots show the median (center line), 25th, and
75th percentile (lower and upper boundary), with 1.5 × inter-quartile range indi-
cated by whiskers and outliers shown as individual data points. b The change of
TranSiGen’s performance for ΔX 0 with the correlation between X 1 and X2. Box-and-
whisker plots show the median (center line), 25th, and 75th percentile (lower and

upper boundary), with 1.5 × inter-quartile range indicated by whiskers and outliers
shownas individual data points. The line plot corresponds to the sample sizewithin
each threshold, and the specific sample size is shown in source data.
c Dimensionality reduction visualization using ΔX and TranSiGen-derived ΔX 0 for
different cell lines.dDistributionof Pearson’s correlation coefficients ofprofiles for
the same MOA by ΔX and TranSiGen-derived ΔX 0. Source data are provided as a
Source Data file.
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Fig. 3 | The diagram of data splitting and the performance of inferring DEGs in
different scenarios. a The diagram of chemical-blind splitting and cell-blind
splitting. In scenario 1-1, a dataset of 355 compounds on 7 cell lines is split by
compounds, ensuring that test compounds do not seen in the training set. In
scenario 1-2, a complete dataset of 8316 compounds on 164 cell lines is split by
compounds. In scenario 2-2, the complete dataset of 8316 compounds on 164 cell
lines is split by cell lines. The model was trained using the profiling data of 10, 50,
and 150cell lines, and thepredictionperformancewas evaluated on 7 new cell lines.
b Model performance comparison in chemical-blind splitting. c Model

performancecomparison in cell-blind splitting (scenario 2-1).dTheperformanceof
TranSiGen in cell-blind splitting (scenario 2-2) by using different numbers of cell
lines in the training set. All models were run three times with different random
seeds. Black dots indicate the corresponding data points, and error bars represent
the mean ± standard deviation. Two-sided t-test was applied between the models,
and the exactp values are in source data. Source data are provided as a SourceData
file. (****p <0.0001; ***0.0001 < p ≤0.001; **0.001 < p ≤0.01; *0.01 < p ≤0.05 and
ns, 0.05 < p ≤ 1.0).
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In scenario 1-2, the complete dataset with 8316 compounds across
164 cells is used to evaluate TranSiGen’s scalability.

(2) Cell-blind splitting: this scenario also encompasses two tests. In
scenario 2-1, we followed the challenging experimental setup
proposed inMultiDCP16, where testing cell lines significantly differ
from the training set, to predictDEGs for new cell lines. TranSiGen
is compared to all models, excluding DLEPS due to its inability to
distinguishcell types. In scenario2-2 (Fig. 3a), TranSiGen is trained
on 10, 50, and 150 cells, then evaluated on 7 new cells, to assess
the benefit of expanding training cell types.
Results for chemical-blind splitting (scenario 1) are shown in

Fig. 3b. Detailed results, including time consumption, computational
resources, and metric scores, are provided in Supplementary
Tables 1–3. TranSiGen excels in predicting DEGs for unseen com-
pounds (scenario 1-1, Fig. 3b top). Compared to other models (DLEPS,
DeepCE, CIGER andMultiDCP), it achieves a higher average PCC across
seven cell lines. Additionally, TranSiGen outperforms these models in
Positive Precision@100 and Negative Precision@100, metrics focus-
ing on the most significantly regulated genes. Notably, TranSiGen’s
computational cost remains comparable. Furthermore, training on the
complete dataset (scenario 1-2, Fig. 3b bottom) yields state-of-the-art
performance. This significant improvement across seven cell lines
compared to scenario 1-1 (Fig. 3b top) highlights TranSiGen’s ability to
leverage more training data for accurate DEG inference.

Results for cell-blind splitting (scenario 2) are shown in Fig. 3c, d.
Comprehensive cross-validation results in Supplementary Table 4.
When comparing TranSiGen with other models (excluding DLEPS)
using the challenging experimental setup from MultiDCP, TranSiGen
consistently outperforms other models in average PCC, Positive Pre-
cision@100, and Negative Precision@100 (scenario 2-1, Fig. 3c). Fur-
thermore, TranSiGen’s performance in inferring DEGs for unseen cell
lines improves as the number of training cells increases (scenario 2-2,
Fig. 3d and Supplementary Table 5).

In addition, we further explored the impact of differentmolecular
representations and model initialization methods in the context of
chemical-blind splitting. Initializing TranSiGen with perturbational
profiles generated by gene knockdown yields superior performance
compared to random initialization. Additionally, using pre-training
representation, Knowledge-guided Pre-training of Graph Transformer
(KPGT)21, further enhances the performance of inferring DEGs, sur-
passing the molecular fingerprint ECFP4 (as detailed in the Molecular
representations in Method and corroborated by the metric scores in
Supplementary Tables 2 and 3).

