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Alkylamine-tethered molecules recruit
FBXO22 for targeted protein degradation
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Fabian Offensperger 1, Kevin Dong3, Ka Yang 3, Gary Tin 1,
Christina S. Horstmann1,4, Matthias Hinterndorfer1, Joao A. Paulo 3,
Natalie S. Scholes 1, Juan Sanchez Avila 1, Michaela Fellner5,
Florian Andersch5, J. Thomas Hannich 1, Johannes Zuber 5, Stefan Kubicek 1,
Steven P. Gygi 3, Brenda A. Schulman 2 & Georg E. Winter 1

Targeted protein degradation (TPD) relies on small molecules to recruit pro-
teins to E3 ligases to induce their ubiquitylation and degradation by the pro-
teasome. Only a few of the approximately 600 human E3 ligases are currently
amenable to this strategy. This limits the actionable target space and clinical
opportunities and thus establishes the necessity to expand to additional
ligases. Here we identify and characterize SP3N, a specific degrader of the
prolyl isomerase FKBP12. SP3N features a minimal design, where a known
FKBP12 ligand is appended with a flexible alkylamine tail that conveys degra-
dation properties.We found that SP3N is a precursor and that the alkylamine is
metabolized to an active aldehyde species that recruits the SCFFBXO22 ligase for
FKBP12 degradation. Target engagement occurs via covalent adduction of
Cys326 in the FBXO22 C-terminal domain, which is critical for ternary complex
formation, ubiquitylation and degradation. This mechanism is conserved for
two recently reported alkylamine-based degraders of NSD2 and XIAP, thus
establishing alkylamine tethering and covalent hijacking of FBXO22 as a gen-
eralizable TPD strategy.

Targeted Protein Degradation (TPD) has gained significant attention in
recent years as a therapeutic modality that promises to overcome the
limitations of conventional, inhibitor-centric small-molecule design.

TPD is based on the principle that small molecules can induce
molecular proximity between an E3 ubiquitin ligase and a target pro-
tein of interest (POI) to trigger POI ubiquitylation and ensuing degra-
dation by the proteasome. On a high level, the field distinguishes two
major classes of degraders.

Molecular glue degraders (MGDs) typically function by binding to
either the E3 or the POI, modifying the protein surface to induce novel
or stabilize existing protein–protein interactions. The resulting ternary

complex (POI-MGD-E3) is hence highly cooperative and the MGD
orchestrates several protein–protein interactions at the binding
interface. The most prominent MGDs are thalidomide and its analogs
(commonly referred to as immunomodulatory drugs or IMiDs), which
bind to the E3 ligase CRL4CRBN thereby causing recruitment and
degradation of a suite of zinc finger transcription factors1–4. Note-
worthy, the identificationof IMiDs andotherMGDswas serendipitous5,
but an increasing toolbox of MGD discovery strategies promises to
rationalize future MGD identification6–11. The other prominent class of
degraders is heterobifunctional proteolysis targeting chimeras
(PROTACs)12. PROTACs simultaneously bind the POI and the E3 ligase
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via dedicated ligands that are connected via a flexible linker. The chi-
meric nature of PROTACs allows their rational design but overall
depends on the availability of well-defined ligands for the POI and
the E3.

Around twenty degraders have entered human clinical investiga-
tion, all of which function by coopting either CRL4CRBN or CRL2VHL 13,14.
This establishes the motivation to expand the set of actionable E3
ligases with several objectives in mind15. First, accessing new E3 ligases
provides a strategy to address resistance mechanisms that are either
already clinically observed or expected, particularly in oncology
settings16–19. Second, VHL and CRBN are, with few exceptions ubiqui-
tously expressed20, thus preventing tissue- or cell-type selective
degradation strategies which would have the potential of an increased
therapeutic index. Third, not all POIs are equally amenable to CRBN- or
VHL-based degraders, possibly due to incompatibilities in surface
topologies and hence an inability to form a productive ternary
complex21–23. Over the last years, strategies employing electrophilic
fragments either as affinity reagents or as putative E3 binders have
been successful in unlocking several E3 ligases, including CRL4DCAF11,
CRL4DCAF16, RNF4, or RNF114 for prototypic PROTAC design, but addi-
tional work will be required to understand or realize their translational
potential24–28.

In addition to these two paradigmatic degrader classes, a suite of
insufficiently characterized, seemingly “monovalent” degraders
directly bind a POI through a well-defined molecular recognition yet
induce POI degradation through elusive mechanisms. Functional
annotation of these mechanisms promises to reveal novel strategies
for degrader design and to unlock additional E3 ligases for chemical
exploration. Among others, this has been exemplified by functional
studies with the monovalent BRD2/4 degrader GNE-0011 that func-
tionally depends on the CRL4DCAF16 ligase29–31. Similarly, recent reports
disclosed “compound 10”, a small-molecule degrader of XIAP that
consists of a known XIAP binder appended to a flexible primary
alkylamine32. Initial mechanistic characterization of compound 10 led
to a model where the free amine would be directly polyubiquitylated
by XIAP in cis, thereby inducing its proteasomal degradation32.

Here, we describe the mechanistic characterization of a serendi-
pitously discovered degrader of the prolyl isomerase FKBP12. Akin to
compound 10, it consists of an alkylamine tail that is appended on a
target-binding ligand, here the synthetic ligand of FKBP12 (SLF) and is
hence termed SLF-PEG3-NH2 (SP3N). To unravel the mechanism of
action of SP3N, we coupled FACS-based CRISPR/Cas9 knockout
screenswith quantitative proteomics and biochemical reconstitutions.
This led us to identify that SP3N recruits the SCFFBXO22 ligase to induce
FKBP12 polyubiquitylation and ensuing proteasomal degradation. In
accordancewith a recently reported alkylamine degrader targeting the
histone methyltransferase NSD233, we show that SP3N is a precursor
that is metabolized into an active aldehyde species. Through targeted
mutagenesis, functional reconstitutions, and intact mass spectro-
metry, we show that the aldehyde adducts a cysteine residue (C326) in
the C-terminal domain of FBXO22, and that this covalent engagement
is functionally required for ternary complex formation, productive
ubiquitylation and degradation. Importantly, our data imply that
compound 10, as well as the alkylamine-based degrader of NSD2
functionally converge on the same, PROTAC-like mechanism. Collec-
tively, our data therefore outline a roadmap to rational degrader
development and unlocking FBXO22 for TPD applications.

Results
SP3N-induced FKBP12 degradation depends on the primary
amine and is UPS dependent
En route to the development of a PROTAC candidate library targeting
the prolyl isomerase FKBP12, we serendipitously discovered a set of
small molecule precursors with unexpected degradation activity.
Active precursorsmerely consist of a free primary alkylamine attached

to the synthetic ligand of FKBP12 (SLF) (Supplementary Fig. 1a, b).
Among the assayed molecules, attachment of a PEG3-NH2 moiety to
SLF (SP3N) yielded the most potent degrader which was thus prior-
itized for ensuing studies (Fig. 1a). To monitor drug-induced changes
in FKBP12 stability, we engineered KBM7 cells to express an FKBP12-
BFP-P2A-mCherry reporter compatible with FACS analysis. Leveraging
this reporter,we could show that SP3N efficiently degrades FKBP12 in a
time- and dose-dependent manner (Fig. 1b). In addition, competition
experiments with excess amount of SLF fully rescued from degrada-
tion, confirming the requirement of FKBP12 target engagement for
productive degradation (Supplementary Fig. 1c). Degradation activity
of SP3N was completely abrogated by acetylating the free primary
amine (SP3NAc), thus confirming its relevance akin to previously dis-
closed alkylamine degraders targeting XIAP or NSD2 (Fig. 1a, c, d)32,34.
To assay the proteome-wide degradation specificity of SP3N, we con-
ducted MS-based whole proteome analysis using tandemmass tags in
HEK293T cells. Among the 8958 identified proteins, SP3N selectively
degraded FKBP12 after a 16 h incubation. In contrast, the acetylated
analog SP3NAc did not prompt destabilization of FKBP12 or any other
protein (Fig. 1e, SupplementaryData 1). Togain a better understanding
of the mechanism of the SP3N-mediated degradation, we conducted
chemical competition experiments with the proteasome inhibitor
carfilzomib and the ubiquitin-activating enzyme (UAE) inhibitor
TAK243. Both inhibitors fully prevented FKBP12 degradation, indicat-
ing a dependency on the ubiquitin-proteasome system (UPS) (Fig. 1f).
In addition, pre-treatment with the NEDD8-activating enzyme (NAE)
inhibitor MLN4924 fully rescued from degradation, highlighting a
functional requirement on NEDD8 conjugation, and hence implying
the functional involvement of a Cullin-RING ligase (CRL) in the SP3N-
induced degradation of FKBP1235.

