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Data-driven approaches linking wastewater
and source estimation hazardous waste for
environmental management

Wenjun Xie1, Qingyuan Yu1, Wen Fang 1 , Xiaoge Zhang2, Jinghua Geng1,
Jiayi Tang1, Wenfei Jing1, Miaomiao Liu 1 , Zongwei Ma 1, Jianxun Yang1 &
Jun Bi 1

Industrial enterprises are major sources of contaminants, making their reg-
ulation vital for sustainable development. Tracking contaminant generation at
the firm-level is challenging due to enterprise heterogeneity and the lack of a
universal estimation method. This study addresses the issue by focusing on
hazardous waste (HW), which is difficult to monitor automatically. We devel-
oped a data-driven methodology to predict HW generation using wastewater
big data which is grounded in the availability of this data with widespread
application of automatic sensors and the logical assumption that a correlation
exists between wastewater and HW generation. We created a generic frame-
work that used representative variables from diverse sectors, exploited a data-
balance algorithm to address long-tail data distribution, and incorporated
causal discovery to screen features and improve computation efficiency. Our
method was tested on 1024 enterprises across 10 sectors in Jiangsu, China,
demonstrating high fidelity (R² = 0.87) in predicting HW generation with
4,260,593 daily wastewater data.

Waste management is increasingly becoming a focal topic in the field
of environmental management because it is broadly related to over
half of the sustainable development goals (SDGs)1, such as industry,
innovation, and infrastructure (SDG9) and climate actions (SDG13).
Hazardous waste (HW) is of priority in waste management due to its
harmful properties (i.e., toxicity, corrosiveness, and flammability) as
well as its high potential in resource recycling2. In the next decades, it
was deemed that the world is on a trajectory where waste generation
will drastically outpace population growth3. The acceleration of
industries and the ensuing soaring of HW generation will intensify the
burdens of HW management.

Source management of HW, improving the collection rate and
reducing generation intensity, is a fundamental process in HW
management4. However, many countries, particularly those with lax
regulations, face challenges in achieving adequate collection,

leading to uncontrolled risk sources and potential environmental
damage5,6. While inmany economies, government agencies mandate
hazardous waste generators to pay and transfer their HW to recycle/
disposal stakeholders for proper treatment7–9, the lack of accurate
estimation of HW at the firm-level poses a challenge for regulatory
stakeholders in optimizing collection systems and inspecting HW
generator’s behavior. Even though there are some programs, such as
the Toxic Release Inventory Program in the United States10 or the
European Pollutant Release and Transfer Register in the EU11,
requiring HW generators to declare their HW generation, the main
challenge is to ensure the participation of all generators regularly,
particularly when the mandated declaration period is short as week
or month. An efficient method to estimate the HW generation which
could obtain a detailed and conducive data at the firm-level is an
urgent need for HW management.
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Unfortunately, there lacks a low-cost but high-accuracy method
to estimate the HW generation quantity at the firm-level across a
large region because there are huge disparities in the HW generation
patterns among enterprises. The traditional method of estimating
the HW generation quantity is based on HW generation intensity
factors which are multipliers to predict HW generation from a
production unit, such as the number of employees, or economic
output12. Nevertheless, the HW generation intensity factor obtained
by previous studies or the national guideline is usually the
aggregated one of an industry, ignoring the heterogeneity
across enterprises13. In addition, the data of production activities
indicated by economic/physical output usually does not have
a sufficiently granular temporal resolution to support HW

management practices and sometimes are even inaccessible for
environmental stakeholders.

In recent years, the application of the Internet of Things (IoT)
sensors in environmental management, particularly the use of IoT
sensors for continuousmonitoring ofwastewater, has provided insight
into tackling this intractable issue14. The rationale is that there must
exist a correlation between wastewater and HW generation data since
both of them are directly related to manufacturing processes where
the generation of HW and wastewater resulted from the partition of
contaminants in liquid and solid phases15,16. For example, metal con-
taminants generated during the electrolysis and pickling process are
partly discharged into wastewater and partly into solid phases, form-
ing the HW of anode sludge17. We have summarized that almost 43 of
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Fig. 1 | The model framework for predicting the total generation quantity of
HW and one specific category. a Data of variables which could indicate static
characteristics and real-time activities of enterprises are collected and pre-
processed. b Feature engineering which incorporated the causal discovery,
importance, and correlation analysis was conducted to screen input features. c A
regression model is developed directly from the training dataset with data balance
to predict the total generation quantity of HW. d An ensemble model coupling the
classification and regressionmodel is developed to predict the generation quantity

of one category of HW. The binary classification model could determine whether
the generation quantity of this category is 0. The regressionmodel is developed to
predict the specific value when the generation quantity of this category was >0
basedon the classificationmodel results. eAftermodel development, performance
validation is conducted on the test dataset. In addition, feature exploration is
performed on the trainedmodels to investigate the impact of input features on the
target output.
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the total 46 types of HW in the Chinese National List of Hazardous
Wastes were generated along with wastewater (Supplementary
Table 1). In addition, from the perspective of management practice,
compared with economic or physical output data which were com-
monly adopted to indicate the firm’s real-time activities, the data of
wastewater was more accessible for environmental management sta-
keholders and had higher granular time resolution of every hour or
day, thereby supporting the source estimationofHWgenerationwith a
higher updating frequency.

Here, we proposed a machine learning based and data-driven
methodological framework (Fig. 1) with 43 variables to predict the
generation quantity of HW at the firm-level every month through
linking wastewater data, in tandem with enterprises’ static character-
istics, to HW generation. To demonstrate the feasibility of this generic
framework, an application, using 4,260,593 daily wastewater emission
data, was developed to estimate HW generation quantity from 1024
enterprises covering 10 different industrial sectors (Fig. 2). Although
the results of our analyses for the 10 industrial sectors were conducted
with data from Jiangsu province, China, we discussed how our findings
are generalizable to other regions and industrial sectors. This paper
offers an effective methodology to fill in the knowledge gap in source
management of HW. It also highlighted the potential of data-driven
approaches by integrating data cross-organizational boundaries to
solve the environmental management challenges in dealing with large-
scale heterogeneous stakeholders.

