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% Check for updates The development of neural circuits has long-lasting effects on brain function,

yet our understanding of early circuit development in humans remains limited.
Here, periodic EEG power features and aperiodic components were examined
from longitudinal EEGs collected from 592 healthy 2-44 month-old infants,
revealing age-dependent nonlinear changes suggestive of distinct milestones
in early brain maturation. Developmental changes in periodic peaks include (1)
the presence and then absence of a 9-10 Hz alpha peak between 2-6 months,
(2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and
(3) the emergence of a low beta peak (12-20 Hz) in some infants after six
months of age. We hypothesized that the emergence of the low beta peak may
reflect maturation of thalamocortical network development. Infant anesthesia
studies observe that GABA-modulating anesthetics do not induce thalamo-
cortical mediated frontal alpha coherence until 10-12 months of age. Using a
small cohort of infants (n =23) with EEG before and during GABA-modulating
anesthesia, we provide preliminary evidence that infants with a low beta peak
have higher anesthesia-induced alpha coherence compared to those without a
low beta peak.

The infant brain undergoes dramatic structural and physiological
change in the first year after birth. Rapid increases in brain volume
coincide with expansive synaptogenesis'™, as well as interneuron
migration, maturation, and network integration®. In particular, during
this early period thalamocortical connections are established
through an intricate sequence that plays a critical role in the devel-
opment of sensory cortical networks’. However, the detailed
timing of interneuron and thalamocortical maturation in human
development is largely unknown. In rodent models, the development

of thalamocortical circuitry is notable for transient inhibitory con-
nections that drive subsequent circuit formation and coincide with
critical periods of plasticity present during the first 2-3 postnatal
weeks®. In humans, longitudinal resting-state fMRI data suggest that
while thalamic-sensorimotor connectivity networks are present at
birth, other networks (e.g., thalamus-medial-visual, thalamus-default-
mode) do not emerge until 1 year of age’. However, MRI studies thus
far have been limited to measuring annual changes in structural or
functional connectivity, preventing a detailed understanding of rapid
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developmental change during this period. In contrast, electro-
encephalography (EEG) can provide frequent and non-invasive repe-
ated measurement of brain oscillations that directly result from
transient developmental changes in inhibitory networks and matura-
tion of thalamocortical circuitry®*°.

The EEG power spectrum is comprised of two physiologically
distinct components reflecting underlying neuronal activity: aperiodic
and periodic activity. The aperiodic component defines the slope of
the power spectrum, following a 1/f power law distribution (Fig. 1a) and
reflects non-oscillatory neuronal spiking activity'®™. In addition,
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recent evidence suggests that the aperiodic slope reflects the
excitatory-inhibitory (E/I) balance of the underlying neuronal network,
where a flattened, reduced slope is associated with increased excita-
tion over inhibition, and a steeply more accelerated slope with
increased inhibition over excitation". Longitudinal studies extending
from childhood to adulthood have observed decreases in aperiodic
slope with age, suggestive of increases in E/I balance with age™™.
Changes in the aperiodic component in early infancy are less well
described, and we hypothesize they may be substantially different
from those in childhood, as the first year after birth includes rapid
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Fig. 1| Developmental trajectories of aperiodic and periodic power spectra.
a, b Example power spectra derived from 6-8 month-old participants from Study 2.
Power spectra are represented as the mean value with shaded errors describing 95%
confidence intervals. a Aperiodic offset is defined as power at 2.5 Hz. b Periodic
power peaks defined as maxima within a defined frequency range. Periodic band
power defined as the integral of the periodic power spectra between defined fre-
quencies. ¢ Longitudinal study enrollment. Each line is a participant with dots
indicating when EEG was collected for that participant. d-f Absolute, Aperiodic,
and Periodic power visualized across 8 age bins (see Table 1). Spectra from EEGs

collected within each age bin were averaged and shading describes 95% confidence
intervals. g Heatmap showing age-related changes in periodic power binned every
2 months. h, i GAMMs modeled trajectories of aperiodic offset and slope for males
(orange) and females (blue). Lines are the model predicted value with the shaded
area representing 95% confidence intervals. Here, age is incorporated into the
model using exact age in days, rather than age-bins. Relative inflection points are
shown with circular markers. Source data are provided as a Source Data file. Below,
heatmaps show the standardized change in offset or slope per day, defined as
[change per day]/[standard deviation of measures across full age range].
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increases in neuronal activity, synaptogenesis, and inhibitory neuron
integration.

The periodic component of the power spectrum is defined as the
portion of the absolute power spectrum rising above the aperiodic
slope (Fig. 1b). Periodic power reflects oscillatory activity occurring in
narrow frequency bands that are highly correlated with various cog-
nitive processes and behavioral states”"%, and provide the foundation
for both local and long-range communication within the brain. The
majority of neural oscillations observed in the power spectrum are the
direct result of inhibitory and thalamocortical network responses to
sensory input® %, Thus, as a measure, the EEG power spectrum is well
positioned to shed light on the developmental timing of inhibitory and
thalamocortical network maturation.

Thus far, developmental EEG studies have largely focused on
theta/alpha oscillations which are modulated by thalamocortical
interactions and are associated with cognitive functions of attention
and memory*2°, Multiple studies of the first two years of life
have observed a shift in peak frequency from a 5Hz theta peak at
5 months to 8Hz alpha peak at 2 years, coinciding with
increases in alpha power across this period”’~*". This dominant peak
frequency continues to increase into the mature 10 Hz posterior
alpha rhythm by adolescence®*. It is hypothesized that the gradual
shift in dominant peak frequency is modulated by maturation of
thalamocortical circuitry in concert with developmental gains in
cognitive functions’; however, the precise mechanisms remain
unknown.

Unlike theta/alpha power, little is known about the early devel-
opmental changes in periodic beta power. In adults, beta oscillations
are strongly associated with sensorimotor processing in addition to
higher-order cognitive tasks such as working memory®. Similar to
alpha oscillations, the generation of beta oscillations relies on
GABAergic interneuron networks and thalamocortical connectivity* .
In adults, low-dose GABA-modulating anesthetics induce a sedative
state with 13-25Hz beta oscillations, whereas higher doses used to
maintain unconsciousness progressively slow these beta oscillations
into coherent, frontal specific, alpha oscillations®*~%. However, GABA-
dependent anesthesia-induced frontal alpha coherence does not
emerge in infants until after 10 months of age and is not consistently
present until 15-20 months of age**. Anesthesia-induced alpha
coherence is hypothesized to involve GABA-dependent thalamocor-
tical loops leading to hypersynchronization between thalamic and
prefrontal cortices®®***, Simultaneous recordings of thalamic nuclei
and cortices performed in both rodent and monkeys during propofol
administration have demonstrated anesthesia-induced alpha coher-
ence between structures***. Therefore, potential covariation of
developing beta oscillations and anesthesia-induced counterparts may
lend insight into the role and time course of developing inhibition in
human thalamocortical circuit development.