Overall, these analyses underscore the efficacyof TranSiGen’s self-
supervised representation learning approach for transcriptional pro-
filing. TranSiGen surpasses all baseline models in predicting DEGs for
unseen compounds (chemical-blind splitting) and unseen cell lines
(cell-blind splitting). Notably, despite the challenges of cross-cell pre-
diction due to combined cell type and state influence on transcrip-
tional profiles, TranSiGen demonstrates superior generalizability
across cell lines. This suggests that TranSiGen effectively leverages
basal cell profiles, potentially mitigating the impact of cell type.

Ligand-based virtual screening with TranSiGen-derived
representation
Given that compounds with shared mechanisms induce similar gene
expression profiles1,7,22, we investigated the potential of predicted
DEGs from TranSiGen as molecular representation for ligand-based
virtual screening. First, as a proof-of-concept, Supplementary Fig. 3
demonstrates that active compounds targeting the same protein
exhibit higher PCC compared to active and inactive ones. Subse-
quently, the TranSiGen-derived representation was used to assess
whether a compound is active against a specific target. Specifically, we
gathered and analyzed bioactivity data for compounds in LINCS 202019

and Pubchem23 (refer to Ligand-based virtual screening in the

“Methods” section). We identified five distinct targets, namely HTR2A,
DRD2, ADRA2A, SLC6A4, and KCNH2, each having a significant num-
ber of active compounds, as illustrated in Supplementary Fig. 4. For
each target, random forest (RF) classifiers were trained to differentiate
active and inactive compounds. Notably, we evaluated the perfor-
mance of predicted DEGs from TranSiGen along with other baseline
models in both chemical-blind and cell-blind settings for these
screening models.

Figure 4a illustrates the performance of screening HTR2A (5-
hydroxytryptamine receptor 2A) active compounds in chemical-blind
setting, whereas Fig. 4b showcases the performance following the cell-
blind setting. The model based on TranSiGen-derived representation
outperforms other perturbational representations by a significant
margin (Supplementary Tables 6 and 7). This result is further sup-
ported by the dimensionality reduction distribution of active/inactive
compounds, where TranSiGen-derived representations clearly distin-
guish between the two, while other perturbational representations
exhibit overlapped distributions (Fig. 4c and Supplementary Fig. 5).

Furthermore, leveraging TranSiGen’s ability to capture com-
pound characteristics across cellular contexts, we investigated whe-
ther fusing TranSiGen-derived representations fromdifferent cell lines
improves compound screening performance. This analysis was con-
ducted within the framework of a chemical-blind splitting scenario.
Early fusion involves concatenating TranSiGen-derived representa-
tions from seven cells into one single feature, while late fusionmerges
the prediction results from seven cells. These twomodels are denoted
as TranSiGen_EF and TranSiGen_LF for early and late fusion, respec-
tively. It was observed that fusing TranSiGen-derived representations
from different cell lines further enhances the screening performance
of active compounds compared to individual cells alone (Fig. 4d).
However, the performance improvement of TranSiGen_EF is not as
significant as that of TranSiGen_LF, possibly due to the curse of
dimensionality24. High-dimensional input features in TranSiGen_EF
make it difficult to learn meaningful patterns. Similar phenomena are
also observed in ligand-based virtual screening for other four targets
evaluated (Supplementary Fig. 6).

As a molecular representation method, the TranSiGen-derived
representation was compared to other molecular structural repre-
sentations such as molecular fingerprint ECFP4 and the pre-trained
representation KGPT. The maximum Tanimoto similarities of test
molecules relative to training molecules were calculated using ECFP4.
The performance of screening active compounds was evaluated at
different maximal similarity thresholds. For compounds that are dis-
similar to the training set (chemical structure similarity∈(0.0, 0.3]), the
TranSiGen-based model demonstrates better predictive ability than
structure representation-based model (Fig. 4e, Supplementary Fig. 6
and Table 8). This suggests that using transcriptional profiling, such as
TranSiGen-derived representation, may have advantages in screening
for new scaffold compounds that differ from known compound
structures.

Therefore, TranSiGen-derived representation can be used as a
new form of molecular representation for describing the character-
isticsof compounds fromvarious cell contexts. It can alsocomplement
the structure-based representation and offer advantages in ligand-
based virtual screening.

Drug response prediction with TranSiGen-derived
representation
Chemical-induced transcriptional profiles directly associate molecular
features with the cellular effect of a particular drug. This association is
beneficial for characterizing drug response in different cells25–27. Here,
we applied the TranSiGen-derived representation to predict the area
under the dose-response curve (AUC) of a compound on a specific cell
line. The AUCs were obtained from the cancer treatment response
portal (CTRP)28,29. We defined compounds with AUCs ≥5.5 as resistant
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to cell lines, while those with AUCs <5.5 were considered sensitive28.
More details about the dataset canbe found in SupplementaryTable 9.

