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Climate warming is one of the facets of anthropogenic global change pre-
dicted to increase in the future, its magnitude depending on present-day

decisions. The north Atlantic and Arctic Oceans are already undergoing

community changes, with warmer-water species expanding northwards, and
colder-water species retracting. However, the future extent and implications
of these shifts remain unclear. Here, we fitted a joint species distribution
model to occurrence data of 107, and biomass data of 61 marine fish species
from 16,345 fishery independent trawls sampled between 2004 and 2022 in
the northeast Atlantic Ocean, including the Barents Sea. We project overall
increases in richness and declines in relative dominance in the community, and
generalised increases in species’ ranges and biomass across three different
future scenarios in 2050 and 2100. The projected decline of capelin and the
practical extirpation of polar cod from the system, the two most abundant
species in the Barents Sea, drove an overall reduction in fish biomass at Arctic
latitudes that is not replaced by expanding species. Furthermore, our projec-
tions suggest that Arctic demersal fish will be at high risk of extinction by the

end of the century if no climate refugia is available at eastern latitudes.

Climate warming is driving changes in the distribution of many spe-
cies. Expanding ranges towards higher latitudes and contracting ran-
ges in lower latitudes have been widely reported, and are resulting in
species richness shifts'. These distributional shifts are driven by local
climate velocities, which often differ from place to place, and do not
strictly follow the global patterns of temperature, both in direction and
magnitude of change®. The Arctic, warming almost four times faster
than the global average’®, is experiencing increases of species richness
due to the expansion of several warmer-water species, and the con-
traction of fewer colder-water species; and these changes are expected
to continue in the future®®,

Marine fish distribution shifts have significant implications for
ecosystems and human activities, particularly for the fishing industry’ ™,
and could result in transboundary conflicts due to the redistribution of

commercially important fish species worldwide> ™. For all fish species,
including non-commercial species, conservation efforts may be chal-
lenged by the climate-induced displacement of populations from mar-
ine protected areas, or by ecosystem-wide changes derived from species
geographic range shifts effects on species interactions, predator-prey
dynamics, or food webs® ™. In the last decades, SDM projections into the
future have provided relevant insights to policy makers, fisheries and
conservation managers'®?°. However, future projections of fish dis-
tributions to date either (1) do not include species’ relative abundance or
biomass, (2) model species independently, and/or (3) focus on few,
common species, often limited to such of interest for fisheries with
sufficient data to run species distribution models (SDM).

To overcome these limitations, we applied a joint species dis-
tribution model (J-SDM) of 107 Northeast Atlantic marine fish
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distributions along the continental shelf from the North Sea to the
Barents Sea (61 of them including their biomass distribution). We
analysed richness and relative dominance trends in Arctic commu-
nities with potential changes in species distributions and biomass (as
relative abundance) under different future scenarios and investigated
the influence of species traits on these future distributions.

The recent development of J-SDMs, and particularly of the Hier-
archical Modelling of Species Communities (HMSC) framework,
represents an advance over traditional SDMs, and is able to partially
overcome the listed limitations by assuming a joint response of species
to the environment and to each other”?. This allows rare species to
«borrow» niche information from more common species, particularly
from those closely related phylogenetically. Moreover, JSDMs account
for co-occurrence patterns betwen species by using latent variables.
Although the interpretation of these correlation patterns into biotic
interactions cannot be made easily****, accounting for them may pro-
vide better estimation of the environmental parameters of the model®.
For all this, JSDM-HMSC has proven to be among the best predictive
statistical distribution models for species communities, particularly in
the presence of several rare species™”.

In the Northeast Atlantic and Arctic Barents Sea, rising tempera-
tures have already led to altered ocean circulation patterns, a decrease
in sea ice cover, and profound changes to the marine ecosystems®. In
the North Sea, widespread northward displacements have been
documented in the planktonic community, in the pelagic and demersal
fish communities, and are expected in benthic communities® %,
Similarly, the Barents Sea has experienced an arrival of boreal species
and a decline of Arctic species, which have their trailing edge within
the Barents Sea®®”, leading to compositional changes in the Barents
Sea communities, including increases in species richness***%. More-
over, Arctic species are shifting their biomass centroids northwards at
a higher rate than boreal species®. Although these changes are
expected to continue in the future®’, their extent, and their implica-
tions for the biomass of future communities remain little investigated.
For example, it is unclear to what degree Arctic species will retract or
fully disappear from the Barents Sea with climate warming. Under-
standing the implications of expected range shifts is of critical
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significance for Arctic communities, given the Arctic’s accelerated
warming, the associated higher extinction risk of polar species, and the
inherent limitation of Arctic demersal fishes to shift into northern
latitudes due to the absence of a contiguous continental shelf>*>**,