Using longitudinal EEG data collected from 592 healthy infants
(yielding a total of 1335 EEGs) from 2 to 44 months after birth, in this
work we characterize early developmental trajectories of EEG aper-
iodic components and periodic power from 2 to 50 Hz. Consistent
with known increases in brain volume and synaptogenesis, we
observe rapid increases in aperiodic offset in the first year, with
minimal change between 1 and 3 years'™. In addition, we observe
transient periodic peaks in alpha power at 2-3 months and high beta
power at 4-18 months. A low beta peak (12-20 Hz) also begins to
emerge in infants starting as early as 6 months of age. We hypothe-
sized that emergence of this low beta peak reflects maturation of
early connections between the thalamus and cortex. To test this
hypothesis, we leveraged a smaller dataset consisting of a cohort of
infants with EEG recordings before and during clinical anesthesia.
Consistent with our hypothesis, we find infants with an identifiable
low beta peak have higher anesthesia-induced alpha coherence
compared to those that who do not, providing preliminary evidence

that the emergence of this peak may be associated with thalamo-
cortical loop maturation.

Results

Resting-state EEG were collected longitudinally from 592 healthy
infants, aged 2-44 months, across 4 studies occurring in the same
laboratory (Fig. 1c and Table 1). Whole brain power spectra for each
individual were calculated using a multitaper spectral analysis** for
each electrode, and then averaged across electrodes (Supplemental
Fig. 1. Individual spectra shown in Supplemental Fig. 2). For visualiza-
tion of developmental changes, spectra were then averaged across
individuals within 8 age bins (Fig. 1d). Notable nonlinear changes in
aperiodic and periodic power spectra were observed between age
bins, including transient peaks in the periodic spectrum across both
alpha and beta frequency ranges (Fig. le-g). To further characterize
these developmental changes in the spectra, we used generalized
additive mixed models (GAMMs) to model nonlinear trajectories of
power parameters. For each model an age-by-sex interaction was tes-
ted for significance. If not significant, the interaction term was
removed, and the model was refit using sex as an additive covariate. All
models also included random effects of study and participant. Spa-
ghetti plots of individual non-GAMMs modeled data are shown in
Supplemental Materials.

Table 1| Sample Characteristics

Combined Study1 Study2 Study3 Study4

studies

N=592 N=49 N=72 N=363 N=108
Sex, % female (n) 46.3 (274) 51.0 (25) 45.8 (33) 46.3(168) 44.4(48)
Ethnicity, % (n)

Hispanic 8.6 (51) 16.3(8) 1.4(1) 10.5(38) 3.7(4)
Non-Hispanic 90.2 (534) 81.6 (40) 97.2(70) 88.4(321) 95.4 (103)
Not answered 1.2(7) 2.0(1) 1.4(1) 11(4) 0.9(1)
Race, % (n)

White 74.0 (438) 10.2(5) 86.1(62) 79.1(287) 77.8(84)
Black or African- 6.4 (38) 53.1(26) 1.4(1) 2.2(8) 2.8(3)
American

Asian 3.9(23) 412 28(2) 41(15) 3.7(4)
More than one race  12.8 (76) 14.3(7) 8.3(6) 12.9 (47) 14.8(16)

Other 1.4 (8) 122(6) O 0.6 (2) 0
Not answered 1.5 (9) 6.1(3) 1.4 (1) 1.1(4) 0.9 (1)
Family income, % (n)®

<$35,000 5.4 (32) 327(16) 4.2@3) 25(9) 3.7(4)
$35,000-$75,000  11.1(66) 18.4(9) 9.7(7) 13.2(48) 1.9 (2

>$75,000 73.8(437) 18.4(9) 70.8(51) 76.3(277) 92.6(100)
Not answered or do 9.6 (57) 30.6(15) 15.3(11) 8.0(29) 1.9(2)
not know
Participant EEG data included in analysis, n (% with long-

itudinal data)

2-4m 97 (91) 46 (93) 10(100) - 41 (85)

4-6m 119 (46) = 2(100) 113(45) 4 (50)

6-8m 223 (68) 43(100) 50 (100) 130 (45) -

8-1m 95 (98) 37 (100) 58(98) -

11-15m 291 (79) 40 (100) 62 (100) 102 (45) 87 (95)

18-20m 107 (97) - 40 (100) - 67 (95)

23-30m 18 (99) 22 (100) 44 (100) - 52 (98)

35-44m 285 (92) 18 (100) 48(95) 174(90) 45(95)
By participant, mean 3.2+1.7 46+11 49+13 16+05 3.2+0.9
# EEGs + SD

22 infants reported to have income of $30-39,000 were placed in <35,000 category. 1infant with
reported income of $70-79,000 placed in >75,000 category.
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Aperiodic activity increases most during first year of life

First, we assessed age-dependent changes in the aperiodic component
and observed the largest developmental increases in aperiodic activity
between 2 and 8 months after birth (Fig. 1e). Aperiodic offset and slope
significantly increased with age (FDR-adjusted g values < 0.001), and
age-by-sex interactions were present for both aperiodic offset
(F=5.28, ¢=0.002) and slope (F=3.04, g=0.03). Modeled develop-
mental trajectories of the aperiodic offset showed a qualitatively sharp
linear increase over the first year after birth for both males and females
(Fig. 1h). Modeled developmental trajectories of the aperiodic slope
showed a qualitatively gradual increase over the first year. These
findings contrast with consistent reports of decreasing offset and
slope across child and adulthood”™, and likely reflect the known
increases in brain volume and synaptogenesis occurring across the
first year of life. Differences in developmental trajectories between 4
regions of interest (ROI) (frontal, central, temporal, and posterior)
were also assessed (Supplemental Figs. 5 and 6). The posterior ROI
had higher aperiodic offset than all other ROIs, with the greatest
increase in offset occurring in the first year (Frontal F=-32.47,
g<0.0001, Central F=-50.12, ¢<0.0001, Temporal -39.29,
g <0.0001; Supplemental Fig. 3B).