Todeterminewhether compounds canbe classified as sensitive or
resistant to a specific cell line based on TranSiGen-derived repre-
sentation, we first assessed the profiling similarity among different
compounds. In Fig. 5a, we calculated the PCC within a group of sen-
sitive compounds (denoted as Sensitive), as well as the PCC between
sensitive and resistant compounds (denoted as Sensitive~Resistant).
Additionally, we compared the structural similarities of the twogroups
using Tanimoto similarity based on the molecular fingerprint ECFP4
(Fig. 5b). The results indicate that the Tanimoto similarities within
Sensitive group and the Tanimoto similarities within

Sensitive~Resistant group are not significantly different on each cell
line, suggesting that the structural representation ECFP4 cannot dis-
tinguish sensitive and resistant compounds (Fig. 5b). In contrast, we
observed that the profiling similarities of Sensitive are significantly
higher than those of Sensitive~Resistant on most cell lines (Fig. 5a).
This finding demonstrates the effective discrimination between sen-
sitive and resistant compounds achieved through TranSiGen-derived
representation.

Furthermore, the TranSiGen-derived representation was used for
drug response prediction in downstream task using a RF model. Its
performancewas comparedwithRFmodels basedon other alternative
representations, including perturbational representations generated

Fig. 4 | Model performance of ligand-based virtual screening on target HTR2A.
a, b Performance of active compound prediction using different perturbational
representations in chemical-blind and cell-blind setting. Box-and-whisker plots
show the median (center line), 25th, and 75th percentile (lower and upper
boundary), with 1.5 × inter-quartile range indicated by whiskers. Colored dots
indicate the corresponding data points for seven cell lines. Two-sided t-test was
applied between the models, and the exact p values are in source data.
c Dimensionality reduction visualization of HTR2A active and inactive compounds
based on various inferred perturbational representations. d Performance of active
compound prediction by applying early fusion and late fusion for TranSiGen-

derived representation from seven different cell lines. All models were run five
times with different random seeds. Error bars represent the mean± standard
deviation. Two-sided t-test was applied between themodels, and the exact p values
are in source data. e Performance of active compounds prediction within different
thresholds ofmax similarity of testmolecules relative to train data. All modelswere
run five times with different random seeds. Black dots indicate the corresponding
data points, and error bars represent the mean ± standard deviation. Two-sided t-
test was applied between the models, and the exact p values are in source data.
Source data are provided as a Source Data file. (****p <0.0001;
***0.0001 < p ≤0.001; **0.001 < p ≤0.01; *0.01 < p ≤0.05 and ns, 0.05 < p ≤ 1.0).
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by baseline models (DLEPS, DeepCE, CIGER and MultiDCP), as well as
representations combining molecular structures and cell information
(ECFP4 + X 1 and KPGT + X 1). As shown in Fig. 5c and Supplementary
Fig. 7a, the TranSiGen-based model demonstrates significantly better
performance than other models. Additionally, to evaluate the screen-
ing performance, compounds were ranked by their predicted AUCs
(AUCspred), and classified as sensitive or resistant according to their
true AUCs. The results showed that the TranSiGen-based model pre-
dicted sensitive compounds with smaller AUCspred and higher rank-
ings, while other models ranked the sensitive compounds randomly
(Fig. 5d and Supplementary Fig. 7b). This indicates that the TranSiGen-
based model has superior screening ability for sensitive compounds.

In summary, the TranSiGen-derived representation, simulating
DEGs of compounds on cell lines, exhibits a distinguishable feature for

sensitive and resistant compounds and demonstrates remarkable
performance on drug response prediction.

Phenotype-based drug repurposing for the treatment of
pancreatic cancer
Associating chemical-induced transcriptional profiles with diseases
can help identify potential compounds for treating specific diseases2,7.
TranSiGen-derived transcriptional profiles can be used alongside the
profiles derived fromchemical-treated and -untreateddisease states to
screen candidate compounds for disease treatment.

In this study, we integrated TranSiGen into a phenotype-based
drug repurposing pipeline for pancreatic cancer30 to assess its ability
to prioritize sensitive compounds for the YAPC pancreatic cancer cell
line from a pool of 1625 compounds in the PRISM Repurposing

Fig. 5 | Model performance of drug response prediction. a The Pearson’s cor-
relation coefficients within a group of sensitive compounds and the Pearson’s
correlation coefficients between sensitive and resistant compounds based on
TranSiGen-derived representation. Box-and-whisker plots show themedian (center
line), 25th, and 75th percentile (lower and upper boundary), with 1.5 × inter-quartile
range indicated by whiskers and outliers shown as individual data points. The one-
sided Mann–Whitney test was used to analyze the data. The exact p values and
sample sizes are in source data. b The Tanimoto similarity within a group of sen-
sitive compounds and the similarity between sensitive and resistant compounds
based on molecular fingerprint ECFP4. Box-and-whisker plots show the median
(center line), 25th, and 75th percentile (lower and upper boundary), with 1.5 × inter-