SP3N recruits FBXO22 for FKBP12 degradation
To identify cellular effectors required for SP3N-induced FKBP12
degradation in an unbiased manner, we employed a FACS-based
CRISPR/Cas9 knock-out screen with a UPS-focused sgRNA library
(Supplementary Data 2). To this end, we transduced KBM7 cells
expressing doxycycline-inducible Cas9 (iCas9) and the FKBP12-BFP-
P2A-mCherry reporter with a UPS-focused sgRNA library. Three days
post-doxycycline induction cells were treated with SP3N and sorted
based on the FKBP12-BFP expression levels into three distinct popu-
lations—the highest and lowest 5% of BFP-expressing cells (FKBP12HIGH

and FKBP12LOW, respectively), along with the 30% of cells expressing
average levels of BFP (FKBP12MID). As a control degrader, we used
dFKBP1, a previously reported SLF-based PROTAC that is dependent
on the CUL4CRBN ligase36. As expected, FACS-based CRISPR/Cas9
screens of dFKBP1 revealed all components of the CUL4CRBN ligase
complex alongside subunits of the proteasome as well as the
COP9 signalosome in theFKBP12HIGH fraction. This implies thatCRISPR/
Cas9-mediated disruption of these genes abolishes dFKBP1 activity
and thus establishes validity of our screening setup (Supplementary
Fig. 2a, Supplementary Data 3). Turning our focus to screens treated
with SP3N, we identified a profound enrichment of the substrate
receptor FBXO22 and other components of the SCFFBXO22 ligase com-
plex in the FKBP12HIGH population, again accompanied by components
of the proteasome and COP9 signalosome, thus corroborating che-
mical competition experiments (Fig. 2a, Supplementary Data 3). To
validate the screen results, we proceeded with arrayed gene knockout
and reconstitution experiments. Population-level FBXO22 disruption
in KBM7 iCas9 cells completely rescued SP3N-induced FKBP12 degra-
dation, as assayed via the FKBP12-BFP-P2A-mCherry stability reporter.
In contrast, disruption of the control locus AAVS1 did not affect SP3N
efficacy (Fig. 2b, Supplementary Fig. 2b). These results were further
corroborated by comparing SP3N-induced FKBP12 degradation in
HEK293T wildtype (WT) cells compared to an isogenic, clonal FBXO22
knockout line (FBXO22 KO; Fig. 2c). In addition, reconstitution of
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FBXO22 KO cells with FBXO22 cDNA restored degradation to levels
comparable to WT cells (Fig. 2c). Finally, depletion of the FBXO22
adaptor protein SKP1 also rescued from SP3N-mediated FKBP12
degradation, further confirming that the SCFFBXO22 complex is required
for the degradation process (Supplementary Fig. 2c).

To assess if SP3N induces proximity between FBXO22 and FKBP12,
we performed co-immunoprecipitation experiments of 2HA-tagged
FBXO22 and 3xFlag-tagged FKBP12. As expected, in the input fraction
SP3N treatment induced FKBP12 degradation, which was abolished
with carfilzomib treatment. In the IP fraction we observed an interac-
tion of FKBP12 with FBXO22 exclusively upon treatment with SP3N in a
dose-dependent manner (Fig. 2d). In line with a lack of SP3NAc-
induced degradation, we did not observe an interaction between 2HA-
FBXO22 and 3xFlag-FKBP12 upon cellular treatment with SP3NAc
(Fig. 2d). To further corroborate these results, we developed a proxi-
mity assay that is compatible withmeasurements in intact cells. To this
end,we turned to a nanoluciferase complementation assay (NanoBiT®)
capable of assessing ternary complex formation between FBXO22 and
FKBP12 (Fig. 2e).HEK293Tcellswere co-transfectedwith LgBiT-FKBP12

and SmBiT-FBXO22 followed by treatment with DMSO, SP3N or
SP3NAc. Supporting co-IP data, we observed a pronounced and dose-
proportional increase of bioluminescence after cellular SP3N treat-
ment, indicative of drug-induced ternary complex formation (Fig. 2f).
Noteworthy, the less potent degrader SP2N also induced FKBP12-
FBXO22 complex formation, albeit at a lower magnitude (Supple-
mentary Fig. 2d). As expected, SP3NAc treatment did not induce a
bioluminescence signal (Fig. 2f). Competition of SP3N with excess SLF
blocked luminescence induction, thus further corroborating the
requirement for direct FKBP12 engagement (Fig. 2g). In conclusion,
these data support a mechanism whereby SP3N induces proximity
between FKBP12 and FBXO22 to prompt FKBP12 degradation by
FBXO22.

SP3N is a precursor metabolized to an active aldehyde species
Since primary alkylamines represent a potential metabolic liability, we
sought to identify if SP3N might be converted into a functionally
relevant metabolite. Of note, a similar mechanism has recently been
disclosed for UNC8732, an alkylamine-based degrader targeting the
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Fig. 1 | SP3N-inducedFKBP12degradationdependson theprimary amine and is
UPS-dependent. a Structures of SP3N and SP3NAc. b Flow-cytometry based
degradation assay upon SP3N treatment. KBM7 iCas9 cells expressing the FKBP12-
BFP-P2A-mCherry reporter were treated with the indicated concentrations of SP3N
for 1-16 h. c Flow-cytometry based degradation assay in KBM7 iCas9 FKBP12-BFP-
P2A-mCherry cells treated with SP3N or SP3NAc for 16 h. d Immunoblot of FKBP12
in HEK293T Nluc-3xFlag-FKBP12-NLS cells treated with DMSO, 1μMdFKBP1, 10μM
SLF and the indicated concentrations of SP3N or SP3NAc for 16 h. αTubulin is the
loading control. Representative image of n = 3 independent experiments. e Whole

proteome analysis using tandem mass tag quantification in HEK293T cells treated
with DMSO, 1μM SP3N or 1μM SP3NAc for 16 h. Log2 fold-changes (Log2FC) and
−log10-transformed Benjamini–Hochberg adjusted one-way analysis of variance
(ANOVA) P value compared with DMSO treatment. Data from n = 3 replicates.
f Flow-cytometrybaseddegradation assay inKBM7 iCas9FKBP12-BFP-P2A-mCherry
cells pre-treated with DMSO, 1μM carfilzomib, 1μMMLN4924, or 500 nM TAK243
for 1 h before the addition of 1μM SP3N for 6 h. For all the flow-cytometry based
degradation assays (b, c, f), the BFP/mCherry ratio was normalized to DMSO and
the data shown are from n = 3 biological replicates, mean ± s.d.
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histone methyltransferase NSD233. In brief, Nie et al. could demon-
strate that UNC8732 acts as a precursor that ismetabolized to a potent
aldehyde by amine oxidases present in the fetal calf serum (FCS) in the
cell culturemedia. To test if SP3N followsa similarmechanism (Fig. 3a),
we treated cells with SP3N in full media containing 10% FCS or in Opti-
MEM without FCS, for 8 h and tested degradation. Indeed, FKBP12
degradation only occurred in media with FCS, suggesting that SP3N
might undergo a similar metabolic conversion towards an active spe-
cies (Fig. 3b). To confirm the presence of the SP3N-derived aldehyde
(SP3CHO) and the dependence on FCS for this metabolic step, we
treated KBM7 cells with SP3N in IMDM+ 10% FCS orOpti-MEMwithout
FCS and used ultra-performance liquid chromatography-mass spec-
trometry (UPLC-MS/MS) to detect the formation of the aldehyde
species. Our results reveal the detection of SP3CHO already at 6 h of
incubation, and only in conditions containing FCS (Fig. 3c). Taken
together, these results indicate that SP3N undergoes an FCS-
dependent metabolic step towards an active aldehyde species. The
requirement of FCS for the activity of the alkylamine degrader insin-
uates the involvement of extracellular amine oxidases in the

conversion of SP3N to SP3CHO. To further test this hypothesis, we
incubated SP3Nwith recombinant porcine diamine oxidase (DAO) and
subsequently treated KBM7 cells with this solution in media without
FCS. Supporting the notion of an involvement of diamine oxidases in
themetabolic conversion, DAOpre-treatment of SP3Nwas sufficient to
convert it into an active degrader (Fig. 3d). We next performed a time-
course treatment of SP3NwithDAOandusedUPLC-MS/MS to quantify
SP3CHO levels. Confirming the involvement of DAO in this metabolic
conversion, we quantified increasing amounts of SP3CHO over time
and only upon treatment with the enzyme (Supplementary Fig. 3a).