Results and discussion
Combined models to predict the generation quantity of hazar-
dous waste at the firm-level
A combined machine learning model was developed to predict the
total generation quantity of HW at the firm-level for 1024 enterprises
from 10 different industrial sectors across the studied region of
Jiangsu, China. Based on the evaluation metric, among these eight
machine learning and deep learning algorithms (gradient boosting
decision tree (GBDT), support vector machine (SVM), extreme

gradient boosting (XGBoost), k-nearestneighbor (kNN), randomforest
(RF), multilayer perceptron (MLP), MLP ensemble, and tabular neural
network (TNN)), the RFmodel (R2 = 0.80, RMSE = 270.35) achieved the
best performance (Supplementary Table 2) and was thus selected for
further discussion. Despite employing three deep learning algorithms,
their performance in predicting hazardous waste (HW) generation
quantity didnot surpass that of theRFmodel. Thisoutcomealignswith
findings from a comprehensive study comparing deep learning
methods with tree-based models across a standard set of 45 tabular
datasets from diverse domains18. The study demonstrated that tree-
based models, such as RF, remained state-of-the-art for medium-sized
data (~10 K samples), even without considering their superior com-
putational efficiency. This superiority can be attributed to specific
characteristics of tabular data, including irregular patterns in the tar-
get function and the presence of uninformative features. Neural net-
works are biased to overly smooth solutions, thereby failing to learn
non-smooth and irregular data patterns. In contrast, models based on
decision trees, which learn piece-wise constant functions, do not
exhibit such a bias19. In addition, tabular datasets usually containmany
uninformative features, but MLP-like architectures are not robust to
uninformative features because removing uninformative features will
even obviously decrease the model performance20. In this study, even
for the deep learning model which performed best (TNN: R2 = 0.81,
RMSE = 307.85), its performance was comparable to the RFmodel, but
the time cost of model training (TNN: ~5767 s) was much higher than
theRFmodel (12 s). Therefore, considering theRFalgorithm’s ability to
achieve accurate predictions with lower computational costs, we have
chosen it for subsequent model development.

Notably, the RF model outperformed the multiple linear regres-
sion (R2 = 0.22, RMSE = 592.42) (Supplementary Table 2), underscoring
the complex correlation amongHWgeneration, wastewater discharge,
and enterprises’ static characteristics, which can be effectively simu-
lated by machine learning models. Previous studies on HW generation
quantity prediction were commonly on the basis of economic and
demographic indicators, such as employee number and product
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Fig. 2 | The study region in this study. a Total generation quantity of China in
2020. b The spatial density of 1024 industrial enterprises covered in this study.
c The top 10 industrial sectors (electronic circuits manufacture (ECM), organic
chemical materials manufacture (OCM), chemical pesticides manufacture (CPM),

steel rolling and processing (SRP), specialized chemical products manufacture
(SCP), metal surface treatment (MST), metal wire and rope manufacture (MWR),
biomass energy generation (BEG), electricity generation using other sources (EGU),
and steelmaking (STE)) with highest HW generation quantity in the study region.
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quantity12,21. In this study, we have provided the demonstration of the
correlation between HW generation and wastewater discharge.

To further improve the model performance, the data balance
method of Synthetic Minority Over-Sampling Technique for Regres-
sion with Gaussian Noise (SMOGN) was applied to address the long-
tailed distribution of the training dataset where the sample size in the
high-value rangewasdisproportionally low (Supplementary Fig. 1). The
long-tailed distributionmight lower the learning ability of themodel in
the zone with rare cases. To overcome this limitation, the SMOGN
method could generate observations in this zone and increase the
fraction of observations with high values in the training dataset (Sup-
plementary Fig. 2). Such a process of data balance is efficient in
improving the model performance, with R2 increasing from 0.80 to
0.87 (Supplementary Table 2, Fig. 3a, b). It implied that the synthetic
samples generated by SMOGN were reasonable and reliable, offering
accurate reflections of the relationshipbetween input features andHW
generation. Given that most data in the real practice of environmental
management is imperfect, some data processing techniques, such as
data re-sampling and synthetic data generation, are prerequisites to
the development of a data-driven approach.

Regarding the generation quantity of one HW category, it is dif-
ferent from the total generation quantity because some enterprises
might not generate this HW category. That is, the value of generation
quantitymight be0 for a considerable fractionof observations. Even for

the enterprise that generated this HW category previously, its behavior
will change over time. Aiming at this condition, we took one category of
HW,metal surface treatment hazardous waste (MHW, referring to code
HW17 in the HW list issued by theMinistry of Ecology and Environment
of China)22, as a case, and an ensemble model coupling the binary
classificationmodel and regressionmodelwas developed topredict the
MHW generation. The binary classification determined whether the
value of the MHW generation quantity was 0 and the regression model
predicted the specific value when theMHWgeneration quantity was >0
based on the classification results. During developing the regression
model, observations with MHW generation quantity being 0 were
removed from the training dataset before data balance.

The RF model demonstrated superior performance in both the
binary classification and regression models (Supplementary Table 3),
leading to a reliable ensemble model with an R2 of 0.85 and RMSE of
47.50 (Fig. 3d, Supplementary Table 4). Moreover, this ensemble
model outperformed a direct regressionmodel (Supplementary Fig. 3,
R2 = 0.69, RMSE = 65.80) developed from the whole balanced training
dataset containing the observation with MHW generation quantity
being 0. The ensemble model’s superiority was further explained by
comparing their prediction accuracy on the two split test datasets with
MHW generation quantity being 0 or >0. For the test dataset with
MHW generation quantity being 0, the ensemble presented sig-
nificantly higher precision than the direct regression model, which
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means that the ensemblemodel couldmore accurately screen out the
observations with MHW generation quantity being 0 (Supplementary
Table 5). For the test dataset with MHW generation quantity >0,
the ensemble model still presented significantly better performance
(Supplementary Table 5). These optimizations might be because
separating the training dataset and developing two models will
make each learning goal more focused. There were significant differ-
ences between the input data samples with MHW generation quantity
being 0 and >0 (Mantel test r = −0.008, p =0.995, 999 permutations).
If these two groups of data were combined as a training dataset, the
model would be compelled to learn some redundant information that
is not useful for the prediction target. These findings aligned with
other studies employing a similar modeling framework coupling
classification and regression models23,24.

Sector-independent model development
Even though the final combinedmodel can predict the HW generation
quantity of enterprises for 10 industrial sectors, its performance may
vary significantly among sectors due to diverse patterns in HW gen-
eration (Fig. 4(a-1)). For example, the combined model exhibited poor
accuracy in predicting the total generation quantity of HW for the
sector of chemical pesticide manufacture (CPM, R2 = 0.68). Therefore,
independent models for each sector were developed following the
same approach.