quartile range indicated by whiskers and outliers shown as individual data points.
The one-sidedMann–Whitney test was used to analyze the data. The exact p values
and sample sizes are in source data. c Performance of predicting drug response
using various type of representations. All models were run five times with different
random seeds. Black dots indicate the corresponding data points, and error bars
represent themean ± standard deviation. Two-sided t-test was applied between the
models, and the exact p values are in source data. d Ranking results of compounds
by AUCspred of models based on various type of representations. Source data are
provided as a Source Data file. (****p <0.0001; ***0.0001 < p ≤0.001;
**0.001 < p ≤0.01; *0.01 < p ≤0.05 and ns, 0.05 < p ≤ 1.0).
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dataset31. We used two phenotype-based strategies and compared
them to a conventional structural similarity-based protocol (Fig. 6a).
TranSiGen_DRUG used the real DEGs of approved pancreatic cancer
drugs to identify compounds with similar perturbation effects. Con-
versely, TranSiGen_DISEASE looked for compounds that can reverse
the DEGs of pancreatic cancer. Both strategies used connectivity
scores32 to measure the relationship between DEGs. For comparison,
ECFP4_DRUGwas implemented to find compounds structurally similar
to the approved drugs using ECFP4-based Tanimoto similarity. For
more information, please refer to the section Phenotype-based drug
repurposing for pancreatic cancer in the “Methods” section.

The screening performance of the three methods is shown in
Fig. 6b. ECFP4_DRUG yields the worst predictive classification

performance, follows by TranSiGen_DISEASE, and the best is TranSi-
Gen_DRUG. Notably, the TranSiGen_DISEASE approach doesn’t require
any chemical-treatedprofiles, simulating scenarioswhere diseases lack
known therapeutic drugs. This is a challenge not addressed by the
structural similarity-based strategy. Even without using perturbed
profiles of known drugs, TranSiGen_DISEASE effectively enriches hits
among the top-ranking compounds (Supplementary Table 10).
Phenotype-based strategies can identify compounds less similar to the
approved drugs than those screened by ECFP4_DRUG (Fig. 6c and
Supplementary Fig. 8). For instance, nature products thiostrepton and
resibufogenin (Fig. 6c) ranks in the top 10 without sensitive annota-
tions in PRISM dataset (Supplementary Table 11). Their abilities to
inhibit pancreatic cancer cells have been confirmed by a literature

Fig. 6 | Phenotype-based drug repurposing for the treatment of pancreatic
cancer. a The flow chart of drug repurposing strategy. b The screening perfor-
mance of phenotype-based strategy and structural similarity-based strategy.
c TranSiGen_DISEASE screened compounds that are capable of inhibiting pan-
creatic cancer cells, and their max structural similarities to approved drugs. d The

rankings of thiostrepton and resibufogenin from different screening strategies.
e Top 50 compounds screened by TranSiGen_DISEASE and their respective cell
proliferation inhibition activities. f Top 50 compounds screened by TranSiGen_-
DRUG and their corresponding cell proliferation inhibition activities. Source data
are provided as a Source Data file.
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survey33,34. Thiostrepton, a natural cyclic oligopeptide, reduces the
viability and clonogenicity of pancreatic cancer cell lines and induces
ferroptosis via STAT3/GPX4 signaling34. Resibufogenin, a steroid lac-
tone from the skin venom gland of toads, demonstrated potent anti-
pancreatic cancer effects in vivo and in vitro, and can induce caspase-
dependent apoptosis33. Figure 6d summarizes the rankings of these
two compounds in different screening strategies. Both phenotype-
based strategies, TranSiGen_DISEASE and TranSiGen_DRUG, con-
sistently prioritizes them. In contrast, the structure-based strategy
ECFP4_DRUG fails to effectively prioritize these nature products,
ranking them at 1289 and 616, respectively. This may be attributed to
the large structural differences between them and approved drugs,
highlighting the inherent limitation of a structure-based strategy.

Moreover, we conducted a phenotype-based screening using the
compound library available in our laboratory for pancreatic cancer and
subsequently experimentally validated the top candidates in vitro.
Specifically, we employed TranSiGen to predict the DEGs of 31,465
compounds on the YAPC pancreatic cancer cell line. These compounds
were ranked using two distinct phenotype-based strategies, TranSi-
Gen_DISEASE and TranSiGen_DRUG. Subsequently, we selected the top
50 compounds fromeach strategy to experimentally assess their activity
on YAPC cells. Notably, positive molecules, including chemotherapy
drugs (fluorouracil, gemcitabine, mitomycin C, paclitaxel and irinote-
can), and targeted drugs (sunitinib, erlotinib and everolimus), were
included as reference compounds (refer to the Experimental setting of
validating screened compounds for pancreatic cancer).

Figure 6e, f displays the top 50 compounds identified through
screening with TranSiGen_DISEASE and TranSiGen_DRUG, along with
their respective cell proliferation inhibition activities. In total, the hit
rates for TranSiGen_DISEASE and TranSiGen_DRUG are 38% and 80%,
respectively. Here, a hit is defined as having an IC50 less than 10μM, a
criterion comparable to that of the positive controls. The detailed
prediction and experimental data for these top-ranking compounds
are presented in Supplementary Tables 12 and 13.