Transient 9.5 Hz alpha peak observed in 2-4 month-old infants
At the youngest age bin (2-4 months) two peaks with similar amplitude
are observed across the theta/alpha (4-12 Hz) range in the majority of
infants (69%; Fig. 2a, ¢). A lower frequency peak is observed in the theta
(4-6 Hz) range at 5.5+ 0.3 Hz, and higher frequency peak is observed
in the alpha (6-12 Hz) range at 9.5+ 0.45 Hz. However, by 6-months
only 15% of infants have two peaks in this range, and for most infants it
is the higher 9.5 Hz peak that is no longer observed. At 6 months, fewer
than 40% of infants exhibit a dominant peak in the “alpha” (6.5-12 Hz)
range (Fig. 1d) and the average peak frequency in the theta/alpha range
is 6.3+1Hz. Age (in days) was negatively associated with the prob-
ability of having two peaks across the 2-6 month age range in a gen-
eralized linear mixed effects model (odds ratio=0.98, B=-0.018,
p<0.0001). This disappearance of the higher peak after 4-months of
age may reflect a transient step in thalamocortical circuit develop-
ment. Previous research has observed a gradual shift in peak frequency
from 5 to 8 Hz from infancy to early childhood, however these studies
started no earlier than 5 months of age”*. In order to assess whether
an increase in peak frequency beginning at 5 months is present in our
data set we modeled developmental trajectories of peak amplitude
and frequency between 4 to 12 Hz starting at 170 days, when the vast
majority of EEGs exhibited a single dominant peak. No age-by-sex
interactions were observed in GAMMs modeled trajectories, and
consistent with previous studies peak frequency and peak amplitude
significantly increased with age (frequency: F=138.3, ¢<0.0001
Fig. 2e; amplitude: F=416.62, g <0.0001, Fig. 2f). Figure 2g-i show
modeled trajectories for EEG power calculated over defined frequency
bands commonly used in infant EEG research: theta (4-6 Hz), low alpha
(6-9Hz), and high alpha (9-12Hz). An age-by-sex interaction was
present for theta power, although qualitatively the shapes of trajec-
tories were similar (Fig. 2g; F=5.5, g < 0.01).

Transient beta peaks between 4 and 18 months

Several age-dependent transient changes are observed in the low beta
(13-20 Hz) and high beta (20-35Hz) range. First, the shape of the
periodic power spectrain the low beta range is notable for the absence
of a low beta peak prior to 1 year of age (Fig. 3a), with only 10% of
infants (24/222) exhibiting a peak between 6 and 8 months of age
(Fig. 3a—c). After 8 months, a low beta peak begins to emerge in some
of infants, with 48% (52/107) showing a peak at 18-20 months, and 70%
(199/285) by 36 months (Fig. 2c). As a low beta peak was not identified
in many children across the age range, peak amplitude and frequency
was not modeled. In contrast, virtually all (99.5%) of the infants had an

identifiable high beta peak prior to 12 months of age (Fig. 3a). However,
notable nonlinear shifts in frequency and amplitude of the high beta
peak were observed (Figs. 1f and 3d, e). During the first year after birth,
the high beta peak amplitude increases, peaking at 372 days
(12.2 months), and then substantially decreases until 1021 days (2.8
years). High beta peak frequency trajectories are also nonlinear, with
peak frequency at its highest at 491 days (male 28.4 Hz, female
28.8 Hz), followed by a steady decline in frequency. Modeled trajec-
tories of periodic power for commonly used frequency bands are
shown in Fig. 3f-h: low beta (12-20 Hz), high beta (20-30 Hz), and
gamma (30-45 Hz).

The observed nonlinear changes across the beta range are strik-
ing. While many EEG infant studies group beta oscillations into a sin-
gular frequency range, the data presented here supports that low and
high beta have distinct developmental origins. Specifically, between 6
and 24 months we observe the gradual emergence of a low beta peak,
and simultaneously the rise and fall of a prominent high beta peak,
ultimately resolving into a broader beta peak by 36 months.

Traditionally, beta oscillations measured in children and adults
are associated with sensory and motor processing, where reductions in
beta power are observed during the preparation or execution of motor
tasks®. However, beta activity has also been shown to be modulated
during a wide range of nonmotor cognitive tasks***. The develop-
mental emergence of low beta oscillations may represent sensor-
imotor skills (e.g., crawling, walking) gained during this period, but
may also represent the developmental maturation of neural circuitry.
For example, GABAeric interneuron networks and thalamocortical
connectivity are highly associated with the generation of cortical beta
oscillations, as well as anesthesia-induced frontal alpha coherence, but
neither are not fully established at birth®.

Low beta peak associated with anesthesia-induced alpha
coherence

We wondered whether developmental changes in infant beta power
measured in a resting state may represent concurrent maturation of
GABAergic interneuron networks and thalamocortical connectivity.
Multiple lines of evidence suggest that anesthesia-induced frontal
alpha coherence is dependent on thalamocortical connectivity*$*>*,
and in infants robust levels of alpha coherence with anesthesia
administration are not observed until 10 months of age*. We hypo-
thesized that the emergence of low beta oscillations (as measured by
the presence of a low beta peak) beginning after 7-months of age may
reflect maturation of the thalamocortical loop also responsible for
the developmental emergence of anesthesia-induced frontal alpha
coherence around the same age’.To explore this possibility, we
analyzed data from infants participating in cross-sectional study
where EEG data was collected before and during exposure to GABA-
modulating sevoflurane anesthesia*. All infants were undergoing
elective procedures (e.g., circumcision) and infants were excluded
for prematurity, neurologic injury, epilepsy, or planned intracranial
surgery. We then tested whether infants with a low beta peak during
the awake, unanesthetized state had increased GABA-dependent
anesthesia-induced frontal alpha coherence. EEG data from 36
infants across a broad age range (6-15 months old) were collected
during the (1) awake pre-anesthetized and (2) anesthetized states. We
first analyzed the baseline awake state (pre-anesthesia) EEG across all
36 infants to confirm that similar developmental changes were
observed. Developmental changes in the periodic power spectra in
this smaller dataset were qualitatively similar to those described
above (Fig. 4a), with a low beta peak beginning to emerge in some
infants after 7 months and present in roughly half the infants
between 7 and 12 months of age (11/23). To test our above hypoth-
esis, we then limited our analysis to this 7-12 month age range
(n=23), and compared alpha coherence during anesthesia in those
with and without a low beta peak in the awake, unanesthetized state.
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Fig. 2 | Transient and nonlinear changes in periodic power between 4 and 12 Hz.
a, b Individual periodic power spectra for 2-4 months, and 6-8 months old. Red
markers show peaks between 4 and 12 Hz. ¢ Proportion (mean of binary data) of
infants with two peaks identified between 4 and 12 Hz at each age bin. d Proportion
of infants with an identified peak between 6.5 and 12 Hz at each age bin. For cand d,
shaded areas represent 95% confidence intervals. e-i GAMMs modeled trajectories

—-0.010 —-0.005 0.000 0.005 0.010

for males (orange) and females (blue). Lines are the model predicted value with the
shaded area representing 95% confidence intervals. Relative inflection points are
shown with circular markers. Source data are provided as a Source Data file. Below,
heatmaps show the standardized change in offset or slope per day, defined as
[change per day]/[standard deviation of measures across full age range]. Both male
and female heatmaps shown for models with significant age x sex interaction.