Considering the good performance of RF compared with other 7
machine learning or deep learning algorithms during the development
of the combined model, the RF algorithm was adopted to build inde-
pendent models for 9 sectors (Supplementary Fig. 4), excluding the
sector of steelmaking (STE) owing to insufficient sample size formodel
development (Supplementary Fig. 1). To ensure a fair comparison

between the predictive performance of the combined model and the
sector-independent model, the same test dataset was employed. The
comparison showed that performances of independent models were
superior to the combined model, particularly for the sector with
unsatisfactory prediction accuracy from the combined model
(Figs. 4(a-1, a-2), Supplementary Table 6). For example, the R2 of the
independent model for the sector of metal surface treatment (MST)
(R2 = 0.86) and organic chemical materials manufacturing (OCM)
(R2 = 0.77) significantly surpassed that of the combined model
(R2 = 0.74 forMST andR2 = 0.71 forOCM, Fig. 4(a-1)). Similar trends can
be found for models to predict the generation quantity of MHW.
Independent models for MHW generation were developed for 4 sec-
tors (metal surface treatment (MST), steel rolling and processing
(SRP), electronic circuits manufacture (ECM), and metal wire and rope
manufacture (MWR)) which accounted for 98% of MHW total quantity
among the studied industrial sectors (Supplementary Fig. 5). The
comparison between the independent and combined models showed
that performances of independentmodelswere commonly better than
the combined model (Figs. 4(b-1, b-2), Supplementary Table 6). For
example, the R2 of the independent model for the sector of metal
surface treatment (MST) (R2 = 0.72) was higher than the combined
model (R2 = 0.66 for MST, Fig. 4(b-1)). This superiority of independent
models was attributed to the high diversity in HW generation patterns
among sectors and sector-independent models better capture the
unique patterns for each sector. But it is crucial that the data size of
each sector must be large enough to provide confidence in learning.

Influence of input features on predicting hazardous waste
generation
The Shapley additive explanation (SHAP) analysis was conducted to
interpret the influence of input features on the HW generation, which
could provide preliminary insight into the correlation between HW
generation and firm’s static characteristics and wastewater dis-
charge (Fig. 5).

To clearly illustrate the influence of different features, we classi-
fied the predictors into 5 groups: (a) the industrial sector, (b) the firm
scale, (c) manufacturing processes, (d) the wastewater routine mon-
itoring indicators (wastewater discharge amount, chemical oxygen
demand (COD), pH, ammonia nitrogen (NH3-N), total nitrogen (N),
total phosphorus (P)), and (e) metal emission in wastewater (iron (Fe),
total chromium (Cr), hexavalent chromium (CrVI), copper (Cu), zinc
(Zn), and nickel (Ni)). The averageMAS value of all the variables in one
group was calculated to quantify the importance of each group. For
the combined model to predict the total generation quantity of HW,
the importance of these 5 groups were in the following order: firm
scale (average relative importance: 16.8%) > the wastewater routine
monitoring indicators (average relative importance: 9.5%) >metal
emission in wastewater (average relative importance: 8.8%) >sector
(average relative importance: 8.7%) >manufacturing processes (aver-
age relative importance: 3.6%).

For thefirm scale, the sampleswith low feature valuesweremainly
on the left side, while the points with high feature values were mainly
on the right side (Fig. 5b), suggesting the positive relationship between
the firm scale and HW generation. It is consistent with the common
sense that larger enterprises tend to generate more HW. Some studies
adopted the number of employees, the factor used to determine the
firm scale in this study, as a production unit to project the waste
generation12.

The wastewater routine monitoring indicators, particularly was-
tewater discharge amount, held significant importance, emphasizing
the closepositive relationship betweenwastewater andHWgeneration
because itwas a reflection of contaminant partition between liquid and
solid phases. Even so, it is noteworthy that such contaminant partition
is highly heterogeneous for different firms (Supplementary Fig. 6) due
to diverse manufacturing factors, such as the production technology
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and management level25. Even in the same industrial sector, the dif-
ferent techniques and processes adopted during manufacturing can
influence the type and concentration of contaminants, and thus their
proportional distribution amongdifferent phases. For instance, during
wastewater treatment, the different techniques of adsorption, coagu-
lation, and electrolysis might alter the form of heavy metal ions in
wastewater and the removal efficiency, leading to a change in con-
taminant partition between wastewater and HW26. In the metal pro-
cessing sectors, different dissolution solvents will impact the
extraction efficiency of metals from residues and thereby change their
concentrations in wastewater and the quantity of HW17. Besides, the
environmental management level will impact the compliance of
enterprises to the local regulations and accordingly their ability to
control pollutant emission27. However, in tandem with the data about
firm’s static characteristics, this heterogeneous relationship can be
simulated usingmachine learning algorithms and used to favor source
estimation of HW.

The sector’s importance was underscored by the considerable
disparities in HW generation quantities across different industrial
sectors (Supplementary Table 7). For example, the sector of

steelmaking (STE) had the highest mean value of total generation
quantity of HW (995.74-ton average), almost 20 times that of metal
surface treatment (MST) (50.64-ton average). The comparable
importance observed between variables of metal emission and sector
could be attributed to the sector-dependent presence of metals in
wastewater. For example, Zn, Fe, and Ni are representative con-
taminants for the sector of metal surface treatment (MST) due to the
electroplating process28,29, whileCu is discharged in thewastewater for
the sector of electronic circuits manufacture (ECM) owing to its
extensive use of Cu-containing raw materials30. However, the impor-
tance of manufacturing processes was generally low compared with
other variables.

For the ensemblemodel to predict theMHWgeneration quantity,
SHAP analysis was conducted for the classification (Fig. 5c) and
regression model (Fig. 5d), respectively. For the classification model,
the importance of these 5 groups differed from the combined model
to predict the total generation quantity of HW and ranked as follows:
sector (average relative importance: 58.1%) >metal emission in waste-
water (average relative importance: 8.2%) >firm scale (average relative
importance: 3.2%) >the wastewater routine monitoring indicators
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(average relative importance: 2.6%) >manufacturing processes (aver-
age relative importance: 2.2%). In this classification model, the role of
sector and metal emission in wastewater became considerably more
crucial in determining whether the firmwill generateMHW. The sector
is the most dominant factor since the categories of HW generated in
one sector are almost identical. In this study, most of MHW were
generated in the four sectors of metal surface treatment (MST), steel
rolling and processing (SRP), electronic circuits manufacturing (ECM),
and metal wire and rope manufacturing (MWR).