Specifically, among the active molecules identified by TranSi-
Gen_DISEASE, HDAC inhibitors (panobinostat, pracinostat, belinostat,
apicidin, dacinostat, romidepsin, trichostatin A, alteminostat, moceti-
nostat and PCI-24781) consistently exhibit robust activities, indicating
the promise of epigenomic therapeutics in pancreatic cancer35. On the
other hand, the dominant category among the top 50 comprises
selective kinase inhibitors, including a recently discovered JAK kinase
selective inhibitor (JAK2-IN-7, identified in 2020), the aurora kinase
inhibitor AT9283, and the FLT3 inhibitor FLT3-IN-3. Their kinase inhi-
bitory activities may serve as the underlying mechanism for their anti-
YAPC effects36. Among the active molecules identified by TranSi-
Gen_DRUGscreening, ferroptosis inducers exhibit robust activity, such
as ML162, CIL56, and FIN56. This observation can be attributed to the
crucial role of ferroptotic damage in both promoting and suppressing
KRAS-driven pancreatic tumorigenesis37. Additionally, we examined
two Wnt/β-catenin inhibitors, hexachlorophene and tegatrabetan.
While hexachlorophene has been reported to reduce the proliferation
of pancreatic cells38, our newly identified compound tegatrabetan
(64.04 nM) exhibits significantly higher activity compared to hexa-
chlorophene (8.83μM).

These results highlight the effectiveness of the phenotype-based
strategies that use TranSiGen-derived representation in identifying
potent candidate compounds, including those with unique structures.
Overall, TranSiGen expands the range of compounds that can be
screened with predicted perturbational profiles. It can be easily inte-
grated into a phenotype-based drug repurposing pipeline, improving
drug discovery efficiency and minimizing costs.

Discussion
The field of drug discovery is undergoing a significant transformation
with the integration of AI. While target-based approaches have been

the dominant strategy, they are often hampered by limitations: (1)
Many diseases lack clear and accessible protein targets, making it
difficult to design effective drugs. (2) Targeting specific proteins can
inadvertently interact with other molecules in the cell, leading to off-
target effects and unexpected side effects. (3) Even when a target is
identified, the resulting drugmay struggle to reach its targetwithin the
cell due to poor cell permeability, thereby hindering the achievement
of the desired therapeutic effect39,40. These challenges have spurred
the emergence of phenotype-based approaches, which directly ana-
lyze overall cellular response to drugs, offering a more holistic
understanding of disease mechanisms, and the potential for dis-
coveries of novel drug mechanisms and therapeutic opportunities13,41.

This study introduced TranSiGen, a VAE-based framework
designed to address the limitations of supervised learning models for
perturbational gene expression data. TranSiGen’s novel self-
supervised representation learning strategy effectively denoises tran-
scriptional profiles. Extensive evaluations show that TranSiGen out-
performs existing models in inferring basal profiles, chemical-induced
perturbational profiles, and corresponding DEGs. This capability
unlocks new avenues for expanding and enhancing existing drug dis-
covery datasets. TranSiGen’s core strength lies in its ability to over-
come the noise and confounding factors inherent in gene expression
profiles, offering a standardized way to characterize phenotypic
information related to both cellular context and compound effects.
This standardization facilitates integration and efficiency improve-
ment across various downstream tasks, including ligand-based virtual
screening, drug response prediction, and phenotype-based drug
repurposing. Notably, its use in phenotype-baseddrug repurposing for
pancreatic cancer, with subsequent in vitro validation, showcases its
promise for real-world drug discovery scenarios.

TranSiGen sets the stage for continued exploration of VAE-based
models and self-supervised learning approaches in drug discovery.
Our future efforts will concentrate on addressing the heterogeneity of
data from diverse sources in TranSiGen and enhancing the model’s
generalization performance concerning basal profiles from other
platforms to broaden its application areas. Additionally, we plan to
enhance the model’s precision and interpretability by incorporating
prior biological knowledge, such as pathways and gene ontologies.
Beyond its current application in drug discovery, we are eager to
investigate TranSiGen’s potential utility in precision medicine and
disease modeling, recognizing the substantial promise in these areas.
The ultimate goal in this field is to create a truly comprehensive fra-
mework for efficiently utilizing high-dimensional gene expression
data. This will accelerate drug discovery and unravel the complexities
of disease mechanisms. TranSiGen, with its unique strengths and
extensibility, marks a valuable step toward realizing this goal.

Methods
Transcriptional data processing
LINCS2 hasmadepublicly available resources onhigh-throughput gene
expression profiles of different perturbations, such as small molecules
and shRNAs. Using the L1000 assay, it is possible to measure the
expression values of only 978 landmark genes, while still recovering
most of the full transcriptome. The latest CMAP LINCS 2020 dataset
was used in this study19.