To confirm that the aldehyde is the active species, we synthesized
SP3CHO, as well as the hydrolytically labile, protected aldehyde
bisulfite adduct of SP2N (SP2CHOp; given technical challenges in
directly synthesizing SP2CHO). In cellular degradation assays, in the
presence of FCS, both aldehyde species outperform their matched
alkylamine analog (Fig. 3e, Supplementary Fig. 3b). This suggests that
metabolic conversion might act as a rate-limiting step (Fig. 3c).
Moreover, in contrast to SP3N and SP2N, FKBP12 degradation induced
by SP3CHO and SP2CHOp is independent of FCS (Fig. 3e,
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FKBP12 and N-terminal SmBiT-FBXO22 fusions, an active Nluc enzyme is formed
that can generate luminescence. f, g NanoBiT® assays in HEK293T co-transfected
with LgBiT-FKBP12 and SmBiT-FBXO22 fusions, pre-treated with 1μM carfilzomib
and Vivazine substrate before treatment with the indicated compounds. Fold
change of luminescence is normalized to timepoint 0, right before the treatment.
Mean ± s.d of n = 3 technical replicates; representative of n = 3 biological replicates.
fDose–response for complex formation. Luminescencewasmonitored after 5min,
10min, 30min and every hour up to 4 h, post-treatment. g Competition assay with
SLF. Luminescence was monitored every hour up to 4 h, post-treatment.
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Supplementary Fig. 3b). Interestingly, SP3CHO is slightly more potent
and shows a more pronounced hook effect (a phenomenon typically
observed with PROTACs) in the absence of FCS (Fig. 3e). UPLC-MS/MS
based, targeted quantification of SP3CHO levels after short cellular
treatment revealed significantly elevated levels of SP3CHO in cells
treated in media lacking FCS as a plausible mechanism for this differ-
ential potency (Supplementary Fig. 3c). Moreover, as our data indi-
cates that the aldehyde metabolite mediates the degradation, we
sought to confirm that it also induces proximity between FBXO22 and
FKBP12, independent of FCS availability. To this end, we employed the
aforementioned NanoBiT® assay and monitored real-time complex
formation. In line with our hypothesis, our findings revealed that
SP3CHO induces dose-dependent ternary complex formation irre-
spective of FCS availability. In contrast, SP3N failed to induce

interactions in FCS-deprivedmedia, further supporting that SP3CHO is
the active SP3N metabolite (Fig. 3f, Supplementary Fig. 3d).

To reconstitute the proposed mechanism in vitro, we purified
recombinantly expressed activated (i.e. neddylated) SCFFBXO22 (Sup-
plementary Fig. 3e), and FKBP12, and performed ubiquitylation assays
with or without compound treatment. In support of a precursor
mechanism of action, SP3N treatment was insufficient to induce poly-
ubiquitylation of FKBP12. In contrast, SP3CHO treatment prompted
clear poly-ubiquitylation of FKBP12 by SCFFBXO22, but not by an unre-
lated CRL E3 ligase (neddylated SCFFBXW7) (Fig. 3g). Similar results were
observed with SP2CHOp, which induced FKBP12 poly-ubiquitylation,
while SP2N did not show any effects in vitro (Supplementary Fig. 3f).
Given the electrophilic nature of SP3CHO and considering recent
findings with the aforementioned NSD2 degrader UNC8732, we sur-
mised that SP3CHO can form an adduct with FBXO22 via a covalent
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every hour up to 4 h post-treatment and normalized to timepoint 0. Mean ± s.d of
n = 3 technical replicates; representative plot of n = 3 biological replicates.g In vitro
ubiquitylation assayoffluorescently labeled FKBP12with activated (i.e. neddylated)
SCFFBXO22 in the presence of 10μM SP3N or SP3CHO. The neddylated SCFFBXW7 is
used as negative control. Representative image of n = 2 biological replicates.
h Intact mass spectrometry for the identification of FBXO22-SP3CHO complex
formation. 20μM FBXO22-SKP1 complex were incubated with 100 μM SP3CHO for
10min and analyzed with LC-MS. The spectra of FBXO22 and FBXO22-SP3CHO are
shown; n = 2 biological replicates. Expected mass for FBXO22:44652Da and for
FBXO22-SP3CHO adduct: 45374Da. For the flow cytometry-based degradation
assays (b, d, e), the BFP/mCherry ratio was normalized to DMSO and the data is the
mean ± s.d of n = 3 biological replicates.
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and reversible hemithioacetal. Indeed, intact mass spectrometry
clearly revealed a mass corresponding to the SP3CHO-adducted
FBXO22 (Fig. 3h). Having established that SP3N covalently adducts
FBXO22, and based on another recent report that established SCFFBXO22

as a ligase that can be harnessed with a covalent, chloroacetamide
containing PROTAC, we wanted to investigate if we could replace the
aldehyde with alternative warheads and synthesized four additional
electrophilic compounds, namely the SP3-chloroacetamide, the SP3-
acrylamide and the respective SP2-based analogs37. Interestingly, none
of these compounds exhibited robust FKBP12 degradation, indicating
that these SLF-based aldehydes are favored over the other SLF-based
electrophiles in inducing FBXO22-depedent protein degradation
(Supplementary Fig. 3g).

FBXO22 is recruited through its C326 for degradation
Given the reactivity of the active aldehyde species, we next wanted to
assess a possible covalent engagement on FBXO22. To map the func-
tionally required and covalently engaged cysteine residue in FBXO22,
we mutated five cysteine residues in the C-terminal region of FBXO22
(amino acids 143-365) that has been reported to play a role in substrate
binding38,39. To this end, we turned to genetic reconstitution experi-
ments where we re-introduce FBXO22 cysteine mutants in FBXO22
knockout cells and assess their effect on SP3N-induced FKBP12
degradation utilizing the aforementioned FKBP12-BFP-P2A-mCherry
stability reporter. SP3N- or SP3CHO-induced degradation was main-
tainedby all FBXO22mutationswith the exception ofC326A (Fig. 4a, b,
Supplementary Fig. 4a, b). To rule out potential deleterious effects of
the C326A mutation on FBXO22, we turned to Nano differential scan-
ning fluorimetry (NanoDSF) which revealed thermal stability (Supple-
mentary Fig. 4c). In addition, FBXO22 WT and C326A are similarly
sensitive to pharmacologically induced auto-degradation via
COP9 signalosome inhibition (Supplementary Fig. 4d), supporting the
notion that the mutant incorporates into a functional SCF complex
also in cells40–42. Further, an in vitro autoubiquitylation assay demon-
strated comparable autoubiquitylation of recombinant FBXO22-WT
and FBXO22-C326A variants, hence again suggesting intact SCF com-
plex activity (Supplementary Fig. 4e). To orthogonally confirm the
relevanceofC326,weemployedNanoBiT® assayswith SmBiT-FBXO22-
WT, SmBiT-FBXO22-C326A or SmBiT-FBXO22-C228A mutants. While
SP3CHO induced comparable bioluminescence levels for FBXO22-WT
and the C228A negative control mutant, no induction of biolumines-
cence and hence no evidence for ternary complex formation could be
observed when assaying the C326A mutant (Fig. 4c, Supplementary
Fig. 4f). Further corroborating that C326 is essential for the molecular
recognition of SP3CHO, SCFFBXO22-C326A failed to induce ubiquitylation
on FKBP12 in in vitro assays (Fig. 4d). Likewise, intact MS analysis of
SKP1-FBXO22-C326A treated with SP3CHO revealed no evidence of
adduct formation (Fig. 4e). To confirm the proteome-wide selective
engagement by SP3CHO, we performed global reactive cysteine pro-
filing in HEK293T cell lysates by TMT-ABPP43,44. This revealed that
approximately 30% of FBXO22-C326 was engaged by SP3CHO. No
other FBXO22 Cys residues were detected as engaging SP3CHO
(Supplementary Fig. 4g, h, Supplementary Data 4). Notably, SP3CHO
generally exhibited low reactivity with 5 other Cys (HDAC1-C100,
GPX4-C102, TARS1-C254, PSMB1-C82;89 and PPAT-C503). Taken
together, our results reveal C326 as the site of covalent binding by
SP3CHO that is functionally required for ternary complex formation,
ubiquitylation and degradation.

Alkylamine-based degraders functionally depend on FBXO22
To explore the potential generalizability of exploiting FBXO22 for
targeted protein degradation, we extended our experiments to two
recently reported primary alkylamine-tethered degraders targeting
either NSD2 or XIAP, as well as a set of alkylamine-tethered analogues
targeting BRD4 (Fig. 4f and Supplementary Fig. 5a)32–34. Supporting a

general role of FBXO22 in the mechanism of action of alkylamine-
based degraders, no target degradation was observed in FBXO22 KO
cells. In contrast, reconstitution with FBXO22-WT re-sensitized KO
cells to target destabilization by the NSD2, XIAP and FKBP12 targeting
degraders. Notably, reconstitution with FBXO22-C326A failed to re-
establish target degradability, suggesting a shared functional depen-
dency on this key residue. Together, these findings support the
broader applicability of a TPD strategy whereby target-binding ligands
canbe equippedwith flexible alkylamines to recruit the SCFFBXO22 ligase
for target ubiquitylation and ensuing degradation by the proteasome.
Interestingly, a set of alkylamine-based analogues building off the BET-
bromodomain inhibitor JQ1 did not degrade BRD4, a target that is
frequently utilized as proof of concept for prototypical degraders that
co-opt novel E3 ligases (Supplementary Fig. 5a). While immunoblot
analysis of the BRD4 transcriptional target MYC implies cellular target
engagement of this set of analogues, co-IP experiments reveal a lack of
ternary complex formation as a likely reason for the observed lack of
degradation (Supplementary Fig. 5 b, c). In sum, these data suggest
that the concept of alkylamine-base degraders is generalizable yet will
require optimization on a target-by-target level.