Here we present aJSDM model of the boreal and arctic marine fish
communities from the North Sea to the Barents Sea (Fig. 1), and we
show overall increases in richness and declines in relative dominance
in the community with projected future conditions, as well as gen-
eralised increases in species’ ranges and abundance. This comes at the
cost of severe declines of Arctic species. Furthermore, the practical
disappearance of the two most common fish species in the Barents
Sea, namely capelin and polar cod, results in an overall reduction in
fish biomass. We predict that Arctic demersal fish species will be at
high risk of extinction in the next decades if no climate refugia is
available at eastern latitudes.

Results

Environmental correlations

Among selected environmental variables, depth was the best pre-
dictive variable in both the presence-absence and biomass models,
with an average of 58% and 49% of deviance explained, respectively,
followed by sea bottom temperature with 32% and 19% respectively,
and the spatial random effect, which accounted for 8% and 29%
respectively. Each of the other variables explained on average less than
1% of the total deviance in both models, although this varied by species
(Supplementary Fig. 1). For example, phytoplankton concentration
explained 20% of variance in the thorny skate (Amblyraja radiata)
probability of occurrence, and sea ice concentration explained 15% of
variance in herring (Clupea harengus) CPUE distribution.

We found strong support for phylogenetic niche conservatism,
with a phylogenetic correlation parameter rho of 0.58, 95% CI
[0.41,0.73] in the presence-absence model, and 0.96, 95% CI
[0.89,0.95] in the CPUE model, which strongly suggests that species
niches in the community are highly determined by phylogenetically
structured traits. After accounting for the fixed effects, representing
species responses to the environment conditioned on their traits, we
found pronounced residual species co-occurrence patterns with
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Fig. 1| Study area. Black dots correspond to trawls between 2004-2022, background raster shows (A) mean depth and (B) annual mean bottom temperature in each cell at

a resolution of 0.25° x 0.25°.
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Fig. 2 | Richness and dominance distribution change. Projected alpha diversity changes in A species richness and B relative dominance as percentage of the highest
species’ biomass to total species’ biomass in present day and 2100 under different shared socioeconomic pathways.

strong statistical support (p <0.05, Supplementary Figs. 2 and 3),
although without obvious community patterns.

Species richness and relative dominance
Species richness was projected to increase in the study area across
future scenarios (Fig. 2). The biggest increases were projected in the

Table 1| Share of area of each of the dominant species (spe-
cies with highest biomass at each cell)

Species Present SSP1- SSP2- SSP5-
2.6 4.5 8.5
(+1.6°C) (+2.6 °C) (+4.5°C)
Boreogadus saida 29 15 5 0
Eutrigla gurnardus 0 1 1 0
Gadus morhua 3 4 7 0
Hippoglossoides 4 6 5 0
platessoides
Limanda limanda 24 25 25 23
Mallotus villosus 1 0 0 0
Melanogrammus 0 o] 0 2
aeglefinus
Merlangius merlangus 15 16 18 21
Micromesistius 12 18 21 21
poutassou
Reinhardtius 3 1 0 0
hippoglossoides
Sebastes mentella 0 1 0 1
Sprattus sprattus 1 1 1 1
Trisopterus esmarkii 9 12 16 30

Numbers correspond to the percentage of the total study area in which the species dominate the
community (projected species’ highest biomass to total biomass).

northern Barents Sea, with doubling of species richness around Sval-
bard and the north coast of Norway. No increases, and even slight
decreases in richness were projected in the deepest part of the Barents
Sea, at the Bear Island Trench (Fig. 2A). Smaller increases in species
richness were projected in the centre of the North Sea and small
declines elsewhere in the North Sea and southern Norwegian Sea.

Relative dominance (%) was weakly inversely correlated with
species richness (Pearson =-0.09, p < 0.01) and accordingly, we pro-
jected declines in percentage of relative dominance in the northern
and eastern Barents Sea (Fig. 2B). Species relative dominance changed
abruptly for polar cod (Boreogadus saida), which went from dom-
inating in 29% of the study area under present-day conditions, to a lack
of dominance in any grid cell in the study area under the high emission
pathway in 2100 (Table 1). The species that increased most notably
their relative dominance in accordance were Norway pout (7risopterus
esmarkii), blue whiting (Micromesistius poutassou), and whiting (Mer-
langius merlangus) (Table 1).