Regarding the regressionmodel in the ensemblemodel to predict
MHW generation quantity, the importance of these 5 variable groups
ranked as firm scale (average relative importance: 14.6%) >sector
(average relative importance: 10.1%) >metal emission in wastewater
(average relative importance: 9.0%) >manufacturing processes (aver-
age relative importance: 6.2%) >wastewater routine monitoring indi-
cators (average relative importance: 3.8%). In comparing the two
regression models for predicting total HW generation quantity and
MHW generation quantity, a notable distinction emerged in the
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Fig. 6 | Importance of input features for 20 models, including a combined
model and 9 sector-independent models to predict total generation quantity
ofHW, 5 classificationmodels and 5 regressionmodels from the combined and
independent ensemble model to predict MHW generation quantity. a The
average relative importance, indicated by the average MAS value of variables in 4
groups of the firm scale, manufacturing processes, the wastewater routine

monitoring indicators, and metal emission in wastewater. b Ranking of input fea-
ture importance for 20 models. The number inside each cell reflected the ranking
of the variable. Variables ranked in the top 5 are marked with *** to denote their
crucial importance in model prediction, while variables ranked between 6th and
10th are marked with * to indicate their relatively significant impact.
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relative importance of metal emission in wastewater and wastewater
routinemonitoring indicators. Specifically, comparedwith wastewater
routinemonitoring indicators of COD, the higher importance assigned
to metal emission in wastewater in predicting MHW generation aligns
with the established understanding thatMHW, generated duringmetal
surface treatment, exhibits strong correlations with metals present in
wastewater. This underscores the significance of considering metal
discharge levels in predicting MHW generation, as compared to other
common contaminants. Although the average importance of manu-
facturing processes appeared relatively low, a specific variable of the
manufacturing process of wastewater treatment (process_10) stood
out. This variable played a notably high role, which canbe attributed to
the fact that a significant portion of MHW is derived from the treat-
ment of metal wastewater22,31.

To further uncover the generalized relationship between HW
generation and input features of firms’ static characteristics and was-
tewater discharge, we compared the feature importance among 20
models, including a combined model and 9 sector-independent
models to predict total generation quantity of HW, 5 classification
models and 5 regression models from the combined and independent
ensemble model to predict MWH generation quantity (Fig. 6). Since
the variable of the sector was not involved for the independent mod-
els, 4 groups of (a) the firm scale, (b) manufacturing processes, (c) the
wastewater routine monitoring indicators, and (d) metal emission in
wastewater were discussed.

The comprehensive analysis across 20 models highlighted the
consistent importance of firm scale and wastewater routine monitor-
ing indicators, including wastewater discharge amount and emission
of common pollutants (i.e., N, P, COD, and NH3-N). Nonetheless, the
importance of manufacturing processes and metal emission in was-
tewater was sector-dependent. For instance, Zn exerted greater influ-
ences on predicting HW generation in the sector of metal wire and
rope manufacture (MWR), but Cu was more important for the elec-
tronic circuits manufacturing (ECM) sector. For some sectors, the
variable group of metal emission have been even filtered out during
feature screening incorporating causal discovery and feature impor-
tance. Such heterogeneity was also significant for manufacturing
processes. For example, for the sector of metal surface treatment
(MST), machining processing (process_1) held significant importance
as it leads to the generation of various HW, including waste acids
(referring to code HW34), waste alkali (referring to code HW35), metal
surface treatment waste (referring to code HW17), and hazardous
lubricants (referring to code HW08)32,33. In addition, the rectification
and distillation process (process_5) was pivotal to HW generation in
the specialty chemical products (SCP) sector because the spent che-
mical solvent (referring to code HW06) generated during this process
was one representative type of HW in the chemical industries34.

Generalizability of this model framework
To demonstrate the adaptability of our generic model framework in
predicting HW generation across diverse regions and industrial sec-
tors, we developed 3 case study applications (Supplementary Fig. 9).
Thefirst two caseswere crafted to illustrate themodel’s applicability in

regions with varying contaminant partition between liquid and solid
phases influenced by regional water withdrawal strategy and technol-
ogy advancement (Supplementary Fig. 10). The third case was
designed to show the feasibility of the generic framework in more
representative sectors.

Specifically, the first application focused on the development of a
model for the sector of metal surface treatment (MST) in Shandong
province which had a lower ratio of wastewater discharge amount to
HWgeneration quantity (WTH) than the studied region of Jiangsu. The
ratio of WTH could indicate different contaminant partition relation-
ships between the solid and liquid phases. The sector of MST was
chosen because it had sufficient sample sizes to buildmodels formost
provinces. The second focuses on model development in Zhejiang
province which had higher WTH than the studied region of Jiangsu.
The third focuses on another industrial sector of lead and zinc
metallurgy sector in Hunan province, not studied in Jiangsu but sig-
nificant for HW generation in China. Due to the data availability, these
three cases utilized the HW generation and wastewater data with time
resolution of the year from the China Environmental Statistics Data-
base of 2015. Detailed data information about the three cases can be
found in Supplementary Text 1.

For the first two cases developed for regions with different WTH
ratios, models presented commendable predictive performances
(Shandong province: R2 = 0.69, RMSE = 29.38; Zhejiang province:
R2 = 0.72, RMSE = 721.15, Table 1). This suggested that our model fra-
mework adeptly captured and simulated the heterogeneous relation-
ship between wastewater and HW generation, even when it varied
across regions. The relatively lower predictive performances observed
in these applications, compared with the previous model (R2 = 0.87,
Supplementary Table 2), developed from monthly observations, may
be primarily attributable to the smaller data size available for these
cases (the Shandong case: 190 observations; the Zhejiang case: 396
observations). It is important to acknowledge that collecting more
data has the potential to enhance the performance of data-driven
approaches. The expansion of the dataset can compensate for the
loose structure of the current smaller dataset and address the omis-
sion of potential information. Consequently, this can improve the
representativeness of the data, enabling the underlying model to
better characterize the actual distribution35. Afterwards, in the Zhe-
jiang case, the model developed for this region was applied to predict
HW generation in Shanghai, a region in the same cluster as Zhejiang
based on the WTH ratio. However, the prediction performance was
below expectations (R² = 0.32). This implied that the model must be
trained using the localized data derived from the application region.
Concerning the third case focusing on the sector of lead and zinc
metallurgy, the model still exhibited high reliability and prediction
accuracywith theR2 andRMSE values of 0.82 and2366.63, respectively
(Table 1). This reaffirmed the potential of our framework for applica-
tion in diverse regions and industrial sectors, provided that model
training data is localized, and variables are appropriately screened
based on the specific studied sector.