In LINCS, there are 5 levels of data. For this study, we utilized level
3 data, which included both raw perturbation profiles and control
profiles (denoted as X 1 and X2, respectively). To filter the profiles, we
used themost common conditionwith a duration of 24h and a dosage
concentration of 10μM for perturbed expression profiles by com-
pounds. Additionally, we matched the expression profile with DMSO
vehicle to the perturbed profiles on the same plate to create paired
profiles X 1 ~ X2, minimizing batch effects between cases and controls.
The extracted dataset contained 219,650 X 1 ~X2 pairs for 8316 com-
pounds on 164 cell lines. Furthermore, MODZ was applied to ensure
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that only one X 1 ~X2 pair per compoundwas included for each cell line
with multiple X 1 ~ X2 pairs. The processed dataset contained the
transcriptional profiles of 8316 compounds on 164 cell lines, including
78,569 X 1 ~ X2 pairs.

The gene expression profiles induced by shRNA were processed
using the same method described above. Profiles from the 10 most
common cell lines (A375, A549, ASC, HA1E, HCC515, HT29,MCF7, NPC,
PC3, and VCAP) measured after 24 h were selected. The control profile
with an empty vector in the same plate was then paired with the per-
turbed profiles. The final dataset contained 188,509 X 1 ~ X2 pairs
consisting of 4112 shRNAs on 10 cell lines, which was used to initialize
two VAEs in TranSiGen.

Molecular representations
Considering that the current number of compounds with experimen-
tallymeasured gene expression profiles is still limited compared to the
vast chemical space, TranSiGen utilized the pre-trained molecular
representation KPGT21 for compounds. KPGT is a novel self-supervised
learning framework for molecular graph representation. It leverages a
knowledge-guided pre-training strategy to capture rich structural and
semantic information from large-scale unlabeled molecular graphs. In
this study, the 2034-dimensional representation obtained from the
KPGT pre-trained model was used as the molecular input for
TranSiGen.

Alternatively, chemical fingerprints, are widely used as a form of
molecular representation in machine learning, as they possess the
virtues of being lightweight, computationally efficient, and ability to
capture key molecular features42. Accordingly, we employed chemical
fingerprints as the molecular input for TranSiGen. They are repre-
sented as binary vectors indicating the presence or absence of parti-
cular substructures in compounds. Specifically, the molecular
fingerprint ECFP443 with a radius of 2 and a length of 2048 was
used here.

TranSiGen architecture
The VAE44 is a deep generative model consisting of an encoder and a
decoder. The encoder extracts significant information from the input,
compressing it into a latent representation. Meanwhile, the decoder
reconstructs a near-identical output from this latent vector. Conse-
quently, VAE is capable of learning an efficient and meaningful latent
space from high-dimensional data by compressing and reconstructing
the original input. Unlike the standard autoencoder, which maps the
input to a point in the latent space and trains by minimizing the
reconstruction error, VAE encodes the input to a distribution. This
requires the addition of a Kullback-Leibler (KL) divergence term to the
reconstruction loss, which constrains the latent vectors to match a
Gaussian distribution.

The architecture of TranSiGen consists of two VAEs: one for
encoding the basal profiles X 1 and the other for encoding the pertur-
bation profiles X2. Each VAE comprises an encoder with two hidden
layers ([1200, 100] dimensions) and a corresponding two-layer

decoder ([100, 800] dimensions). TranSiGen minimizes the loss of
learning the representations of X 1 and X2. Additionally, a linear func-
tion is used to map from the latent representation Z 1 of X 1 and the
hidden representation Zmol of the compound representation Cmol to
the perturbed latent representation Z2FZ 1 of X 0

2, mimicking the
chemical-induced transcription changes. The layer and dimension
details of TranSiGen are shown in Supplementary Fig. 1.

During the training process, TranSiGen also minimizes the loss of
predicting the differential expression genes ΔX 0. This involves mini-
mizing the reconstruction loss between X 0

2 � X 1 and X2 � X 1, aswell as
constraining the predicted perturbed latent representation Z2FZ 1

match to the latent representation Z2. The loss function of TranSiGen
is defined as follow:

Loss = MSE X 1, X̂ 1

� �
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Performance evaluation metrics
As shown in Table 2, the model’s prediction performance was mainly
evaluated using following metrics: Root mean squared error (RMSE),
Pearson’s correlation coefficient, and Precision@K. RMSE and Pearson
coefficient were used to measure the prediction performance on the
overall landmark genes. Precision@k, on the other hand, focused on
themost significantly up- and down-regulated expressed genes. In this
study, Positive Precision@100 was evaluated for the top 100 up-
regulated genes, while Negative Precision@100 was evaluated for the
top 100 down-regulated genes. We also evaluated additional regres-
sionmetrics, including sumof squares due to error (SSE),mean square
error (MSE), mean absolute error (MAE) and multiple r2.

Ligand-based virtual screening
We constructed a compound library (7148 compounds) for virtual
screening against HTR2A. This library excluded the 355 compounds
used for parallel performance comparison across seven cell lines,
ensuring data integrity and preventing leakage. To assess model per-
formance in downstream tasks, we predicted perturbation profiles for
these 7148 compounds, which were then used to train the models.
Target annotations for these molecules were obtained from two
sources: the LINCS 202019 compound information file and PubChem23

bioactivity data. For PubChem data, we considered compounds with
IC50, Ki, or Kd values below 10μM as targets. This process identified 41
active compounds for HTR2A. The remaining compounds in the
external test set were randomly sampled at a 1:5 ratio to create a set of
inactive compounds. Notably, similar screening was also conducted
for four additional targets (DRD2, ADRA2A, SLC6A4, and KCNH2)
using the same strategy as HTR2A. Finally, the compounds were split
into training and test set with a ratio of 4:1 in each cell line.