Individual species geographic range shifts

Species were generally projected to increase their distribution range
and biomass with high emission scenarios, particularly in their core
range (Fig. 3, Supplementary Data 1). However, this was not a homo-
geneous response, and differences between contracting and expand-
ing species increased under the high emission scenarios (Figs. 3 and 4
and Supplementary Figs. 4 and 5). The few Arctic species for which
biomass models were considered adequate (n=3), and the Arctic-
boreal species (n=8) were projected to strongly decline across all
scenarios, while boreal (n =40) and warmer-water species (n =5) were
projected to expand across the whole study area (Fig. 4). However,
present-day projected biomass of currently abundant species (mostly
polar cod Boreogadus saida, and capelin Mallotus villosus) was not
compensated by expanding boreal species in future scenarios, leading
to an overall decline in biomass with climate warming (Fig. 5).
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Fig. 3 | Range and biomass change. Projected rate of change in A species’ geo-
graphic range change, B species’ biomass, C species’ core range, and D species’ core
biomass, at each socioeconomic pathway between 2010 and 2100. Boxplots are a
standardized way of displaying the distribution of the data by showing the median
percentage change of all species (black line) while box limits correspond to the

interquantile range (IQR). Whiskers correspond to maximum and minimum values,
calculated as Q3 +1.5xIQR and Q1 - 1.5xIQR, and points correspond to outliers.
Asteriscs indicate signifiant difference from 0 (Two sided Wilcoxon rank test,
p<0.05, see Source Data for individual test results). Biomass units are in catch per
unit effort (CPUE fish/min).

Among the 7 studied traits, species zoogeography was the best
variable in explaining species rate of change of range, core range, and
overall biomass. Arctic and boreal-arctic species were projected to
decline in the future, and boreal, temperate, subtropical, and deep-water
species, to increase (Fig. 6) (multiple linear regression, p < 0.05). Apart
from species zoogeography, species trophic level showed a positive
effect in species’ range extent, maximum length showed a positive effect
in species’ biomass, and maximum depth showed a positive effect in
species’ core range (multiple linear regression, p < 0.05).

Community-wide range shifts northwards and eastwards were
projected across species between 2010 and 2100 (Supplementary

Data 2 and 3). Range shifts increased with socioeconomic pathways
from a mean of 0.9 kmyr™ northwards and 0.3 kmyr™ eastwards
under SSP1-1.26, to 3.2 kmyr™* and 1.1km yr northwards and east-
wards, respectively, under SSP5-8.5 (Supplementary Fig. 6A).
Smaller shifts were projected for biomass-weighted centroid shifts,
from a mean of 1.0 and 0.8 km yr™ northwards and eastwards under
SSP1-1.26, respectively, to 3.7 kmyr™, and 2.1km yr™, respectively,
under SSP5-8.5 (Supplementary Fig. 6B). The highest shifts were
detected in species’ core range, containing the top 10% of species
biomass, for which projected shifts were 1.1 and 0.5 km yr™ north-
wards and eastwards, respectively, under SSP1-1.26, to 4.8 kmyr™
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and 3.2kmyr?, under SSP5-8.5

tary Fig. 6C).

respectively, (Supplemen-

Geographic range fragmentation

Our results do not show clear trends in habitat fragmentation across
species. Although we projected increasing number of polygons per
species with increasing socioeconomic pathway, and declines in
polygon area (Fig. 7, Supplementary Data 4), these trends are driven by
(1) Arctic species declining in polygon area, and (2) warmer-water
species increasing in number of polygons (Supplementary Fig. 7). The
combination of these two parameters in the same species would lead
to increased habitat fragmentation, but each of these processes in

different zoogeographic groups suggest no clear trends in habitat
fragmentation.

Discussion

We project a drastic reduction of Arctic and boreal-Arctic marine
fishes’ ranges and biomasses in the study area with increasingly pes-
simistic greenhouse gas emission pathways. This may result in the local
extirpation of several of those species by within the next decades.
Although the expansion of several boreal and warmer-water species
leads to an increase in species richness, the present-day projected
biomass of Arctic species is not fully replaced by expanding species,
resulting in biomass declines across future scenarios. Global ensemble
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graphic class at a particular shared socioeconomic pathway (multiple linear
regression, p < 0.05, see Source Data for individual test results). Biomass units are
in catch in the survey per unit effort (CPUE fish/min).

mechanistic modelling efforts conducted in recent years predict
increases in consumers biomass in the high Arctic across several taxa,
but taxonomic resolution remains a barrier to further interpretation
and uncertainty is very high®. Projected increases in biomass,

however, could accumulate in different components of the commu-
nity, and do not necessarily conflict with our projections of overall fish
biomass reductions. Moreover, we did not include the effect of fishing
impacts in our study, which can act synergistically with climate change
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from O (Two sided Wilcoxon rank test, p < 0.05, see Source Data for individual test
results).

and therefore is an important element that needs to be considered in
future research, when future predictions of fleet behaviour are
developed™®.