Besides, since it has been demonstrated that the feature impor-
tance varied with sectors, we further investigated whether their

Table 1 | Model performances of three application cases in other regions or sectors

Region Sector R2 RMSE Final input features

Zhejiang, China Metal surface treatment 0.72 721.15 manufacturing processes (including: metal surface processing, circuit board treatment, equipment
maintenance, exhaust gas treatment, and wastewater treatment), firm scale, wastewater discharge
amount, N, P, NH3-N

Shandong, China Metal surface treatment 0.69 29.38 manufacturing processes (including: metal heat treatment, metal surface processing, circuit board
treatment, equipment maintenance, exhaust gas treatment, and wastewater treatment), firm scale,
COD, NH3-N, N, Cr

VI, Cr

Hunan, China Lead and zinc metallurgy 0.82 2366.63 manufacturing processes (including: mineral leaching, electrolysis, roasting, and flue gas treatment),
firm scale, COD, NH3-N, P, Cr

VI
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importance will change with regions even within the same sector,
thereby providing guideline for the variable screening when the gen-
eric model was applied in different regions. To have a better under-
standing of the spatial heterogeneity, due to data availability, we
expanded the model of the MST sector to include three additional
regions (Guangdong, Hebei, and Fujian province) using the data from
the same database of the China Environmental Statistics Database of
2015. Detailed information about the model performance for these
cases canbe found in SupplementaryTable9. Finally,we compared the
feature importance of six models developed for theMST sector across
the regions of Shandong, Zhejiang, Jiangsu, Guangdong, Hebei, and
Fujian provinces. Upon comparison among the six regions, we
observed consistently high importance attributed to wastewater rou-
tine monitoring indicators (wastewater discharge amount, COD, NH3-
N, P, and N), with the average relative importance of variables in this
group ranking 1st for most regions (Supplementary Fig. 12). However,
significant disparities in feature importancewere noted for the groups
of manufacturing processes and metal emission in wastewater. For
example, while the variable group of metal emission in wastewater
(CrVI and Cr) wasmost important for the Hebei province, this group of
variables were filtered out during feature screening based on causal
discovery and feature’s importance for the Zhejiang province. This
discrepancy was because the enterprises of the MST sector in Hebei
province aremainly related to chrome plate, a subsidiary sector of the
leather industry which has been listed as one of the pillar industries in
this region36. Another finding is that a distinctively high importance of
manufacturing processes was observed for Guangdong province,
owing to its unique industrial layout where electronic waste recycling
is well developed. Enterprises engaged in the manufacturing process
of circuit board treatment contribute significantly to HWgeneration in
this region37. The heterogeneity in feature importance across different
regions, even for the same sector, underscores the importance of
employing a generic set of variables tailored to the characteristics of
sectors in different regions. Subsequently, specific variables used to
build models can be screened based on feature engineering, con-
sidering the varied importance of features for each application region.

Sensitivity and uncertainty analysis
Weemployed a series of sensitivity analyses to assess the robustnessof
our model. First, feature selection plays a crucial role in model devel-
opment, and an inappropriate screening of features may adversely
affect the model’s performance. We evaluated the effect of different
feature selection principles, including (i) screening features based on
Markov Blanket (MB) according to the directed acyclic graph (DAG)
learning and (ii) combining the features screened based on MB and
features’ importance ranking, on the model performance. The com-
parison showed that relying solely on MB-based features sometimes
led to a decrease in predictive performance (Supplementary
Tables 10 and 11). For example, in the combined model to predict the
total generation quantity of HW, using the MB-based features dimin-
ished the R2 from 0.87 to 0.68 on the testing dataset. This reduction
was because the MB learning algorithm might fail to identify some
critical features during feature selection tasks caused by the strict
assumption of data distribution, variable types, or correctness of cri-
teria, during causal discovery, which thereby limited the faithfulness of
DAG learning results38. However, when the selected features were
further refined based on the features’ importance, the model even
could achieve superior performance to the baseline models with all
variables as input. For instance, the R2 of the independent models for
the sector of biomass energy generation (BEG) (R2 = 0.92) surpassed
the baselinemodels with all variables as input (R2 = 0.87). In addition, it
is worth highlighting that the feature selection significantly increased
the computational efficiencyby decreasing the total computation time
of training combined and sector-independent models by 20% (from
158.1s to 125.7 s). Therefore, considering the computation efficiency as

well as the model performance, it is satisfactory to select features
through combining MB learning and features’ importance analysis.

Second, we estimated the temporal extrapolation of the model
during the application, referring to how the performance of the
model changed with prediction times because the model was com-
monly built using the historic data but used to predict the current
HW generation in management practice. The change in technique
advancement and manufacturing activity level will impact the pre-
dictive performance of the model built on historical data. Here, the
model, trained using data from Jan. 2020 toDec. 2021, was employed
to predict HW generation for each month in 2022. As shown in
Supplementary Fig. 14, the combinedmodel consistently performed
well with an R2 around 0.7 when it was used to predict the total
generation quantity of HW in the next 3 months. Then, with the
further extrapolation of time, the performance gradually decreased
to R2 of 0.4–0.5. This might be attributable to a shift in the HW
generation pattern not learned by the model using historical data. A
similar trend can be found for the combined model to predict the
generation quantity of MHW. Therefore, we recommended periodic
retrofitting and retraining of the model every three months to
ensure accuracy during application.

To further ensure the reliability of the model in real-world
applications, it is essential to estimate model uncertainty because in
practice, decision-making in the context of industrial applications
involves a complicated trade-off between risky decisions and large
potential economic benefits. ML models have undoubtedly
advanced the field by offering a valuable set of tools to efficiently
learn from data and automate the management process. Never-
theless, these models require effective uncertainty quantification to
demonstrate their trustworthiness. Ideally, the uncertainty quanti-
fication of these ML models should yield a c% confidence interval
that contains the true value for approximately c% of the time39. For
example, if c% = 95%, we expect that approximately 95% of test
samples have their true values fall into the respective 95% confidence
intervals of prediction. Our uncertainty analysis indicated low
uncertainty in model predictions during testing. For the combined
models to predict HW generation quantity, 95.60% of testing sam-
ples fell into the 95% confidence intervals of prediction (Supple-
mentary Table 12, Supplementary Fig. 15). This implied the high
reliability in themodel prediction results and good generalization of
models. However, regarding the sector-independentmodels and the
model to predict MHW generation quantity, some of them exhibited
overconfidence, with observed confidence levels lower than the
expected 95%. It might be attributable to the small size and long-tail
distribution of data for learning, and obtaining more reliable data
could decrease uncertainty.