Discussion
Here, we report the serendipitous identification of SP3N, a degrader
of the prolyl isomerase FKBP12, which features a minimal design
where the known FKBP12 ligand SLF is equipped with an alkylamine
extension that conveys the observed degradation properties.
Orthogonal mechanistic characterization via quantitative pro-
teomics, functional genomics and biochemical reconstitutions led
us to identify that SP3N-induced degradation is highly specific and
depends on the recruitment of the SCFFBXO22 ligase. Further, we
employ metabolomics to reveal that SP3N is a precursor that is
metabolically converted into an active aldehyde species (SP3CHO)
via amine oxidases. Coupling targeted mutagenesis studies with
genetic rescue experiments, we identify C326 in the C-terminal
putative substrate binding domain of FBXO22 as critical for SP3N/
SP3CHO-induced FKBP12 degradation. Further corroborating the
critical role of C326, we observe that mutating C326 completely
abrogates drug-induced proximity of FKBP12 and FBXO22 in intact
cells. Likewise, recombinant FBXO22-C326A is incapable of inducing
FKBP12 polyubiquitylation. Lastly, we could extend our findings
around SP3N to two recently reported degraders of XIAP and NSD2
that feature a similar alkylamine design32–34. Akin to SP3N, both
compounds require FBXO22 for target degradation and appear
similarly dependent on C326 in this process. Of note, the NSD2-
based degrader UNC8732 has also been reported to be subject to
metabolization into an aldehyde species33. We thus surmise that this
metabolic conversion of primary amine tethered precursors into
reactive aldehyde species is a general phenomenon.

Expanding the reachof targetedprotein degradation to additional
E3 ligases has recently been a very active area of research. Fragment-
based chemoproteomics as well as focused mechanism of action
campaigns have unlocked several E3 ligases, including DCAF11,
DCAF16, RNF4 or RNF114 for chemical exploration24–27,31,45. Never-
theless, less than 3% of the around 600 E3 ligases encoded in the
human genome can be coopted with small-molecule ligands. Among
the successfully liganded E3 ligases, a critical evaluation will be
required to understand if the identified chemical matter can be pro-
gressed towards selective compounds that fulfill probe-like criteria46.
Likewise, further research will be required to understand which of
those E3 ligases provides a tangible differentiation from CRBN and
VHL, the two E3 ligases that are harnessed by clinically approved or
evaluated MGDs and PROTACs. Aside from potentially addressing and
overcoming resistance mechanisms to CRBN- and VHL-based
degraders16–19,47, or from expanding the toolbox of degron-tag
approaches48–50, the disclosed mechanism of FBXO22 dependent,

Article https://doi.org/10.1038/s41467-024-49739-3

Nature Communications |         (2024) 15:5409 6



alkylamine-based degraders offers some points of differentiation that
warrant further exploration.

First, FBXO22 has a well-established role in carcinogenesis and its
expression is associated with poor survival in several cancer types51.
While it is broadly expressed in most tissues, reports of increased
levels of expression in certain cancer types, such as lung adenocarci-
noma or ovarian cancers, might enable increased degradation effi-
ciencies specifically in malignant cells, which could result in an

expanded therapeutic index52,53. This is further supported by TCGA
data that indicates the elevated expression levels in tumor tissue as a
differentiating characteristic compared to CRBN, the most-frequently
pursued E3 ligase for TPD applications (Supplementary Fig. 5d, e).
Second, the required precursor conversion is another layer of tumor
specificity that could be exploited. Certain cancer types such as col-
orectal cancer or hepatocellular carcinoma exhibit upregulation of
specific amine oxidases, which could enable elevated rates of degrader
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control. Western blots are representative of n = 3 biological replicates.
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precursor conversion in tumors, even though general metabolic
liabilities of primary amines would need to be considered54–56. Future
studies should explore experimental approaches that better reflect the
physiological context in which amine oxidases function. One potential
avenue would be the use of ex vivo or in vivomodels that bettermimic
the tumor microenvironment and allow for the assessment of tumor-
restricted amine-to-aldehyde conversion and target degradation.

Our data, alongside the data reported inNie et al. clearly highlight
an essential functional role of the solvent-accessible Cys326 in the
C-terminal domain of FBXO2233,57,58. However, future research includ-
ing a full structural elucidation will be required to dissect the deter-
minants of molecular recognition of the highly flexible alkylamine tail.
Moreover, structural understanding will be key to empower rational
ligand optimization. This is of particular interest in light of recent
findings by Basu et al. highlighting that additional cysteine residues
(C227, C228) of FBXO22 are in principle ligandable with
chloroacetamide-based compounds37. In addition, a more granular
understanding of the underpinning molecular recognition will be
instrumental to explain limitations in the generalizability of the alky-
lamine degrader approach. For instance, while alkylamine-based
degraders could be leveraged against FKBP12, NSD2, and XIAP, an
informer set of alkylamines conjugated to the BET bromodomain
ligand JQ1 failed to induce proximity and ensuing degradation of the
BET protein BRD4, a target that is otherwise frequently utilized for
degrader proof of concept studies.

In conclusion, data presented in this manuscript, together with
corroborating evidence from other studies, highlight alkylamine con-
jugation as a strategy to develop small-molecule precursor degraders
that mechanistically converge on harnessing the SCFFBXO22 ligase and
harbor the potential to be active against a broad spectrum of targets.
As such, we expect the presented data to establish motivation for
focused FBXO22 ligand discovery anddegrader optimization efforts as
well as for understanding a putative physiological relevance of
reprogramming FBXO22.

Methods
Cell culture
KBM7 inducible Cas9 (iCas9) cells (gift from Johannes Zuber / IMP -
Research Institute of Molecular Pathology) were cultured in IMDM
(Gibco, 21980032) and 293T cells (ATCC, CRL-3216) or Lenti-X 293T
(Clontech, 632180) in DMEM (Gibco, 41965062), both supplemented
with 100 U ml−1 penicillin/streptomycin (Sigma-Aldrich, P4333) and
10% fetal calf serum (FCS, Gibco, A5256701), unless specified other-
wise. Cells were grown at 37 oC and 5% CO2 humidified incubator.

Plasmids/oligonucleotides
For the engineering of the FKBP12-BFP-P2A-mCherry reporter, FKBP12
(Twist Biosciences) was cloned into a pRRL lentiviral vector containing
a 3xV5-mTagBFP coupled to mCherry with a P2A self-cleaving peptide
for normalization. The BRD4short(s)-BFP-P2A-mCherry stability
reporter used in this study has been previously published31,59. For the
cloning of pLenti6.2-Nluc-3xFlag-FKBP12 or 2HA-FBXO22, 3xFlag-
FKBP12-(wt or NLS) (Twist Biosciences) or FBXO22 with synonymous
mutations in the PAM and seed sequences (Twist Biosciences) were
cloned into the pLenti6.2-Nanoluc-ccdB (Addgene, #87078) or the
pLEX-2HA-P2A-puro, using Gateway™ (BP Clonase II, 11789020 and LR
Clonase™ II, 11791100 both from Invitrogen) and according to the
manufacturer’s protocol. Cloning of the pBiT2.1-SmBiT-FBXO22 and
pBiT1.1-N-LgBiT-FKBP12 was achieved by restriction enzyme-based
cloning. Briefly, FBXO22 or FKBP12 were PCR amplified (Q5 DNA
polymerase, NEB, B9027S) from the 2HA-FBXO22 or the pLenti6.2-
Nluc-3xFlag-FKBP12 plasmids, respectively, using primers with appro-
priate restriction enzyme sites. The amplified FBXO22 or FKBP12
fragments were inserted in the restriction enzyme-digested pBiT2.1-N-
SmBiT or pBiT1.1-N-LgBiT (Promega, N2014) vectors and ligated using

T4 DNA Ligase (NEB, M0202S) according to the manufacturer’s pro-
tocol. For the cysteine-mutant 2HA-FBXO22 and SmBiT-FBXO22 plas-
mids, the 2HA-FBXO22-wt or SmBiT-FBXO22-wt plasmids were
mutated using Q5 site-directed mutagenesis (New England Biolabs,
E0552), according to the manufacturer’s protocol and using oligonu-
cleotides designed with NEBaseChanger (v2.4.2). All plasmids and oli-
gonucleotides/primers used in this study are shown in Supplementary
Tables 1 and 2, respectively, and the UPS-focused sgRNA library used
for the FACS-based CRISPR/Cas9 stability screen is shown in Supple-
mentary Data 2.