Polar species are at higher risk of extinction than species from
lower latitudes®, and in the case of Arctic demersal fishes, the lack of
continental shelf further north than the Barents Sea could represent an
additional pressure that limits available habitat at northern
latitudes®?°. Thus, the local extirpation of Arctic and Boreal-Arctic
demersal species from the Barents Sea could place those species at
high risk of global extinction. Among species showing decreasing
trends, we project a total extirpation of one boreal-arctic species, the
Atlantic poacher (Leptagonus decagonus), under the high emissions
scenario. Two out of three Arctic species, the bigeye sculpin (7riglops
nybelini) and the pale eelpout (Lycodes pallidus), are projected to
suffer local extirpations in the study area not only under the high
emissions scenario, but also under the intermediate scenario. The third
Arctic species with modelled biomass, polar cod (Boreogadus saida), is
projected to lose its relative dominance in all its occurrence area, to
the practical disappearance from the study area by the end of the
century under the high emissions scenario (residual biomass pro-
jected), though strong declines of over 50% in area and biomass are
projected under all scenarios. The pelagic nature of polar cod may

allow adult individuals to shift to other Arctic regions, some of which
may become more suitable for the species in the future”, but its early
life stages are highly linked to sea-ice cover, and its recruitment is
predicted to collapse with further sea-ice cover reduction®, Whether
these and other Arctic or Arctic-boreal species will be able to find
refugia by moving to other regions where warming is happening at a
slightly slower rate remains to be investigated. This high sensitivity of
Arctic and boreal-Arctic fish species to climate warming contrasts with
the surprising robustness predicted for Arctic benthic taxa*, which
could lead to novel species interactions with overlapping predicted
ranges*’. However, whether higher trophic levels will be able to shift to
other food-sources if Arctic keystone species such as polar cod dis-
appear from the Barents Sea is still unknown (i.e., ringed seals (Phoca
hispida) are highly dependent on polar cod**?).

Overall, our results are in line with the reported ongoing global
redistribution of marine species, with increasing richness at higher
latitudes'. Our projections suggest that these geographic shifts will
lead to biomass increases of several boreal and warmer-water spe-
cies, and declines of Arctic and Boreal-Arctic species without
marked changes in species range fragmentation. These shifts will
further contribute to the ongoing borealization of the fish com-
munity, and the positive richness trend in the area®>**. We predict
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that this increase in richness will be accompanied by a shift in the
identity of the dominant species, indicating a change in the com-
munity which is expected but not always the case****, and a general
decline in relative dominance. This could have implications in
future modelling studies of those communities, as increases in
species richness and abundance improve the predictability of
community properties®*. Moreover, the number of dominant spe-
cies across the study area declined with time, from 10 species in
present-day conditions to 6 species under the high emissions sce-
nario, which points towards a homogenization of the community by
the end of the century. Although we project slight declines in
richness at lower latitudes of the study area, the interpretation of
richness and relative dominance changes in southern regions of the
study areas require caution, considering that species expanding
their range from outside the study area into the study area are to be
expected, but are here not accounted for. Overall, we project future
communities with a more balanced share of biomass, higher rich-
ness, and lower spatial variation in the dominant species if climate
warming exceeds 1.5 °C.

Our results also show that current predictability of Arctic species
is particularly challenging due to little data available for model cali-
bration for several Arctic species, suggesting that borrowing infor-
mation from phylogenetically close species is not enough to obtain
informative predictions for those species. Furthermore, SDMs often
perform substantially better predicting species static patterns, than
predicting changes*®. To properly validate the models for predicting
species range shifts, their predictive performance should not be tested
on their ability to predict static distributions, but on their ability to
predict distributional changes*®. However, this requires temporally
independent data at high-enough spatial resolution to detect dis-
tributional changes, and this is missing for most of the species inclu-
ded in this study. Therefore, we believe that there is an urgent need for
biomass data collection of shifting species at fine spatial resolution,
particularly at species range edges and particularly focusing on Arctic
demersal species, which are likely at the front of species risk of global
extinction.