Cost-effectiveness analysis
The cost-effectiveness of this scheme was compared with traditional
management measurement of field surveys from the perspective of
time and monetary cost. The time associated with developing the
model was evaluated. The framework was implemented on a per-
sonal computer of configuration Intel Core i5-1135G7 with CPU
2.4 GHz and 16 GB memory. The model development time was
affected most by the matching and integration of enterprise waste-
water data and HW generation data, and it took a total of 13min
22.7 s to complete the program for the 10 industrial sectors with
4,260,593 data points. In contrast, the data preprocessing ofmissing
value imputation and outlier detection for the same 10 industrial
sectors, could be accomplished in 35.1 s. Feature engineering took a
total of 171.2 s. The subsequent machine learning model construc-
tion program, including data balancing, model training, and feature
inference, consumed a total of 125.7 s. Generally, the model devel-
opment will cost about 20min and the retrofit of the model will take
12min every 3 months according to the data size. However,
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traditional field surveys to determine each enterprise’s HW genera-
tion intensity factor, crucial multipliers for predicting HW genera-
tion from a production unit, were time-consuming, often requiring
more than one day for a single enterprise40. The time will be even
longer when the investigator is not professional with the manu-
facturing processes of HW generation.

Regarding the expenditure, this scheme will not augment the
company’s expenditures because the data used to build themodel was
the wastewater data monitored by IoT sensors which have been
mandated to be installed in many countries. For example, Vietnam’s
Environmental Protection Lawrequires enterprises to install automatic
pollution monitoring equipment41. Even in cases where automatic
monitoring sensors are not mandated to be installed, regulatory
authorities commonly require industrial enterprises to periodically
monitor and report wastewater data42,43. Utilizing this data, it is still
feasible to predict the HW generation during the same period as the
reported time of wastewater data. Meanwhile, with the regulation
being increasingly stringent, mandating enterprises to report near-
real-time information about wastewater discharge and installing
automatic sensors to monitor wastewater will become unavoidable44.
Even so, it has been demonstrated that adopting these sensors can
result in cost savings because the real-time data combined with intel-
ligent algorithms will favor the optimization of system operation to
save energy costs45.

Model applicability, limitation, and future research
Our generic framework has been demonstrated being applicable in
diverse regions and industrial sectors, provided that model training
data is localized, and variables related tomanufacturing processes and
water contaminant emission are appropriately screened based on the
specific studied sector. For one industrial sector, a generic set of
variables tailored to the characteristics of sectors should be employed
for different application regions and then specific variables used in
each region can be screened based on feature engineering, consider-
ing the varied importance of features. In addition, since the model
simulates the patterns of HW generation at the firm-level through
mining data characteristics, it is suggested to collect as much data as
possible to enhance model performance and reliability.

When the model was implemented in the real management
practice, firstly, the variables involved in the model, referring to the
ones related to enterprise characteristics (such as the industrial sector,
firm scale, and manufacturing processes) and real-time water con-
taminant emission, should be tailored based on the characteristics of
studied sectors. Regarding the tailored variables, a set of historic data,
with a monthly time-resolution, should be collected for subsequent
modeling development. Secondly, apply a data-driven methodology
incorporating feature engineering, data balancing, and artificial intel-
ligent algorithms to build the model for predicting HW generation
quantity at the firm-level for each month. Given the high diversity in
HW generation patterns among sectors, it is advisable to develop
sector-independent models that can better capture the unique pat-
terns of each sector when the data size for each sector is sufficiently
large to ensure confidence in learning. Thirdly, adopt this model to
predict the enterprise’s HW generation quantity in the next 3 months
following the period of collected historic data. In addition, regular
updates of the model every three months are recommended to
maintain model performance.

Some limitations remain and deserve further study. Firstly, the
case in this studywas a regional survey involving enterprises fromonly
10 sectors. While a comprehensive analysis of hazardous waste (HW)
generation characteristics across representative sectors has been
undertaken, further applications in diverse regions and sectors are
needed to adapt themodel. Secondly, considering the data availability
and the model’s applicability to environmental regulatory, some cru-
cial variables, such as raw material inputs, product outputs, and

electricity consumption, were not involved in the framework because
acquiring high-resolution data for these features remains challenging.
However, with the advancement in the realization of big data across
various domains, future iterations of the model framework can
incorporate additional variables to improve its accuracy.

Methods
The model development process comprised three main stages of data
collection and processing, feature engineering, andmodel construction
(Fig. 2). Firstly, the original whole dataset was randomly split into a
training dataset and a testing dataset before performing any pre-
processing steps to avoid data leakage46,47. Then preprocessing steps,
including missing value imputation and outlier rejection at the ratio of
5%using unsupervisedmachine learning algorithms, were applied to the
training dataset. This resulted in an 8:2 ratio for the sizes of the training
dataset and the testing dataset. Notably, missing values in both the
training and testing dataset were imputed based on the information
from the training dataset to further control the risk of information
leakage48. Secondly, featureengineering, incorporatingcausaldiscovery,
importance ranking, and correlation analysis, was implemented to select
a subset of informative features for building following models. Thirdly,
the training dataset was balanced to modify the long-tailed distribution
and the machine learning/deep learning models were trained and eval-
uated based on their performance on the testing dataset.

Variables and data
Our study aims to build a generic data-driven model framework to
simulate thepatterns ofHWgeneration at thefirm-level at a large scale.
Previous studies have demonstrated that HWgeneration shows strong
affinities with both static enterprise characteristics (such as sector,
manufacturing processes, firm scale) and real-time manufacturing
activities49,50, so 43 variables (19 variables related to enterprise char-
acteristics and 24 variables related to real-time manufacturing activ-
ities)were utilized to predict theHWgeneration in this framework. For
specific cases, features could be screened from these 43 variables and
tailored based on the characteristics of studied sectors and data
availability.