As hypothesized, both ANCOVA and a generalized linear mixed
effects (LME) model demonstrated a significant effect of low
beta peak presence on median alpha coherence, with increased
alpha coherence in those with a low beta peak compared to those
without (ANOVA F(1,20)=5.25, p=0.03; LME $=0.12, SE=0.05],
p=0.02; Fig. 4B).

Discussion

We present longitudinal analysis of a large sample EEG data collected
between 2 and 44 months of age. Findings provide insight into the
developmental timing of inhibitory network and thalamocortical cir-
cuit maturation during human infancy. Several age-dependent findings
in our study contrast with previous longitudinal studies of child and
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Fig. 3 | Transient and nonlinear changes in periodic power between 12

and 35 Hz. a, b Individual periodic power spectra 6-8 months, and 18-20 months
old. Red markers show peaks between 12 and 20 Hz. Green markers show peaks
between 20 and 35 Hz. ¢ Proportion of infants with peak identified between 12 and
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d-h GAMMS modeled trajectories for males (orange) and females (blue). Lines are

the model predicted value with the shaded area representing 95% confidence
intervals. Relative inflection points are shown with circular markers. Source data are
provided as a Source Data file. Below, heatmaps show the standardized change in
offset or slope per day, defined as [change per day]/[standard deviation of mea-
sures across full age range].

adulthood. First, we observe increases in both aperiodic offset and
slope, especially during the first year, whereas decreases in both
measures are observed starting as early as 4 years of age and continue
to decrease with adulthood”'®. Second, while expected shifts in the
dominant peak from the theta to alpha range were observed between 5
and 44 months, in the 2-4 months age bin, a 9.5 Hz peak was also
transiently observed. Third, striking changes within the beta
(12-30 Hz) range were observed, including the emergence of a low

beta peak starting after 6 months of age, and age-dependent shifts in
high beta peak frequency and amplitude - first increasing and then
decreasing with age. Below we discuss how the above age-related
changes may represent sequential developmental maturation in the
inhibitory system and thalamocortical network connections.

The aperiodic offset is hypothesized to represent broad band
neuronal firing'®, and thus early increases in aperiodic offset are
consistent with established increases in neuronal number, gray matter
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Fig. 4 | Increased anesthesia-induced alpha coherence in infants with identified
low beta peak in baseline EEG. a Periodic power spectra of infants between 6 and
15 months old prior to receiving anesthesia. Mean spectra shown with shaded

errors describing 95% confidence intervals. b Mean alpha coherence during anes-
thesia in infants 7-12 months old, with (light blue) or without (white) an identified
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low beta peak. Both a generalized linear mixed effects (glme) model and Ancova
showed significant association between low beta peak presence with anesthesia-
induced alpha coherence (p = 0.019 glme; p = 0.03 Ancova). Dotted lines represent
quartiles, with the long dash represented the median.

volume, and synaptic number during the first year'>>¢545%0_ Stabili-
zation of aperiodic offset after 1 year of age is also consistent with MRI
findings that gray matter volume doubles during the first postnatal
year and then slows to 20% in its second year***°!, Regionally, we also
observe differences between posterior and frontal aperiodic offset
trajectories, which either plateau after 1 year (posterior), or have a slow
continued increase (frontal) beyond 1 year of age (Supplemental
Fig. 3). Consistent with this pattern, synaptogenesis differs across
cortical regions, with the posterior visual cortex exhibiting a burst in
synapse formation between 3 and 4 months of age, whereas the pre-
frontal cortex shows peak synaptogenesis around 8 months of age and
continued gains during the second year of life’.

Our observed age-dependent increases in aperiodic slope in
infancy also contrast with multiple studies covering child to adult-
hood, where decreases in slope have consistently been reported.
Schaworonkov et al.*? also reported decreased slope with age in infants
from1to 7-months-old, however the parameterization of the spectrain
that study was limited to 1-10 Hz due to excessive muscle noise in the
data, and it is unclear how the shifts in 4-12Hz periodic power
described below may affect modeling of the underlying aperiodic
component in this range. We hypothesize that observed increases in
aperiodic slope reflect changes in inhibitory networks that are unique
to early development. Indeed, aperiodic slope from EEG recorded
from sleeping newborns is observed to increase with age during the
first 7 weeks after birth®>. Growing evidence suggests that aperiodic
slope is modulated by the balance between excitation and inhibition,
with increased slope associated with a reduction in E/I ratio™**°. An
age-dependent reduction in E/I ratio during the first postnatal year is
consistent with the prolonged developmental timing of inhibitory
network maturation in humans. Unlike excitatory neurons which are
well established by birth, during the first postnatal year GABAergic
inhibitory neurons continue to migrate from ventral subregions of the
brain to the cortices where they ultimately mature and integrate into
neuronal networks®. In addition, during this 1st year GABAergic
responses switch from being excitatory to inhibitory due to changes in
the concentration of chloride channels on cell membranes® . Overall,
inhibitory neuron network integration and the excitatory-to-inhibitory
GABA switch are unique to this developmental period and likely lead to
increased inhibitory tone during the first year.

Observed changes in the periodic spectra may reflect sequential
steps in inhibitory network and thalamocortical circuit development.
Transient neural circuits are common in postnatal development and
play critical steps in normal development of thalamocortical circuitry®.

For example, transient circuits between sublate neurons (SPN) and
thalamo-recipient layer 4 spiny stellate neurons help establish thala-
mocortical connections prior to the maturation of primary sensory
cortices®®. Studies of postmortem fetal monkey and human brains
suggests that the SPN in primates and humans slowly begins to dis-
appear in the 3™ trimester but may persist until 6 months, with an
overlapping period in which the thalamus makes connections with
both the SPN and cortical layer IV neurons®**°. We hypothesize that
the 9.5 Hz peak observed at 2-4 months, but not at 6 months, reflects
this transient period when mature excitatory subplate neurons are still
receiving and relaying thalamic input to cortices, resulting in higher
frequency alpha oscillations. Additionally, newly established connec-
tions between the thalamus and layer IV produce lower frequency
theta rhythms that will later become the dominant alpha rhythm.

The thalamus is thought to play a central role in the generation of
the mature posterior alpha rhythm®-®, A shift in dominant oscillatory
frequency in the theta/alpha range (4-12 Hz) across early childhood
has been observed now in many studies?®*>**, Here, we both confirm
and extend those findings over the first 3 years after birth, with peak
frequency increasing most between 4 and 18 months. What factors are
potential contributors to this shift in peak frequency? The dynamic
circuit motif model (DCM) proposes that cortical network rhythms
result from a combination of the intrinsic resonant frequency of a
neuronal population and the time course properties of the inhibitory
inputs on the neuronal population®. Under the DCM model, prior to
the maturation of both local inhibitory circuitry and thalamocortical
feedback loops, peak frequency oscillations as measured by scalp EEG
are more likely to represent the intrinsic properties of cortical net-
works, with thalamic inputs beginning to play a larger role with age. For
example, lower frequency 4-7 Hz oscillations are intrinsically gener-
ated by isolated layer 5 cortical neurons, and the range of oscillations
increases to 5-12 Hz when connections to other cortical layers remain
intact®®. Thalamic neurons in the lateral geniculate nucleus also fire
across the theta and alpha range. In vitro slice experiments from cats
suggest that cortical input to thalamus modulates whether theta ver-
sus alpha oscillations are dominant®>*. Thus, the developmental shift
in peak frequency from the canonical theta to alpha range over the first
three years after birth, may represent the integration and maturation
of cortical inhibitory neurons, as well as the establishment and
maturation of thalamocortical connections.