The projected increase in biomass of several warmer-water spe-
cies, linked to the expansion of species from lower latitudes, may
represent novel fishing opportunities. For example, ling (Molva
molva), monkfish (Lophius budegassa & Lophius piscatorius), whiting
(Merlangius merlangus) or haddock (Melanogrammus aeglefinus) are
here projected to increase in range and biomass, while mackerel
(Scomber scomnrus), a species whose expansion northwards has
already led to transboundary conflicts in the northeast Atlantic*, is
projected to increase in range at northern latitudes. Interestingly, our
projections suggest that cod (Gadus morhua), currently an expanding
species in the Barents Sea', will slightly decline in biomass by the end
of the century. This is in line with similar predictions in the North Sea,
where although several species of fisheries interest were projected to
expand their suitable habitat, cod showed a reduction in habitat suit-
ability by mid-century®. This suggests that for some boreal species,
future warming may be of enough magnitude to revert their current
expansion trends.

Previous studies in the North Sea, have also identified bottom
temperature as the main environmental variable shaping marine fish
communities*®*°, as have other studies elsewhere®®% Similarly, we
identified depth and bottom temperature as the most relevant pre-
dictive variables in our study, although the relevance of phytoplankton
and dissolved oxygen could have been hindered by the lower resolu-
tion of these two variables, which were obtained from a different
Copernicus dataset than the rest. Moreover, studies in the North Sea
have widely reported climate-warming induced species northward
shifts®*’, which resulted in local species richness’ increases®, although
some species of commercial interest (e.g., Atlantic cod) may decline in
the mid term'®**, Our projections partly point in this direction and

show regional slight increases in richness in the North Sea, though also
some regional declines. However, special caution is required when
interpreting projections in the North Sea for three reasons. First,
because future climate in the region has no analogue anywhere in the
model calibration and future North Sea conditions are not represented
in the study area at present-day conditions, this fraction of the envir-
onmental space is poorly sampled during the model calibration. Pro-
jections for the less sampled parts of the environmental space are
considered less reliable and should be interpreted with greater
caution®*°, Second, the historical run of the global earth system model
used to obtain environmental data for future projections shows dis-
crepancies with the fitting of environmental data in the North Sea, as
the correlation analysis in the supplementary material shows. Finally,
in considering richness and dominance estimates, it is highly likely that
species expanding their range from outside the study area into the
study area concentrate in the North Sea, which is our lowermost
region, and these would not be accounted for here. For these reasons,
we advise caution in interpreting our results in the southernmost
region of this study.

Facing the challenges posed by climate warming, future fishery
management strategies must consider shifts in species biomass
dynamics and distributions. However, current day modelling techni-
ques and data collection need to be improved for many species to be
able to achieve this crucial objective. For example, better modelling of
species biomass in our area could help to prevent fisheries conflicts
among several economic zones, due to transboundary stock shifts
under climate warming®’*%, Furthermore, fisheries will also affect
future marine fish communities, as they have affected marine fish
communities in the North and Barents Seas for decades**’, and cur-
rent management decisions will contribute to shape fisheries resour-
ces in the future, which future modelling approaches will need to
include. As such, embracing adaptive management strategies that
account for the evolving dynamics of marine ecosystems and fisheries
resources is imperative to ensure the sustainability and resilience of
our oceans for generations to come.

Methods

Study area and fish biomass data

Fish biomass, as relative abundance (catch per unit effort CPUE) was
obtained from bottom trawling data collated within the FishGlob
database of fish records and biomass standardised with sampling
effort, from several international trawl surveys® (Fig. 1). The data was
filtered to the study area (North Sea to Barents Sea), and to the period
2004-2022. This included data from three surveys: the NS-IBTS in the
North Sea, the Norwegian Sea coastal survey in the Norwegian Sea and
the Nor-BTS in the Barents Sea®®. We restricted the analysis to Cam-
pelen and GOV trawls, the two main gears used in the North Sea (GOV)
and in the Barents Sea (campelen trawling), all gears were equipped
with 20 mm mesh size nets bottom trawls, and each haul catch was
standardised by effort®°.

We restricted the data to the continental shelf, by eliminating the
few hauls that were sampled deeper than 500 m (<1% of the hauls), and
we eliminated very rare species that were sampled in less than 100
hauls, or in less than 10 years. Finally, some trawls (<1%) were elimi-
nated due to lack of environmental data. The final database included
16,345 unique hauls and included 107 fish species (Supplemen-
tary Data 5).