Compounds
The inhibitor carfilzomib (Cay17554) is from Biomol and JQ1 (1268524-
70-4) is from AmBeed. The inhibitors MLN4924 (HY-70062) and
TAK243 (HY-100487) and the degraders dFKBP1 (HY-103634), Com-
pound 10 (XIAP degrader-1, HY-115865) and dBet6 (HY-112588) were all
purchased from MedChemExpress.

Virus production and transductions
Lenti-X 293T cells at 70-90% confluency were transfected with the
desired lentiviral plasmids and the packaging plasmids (pCMVR8.74
helper, Addgene #22036 and pMD2.G envelope, Addgene #12259)
using polyethylenimine (PEI MAX® MW 40,000, Polysciences, 24765).
The virus was collected and clarified using 0.45 μmWhatman Puradisc
Syringe Filter (cytiva, WH6756-2504). Different dilutions of viral sus-
pension were added to the cells and the cell/virus suspension was
centrifuged at 900g for 45min and 33 oC.

Clonal FBXO22 knock-out cell line
To generate clonal FBXO22 knock-out cell line, HEK293T FKBP12-BFP-
P2A-mCherry cells were transduced with plasmids expressing the
sgRNA ‘GATCCAGGTTACGCTCCGAT’ targeting FBXO22. After G418
(Sigma-Aldrich, A1720) selection, the cells were transfected with
pSpCas9(BB)−2A-Puro (PX459) v2.0 (Addgene, #62988) plasmid using
PEI. 48 h post-transfection, single clones were seeded in 96 well plates
using CytoFLEX LX sorter (BeckmanCoulter) and grown for 2 weeks at
37 oC and 5% CO2 humidified incubator. Several single clones were
screened for FBXO22 protein levels using western blot assay and
validated with functional rescue assays with the SP3N degrader.

Flow-cytometry-based degradation assays
KBM7 iCas9 or HEK293T cells expressing FKBP12-BFP-P2A-mCherry
reporter or BRD4short-BFP-P2A-mCherry reporter were seeded in 24
well plates at seeding densities of 0.5 or 0.25 × 106 cells ml−1, respec-
tively. The working dilutions of compounds were prepared freshly in
media, using 1000x stock solutions in DMSO (Sigma-Aldrich, D1435).
For competition experiments the cells were pre-treated with 1μM
Carfilzomib, 1μM MLN4924 or 500nM TAK243 for 1 h before the
addition of SP3N or co-treated with different concentrations of SLF
andSP3N. Post-treatment, cellswere collected into Falcon® 5mlRound
Bottom Polystyrene Test Tubes (Corning, 352052) and directly mea-
sured with BD LSRFortessa™ Cell Analyzer (BD Biosciences).

Western blot analysis
Cells, post-treatment with the compounds described in the figure
legends, were collected in ice-cold Dulbecco’s phosphate-buffered
saline (PBS, Gibco, 14190144), washed 2x with PBS and lysed with RIPA
buffer (150mMNaCl, 1% TritonX-100, 0.5% Sodiumdeoxycholate, 0.1%
Sodium dodecyl sulfate, 50mM Tris pH 8) freshly supplemented with
benzonase Nuclease (Merck Millipore, 70746) and Halt™ Protease
Inhibitor Cocktail, EDTA-Free (100X) (ThermoFisher Scientific, 78425).
The protein concentration was determined using the Pierce™ BCA
Protein Assay (Thermo Fisher Scientific, 23225) and 20μg of lysate
with 4X Bolt™ LDS Sample Buffer (Thermo Fisher Scientific, B0007)
supplemented with 10% 2-Mercaptoethanol (Sigma-Aldrich, M3148)
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was loaded per lane of NuPAGE 4-12% bis-tris gels (Invitrogen,
NP0329PK2). Proteins were transferred to nitrocellulose membranes
(Cytiva, 10600002), blocked at room temperature (RT) with 5% dry
non-fat milk in Tris-buffered saline-Tween-20 (TBS-T, 50mM Tris-Cl,
pH 7.5, 150mM NaCl, 0.1% Tween-20) and incubated with primary
antibodies overnight at 4 °C. The following day, the membranes were
incubatedwithHRP-conjugated secondaryantibodies for 1 h atRT.The
membranes were imaged with ChemiDoc™ Touch Imaging System-
system (Bio-Rad), using ECL (Amersham, RPN2106). Primary anti-
bodies used: anti-αTubulinDM1A (T9026, Sigma-Aldrich, 1:5000), anti-
NSD2 29D1 (Ab-75357, Abcam, 1:1000), anti-FKBP12 H-5 (sc-133067,
1:1000), anti-FBXO22 FF-7 (sc-100736, 1:400), anti-XIAP E-2 (sc-55551,
1:200) and anti-GADPH 0411 (sc-47724, 1:5000) all purchased from
SantaCruzBiotechnology, anti-cMYCD84C12 (#5605, 1:1000), anti-HA-
Tag C29F4 (#3724, 1:1000), anti-BRD4 E2A7X (#13440, 1:2000), anti-
CRBN D8H3S (#71810, 1:1000) and anti-V5 D3H8Q (#13202, 1:1000)
from Cell Signaling Technology, anti-Flag M2 (F1804, Sigma-Aldrich,
1:1000) and anti-BRD3 (#A302-368A, Bethyl Laboratories, 1:1000).
Secondary antibodies used: anti-rabbit IgG, HRP-linked (#7074,
1:10000) and anti-mouse IgG, HRP-linked (#7076, 1:10000) both from
Cell Signaling Technology.

Co-immunoprecipitation of FBXO22-FKBP12, FBXO22-BRD4s or
CRBN-BRD4s
HEK293T or HEK393T Nluc-3xFlag-FKBP12 cells were seeded in
10 cm dishes (6 × 106 cells/dish) and incubated overnight at 37 oC to
attach. The following day, each 10 cm dish was transiently trans-
fected with 3 μg of the appropriate constructs as specified in the
figure legends using PEI for 18 h, before being expanded into 2 ×
10 cm dishes. 48 h post-transfection cells were pre-treated with
DMSO or carfilzomib for 1 h and then co-treated for 4 h with the
appropriate compounds specified in the figure legends. Post-treat-
ment, cells were collected and washed 3x with ice-cold PBS, and
lysed in 250 μl of lysis buffer (50mM Tris-HCl pH 7.4, 150mM NaCl,
0.1% Triton-X-100, 1mM EDTA, 5mM MgCl2, 5% glycerol) freshly
supplemented with the 100X Halt™ Protease Inhibitor Cocktail for
20min on ice. Lysates were cleared at 20.000 rcf spinning down for
20min and the lysate was normalized with BCA. 200 μg of protein/
conditionwere boiled with 4x LDS at 95 oC for 5min (Input fraction).
In the meantime, 20 μl of Pierce Anti-HA Magnetic Beads (Thermo
Fisher Scientific, 88836) per condition were washed with TBS. 1 mg
of lysate, adjusted to 200 μL with lysis buffer was incubated with
20 μL beads overnight at 4 oC on rotating wheel. The following day,
the beads were separated from the flow-through using a magnetic
rack, washed 3x with TBS-T and eluted in 2X Bolt™ LDS Sample
Buffer by boiling at 95 oC for 10min. Western-blot analysis was
performed as described above, with 20 μg input and 10% of the IP
fraction loaded to 4-12% Bis-Tris gels.

NanoLuc® Binary Technology (NanoBiT)
complementation assay
8 × 105 HEK293T cells/well were seeded in 6-well plates overnight to
attach before being transfected with 500 ng of each plasmid SmBiT-
FBXO22 and LgBiT-FKBP12, or SmBiT FBXO22 C228A/C326A and
LgBiT-FKBP12 using PEI. The cells were incubated overnight and then
seeded into 96-wellflat, black bottomplates (Costar) at a density of 0.5
× 105/well. The next day, media was removed, cells were gently washed
twice with PBS and fresh Opti-MEM I Reduced SerumMedium (Gibco,
31985062) with or without FCS supplemented with 1μM carfilzomib
and 1:20 VivazineTM (Promega, N2581) was added onto the cells and let
to calibrate for 1.5–2 h. Before treating with the desired compounds,
baseline luminescence was measured at timepoint 0, using VICTOR™
Multilabel Plate Reader (Perkin Elmer). After treatment, the lumines-
cence was measured with 2 s interval at timepoints indicated in the
figure legends.