Finally, our study identified early age-dependent changes in per-
iodic beta power that we hypothesize are associated with thalamo-
cortical loop maturation. We observe the emergence of a low beta
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peak in infants older than 6 months of age and find that the presence of
a low beta peak is associated with higher anesthesia-induced frontal
alpha coherence. Biophysical models demonstrate that this frontal
anesthesia-induced alpha coherence requires inputs from both the
thalamus and cortex®®. Together these findings suggest that low beta
oscillations may directly reflect thalamocortical loop maturation. Beta
rhythms are thought to be generated both locally in the cortex through
pyramidal-interneuron loops, as well as through thalamus to cortical
connections that also rely on inhibitory inputs®. The emergence of the
low beta peak in awake infants may reflect the combination of newly
established network connections between thalamic nuclei and cortical
layers, as well as the maturation of interneurons within the thalamo-
cortical pathways.

It is also possible that developmental changes in beta power are
related to infant movement. During EEG acquisition, infants are held in
their parent’s lap and behavioral supports are in place to keep the
infants calm. However, it is not possible to control the infants’ move-
ment, and movements both small (hand movements) and large (head
turns, leg and arm movements) ubiquitously occur across recordings -
likely increasing over the first year as infants become more mobile. Our
preprocessing artifact removal pipelines (see Methods) includes sev-
eral steps for removing high frequency noise from muscle artifact.
However, this would not remove EEG signal in response to sensor-
imotor processing. Infant jaw and upper limb movements have been
shown to increase power between 9 and 20 Hz along frontal and
occipital sites, while hand and lower limb movements do not have
significant effects®. In our dataset, increases in low beta power were
most prominent in central (not frontal or occipital) ROIs (Supple-
mental Fig. 3K). In addition, age-dependent shifts of both low and high
beta are observed visually across individual power spectra plots
(Supplemental Fig. 2) and similar age-dependent shifts are observed in
infants who were noted to have either limited or substantial movement
during baseline EEG acquisition (Supplemental Fig. 9).

Transient high beta peaks were also observed across this early
period of development. Specifically, we observed early increases in
high beta peak amplitude, which reached a maximum at 12.2 months,
followed by decreases in both high beta peak amplitude and fre-
quency, such that by 36 months the low beta peak is the dominant
peak across the 12-30 Hz range. The neurobiological mechanism of this
high beta peak is unclear. As discussed above, administration of GABA
agonists induces beta activity. In addition, several neurodevelop-
mental disorders associated with GABA receptor dysfunction show
prominent beta peaks on EEG; individuals with Duplication 15q have a
prominent beta peak at 23Hz***°, and we have observed that children
with Fragile X Syndrome (FXS), aged 3-7 years, have a prominent

30 Hz peak’. This 30hz peak observed in FXS children is qualitatively
similar to the 30 Hz peak observed in the present dataset at a much
younger age. Further analysis of data previously published from FXS
children shows that the observed high beta peak decreases with age
(Fig. 5), suggesting delayed brain development. Such observations
highlight the value of the longitudinal EEG trajectories presented in
this paper in placing findings from neurodevelopmental disorders in
the broader context of developmental brain maturation.

There are several limitations that may affect the interpretation or
generalizability of findings. First, there are significant non-neural ana-
tomical developmental changes that occur during infancy, including
increases in skull thickness, gradual closure of fontanels and sutures,
and changes in cerebrospinal fluid volume. Such changes can alter
conductive properties of the skull, and in turn impact EEG signals,
including measures such as aperiodic offset and slope” 7. Second,
more work is needed to firmly establish the association between
changes in periodic power and development of thalamocortical cir-
cuitry. While we provide some preliminary evidence that the emer-
gence of low beta peak is associated with maturation of
thalamocortical connectivity, the dataset is small and it is still an
indirect measure, and thus no conclusion can be made at this time.
Future research that combines EEG and MRI in infants from 4-6
months and again at 10-15 months, could provide more direct evi-
dence linking alpha and beta periodic EEG findings with the develop-
ment of thalamocortical connectivity. Third, impedance thresholds
were kept below 100 kQ, rather than 50 kQ, in order to reduce the time
needed to optimize impendences and in turn prevent infants and
toddlers from becoming fussy. While all data were collected in elec-
trically shielded rooms, it is possible that recordings with impedances
above 50 kQ have reduced signal quality. However the developmental
changes described are robust and observed across individuals as
observed in Supplemental Fig. 2. Fourth, the findings presented here
utilize a specific artifact removal and processing pipeline (BEAPP and
HAPPEL.0O). An automated pipeline was used to improve reproduci-
bility of our findings, and the code is available on Open Science Fra-
mework (https://osf.io/u3gp4). We do note that similar developmental
changes in the low and high beta from 9 and 12 months are shown in
Fig.10ofRayson et al.”* which used a combination of MADE”® and NEAR"®
pipelines. Interestingly, recently Rico-Pico et al.*® also described
developmental changes in the periodic power spectra using MADE
processing pipelines but limited their analysis to 1-20 Hz “due to a
power bump” in the gamma range, assumed to be related to muscle
artifact, but likely the same high beta peak we observe most prominent
at 7-8 months of age. Power spectra from 6, 9, and 16 months shown in
Supplemental Fig. 8 of Rico-Pico et al. 2023 visually show a similar
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pattern in beta band change across development. We hope that our
comprehensive characterization of developmental changes using a
single pipeline with frequent age sampling across the first 3 years of
development spur other infant EEG researchers to evaluate the pat-
terns we describe in their own data.

In summary, our work highlights the dynamic developmental
changes in neural activity occurring during the first three years after
birth and provides insights in potential ways these age-dependent and
sometimes transient changes may coincide with sequences in thala-
mocortical and inhibitory network maturation. Our findings help to
ground cross-sectional work occurring at these early ages and provide
a foundation to compare developmental trajectories of various neu-
rodevelopmental disorders including autism, ADHD, and rare genetic
disorders. Future studies examining early trajectories of functional
connectivity and phase amplitude coupling across this age range will
provide additional insight into the timing of critical periods in brain
maturation.

