Fig. 2: Simulated mode conversion of the STLG wavepacket to STHG wavepacket by applying a spatiotemporal astigmatism.
From: Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers

a–d 3D iso-intensity profiles of the ST wavepacket (at L = 800 mm) and corresponding sliced phase patterns (at y = 0) under the different spatiotemporal astigmatism strength of 0.25\({\mu }_{0}\), 0.5\({\mu }_{0}\), 0.75\({\mu }_{0}\) and \({\mu }_{0}\). \({\mu }_{0}=0.625{{{{{\rm{fs}}}}}}/({{{{{\rm{rad}}}}}}\cdot {{{{{\rm{mm}}}}}})\) in this case, other parameters are set as the same as those in Fig. 1. The STHG wavepacket is faithfully synthesized at \({\mu }_{0}\) and has a spatial width of 3.5 mm and temporal width of 177 fs. e, An STLG wavepacket of \(p=0\) and \(l=+ 5\) without spatiotemporal astigmatism. f, g The STLG wavepackets are mapping to the STHG wavepackets with a spatiotemporal astigmatism for an inverse azimuthal index \(l=+ 5\) f and \(l=-5\) g. h An STLG wavepacket of \(p=2\) and \(l=+ 2\) without spatiotemporal astigmatism. i, j The STLG wavepackets are mapping to the STHG wavepackets with a spatiotemporal astigmatism for an inverse azimuthal index \({l}=+ 2\) i and \(l=-2\,\) j.