Diamine oxidase treatments
Diamine Oxidase from porcine kidney (Sigma-Aldrich, D7876) was
prepared fresh in PBS at a concentration of 10mgml−1. For the time/
dose-dependent SP3CHO quantification experiments in PBS, 10μM
SP3Nwere incubatedwith 40μg diluted DAO in final volume of 100μL
PBS, at 37 oC and 5% CO2 humidified incubator. The metabolites were
extracted by adding 200μL MetOH and subjected to UPLC-MS/MS
analysis. For the FACS-based degradation experiments with cells,
10μM SP3N were treated with DAO as above, for 4 h at 37 oC and 5%
CO2 humidified incubator. The DAO-pretreated SP3N solution was
added (1:10) on 0.5 × 106 KMB7 iCas9 cells with the FKBP12-BFP-P2A-
mCherry reporter that were washed 3x with PBS to remove FCS and
resuspended in Opti-MEM -FCS or Opti-MEM supplemented with 10%
FCS. Degradation was measured 16 h post-treatment using FACS.

Design and construction of a ubiquitin-focused sgRNA library
A custom-made focused sgRNA library targeting 1301 ubiquitin-
associated human genes with 6 sgRNAs per gene was designed
based on the VBC score60. Predicted 20mer sgRNA sequences con-
taining a G in the first three 5’-positions were trimmed to the first G at
the 5’-end, while others were extended by a 5’-G, resulting in final
sgRNA sequences of 18-21 nt in length. The sequences were synthe-
sized as DNA oligo pool (Twist Bioscience) with overhangs and primer
binding sites for cloning as previously described60 and cloned into
pLentiV1-PBS69-U6-sgRNA-IT-EF1as-Thy1.1-P2A-Neo. To this end, the
DNA oligo pool was amplified using Q5 High-Fidelity DNA Polymerase
(New England Biolabs, M0491) in 48 parallel 50 µl PCR reactions, each
containing 10μL 5X Q5 Reaction Buffer, 1μL dNTP (10mM each),
2.5μL forwardprimer (10μM), 2.5μL reverseprimer (10μM), 1 ngoligo
pool template, and 0.5μL Q5 High-Fidelity Polymerase, using the fol-
lowing thermocycler conditions: 98 °C for 30 s; 14 cycles of 98 °C for
10 s, 70 °C for 30 s; final extension at 72 °C for 2min. The generated
amplicons were purified using the QIAquick PCR Purification kit (Qia-
gen, 28104) according to the manufacturer’s recommendations and
used in 10 parallel Golden Gate Assembly reactions, each containing
5 ng purified sgRNA amplicon, 200 ng BsmBI (New England Biolabs,
R0739) pre-cut and column purified pLentiV1-PBS69-U6-sgRNA-IT-
EF1as-Thy1.1-P2A-Neo vector, 1μL FastDigest Esp3L (Thermo Fisher
Scientific, FD0454), 1μL T7 Ligase (New England Biolabs, M0318), 2μL
FastDigest Buffer (Thermo Fisher Scientific, B64), 1mM DTT (Roche,
10197777001) and 1mM ATP (Thermo Fisher Scientific, R0441), all to
20μL final reaction volume with H2O and incubated in a thermocycler
with the following conditions: 37 °C for 5min and 23 °C for 5min for 40
cycles. Pooled ligations were incubated with 2 µL BsmBI and incubated
2 h at 55 °C and subsequently stored at 4 °C. Pooled ligations were
purified by Phenol extraction followed by EtOH precipitation and
electroporation into MegaX DH10B T1 (Invitrogen, C640003) with a
BioRad Pulser II (Bio-Rad) as recommended by themanufacturer. After
1 h recovery at 37 °C, a dilution series of bacteria was plated to ensure a
minimum representation of at least 5000 bacterial colonies per
sgRNA. The bacteria were grown at 32 °C on LB agar containing
100 µgml−1 ampicillin for 16 h and the following day, colonies were
scraped, recovered in LB broth by shaking at 220 RPMunder antibiotic
selection at 32 °C for 5 hr. Plasmid DNA was extracted using the
NucleoBond Midi prep kit (Macherey-Nagel, REF740410.50).

FACS-based CRISPR/Cas9 knock-out FKBP12 stability screen
The FACS-based CRISPR/Cas9 FKBP12-BFP stability screen was per-
formed as previously described31. Briefly, the lentiviral library con-
taining the UPS-focused sgRNA library (Supplementary Data 2) was
generated as described above and used to transduce KBM7 doxycyclin
(DOX)-inducibleCas9 (iCas9) FKBP12-BFP-P2A-mCherry cells at a mul-
tiplicity of infection (MOI) of 0.1 and 1000x library representation.
10 days post-selection with G418 (1mgml−1), 50 × 106 cells were DOX-
induced (0.4μgml−1, PanReac AppliChem, A2951) for 3 days and
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treated with DMSO, 100 nM dFKBP1 or 250 nM SP3N (1000x stocks in
DMSO) for 16 h in 2 biological replicates.

Post-treatment, cells were incubated with anti-CD90.1/Thy-1.1-
APC (Biolegend, 202526, 1:400), Zombie NIR™ Fixable Viability Dye
(BioLegend, 423105, 1:1000) and Human TruStain FcX™ Fc Receptor
Blocking Solution (BioLegend, 422301, 1:400), for 10min at 4 oC, fixed
with BD Fixation buffer 4% (Thermo Scientific™ Pierce™, BD 554655)
for 45min at 4 oC, protected from light and stored in PBS + 5% FCS +
1mM EDTA overnight at 4 ˚C. The next day, cells were sorted on a BD
FACSAria™ Fusion (BD Biosciences) using a 100 μm nozzle. The
aggregates were excluded based on the forward scatter and side
scatter channels and the live cells (Zombie NIR-) were gated for
Cas9+Thy1.1-APC+ (Supplementary Fig. 6a). In this population, the
fractions FKBP12HIGH (5–8%), FKBP12MID (30-35%) and FKBP12LOW (5-8%)
were sorted based on the FKBP12-BFP-mCherry expression levels, at a
library representation of at least 1200x.

Library preparation
Next-generation sequencing (NGS) library preparation of sorted cell
fractions was performed as previously described31,59. Briefly, the
sorted fractions were lysed in lysis buffer (10mM Tris-HCl, 150mM
NaCl, 10mM EDTA, 0.1% SDS), supplemented with proteinase K
(1:100, New England Biolabs, P8107S) and SDS (1:100) and incubated
overnight at 55 oC. After treatment with DNAse-free RNAse digest
(Thermo Fisher Scientific, EN0531), the gDNA was extracted using 2
rounds of extractionwith phenol (Sigma-Aldrich, P4557) followed by
precipitation with isopropanol (Sigma-Aldrich, I9516) overnight at
−20 oC.

To generate barcoded NGS libraries a two-step PCR protocol and
AmpliTaq Gold DNA polymerase (Thermo Fischer Scientific, 4311806)
were used, with the first PCR step to introduce unique barcodes to
each sample and the second PCR step to introduce the standard Illu-
mina adapters. Mag-Bind® TotalPure NGS beads (Omega BIO-TEK,
M1378) were used to purify the amplified DNA, which was pooled and
sequenced on a HiSeq 3500 platform (Illumina).

Screen analysis
The screen analysis was performed using the crispr-process-nf Next-
flow workflow, from https://zenodo.org/records/11445611 and the
crispr-mageck-nfNextflowworkflow fromhttps://zenodo.org/records/
11445588 as previously described31. The median normalized read
counts calculated with MAGeCK (0.5.9)61 were used to compare
the FKBP12HIGH or FKBP12LOW versus the respective FKBP12MID, per
treatment.

Analysis of FBXO22 and CRBN expression in cancer versus heal-
thy tissues
For the comparison of the expression profiles of FBXO22 and CRBN in
healthy and cancer tissues, we extracted mRNA expression data from
the Gene Expression Profiling Interactive Analysis, GEPIA262, an online
platform for integrating RNA sequencing data from The Cancer Gen-
ome Atlas (TCGA, https://www.cancer.gov/tcga) and the Genotype-
Tissue Expression project of normal tissues (GTEx, https://gtexportal.
org/home/).

Sample preparation and TMT-labeling
Frozen HEK293T pellets were lysed using 8Murea and 200mMEPPS
at pH 8.5 with protease inhibitors. Samples were then sonicated
using a probe sonicator (twenty 0.5-s pulses at level 3). The total
amount of protein per sample was determined using a BCA assay. A
total of 50 μg of protein was aliquoted for each condition. Protein
extracts were reduced using 5-Tris (2-carboxyethyl) phosphine
hydrochloride (TCEP) for 15min at RT. Samples were then treated
with 10mM iodoacetamide for 30min in the dark at RT followed by
precipitation using chloroform/methanol as previously described63.

After precipitation, samples were digested overnight using LysC and
trypsin (1:100 enzyme/protein ratio) at 37 °C using a ThermoMixer
set to 1,200 rpm. Following overnight digestion, peptides were
labeled with TMTpro 16-plex reagents at a 1:2 ratio by mass (pep-
tides/TMT reagents) for 1 h with constant shaking at 1,200 rpm.
Excess TMT reagent was quenched using hydroxylamine (0.3% final
concentration) for 15 min at RT. Next, samples were mixed 1:1 across
all TMT channels and the pooled sample was fully dried in a
Speedvac.