Environmental variables

We selected those physical and biological variables that, based on
previous knowledge and expert opinion, are thought to drive the
spatial-temporal variability in demersal fish species biomass (Husson
et al., 2020). We included (1) surface and (2) bottom water tempera-
ture, (3) sea ice concentration for species occurring in areas with sea
ice (i.e., not included for strictly temperate species whose model
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showed very poor convergence for sea ice parameters because no
overlap between occurrence/biomass and sea ice, (Supplementary
data 5), (4,5) currents (northward and eastward components), (6)
bottom dissolved oxygen concentration, (7) phytoplankton con-
centration, and (8) water depth.

Sea ice concentration, surface and bottom temperatures, and
northward and eastward current components were obtained from the
Global Ocean Physics Reanalysis at a resolution of 0.08° x 0.08°, while
bottom dissolved oxygen, and bottom primary productivity were
obtained from the Global Ocean Biogeochemistry Hindcast at a reso-
lution of 0.25° x 0.25°, both of which were available through the
Marine Copernicus repository®-®’, Bottom depth was obtained from
BioOracle at a resolution of 0.08°%. Environmental information was
extracted for each sampling point corresponding to the monthly mean
of each survey month, except for sea ice, where the annual mean was
preferred, because winter sea ice dynamics can highly influence the
populations of several Barents Sea marine fishes throughout the year
(Supplementary Table 1).

To remove co-linear variables, which can increase uncertainty and
decrease statistical power of the models®*, we calculated the Variance
Inflated Factor (VIF), and eliminated all variables using a conservative
threshold VIF greater than 4%, This led us to eliminate surface tem-
perature, as it was highly correlated with bottom temperature, leaving
7 environmental variables to include in the model. Moreover, for
bottom temperature and depth, we included their second-order
polynomial responses, to allow a bell-shape response of species dis-
tribution and biomass to these variables®.

Future environmental layers
Future mean annual environmental layers were obtained from the
second version of the Institute Pierre Simon Laplace climate model
(IPSL- CMIP6)*’, which is the only model within the Coupled Model
Intercomparison Project Phase 6 (CMIP6) that contained all our pre-
dictive variables. We used future environmental data from three dif-
ferent shared socioeconomic pathways (SSPs): the most optimistic
‘high mitigation’ scenario reflecting sustainable development and
social justice, where the probability of exceeding +2 °C by 2100 is kept
below 33% (SSP1-2.6, + 1.6 °C by 2100), an ‘intermediate scenario’
(SSP2-4.5, + 2.6 °C by 2100), and a scenario reflecting a world of rapid
growth and without restrictions on economic production and the use
of energy, the ‘high emissions’ scenario (SSP5-8.5, + 4.5 °C by 2100)°%.
Mean annual environmental data layers for each scenario (SSP1-
2.6, SSP2-4.5 and SSP5-8.5) were extracted in 10-year increments and
used for predicting species’ distributions. For comparison with the
present-day conditions, we used the mean between 2010:2013 to
represent present-day conditions, leading to an overall of 25 time
periods (8 future periods x 3 scenarios, and 1 present-day scenario).

Statistical modelling

A two-part hurdle model was used to model the distribution of
demersal fish biomass dealing with the excess number zeroes in the
dataset®. In this procedure, a binomial model with a probit distribu-
tion was used to project the probability of species’ occurrence, and a
separate model with a Gaussian distribution was fit to species’ log
transformed catch per unit effort, to project species’ biomass. This was
done using the Hierarchical Modelling of Species Communities ]SDM
approach (in the Hmsc’ package in R, Tikhonov et al.”®).

In both models (binomial and gaussian), spatial autocorrelation
was accounted for by including a spatially explicit random effect using
Gaussian Predictive Processes (GPP assuming that information on the
spatial structure of the data can be summarized at a smaller number of
(in our case 183) ‘knot’ locations”. The inclusion of spatial auto-
correlation when fitting the model is highly recommended to improve
the estimation of the model coefficients™.

Although we excluded the rarest species from the analysis, most
of the species remaining can still be considered rare (65% were present
in <10% of the hauls). This poses a challenge in estimating the realized
niche of those species, which only have few points for estimating the
limits of their environmental niche. However, species inhabit envir-
onments that share some similarities with those of their close relatives,
because they follow niche conservatism to some degree”. In the HMSC
framework, the statistical relationships between species occurrences
or biomass with the environment are integrated through a hierarchical
structure that allowed us to determine to what extent environmental
filtering is structured by species phylogenetic relationship, and species
traits’’. This is done by including a phylogenetic correlation parameter
rho that measures if the residual variation of species responses to the
environment is phylogenetically structured. For this reason, we built a
basic taxonomic tree using the NCBI Common Tree software, available
through its website™, which is the best available proxy for phyloge-
netic relatedness when species phylogenetic data are not available
with very similar relationships to formal taxonomic classifications.
Strong phylogenetic signals may point to response traits that have not
been specifically accounted for in the model.