Methods

Studies and participants

Lab-based EEGs for this paper were collected as part of four different
studies occurring over 15 years conducted at our lab at Boston Chil-
dren’s Hospital (Fig. 1A). Institutional review board (IRB) approval was
obtained from Boston Children’s Hospital. IRB protocol numbers are
provided for each study. Written, informed consent was obtained from
a parent or guardian prior to each infant or child’s participation in the
study. Sample numbers for each age are shown in Table 1. Study 1, the
Healthy Baby Study (IRB-PO0019083), was a longitudinal study,
enrolling infants starting at 2 months of age, from the Boston Chil-
dren’s Hospital Primary Care Center, which predominantly services
families from low-income backgrounds. EEG was collected and devel-
opmental assessment using the Mullen Scales of Early Learning (MSEL)
was performed at 2, 6, 9, 12, 24, and 36 months.

Study 2, The Infant Sibling Study (IRB-X06-08-0374), and Study 4,
the Infant Screening Project (IRB-PO0018377), were both prospective,
longitudinal studies, enrolling infants with and without first degree
family history of ASD starting as early as 3-months of age. For this
analysis only infants without family history of ASD were included.
Study 4 also included a group of infants with elevated social commu-
nication concerns at 12 months of age, and they were also excluded
from this analysis. EEGs and MSEL were performed at 3, 12, 18, 24, and
36 months for both studies, as well as 6 and 9 months for Study 2.
Infants were specifically assessed for ASD using the Autism Diagnostic
Observation Schedule (ADOS) in conjunction with clinical best esti-
mate at 24~ and 36-month visits.

Study 3, the Emotion Project (IRB-P00002876), was a cohort/
longitudinal study. Infants were enrolled at either 5, 7, or 12 months,
and then followed through 7 years of age. In addition to the first time
point, EEG data was again collected at 3 years of age. There were no
developmental assessments performed for this study, however parent
questionnaires regarding child development, diagnoses (e.g., ASD),
and therapies were collected.

Allinfants had a minimal gestational age of 36 weeks, no history of
prenatal or postnatal medical or neurological problems, and no known
genetic disorders. Infants who were later diagnosed with ASD (either
by assessment during the study, or by community diagnosis disclosed
by parents prior to age of 5) were not included in this study.

Sample characteristics across and within studies are shown in
Table 1. The analysis included 1335 EEGs collected from 592 partici-
pants. While all studies took place in the same laboratory, participant
demographics vary between studies as was expected given differences
in recruitment and research aims of each study. In addition, studies
differed in the age of enrollment and when subsequent visits were
completed (Fig. 1C). Combined, the sample remained predominantly
white (74%).

Lab-based EEG data collection

Baseline, non-task-related EEG data was collected using similar meth-
ods and rooms for all four studies. The infant was held by their seated
caregiver in a dimly lit, sound-attenuated room with a low-electrical-
signal background. For Study 2, a research assistant ensured that the
infant remained calm by blowing bubbles and/or showing toys. For
Studies 1 and 3, a video of infant toys was shown for 2-5 minutes and
2 min, respectively. For Study 4, a video of an abstract moving objects
was shown for 2-5 minutes. Continuous scalp EEG for Studies 1, 3, and
4 was recorded using a 128-channel Hydrocel Geodesic Sensor Nets
(Electrical Geodesics, Inc., Eugene, OR) connected to a NetAmps 300
amplifier (Electrical Geodesic Inc.) and sampled at 500 Hz. Study 2
included recordings using 64-channel Geodesic Sensor (<10% of data)
or a 128-channel Hydrocel Geodesic Sensor Nets (Electrical Geodesics,
Inc., Eugene, OR), connected to either a NetAmps 200 or 300 amplifier
(Electrical Geodesic Inc.) and sampled at either 250 or 500 Hz. Addi-
tional statistical analysis related to differences in net and amps is
described below in EEG Power analysis. For all studies, data was
referenced online to a single vertex electrode (Cz) and impedances
were kept below 100kQ in accordance with the impedance capabilities
of the high-impedance amplifiers inside the electrically shielded room.
Electrooculographic electrodes were removed to improve the child’s
comfort.

EEG pre-processing

Raw Netstation (Electrical Geodesics, Inc) files were exported to
MATLAB (version R2017a) for preprocessing and absolute power cal-
culations using the Batch Automated Processing Platform (BEAPP”’)
with integrated Harvard Automated Preprocessing Pipeline for EEG
(HAPPE™®). For each EEG, a 1Hz high-pass and 100 Hz low-pass filter
were applied, data sampled at 500 Hz were resampled to 250 Hz, and
then run through the HAPPE module consisting of 60 Hz line noise
removal, bad channel rejection, and artifact removal using combined
wavelet-enhanced independent component analysis (ICA) and Multi-
ple Artifact Rejection Algorithm (MARA*®). The following channels, in
addition to the 10-20 electrodes, were used for MARA: 64-channel net
-16,9, 8,3, 58, 57, 21, 25, 18, 30, 43, 50, 53, 32, 33, 38, 41, 45; and 128-
channel net - 28, 19, 4, 117,13, 112, 41, 47, 37, 55, 87,103, 98, 65, 67, 77,
90, 75. These electrodes were chosen as they evenly cover all brain
regions of interest (Supplemental Fig. 1). After artifact removal, chan-
nels removed during bad channel rejection were then interpolated,
data were referenced to the average reference, detrended to the signal
mean, and segmented into 2-second segments. Any segments with
retained artifact were rejected using HAPPE's amplitude and joint
probability criteria.

EEG rejection criteria

EEG recordings were rejected using the following HAPPE data quality
measures: Fewer than 20 segments (40 s of total EEG), percent good
channels <80%, percent independent components rejected >80%,
mean artifact probability of components kept >0.3, and percent var-
iance retained <25%. Expected differences between studies in number
of segments remaining post-segment rejection were observed, with
Study 3 with the shortest resting state recording period having fewer
segments. All other quality metrics were similar across studies
(Table 2).