These 19 variables related to enterprise static characteristics
encompassed the industrial sector that the firm belongs to, the firm
scale, and 17 manufacturing processes. We employed the number of
staff, which has been widely used as an indicator of manufacturing
activities, to determine the firm scale and it was classified into five
categories (Supplementary Table 13) according to Chinese Criteria for
the Division of Large, Medium and Micro Enterprises51. Features of 17
manufacturing processes (Supplementary Table 14) were binary vari-
ables which were determined as 1 if the firm has this manufacturing
process; otherwise, the values were 0. These processes, summarized
according to the Chinese Environmental Management Guideline for
Hazardous Wastes52 and literature review, were the dominant manu-
facturing processes that could generate HW for 50 industrial sectors
with the highest HW generation quantity in China (Supplementary
Table 15). These 50 sectors, classified based on the 4-digit National
Standard IndustrialClassification, contributed to 94.2%of the totalHW
generation quantity in China in 2015 according to the China Environ-
mental Statistics Database. These industrial sectors mainly involved
mining (e.g., oil and gas extraction, non-ferrous and non-metallic
mineral extraction), industrial manufacturing (e.g., paper and paper
production, oil and coal processing, chemical and pharmaceutical
manufacturing, metal smelting and processing, and electronic equip-
ment manufacturing), and electricity/heat production.

24 variables used to indicate the firm’s real-time activities were
features of water contaminant emission, consisting of wastewater
discharge amount, COD, pH, NH3-N, N, P, suspended substance, pet-
roleum hydrocarbon pollutants, biochemical oxygen demand, volatile
phenol, total organic carbon, sulfate, fluoride, cyanide, lead, arsenic,
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cadmium, mercury, Fe, Cr, CrVI, Cu, Zn, and Ni). Wastewater was also
theby-productofmanufacturing activities andhasbeendemonstrated
to have a relationship with HW generation53,54. These 24 indicators
weremandated to bemonitored automatically ormanually for various
sectors based on national or industrial regulations (Supplementary
Table 15). They showed tight affinities with most of the HW categories
according to engineering and chemical experiences (Supplementary
Table 1). For instance, the textile industry employs synthetic dyes and
chemicals duringmanufacturing, containingheavymetals (e.g., Cu and
Zn) and complex organic compounds55, which will impact the con-
taminants (e.g., COD, NH3-N, and heavymetal) in wastewater as well as
the emerge inHW(e.g., adsorbents and sludge).Considering that these
43 variables were developed based on the HW categories and domi-
nant generation sectors in China, we compared the list of HW issued in
Chinawith thatof theUnitedStates andEU. It couldbe found thatmost
of the HW issued by the United States and EU were involved in the
Chinese list, thereby suggesting the potential of this framework to be
applied to address the global issue (Supplementary Table 16).

Based on this generic framework, we took 1024 enterprises from
10 industrial sectors with the highest HW generation quantity in
JiangsuProvince, China as cases todevelop themodel (Fig. 2). China, as
the second largest producer of toxic substances after the United
States56, contributed 2.1% of global hazardous waste generation (9.52
million tons) in 201657. The study region of Jiangsu is representative
since it is one of the most industrialized provinces in China and had a
HW quantity mass of ~5,220,500 tons in 2020, ranking 3rd in China.
Such a high generation quantity necessitates the urgent need to
strengthen the source management of HW58. These selected 10
industrial sectors (Supplementary Table 17) contributed to 49.7% of
the total generation quantity of HW in the studied region in 2020. For
this case, 25 variables, including the industrial sector that the firm
belongs to, the firm scale, 11manufacturing processes, and 12 variables
of wastewater monitoring indicators (wastewater discharge amount,
COD, pH, NH3-N, N, P, Fe, Cr, Cr

VI, Cu, Zn, and Ni), were screened from
the total 43 variables in the framework based on characteristics of
involved sectors and data availability. The data from Jan. 2020 to Dec.
2022 was collected. The data of employee numbers and industrial
sectors were officially from the Department of Ecology and Environ-
ment of Jiangsu Province. The data of manufacturing processes for
each enterprise were determined by combining the typical processes
related to HW generation (Supplementary Table 14) and the informa-
tion declared by firms. TheHWgeneration datawith time-resolution of
months was declared by the enterprise, excluding those with records
of environmental violations and penalties. 4,260,593 daily wastewater
emission data, monitored by automatic IoT sensors, were aggregated
monthly and merged with the HW generation data to create monthly
observations for each enterprise. Detail information about data sour-
ces, quality control, andprocessing canbe found in the Supplementary
Text 2 to 5.

After data processing, a total of 16,477 observations were
obtained. Sample sizes across different industrial sectors, firm scale,
and manufacturing processes are detailed in Supplementary Fig. 17.
Descriptive statistics of numeric variables were summarized in Sup-
plementary Tables 7, 8 and 18. In this study, the response variables
were the total generation quantity ofHWand the quantity ofMHW, the
most common category with 53.7% of observations generating this
category of HW.

Feature engineering
During artificial intelligent model development, using all available
features as input may be prohibitively expensive, unnecessarily was-
teful, and may lead to poor generalization performance, especially in
the presence of irrelevant or redundant features. Thus, selecting a
subset of informative features for building artificial intelligent models
has become a standard preprocessing step. In this study, to simplify

the artificial intelligent model and improve its performance, feature
engineering that incorporated causal discovery, importance ranking,
and correlation analysis was conducted to screen useful input features.
Firstly, the causal relationship was analyzed via DAG learning, where
we derived a set of cause-and-effect relationships from the observa-
tional data, and the minimal set of features with high relevance to the
response variable was obtained based on the MB search algorithm.
Then, features with high importance in model prediction but not
identified as relevant features were added.

For causal discovery purposes, Bayesian networks have been
pervasively adopted in the literature because they provide a compact
and sound theoretical framework for modeling causal relationships
and reasoning with uncertainty over a set of random variables through
a DAG59. Under certain conditions, the edges in a Bayesian network
have causal semantics, thus enabling cause-and-effect analysis to some
degree. Bayesian networks, in the form of DAGs, are learned using the
constraint-based methods established upon conditional indepen-
dence testing and search-and-score methods60. Due to the combina-
torial nature, these methods are computationally demanding as the
number of DAGs grows exponentially with the number of observed
variables. In this study, we adopted a DAG learning approach con-
verting the traditional combinatorial optimization into a continuous
constrained optimization problem to avoid the combinatorial nature
and circumvent the enormous computationally demand61. Based on
the discovered causal DAG, the set of features with high relevance to
the response variablewas obtained based on theMB search algorithm.
An MB was defined as the union of the parents (nodes connected
above), children (nodes connected below), and other parents of those
children62 (Supplementary Figs. 18–21).