Table. 2 | Description of the evaluation metrics

Evaluation metric Equationa

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i= 1

ΔXi � ΔX0
i

� �2s

Pearson’s correlation coefficient covðΔX�ΔX0 Þ
σΔXσΔX0

Positive Precision @100 G100�positive \G0
100�positive

G0
100�positive

Negative Precision@100 G100�negative \G0
100�negative

G0
100�negative

a n represents the number of landmark genes in expression profiles,G represents the sets of top
100 positive/negative genes, G0 represents the sets of top 100 predicted genes.
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Given the limited availability of dataset for active compound
screening, we used RF for active compound prediction. To construct
the RF classifiers, we used two types of features: inferred perturba-
tional representations (TranSiGen, DLEPS, DeepCE, CIGER and Mul-
tiDCP) and structural representations (molecular fingerprint ECFP4,
and pre-trained representation KPGT). We conducted a hyperpara-
meter search for n_estimators, max_depth, criterion and obb_score to
find theoptimalmodel. To evaluate themodel performance,wemainly
used the area under the Precision–Recall curve (AUPR), and also cal-
culated other classification-related metrics including the area under
the receiver operator characteristic curve (AUROC), balanced accuracy
(BACC), F-values (F1), Log_loss, and Matthews correlation coefficient
(MCC). The training-evaluationprocedurewas repeated five timeswith
different random seeds to determine the model performance. These
processes were implemented using scikit-learn45.

Drug response prediction
The CTRP28,29 is a widely used cancer cell response dataset that
associate genetic, lineage, and other cellular molecular characteristics
of cancer cell lines with drug sensitivity. It quantitatively profiles the
sensitivity of cancer cell lines to small molecules. The AUC label is a
dose-independent measure of compound sensitivity. Smaller AUCs
indicate greater sensitivity of cells to the drugs. A subset of the drug
response dataset for 267 compounds on four cell lines (A375, PC3,
MCF7, and HT29) was obtained from CTRP, and the details of the
dataset are shown in Supplementary Table 9. The processed dataset
was split into training and test set at 4:1 ratio by compounds.

Similarly, RF regression models were used to predict drug
response. Inferred perturbational representations (TranSiGen, DLEPS,
DeepCE, CIGER and MultiDCP) and representations combining mole-
cular structures and cell information (ECFP4+X 1 and KPGT+X 1) were
used. Four hyperparameters, including n_estimators, max_depth, cri-
terion and obb_score, were considered to obtain the optimal model.
The model’s performance was evaluated by the Pearson’s correlation
coefficient. The model’s performance was assessed by repeating
training-evaluation procedure five times with different random seeds.

Phenotype-based drug repurposing for pancreatic cancer
Differential gene expression profiles of approved drugs. The
approved drugs for pancreatic cancer were downloaded from https://
www.cancer.gov/about-cancer/treatment/drugs/pancreatic. Among
them, the DEGs of erlotinib, olaparib and gemcitabine were obtained
from LINCS 2020 dataset19. These profiles were used for subsequent
phenotype-based drug repurposing for pancreatic cancer.

Differential gene expression profile of disease. The pancreatic ade-
nocarcinoma cohort of the The Cancer Genome Atlas (TCGA)46 was
downloaded from UCSC Xena (https://xenabrowser.net/). This cohort
includes RNA-seq expression data of tumor samples and normal
samples. The DESeq247 method was used to analyze the differential
gene expression for pancreatic cancer. DEGs for pancreatic cancer
were selected based on the following criteria: |log2Foldchange | > 1.5, p
value < 0.05 and false discovery rate < 0.25. A total of 293 up-regulated
genes and 168 down-regulated genes were identified.

Inferringperturbation geneexpression profiles of compounds. This
study utilized the PRISM Repurposing dataset31, which includes pri-
mary and secondary screening datasets, for phenotype-based repur-
posing for pancreatic cancer. The compounds from PRISM secondary
screen were evaluated based on their AUC values, which indicate
compound sensitivities on cells and serve as labels for screening per-
formance assessment.

The dataset was downloaded from https://depmap.org/
repurposing/. Compounds with ground-truth expression profiles in
the LINCS 2020 dataset were excluded, resulting a dataset contains

1625 compounds. TranSiGen inferred the DEGs ΔX 0 of 978 landmark
genes associated with these compounds in YAPC pancreatic cancer
cell. Additionally, the expression values of 9196 best inferred genes
were inferred from the generated 978 landmark genes to obtain the
predicted expression values of 10,174 genes. The inference weight
matrix was obtained from the L1000 project2.