We analysed projected species distributions to study whether
some species sharing traits responded similarly in range expansion
and/or contraction using backward selection multiple regression
analysis. We selected eight species’ biological traits that could be
related to species expansion potential’*” including five functional
traits: (1) maximum length (cm), (2) age at maturity (years), (3)
fecundity (number of eggs), (4) habitat (demersal or pelagic), and (5)
trophic level; one physiological trait (6) preferred temperature (°C);
and one bathymetric trait (7) maximum depth. Traits for each
demersal fish species were obtained from FishBase’. We finally cre-
ated a zoogeography trait (8) assigning a general climatic classification
for each species, of the following categories: ‘Arctic’, ‘Arctic-Boreal’,
‘Boreal’, or ‘Deepwater’, as classified in Mecklenburg et al.”, or from
FishBase when the species were not present in the former reference
(i.e., not present in Arctic latitudes), adding the categories ‘subtropical’
and ‘temperate’ to the list of possible categories’.

Model fitting was conducted using the Markov Chain Monte Carlo
(MCMC) implemented in Hmsc. Model convergence was assessed
using the Gelman-Rubin Potential Scale Reduction Factor’®. Four
MCMC chains were run, each collecting 250 samples, applying a
thinning of 500, and the first 62 500 runs were discarded as burn in.
The MCMC convergence was satisfactory, as indicated by a mean scale
reduction factor of all parameters <1.1, and the effective sample size of
the MCMC was close to the number of posterior samples, indicating no
major issues of sample autocorrelation. Model goodness of fit was then
assessed by computing the overall explanatory capability (calculated
from the species’ data used in the HMSC model fitting) as the mean
AUC and r? value across all species-specific values. To evaluate the
predictive performance of the model, a five-fold cross-validation was
undertaken (i.e., assessing the HMSC model fit using the withheld data
from each fold). The model fitting, calibration and validation was done
using the ‘Hmsc’ package in R, and code from®”,

The explanatory power of the model had a mean AUC of 0.97 for
the presence-absence model, and an R? of 0.54 for the biomass model,
while the mean predictive power from a five-fold cross validation was
lower (AUC of 0.88, and a mean R? of 0.12) (Supplementary data 5).
Species richness projected using present-day layers was significantly
correlated with surveyed species richness (Pearson r=0.4, p<0.01).

To show the discrepancy between the fitting and the predictive
datasets (fitting was done with Copernicus datasets, and projections
with IPSL global earth model), we conducted a correlation analysis
between both sources of SBT monthly averages, in the overlapping
period of the IPSL historical run, and the SBT data from Copernicus for
the coordinates included in this study. This includes all our data
between 2004 and 2014. We show that both datasets are significantly
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correlated, but present discrepancies in the North Sea (Person corre-
lation = 0.61 Pearson correlation excluding North Sea = 0.85) (Sup-
plementary Fig. 8). Moreover, we conducted a multivariate
environmental similarity surface (MESS) analysis using the MESS()
function from the modEvA package in R, to assess whether the
‘environmental space’ in our projections was accordingly sampled
during the model training (Supplementary Fig. 9). The ‘environmental
space’ is the multidimensional space produced by considering each of
the environmental variables as a dimension. Projections in poorly
sampled parts of the environmental space are considered less reliable
(strongly negative MESS values), and should be interpreted with
greater caution®®®,

Finally, we examined the patterns of species co-occurrences at the
level of the spatial random effect. The co-occurrence of specific spe-
cies is drawn from the covariance structure of the model residuals
once the fixed environmental effects have been considered. This
analysis reveals pairs of species that either co-occur more frequently or
less frequently than expected by random chance, which can partly
represent biotic interactions®™®%

Biomass models: From the initial 107 species included in the
model, we restricted all biomass-based analyses to species with > 0.05
mean R? in the five-fold cross validation biomass model.

Although explaining only 5% of the variance of the data may
seem a rather poor fit, two things need to be considered: First, the
distribution of the biomass is determined by the occurrence model
which shows substantially better predictive performance. Second,
the threshold of 5% is arbitrary, but not random. All models with a
CV R? higher than 0% are informative, but because every fold of the
CV provides a different value, and most of the average values close
to 0% have some folds with negative percentages, we chose a more
conservative threshold of 5%. This resulted in the inclusion of
61 species with mean R? of 0.22, ranging from 0.05 to 0.53 (Sup-
plementary data 5). We multiplied the projections from the gaussian
log biomass model with the projections from the binomial model to
obtain the final biomass projections. Then, we assigned O to all
projected biomass lower than the minimum value recorded in the
dataset, divided by 2. This was done to assign a threshold for
presence-absence of species that is biologically meaningful (mini-
mum recorded) while assuming certain presence below detect-
ability (divided by 2).