Features selectedbasedonMBwere further adjustedbasedon the
features’ importance and correlation. The adjustment focused on the
features with high importance in model prediction but not identified
as relevant features based on DAG learning and MB selection. Feature
importance was analyzed using the SHAP method63 which provides a
way to estimate the contribution of each feature from the perspective
of game theory. In the SHAP analysis, the contribution of each feature
to themodel output is assigned according to itsmarginal contribution.
For each data point, a SHAP value is calculated to describe its impact
on the model output64. All SHAP absolute values of the points were
averaged asMASvalues todescribe theoverall impact of the featureon
themodel output. The feature with a higherMAS is considered to have
a more significant impact on the model output. Variables whose
importance ranked top 10 among all the input features were regarded
as the ones with high importance.

For these important variables that were not identified during the
MB search algorithm, on the one hand, the ones demonstrating a low
correlation (Spearman’s correlation <0.6) with the features screened
using the MB search algorithm could be added to the set of input
variables. On the other hand, the variables that had a high correlation
(Spearman’s correlation>0.6)with the features screenedusingMarkov
blanket algorithmaswell as a higher importance ranking couldbe used
to replace the correlated ones. To simplify the feature screening pro-
cesses, only one feature was added or removed at a time and the
iteration stopped until the performance did not change significantly.

Development of the combined model to predict the total gen-
eration quantity of hazardous waste based on data balance
After feature engineering, artificial intelligent models were con-
structed after data balance was performed on the training dataset to
modify the long-tailed distribution using the SMOGNmethod. SMOGN
is a data balancing technique that combines under-sampling with two
over-sampling techniques of Synthetic Minority Over-Sampling Tech-
nique for Regression (SMOTER) and introduction of Gaussian noise65.
SMOTER generates new synthetic examples from rare cases through
an interpolation strategy. This interpolation is carried out using two
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rare cases (one is a seed case and the other is randomly selected from
the k-nearest neighbors of the seed) and the new synthetic sample is
determined as a weighted average of the target variable values of the
two rare cases. All rare cases are used in turn as seed examples. Fur-
thermore, the key idea of the SMOGN algorithm is to limit the risks
posed by SMOTER through using the more conservative strategy of
introducing Gaussian noise. Through introducing Gaussian Noise, new
synthetic examples are generated using SMOTER only when the two
rare cases selected are ‘close enough’ and will use the introduction of
Gaussian Noise when the two examples are ‘more distant’.

To be specific, SMOGN divided the dataset into the rare and
normal partitions using a threshold value which was defined as the
three-quarters quantile of the response variable in this study. The rare
partition was the zone with rare samples being far from the center of
the parts. Random under-sampling was applied to the normal parti-
tion. The over-sampling procedure of SMOTER interpolation or the
introduction of Gaussian noise was applied to the rare partition based
on the distance between the seed example and k-nearest neighbors66.
SMOTER interpolationwas used if the distancewas less thanhalf of the
median distance between the seed example and other data points in
the rare partition. Otherwise, a new sample was generated by intro-
ducing Gaussian noise on the seed case.

Subsequently, 8 machine learning and deep learning algorithms
were used to develop models based on the balanced training dataset
(Supplementary text 6). 10-fold cross-validation was applied to the
training dataset and the optimumhyperparameters were the ones that
achieved the best validation performance (average performance on
the 10 validation sets) for regressionmodelswhichwas evaluatedusing
multiple metrics of the coefficient of determination (R2), root-mean-
square-error (RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), median absolute deviation (MAD), mean square
error (MSE), and sum of squares due to error (SSE)67. The classification
model adopted accuracy, recall, precision, and F1-score (F1) as eva-
luationmetrics14 (Supplementary text 7). Then the optimummodelwas
screened based on their performance on the testing dataset.

Development of the combinedmodel for generation quantity of
one category of hazardous waste
An ensemble model coupling the classification and regression model
(Fig. 2d) was developed to predict the generation quantity of one
category of HW, referring to MHW in this study. The binary classifi-
cation model could determine whether the value of MHW generation
quantity was 0. The data used to train the binary classification model
was the whole training dataset before the data balance. The regression
model was developed to predict the specific value when the MHW
generation quantity was >0 based on the classification model results.
The data used to train the regression model was the observations
which had MHW generation quantity >0 among the training dataset.
Similarly, the screened observations were also balanced using the
SMOGN method for regression model development.

The binary classification and regressionmodel were combined for
performance testing. Specifically, the test dataset is first predicted by
the classification model. If the observation was predicted to have the
value of MHW generation quantity >0, then the regression prediction
model will be conducted to predict the specific quantity. Otherwise,
the value of the MHW generation quantity will be 0. Finally, multiple
metrics (R2, RMSE, MAE, MAPE, MAD, MSE, and SSE) were determined
for the testing dataset to evaluate the performance. This ensemble
model framework can also be feasible in predicting the generation of
other categories of HW.

Development of the independent model for each
industrial sector
During the independent model development, the feature of the sector
that the firm belongs to was eliminated from the model input so that

there were 30 predictors in total. Independent models to predict the
total generation quantity of HWwere built for 9 sectors, excluding the
sector of steelmaking (STE) with only 20 observations. With regard to
the MHW generation quantity, the independent prediction model was
developed for only 4 sectors (metal surface treatment (MST), steel
rolling and processing (SRP), electronic circuits manufacture (ECM),
and metal wire and rope manufacture (MWR)) which accounted for
98% of MHW quantity in 10 sectors. The development of independent
models followed the same approach as the combined models.

Uncertainty analysis
The study utilized Quantile Regression Forest (QRF) to estimate the
model’s uncertainty in calculating the 95% confidence intervals of
the prediction value68. Commonly, the RF model calculates its
final prediction by weighting the average of each leaf of each tree.
However, when estimating the uncertainty, the QRF retained the
value of all observations on each leaf, instead of just their mean.
Therefore, the QRF estimated the conditional distribution function of
the model outputs based on all observations retained in each leaf.
Then, a 95% confidence interval was constructed based on this
conditional distribution function to estimate the uncertainty in the
model output68.

Data availability
Subject to privacy and licensing agreements, data can be obtained by
request to the corresponding authors.

Code availability
All codenecessary to reproduce the analysis ismadeavailableonGithub
(https://github.com/Monchiwjxie/Hazardous-waste-generation.git) and
Zenodo (https://doi.org/10.5281/zenodo.11487629)69. Data analysis was
performed using Python version 3.9.2 and R version 4.3.0.
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