EEG power analysis

The power spectral density at each electrode, for each 2-second seg-
ment, was calculated in the BEAPP Power Spectral Density (PSD)
module using a multitaper spectral analysis** and three orthogonal
tapers. For each electrode, the PSD was averaged across segments, and
then further averaged across all available electrodes, or frontal, tem-
poral, central, and posterior regions of interest (Supplemental
Fig.1C, D). The PSD was then further analyzed using a modified version
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Table 2 | EEG data quality metrics

Combined Studies Study 1 Study 2 Study 3 Study 4

N=1335 N=206 N=314 N=519 N=296
EEG quality metrics, mean + SD
Number of segments retained after processing 81+39.5 126 £27.5 85.8+39.9 48.8+7.1 105.2+30.3
Percent good channels 922+45 922+4.8 92.6+4.4 92.0+4.6 935+4.3
Percent ICs rejected 35.7+£10.3 35.7+10.6 35.4+10.1 34.1+14.0 35.0+10.5
Percent variance kept of post waveleted data 67.2+17.0 63.1+16.1 66.5+15.7 68.8+18.3 68.1+16.1
Mean artifact probability of kept ICs. 0.12+0.05 0.12+0.04 0.11+0.04 0.12+0.05 0.12+0.05

of SpecParam v1.0.0® (https://github.com/fooof-tools/fooof; in Python
v3.6.8) in order to model periodic and aperiodic components of the
power spectra. SpecParam required modification for use in this age
range, as power spectrum models for 2-7 month ages showed poor
model fit (increased mean squared error) for frequencies between 10
and 20 Hz. Specifically, the SpecParam modeled curves did not accu-
rately capture the “trough” in the power spectra visually observed in
this frequency range at younger ages (Supplemental Fig. 7 and 8) when
alpha and high beta peaks are prominent, but a low beta peak is not
present. In the original SpecParam, the power spectrum is first fit with
an estimated aperiodic component which is subtracted from the raw
signal. Any negative data, signal falling below O, is converted to 0, and
peaks are identified through iterative gaussian fits. Once all peaks are
identified, these peaks are removed from the raw spectra and a final
aperiodic component is fit. Between 2 and 7 months, signal between 10
and 20 Hz often falls below the first estimated aperiodic fit and is thus
converted to O, impacting both the periodic peaks identified and the
final fit of the aperiodic component. To improve model fit, the
robust_ap_fit function, which initially defines the aperiodic compo-
nent, was modified so that the initial estimate of the flattened power
spectra (flatspec) has a baseline elevated such that the lowest point is >
0, to avoid omitting data important across the 2-7 month age range. In
the original and modified scripts, this initial fit is combined with
thresholding to render a more robust second round of aperiodic
parameters. After these second aperiodic parameters have been
defined, the fit function re-estimates the flattened spectra (spec-
trum_flat). At this point, prior to fitting spectra peaks, the modified
code sets negative data in the flattened spectra equal to O, similar to
the approach of the original code during the initial aperiodic fit. In
both versions, aperiodic parameters are fit a third and final time to the
spectra with peaks removed (spectrum_peak rm). The SpecParam
model was used in the fixed mode (no spectral knee) with peak -
width limits set to [0.5, 18.0], max_n_peaks =7, and peak threshold = 2.
Code is available (osf.io/u3gp4) which runs both the original and
modified versions of SpecParam (with edits marked in code). Changes
are also shown in Supplemental Materials. The code also graphs the
RMSE across frequencies for both versions, separated by age. Com-
parisons model fits for each age for are presented in Supplemental
Fig. 4, as well as RMSE across frequencies for infants 5, 6, or 7 months
old. Further analyses were subsequently restricted to 2.5-50 Hz given
elevated error between 2 and 2.5, and 50 and 55 Hz. Mean R? for the full
sample using this modified version of SpecParam was 0.997 (STD
0.008; range 0.890-0.999). Mean R’ for each age bin ranged from
0.991-0.999. The mean estimated error for the sample was 0.01 (STD
0.01, range 0.002-0.09).

SpecParam provides two parameters to describe the aperiodic 1/f
signal: offset and slope. As the SpecParam-determined offset is extra-
polated to the estimated aperiodic power at O Hz, where there are high
amounts of error, we instead calculated the aperiodic offset based on
aperiodic power at 2.5hz (Fig. 1a). The periodic power spectrum
(Fig. 1b, f) was determined by subtracting the SpecParam estimated
aperiodic spectrum (Fig. le) from the absolute power spectrum
(Fig. 1d). To further characterize peaks within the power spectra across

development, the periodic spectrum was then smoothed using a sav-
gol filter (scipy.signal.savgoal_filter, window length =101, polyorder =
8). Individual periodic power spectrum plots before and after savgol
filter are shown in Supplemental Fig. 2. We decided to use this method
instead of using the SpecParam estimated peak fit as the high beta
peak appeared to have a non-gaussian shape at some ages, and thus
peak fit estimates did not accurately identify the high beta peak fre-
quency. Using the smoothed periodic spectra, maxima were identified
within the following frequency ranges: 4-6.5 (theta), 4-12 Hz (theta/
alpha), 12-20 Hz (low beta), and 20-35 Hz (high beta). Aperiodic and
periodic power across the following canonical frequency bands was
calculated taking the integral of each parametrized spectra between
the following frequency ranges: theta (4-6 Hz), low alpha (6-9 Hz),
high alpha (9-12 Hz), low beta (12-20 Hz), high beta (20-30 Hz), and
gamma (30-45Hz).

To visualize differences aperiodic and periodic EEG measures
across different regions, topoplots for 12 measures across eight age
bins are shown in Supplemental Fig. 6. As SpecParam estimates were
based on power spectra across averaged electrodes, topoplots were
similarly created using averaged measures across electrodes from 6
regions of interested (left frontal, right frontal, central, left temporal,
right temporal, and posterior).

As Study 2 collected data with 2 net types and 2 amplifiers, data
from 6-, 9-, and 12-month age bins were assessed for spectra differ-
ences in total (2-50hz) aperiodic and periodic power as well as aper-
iodic slope and intercept measure from central electrodes between
either 64 and 128 channel nets, or NetAmps 200 or 300 amplifiers. Of
the 24 analyses performed, 3 showed significant differences. Net-type
differences were observed for 9- and 12-month central aperiodic slope
(p=0.04 for both) and an amplifier difference was observed for 12-
month central offset (p=0.04). None of these were significant after
correcting for multiple comparisons.

Anesthesia cohort

EEG data were collected from infants undergoing anesthesia as part of
a prospective observational study approved by the Institutional
Review Board at Montefiore Medical Center, Albert Einstein College of
Medicine*®”. Infants scheduled for elective surgical procedures (e.g.,
circumcision, hernia repair) were recruited. Infants were excluded for
prematurity, known neurologic injury, epilepsy, or planned intracra-
nial surgery. Infants less than 6 months of age, or those documented to
be asleep or crying during baseline (pre-anesthesia) recordings were
excluded from further analysis. All subjects received general anes-
thesia with sevoflurane.

EEG recordings were obtained using a Food and Drug Adminis-
tration (FDA) approved 26 channel device recording from scalp loca-
tions designated by the International 10-20 System, reference midline
occipital channel (Oz) (microEEG System, Biosignal, Acton, MA)*°. Data
was collected from 21 electrodes (FpZ, Fpl, Fp2, Fz, F3, F4, F7, F8, Cz,
C3, C4, T3, T4, Pz, P3, P4, TS5, T6, Oz, 01, 02) both prior to (baseline)
and during sevoflurane induction and maintenance. End tidal sevo-
flurane concentration was recorded, locked in time with EEG record-
ing. Data were sampled at a frequency of 250 Hz.
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Baseline EEGs (n = 45) were visually inspected and approximately
2 min of continuous EEG with minimal artifact was segmented and then
processed using BEAPP/HAPPE””’®, 9 EEGs were excluded due to
excessive artifact during visual inspection. No additional EEGs were
excluded based on HAPPE data quality criteria. The final sample
(n=36) had an average age of 9.1 months (range 6-15 months), and
was predominantly male (n =25). Central periodic power using Pz and
Fz electrodes was calculated using multitaper spectral analysis using
three orthogonal tapers. PSD was then further analyzed using a mod-
ified version of SpecParam v1.0.0 as described above, in order to
model periodic and aperiodic components of the power spectra. A low
beta peak was identified as described above from the baseline EEG.