Connectivity score. The connectivity score, obtained from the gene
set enrichment analysis32, is used to measure the relationship between
transcriptional profiles. The connectivity score ranges from −1 to 1,
where −1 indicates a complete reversal of the query profile to the
reference profile, while 1 indicates a complete similarity of the query
and the reference profile.

Firstly, the enrichment score (ES) is used to evaluate the enrich-
ment of a predefined gene set at the top or bottom of the reference
differential gene list. The enrichment scores for up-regulated gene set
and down-regulated gene set are denoted as a and b, respectively:

a= max
j = 1 to t

j
t
� V ð jÞ

n

� �
ð5Þ

b = max
j = 1 to t

V ð jÞ
n

� ð j � 1Þ
t

� �
ð6Þ

ES=
a, if a>b

�b, if b>a

	
ð7Þ

where n represents the number of genes in the expression profiles, t
represents the number of genes in the predefined gene set, V ð jÞ
represents the rank of a specific gene in the rank list, and j represents
the index of gene ranging from 1 to t.

Next, the above equations are used to calculate the enrichment
scores of the predefined up-regulated and down-regulated genes by
the query profile, resulting in ESup and ESdown. Finally, considering
these two enrichment scores together, the connectivity score of the
query profile relative to the reference profile is calculated as follows:

Connectivity score=
ESup � ESdown, if signðESupÞ≠ signðESdownÞ

0,otherwise

	
ð8Þ

Specifically, the reference profiles consist of the inferred DEGs of
all compounds from TranSiGen. The DEGs of approved drugs for
pancreatic cancer were used to identify compounds with positive
connectivity scores, while the DEGs of pancreatic cancer were
employed to identify compounds with negative connectivity scores. In
the screening dataset, the top 20%compoundshaving the lowestAUCs
on the YAPC pancreatic cancer cell line were identified as hits, and the
area under the ROC curve was used to evaluate the screening
performance.

Experimental setting of validating screened compounds for
pancreatic cancer
Compound. The 31,465 compounds screened against the YAPC pan-
creatic cancer cell line were mainly from the following sources: Med-
ChemExpress (Monmouth Junction, NJ, USA), the ChemDiv Library
(SanDiego, CA,USA) and theChemspace Library (Monmouth Junction,
NJ, USA). Detailed information concerning the origins of the com-
pound libraries and corresponding catalog numbers for the top 50
compounds identified through TranSiGen_DISEASE and TranSiGen_-
DRUG screening are presented in Supplementary Tables 12 and 13.

Cell culture. Human pancreatic cancer cell line YAPC was purchased
from Cobioer Biosciences Co. Ltd (Nanjing, China). YAPC cells were

Article https://doi.org/10.1038/s41467-024-49620-3

Nature Communications |         (2024) 15:5378 12

https://www.cancer.gov/about-cancer/treatment/drugs/pancreatic
https://www.cancer.gov/about-cancer/treatment/drugs/pancreatic
https://xenabrowser.net/
https://depmap.org/repurposing/
https://depmap.org/repurposing/


cultured in RPMI-1640 medium (BasalMedia, L210KJ) supplemented
with 10% fetal bovine serum (FBS) (MeilunBio, PWL001) and incubated
at 37 °C under a humidified, 5% (v/v) CO2 atmosphere.

Proliferation assays. Cells were seeded in 384-well cell culture plate
(NEST, 760601) at a density of 100 cells per well, and incubated with
serially diluted compounds at concentrations ranging from 0.1 nM to
50μM in a final volumeof 50μl. After 72 h, the inhibitory effects of test
compounds on the proliferation ability of YAPC cells were determined
using the CellTiter-Meiluncell Luminescent Cell Viability Assay Kit
(MeilunBio, PWL111-3) following the manufacturer’s instruction.
Briefly, 25μl of CellTiter-Meiluncell reagent was added to each well,
and the plates were incubated on orbital shaker for 10min at room
temperature. Luminescence was measured on Perkin Elmer Envision
multimode plate reader. IC50 values were determined by nonlinear
regression (curve fit) using a variable slope (four parameters) in
Graphpad Prism (8.0.1).

Statistics and reproducibility
A two-sided t-test was conducted for analyses related to model per-
formance, while a one-sided Mann–Whitney test was utilized for ana-
lyses regarding transcriptional profiles. Detailed descriptions are
provided in the figure legends. The significance level was set as
****p <0.0001; ***0.0001 < p ≤0.001; **0.001 < p ≤0.01; *0.01 < p ≤0.05
and ns, 0.05 < p ≤ 1.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The raw
expanded CMap LINCS Resource 2020 is available at https://clue.io/
data/CMap2020#LINCS2020. The raw PRISM Repurposing dataset is
available at https://depmap.org/repurposing/, and the raw pancreatic
adenocarcinoma cohort of the TCGA is available at https://
xenabrowser.net/. The analysis and results data generated in this
study are provided in the Source Data file. All data are available from
the corresponding authorupon request. Sourcedata areprovidedwith
this paper.

Code availability
The code for model training and analysis is available at Github https://
github.com/myzhengSIMM/TranSiGen and Zenodo https://zenodo.
org/records/1143585948.
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