Occurrence models: All 107 species included in our study had
reasonable predictive performance of presence-absence models
(lowest AUC =0.67 in five-fold cross validation). For this reason, we
included all species in those analysis that required only presence-
absence information (i.e., changes in species geographic range, and
species richness). To threshold presence-absence in those analyses, we
calculated the threshold of probability of occurrence that maximised
the True Skill Statistic per species®’, and we used that species-specific
threshold to assign presence or absence of each species across the
study area.

Spatial projections: We projected geographic distributions of
species’ occurrence and biomass across the period 2010:2013 (historic
reference, which we refer to as ‘present-day’ projections) and from
2030 to 2100 every 10th year for three different possible climate
change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). Although our
model included spatial processes for estimating its parameters (using
the GPP methodology explained above), future projections excluded
the spatial random effect. This was done consciously, to avoid extra-
polating estimated spatial structures that may not persist under future
climatic conditions.

Geographic range metrics

Four species geographic distribution indicators were used to
explore changes in distribution over time for each climate change
scenario. First, the ‘range’ of a species was measured as the area

(km?) of projected occurrence (based on the thresholded spatial
projections from the presence-absence model). The second mea-
sure ‘biomass’ quantified the total projected species’ log CPUE
across the study area (based on the thresholded spatial projections
from the hurdle model). Third, the ‘core range’ represented areas
with the highest biomass. Core range was identified using the 90th
quantile of present-day species’ biomass (that is we selected cells
that contain the top 10% of CPUE). Future core range was estimated
by selecting all areas where future CPUE was > than the present-day
90th quantile CPUE value. Finally, the fourth measure ‘core bio-
mass’ refers to the total biomass (CPUE) within the core range.
These measures were calculated by projecting the model into the
equal-area Lambert azimuthal projection, and we studied their rate
of change regressing them with time (using linear regression). The
analysis of the data was conducted using the ‘raster’ and ‘rgdal’
packages in R, and plotting was done using tidyverse and ggspatial,
while the MESS analysis was conducted using the modEvA
packagexo,m—xx.

To study potential changes in geographic range fragmentation,
we converted each species’ projected range to polygons, and calcu-
lated the number of polygons, the mean area, and the mean distance
between polygons of each species (Supplementary Data 4). Many small
polygons with large mean distance between them would represent a
very fragmented range, while few, big polygons, close to each other,
would represent a less fragmented range.

Species richness and relative dominance

Species richness was calculated by summing all projected probabilities
of occurrences across species (n =107)*°. Dominance was calculated as
the percent contribution of the highest species’ CPUE to the total CPUE
(sum of all CPUE of all species) at each cell, and dominant species are
the species with the highest biomass in each cell.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used in this study was obtained from bottom trawling data
collated within the FishGlob®® (Accessible at https://github.com/
AquaAuma/fishglob_data). The Norwegian Sea section of this data is
no longer available in FishGlob, and needs to be directly asked for to
the Norwegian Marine Data Centre (https://metadata.nmdc.no/
metadata-api/landingpage/f77112db062b5924d079a54b311260fb).
The environmental data used for calibrating the model came from the
‘Global Ocean Physics Reanalysis’ and the ‘Global Ocean Bio-
geochemistry Hindcast’ both of which were available through the
Marine Copernicus repository®*®* at https://data.marine.copernicus.
eu/products. Bottom depth was obtained from BioOracle® at https://
www.bio-oracle.org. The environmental data used for future projec-
tions came from the second version of the IPSL climate model (IPSL-
CMIP6)%, and is fully accessible as well at https://esgf-data.dkrz.de/
search/cmip6-dkrz/. World administrative boundaries polygons are
available from opendatasoft, accessible at: https://public.
opendatasoft.com/explore/dataset/world-administrative-boundaries/
information®. The data generated in this study, and used for Figs. 3,
6 and 7 is provided in the Source Data file, while the output of all
regression analysis are available in the Supplementary Data files, as
well as the individual species range and biomass projections. The trait
database gathered is available at https://github.com/CescGV/JSDM-
Barents-Norwegian-North®’. Source data are provided with this paper.

Code availability
Code used for this publication is available at https://github.com/
CescGV/JSDM-Barents-Norwegian-North?.,
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