Basic pH reversed-phase fractionation of TMT-labeled peptides
A 100-mg Sep-Pak solid-phase extraction cartridge was used to desalt
the dried, pooled peptide sample, as previously described63. The
desalted peptide sample was dried in the Speedvac, resuspended
(10mM ammonium bicarbonate, 5% acetonitrile, pH 8.0 buffer) and
fractionated into a 96-deep-well plate with basic pH reversed-phase
HPLC using an Agilent 300 extend C18 column, and a 50min linear
gradient in 13–43% buffer (10mM ammonium bicarbonate, 90% acet-
onitrile, pH 8.0) at a flow rate of 0.250mlmin–1. The fractionated
peptide mixture was combined into 24 fractions as previously descri-
bed, and 12 non-adjacent fractions were desalted using StageTips63.
40% of the sample (resuspended in 10μl of 5% acetonitrile 5% FA) was
injected for analysis on an Orbitrap Lumos utilizing a high-resolution
MS2-based method.

Liquid chromatography and tandem mass spectrometry
For the mass spectrometry data collection, Orbitrap Fusion Lumos
instruments coupled to a Proxeon NanoLC-1200 UHPLC were used.
Peptide separation was achieved with a capillary column (35 cm long,
100 μm diameter) packed with Accucore 150 resin (2.6 μm, 150Å;
ThermoFisher Scientific), at a flow rate of 425 nL min−1. The
MS1 spectrum was acquired (Orbitrap analysis, resolution 60,000,
350-1350 Th, automatic gain control (AGC) target 100%, maximum
injection time 118ms), for ~90min per fraction, followed by the high-
resolution MS2 stage consisting of fragmentation by higher energy
collisional dissociation (HCD, normalized collision energy 35%) and
analysis using the Orbitrap (AGC 200%, maximum injection time
120ms, isolation window 0.6 Th, resolution 50,000). Data acquisition
was performed using the FAIMSpro with the following parameters:
dispersion voltage (DV): 5,000V; compensation voltages (CVs): −40V,
−60V, and −80V; TopSpeed parameter: 1 sec per CV.

Mass spectrometry data analysis
For data searches the open-source Comet algorithm (release_2019010),
following a previously described pipeline, and a customized FASTA-
formatted database incorporating common contaminants and reversed
sequences (Uniprot Human, 2021), were used64–67. The ensuing para-
meters were employed: 50 PPM precursor tolerance, fully tryptic pep-
tides, fragment ion tolerance of 0.02Da, a static modification by
TMTPro16 (+304.2071Da) on lysine and peptide N-termini, carbamido-
methylation of cysteine residues (+57.0214Da) included as static mod-
ification andoxidation ofmethionine residues (+15.9949Da) included as
a variable modification. To achieve a false discovery rate (FDR) of <1%,
the peptide spectral matches were filtered using linear discriminant
analysis with a target-decoy strategy. Further filtration ensured a final
protein-level FDR of 1% at the dataset level, and proteins were grouped.
Reporter ion intensities were adjusted to rectify impurities during the
synthesis of differentTMTreagents in alignementwith the specifications
of the manufacturer. EachMS2 spectrum required a total sum signal-to-
noise (S/N) of all reporter ions of 160 for quantification. The S/N mea-
surements of peptides corresponding to proteins were summed and
normalized to ensure equal loading across all channels. Finally, protein
abundance measurements were scaled to achieve a summed signal-to-
noise for each protein across all channels equaled 100 (relative abun-
dance measurement).
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In-lysate reactive cysteine profiling
The streamlined reactive cysteine profiling was performed as descri-
bed in previous work43,44. Briefly HEK293T cells were grown in DMEM
(Corning) supplemented with 10% FBS and 1% Penicillin/Streptomycin
to near confluent, collected, washed twice with cold PBS and were
resuspended with lysis buffer (PBS, pH 7.4, 0.1% NP-40) and sequen-
tially homogenized by syringe equipped with 21-gauge needle and
probe sonicator (5min, 3-s on, 5-s off, 50% amp) on ice. Soluble native
proteome was collected after centrifugation at 1400g for 5min and
protein concentration was measured by BCA assay.

To profile reactive cysteine, 15 µL lysate (2 µg/µL), containing 30 µg
HEK293T native proteome with spike-in of 0.15 µg recombinant
FBXO22-SKP1, was loaded into 96-well plate. 5 µL of compound solu-
tion in lysis buffer was added to the plate for final concentrations as
described in figure legend and incubated for 1 h at RT. 5 µL of DBIA
solution in lysis buffer was added to a concentration of 500 µM and
incubated in the dark for 1 h at RT. 3 µL SP3 beads (1:1 mixture of
hydrophobic and hydrophilic type, 50mgml−1, Cytiva) and 30 µL ~ 98%
ethanol supplemented with 20mM DTT were added to the plate and
incubated for 15min with mild shaking. Beads were washed once with
200 µL 80% ethanol and resuspended in 25 µL lysis buffer supple-
mented with 20mM IAA and incubated in the dark for 30min with
vigorous shaking. 50 µL ~ 98% ethanol supplemented with 20mMDTT
were added to the mixture followed by beads-based clean-up and 2x
washes using 80% ethanol. 30 µL 200mM EPPS buffer (pH 8.5) con-
taining 0.3 µg Lys-C were added to the remaining beads. After 3 h
incubation at RT, 5 µL EPPS buffer containing 0.3 µg trypsin was added
and incubated with beads at 37 °C overnight. To the mixture of
digested peptides and beads, 9 µL acetonitrile and 6 µL TMT (10 µg/µL)
reagent were sequentially added, followed by gentle mixing at RT for
60min. The reaction was quenched by adding 7 µL 5 % hydroxyl amine
and all TMT-labeled samples were combined, dried using a SpeedVac
and then desalted using a 100-mg Sep-Pak column.

The desalted TMT-labeled peptides were resuspended in 460 µL
of 100mM HEPES buffer (pH 7.4), 80 µL Pierce™ High Capacity
Streptavidin Agarose (Thermo Fisher Scientific, 20359) were added
and themixture was incubated at RT for 3 h. The resultingmixturewas
then loaded on a Ultrafree-MC centrifugal filter (hydrophilic PTFE,
0.22 µm pore size) and centrifugated at 1000 g for 30 seconds. Beads
were washed sequentially with 300 µL 100mM HEPES (pH 7.4) with
0.05% NP-40 twice, 350 µL 100mM HEPES (pH 7.4) three times and
400 µLH2Oonce. Peptideswere eluted sequentially by 1) elutionbuffer
(80% acetonitrile, 0.1% formic acid) with 20-min incubation at RT, 2)
elution buffer with 20-min incubation; 3) elution buffer with 10-min
incubation at 72 °C. The combined eluent was dried in a SpeedVac and
desalted via StageTip prior to LC-FAIMS-MS/MS analysis.

LC-FAIMS-MS/MS analysis
Enriched cysteines resuspended in 5% ACN and 5% FA were separated
on a capillary column (100 μm diameter, packed with 30 cm of Accu-
core 150 resin), using a 180-min method on a Proxeon NanoLC-1200
UPLC system. Data collection was performed using a high-resolution
MS/MS method on an Orbitrap Eclipse mass spectrometer connected
to a FAIMS Pro. A 2-shots analysis workflowwas followed using a set of
three FAIMS compensation voltages (CVs): 1) −60V, −45V and −35V and
2) −70V, −55V and −30V. MS1 scans were collected in the Orbitrap
(resolution setting of 60K,mass range of 400–1600m/z, AGCat 100%,
maximum injection time of 50ms). Data-dependent MS2 scans were
acquired in Top Speed mode (cycle time of 1 s, HCD with collision
energy of 36) and were collected in the Orbitrap (resolution of 50 K,
fixed scan range of 110-2000m/z, and 500% AGC with maximum
injection time of 86ms). A dynamic exclusion of 120 s with a mass
tolerance of ±10 p.p.m was chosen. The flowthrough was separated
using a 60-min method and analyzed by FAIMS-MS/MS in data-
dependent analysis in similar setting as analyzing cysteine samples.

Data analysis for cysteine identification, localization, and
quantification
A workflow similar to the mass spectrometry data analysis above was
followed. The raw files were searched using the Comet search engine
(ver. 2019.01.5)68 with the Uniprot human proteome database (down-
loaded 11/24/2021) with contaminants and reverse decoy sequences
appended. The following parameters were used: precursor error tol-
erance: 50 p.p.m., fragment error tolerance: 0.9Da, static modifica-
tions: Cys carboxyamidomethylation (+57.0215) and TMTpro
(+304.2071) on Lys side chains and peptide N-termini, variable mod-
ifications: methionine oxidation (+15.9949) and DBIA-modification on
cysteine residues (+239.1628). Peptide spectral matches were filtered
to a peptide FDR of <1%64,65, and further filtered to obtain a 1% protein
FDR at the entire dataset level69. Cysteine-modified peptides were fil-
tered for site localization using the AScorePro algorithm with a cutoff
of 13 (P <0.05) as previously described66,70. Only unique peptides and
cysteine sites were summarized from all PSMs and reported. To
quantify TMT reporters in each MS2 spectrum, a total sum signal-to-
noise ratio of all reporter ions totaling 180 (for TMTPro 18-plex) was
required with <3 missing values. To address variations in loading,
quantitative values were normalized to ensure an equal sum of signal
for all proteins across each channel.

Protein expression and purification
All proteins were of human origin. Ubiquitin was expressed tag-less in
BL21(DE3) RIL E. coli cells. UBA1 was expressed as a GST-TEV fusion in
Spodoptera frugiperda cells. Following glutathione-affinity purification
and TEV protease cleavage the protein was further purified using ion
exchange and size exclusion chromatography. UBE2L3, UBE2R2 and
ARIH1 were expressed as GST-TEV fusions in BL21(DE3) RIL. Following
glutathione-affinity purification and TEV protease cleavage the protein
was further purified using ion exchange and size exclusion chroma-
tography. CUL1 and GST-TEV-RBX1 were co-expressed in Spodoptera
frugiperda cells using twobaculoviruses. Following glutathione-affinity
purification andTEVprotease cleavage theproteinwas further purified
using ion exchange and size exclusion chromatography. CUL1-RBX1
complex was neddylated using previously described procedures71.
FBXO22 and SKP1 were cloned into a bicistronic pAceBacDual-based
vector, as follows. FBXO22 was cloned downstream of Strep-tag II-TEV
under control of the polyhedron promoter. SKP1 was placed down-
stream of the p10 promoter. SKP1-Fbox protein complexes were
expressed in Spodoptera frugiperda cells. Following Strep-tag II affinity
purification, Strep-tag II was removed by treatment with TEV-protease
at 4 °C. The protein was further purified by ion exchange and size
exclusion chromatography in 25mMHEPES, 150mMNaCl, 2mMDTT,
pH 7.5. The C326A mutant of FBXO22 was prepared by Quikchange
(Agilent, 200513). FKBP12 was cloned downstream of GST-TEV into
pGEX with a Gly-Ser motif at the TEV-cleavage site. The Gly-Ser motif
was used as a handle for labeling of FKBP12 with a fluorescent peptide
by sortase-mediated transpeptidation72. The protein was expressed in
BL21 (DE3) RIL E. coli. Following glutathione affinity purification and
TEV-mediated cleavage, FKBP12 was further purified using size exclu-
sion chromatography.

Peptides
Peptidewaspreparedby theMaxPlanck Institute of BiochemistryCore
Facility (>90% purity) and used as received. The peptide to fluores-
cently label FKBP12 had the following sequence: Carboxyfluorescein-
GSGGLPETGG.

Fluorescent labeling of FKBP12
FKBP12 (100 µM) was mixed with fluorescent peptide (200 µM) in
50mM Tris, 150mM NaCl, 1mM TCEP, 10mM Ca(OAc)2, pH 7.5. SrtA
4M (10 µM) was added and the reaction was incubated for 5 h at 4 °C.
The reaction product was purified by size exclusion chromatography.
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Multiturnover ubiquitylation assay
Fluorescent-FKBP12 (0.5 µM), CUL1–NEDD8-RBX1 (0.5 µM), FBXO22-
SKP1 (0.5 µM), ARIH1 (0.4 µM), UBE2L3 (2.0 µM) and UBE2R2 (2.0 µM)
were mixed with buffer (50mM HEPES, 100mM NaCl, 7.5mM MgCl2,
5mM ATP, 0.5mgml−1 BSA, pH 7.5) and either DMSO or compounds
(10 µM). The reaction was initiated by the addition of UBA1 (0.1 µM). The
reaction was allowed to proceed at RT and time points were removed at
0 and 30min, quenched by mixing with 3x SDS-PAGE buffer (150mM
Tris-HCl, 20 vol% glycerol, 30mM EDTA, 4% SDS and 4 vol% b-mercap-
toethanol). Time points were resolved on hand-cast 4-22% SDS-PAGE
gels. Gels were visualized on a Typhoon 9410 Imager (cytiva).

Pulse-chase autoubiquitylation of FBXO22
UBE2L3 (10 µM) was charged with fluorescent-ubiquitin (15 µM) by
UBA1 (0.4 µM) in 25mMHEPES, 100mMNaCl, pH7.5 in thepresenceof
MgCl2 (5mM) and ATP (1mM) at RT. The charging reaction was
allowed toproceed for 15min beforequenchingwith apryase (8Uml−1)
for 5min at 4 °C. UBE2L3 ~ UB* (0.4 µM) was added to ARIH1 (0.3 µM),
CRL1–NEDD8 (0.5 µM), SKP1-FBXO22 (0.5 µM). Time points were
removed at indicated times and resolved by SDS-PAGE analysis and in-
gel fluorescence analysis.

Intact Mass determination of FBXO22-compound complex
FBXO22-SKP1 variants (20 µM) were mixed with buffer (25mMHEPES,
100mMNaCl,pH7.5). 100 µMof the respective compoundwereadded
and the mixture was incubated for 10min on ice prior to ESI-LCMS
analysis. LCMS analysis for intact mass determination was carried out
on a microTOF Bruker Daltonik instrument equipped with an Agilent
1100 HPLC system. Samples were resolved on a Phenomenex AerisTM
3.6 µmWIDEPOREC4 100mm×2.1mm ID, 200Åpore size columnwith
eluents H2O+0.05 vol% TFA (Buffer A) and MeCN + 0.05 vol% TFA
(Buffer B). Elution was achieved with a Buffer B gradient of 20–95%
over 16min at a flow rate of 250 µL/min. MS mode was set to positive
detection and a mass range of 800–3000m/z. Raw MS data was ana-
lyzed in CompassTMData Analysis software from Bruker Daltonik and
deconvoluted with “Maximum Entropy”.

nanoDSF
SKP1-FBXO22, wt and C326A, were diluted with 25mMHEPES, 150mM
NaCl, 1mM TCEP, pH 7.5 to 2.7 µM. Protein heat denaturation was
measured using nanoDSF (Prometheus, Nanotemper). 10 µL of protein
solution was loaded in each capillary. Tryptophan fluorescence was
measured at 330 and 350 nm with 40% gain. Following temperature
stabilization at 20 °C for 20min, heat denaturation was measured at a
rate of 1 °C/min. Measurements were performed in duplicates.

Ultra-performance liquid chromatography-mass spectrometry
(UPLC-MS/MS) for SP3N and SP3CHO
80% methanol cell extracts (or solutions without cells) were evapo-
rated todrynessusing a soft nitrogenflow. Sampleswere reconstituted
with 50 µL of HPLC-grade methanol and vortexed. Samples were ana-
lyzed by UPLC-MS/MS using a Waters Acquity UHPLC system coupled
to a Waters Xevo TQMS triple quadrupole mass spectrometer. The
conditions for the equipment were optimized before the sample ana-
lysis to obtain the best selectivity and sensitivity. The analytes were
separated using reverse phase liquid chromatography on an Agilent
ZORBAX Eclipse Plus C18 Rapid Resolution HD (1.8 µm, 2.1 × 50mm)
analytical column equipped with a pre-column, running a gradient
with solvent A (water with 0.1% formic acid) and solvent B (acetonitrile
with 0.1% formic acid), and keeping the column compartment at 40 °C.
The mass spectrometer was run in positive electrospray ionization
(ESI)mode,monitoring 2MRM transitions per compound: for SP3CHO
m/z 727.404 > 472.26 and 727.404 > 99.02: for SP3N 728.628 > 473.409
and 728.628 > 270.223; and for SP3NAc 770.638 > 515.436 and
770.638 > 86.043. For the absolute quantification of the compounds, a

10-point external calibration curve was recorded using neat standards,
from 0.04 to 10,000nM. Excellent linearity was obtained in all the
range (R2 > 0.996). Quantification was executed using the software
TargetLynx XS V4 S2 SCN986.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry data for the global proteomics generated in
this study have been deposited in the ProteomeXchange Consortium
via the PRIDE partner repository with the accession identifier
PXD04933073. The mass spectrometry data for the TMT-ABPP experi-
ment have been deposited in the ProteomeXchange Consortium with
the accession identifier PXD051803. Source data of all graphs and
uncropped gels andblots are provided in the “SourceData” file. Source
data for Figs. 1e, 2a, Supplementary Fig. 2a and Supplementary
Fig. 4g, h are included in Supplementary Data 1–4. The gating strate-
gies applied for FACS analyses and cell sorting are provided in Sup-
plementary Fig. 6. Source data are provided with this paper.

Code availability
The code for the analysis of the FACS-based CRISPR-KO screens is
available on GitHub [https://zenodo.org/records/11445588, https://
zenodo.org/records/11445611].
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