Alpha coherence analysis

Preprocessing of Anesthesia EEG data: We used a bipolar montage to
analyze the data (F7-Fpl and F8-Fp2). We developed an automatized
method to exclude epochs with high-amplitude noise based on the
standard deviation of the time series signal. Three members of the
team (CW, JC, and RQG) visually inspected the remaining epochs to
select all available 30-second artifact-free segments. We then selected
all epochs with a stable sevoflurane concentration defined as two
consecutive minutes of end-tidal sevoflurane levels within 0.2% pre-
ceding the selection of an epoch of data. EEG data were band-pass
filtered from 0.1 to 30 Hz.

For each subject, corresponding EEG data collected during anes-
thesia were inspected to identify all 30 s segments where both the
sevoflurane concentration was stable, and segments were “artifact
free” (eg. no motion or electrocautery artifacts). Epochs with high-
amplitude noise in frontal electrodes (F7-Fpl; F8-Fp2) based on stan-
dard deviation of the time series were automatically excluded. Blinded
visual inspection by members of the team (CW, JC, and RG) identified
remaining epochs with stable sevoflurane concentration without other
anesthesia (e.g. propofol bolus) interference. Stable sevoflurane con-
centration was defined as two consecutive minutes of end-tidal sevo-
flurane levels within 0.2% preceding the selection of an epoch of data.

Coherence Analysis: EEG data were band-pass filtered from 0.1 to
30 Hz. Custom EEG analysis scripts were written using MATLAB (ver-
sion R2021a, MathWorks, Natick, MA), employing functions in the
Chronux toolbox®. Coherence analysis was calculated between F7 and
F8 using the multitaper method with the following parameters: win-
dow length T=6s with no overlap, time- bandwidth product TW=3,
number of tapers K=35, and spectral resolution of 2W =1Hz. We cal-
culated coherence by quantifying the degree of correlation between
both signals across a frequency range as previously described®:

So(f)|

\V Sxx(f)syy(f)

Where S, (f) is the cross-spectrum between the signals x(¢) and y(¢)
(i.e., F7 and F8 electrodes), S,.(f) is the power spectrum of the signal
x(t) and S,,(f) is the power spectrum of the signal y(¢). Then, the
median coherence within the alpha band was used for analyses.

Cy(N)= @

Statistical analyses

GAMMSs: To assess developmental trajectories of power spectral
measures, we used generalized additive mixed models (GAMM).
GAMMs are similar to generalized linear mixed models, with the
advantage that predicts can be modeled linearly and nonlinearly. In
GAMMs, smooth linear or nonlinear functions of the relationship
between predictors and the outcome are simultaneously estimated,
and then summed. GAMM is therefore an advantageous framework for
exploring the relationship between power spectral measures and age,
for which the underlying form of the relationship is not yet known.

Models were fit using mgcv package® (version 1.8-38) and R (ver-
sion 4.1.2).

A separate GAMM was fit to predict each power spectral measure,
for each region of interest (e.g., whole brain theta power, frontal
aperiodic offset). First, to determine whether to include an age-by-sex
interaction, two models were fit with the following forms:

Power Measure ~ oSex + s(age_days,k =4,fx=T) + s(New_ID,bs = ‘re’)
+s(Study,bs =re’)

@

Power Measure ~ 0Sex + s(age_days,k =4,fx =T) + s(age_days,by
= 0Sex,k=4,fx=T) +s(New_ID,bs = re’) 3)
+s(Study,bs =‘re’)

oSex represents sex stored as an ordered factor; coding sex as an
ordered factor is necessary for the GAMMs model to produce a single
significance value for the age-by-sex interaction. This is more inter-
pretable than the alternative of including sex as a categorical factor
where two separate smooth effects of age are modeled for each sex,
but no direct comparison is provided. s(age_days, k=4, fx=T) is a
smoothed age term. Study and New_ID are each included as random
effects to account for repeated observations and clustering of obser-
vations within studies. These models were compared by ANOVA, and
model 2 (including the interaction term) was chosen if the difference
was significant (p < 0.05). To correct for multiple comparisons, the false
discovery rate (FDR) was controlled using the Benjamini and Hochberg
method®, which was applied for each model term within each region of
interest across the 16 measure types (e.g., theta power, beta power,
aperiodic offset) to produce g-values (FDR-corrected p-values).

To further understand the nonlinear trajectories of change,
inflection points were calculated using the argrelextrema function
from scipy in python with order =100. A standardized rate of change
per day was calculated to visualize developmental changes within
features. The modeled value of a feature at a given age (in days) was
subtracted from the modeled value from the subsequent day, and this
was divided by the standard deviation of the modeled values of that
feature across the age range.

To assess the differences between regions of interest, GAMM
models were fit with the following form:

Power Measure ~ s(age_days) + 0Sex + ROI + s(New_ID,bs = ‘re”) 4
+s(Study,bs = ‘re’) @
where the terms have the same meanings as above, and ROl is a factor
representing the four regions (frontal, central, temporal, posterior).
Because prior literature and preliminary visual inspection of the data
indicated that the posterior ROI is most unique in the time course of
development, the posterior ROl was set as the reference factor. Thus,
the effect and significance associated with each of the other ROIs is a
measure of the difference between that ROI and the posterior ROL.

To assess the relationship between age and probability of having
one or two peaks within the broad alpha range at 2-6 months, a gen-
eralized linear mixed effects model was evaluated using the Ime4
package in R,

Anesthesia Statistical Analysis: ANCOVA, with sevoflurane levels
as a covariate, was used to determine effects of presence of low beta
peak on anesthesia-induced alpha coherence.

Figures were created using Python v3.6.8 and python data visua-
lization libraries matplotlib (https://matplotlib.org/) and Seaborn
(https://seaborn.pydata.org/index.html) or in R (version 4.1.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Consents obtained from human participants at our institution prohibit
sharing of identifiable and de-identified individual data without a data
use agreement in place. Please contact the corresponding author with
data requests. Source data are provided with this paper for Figs. 1g-i,
2e-i, and 3d-h and Supplemental Figs. 5 and 6. Source data are pro-
vided with this paper.

Code availability
Code used for EEG processing and analyses used in this paper can be
found on the Open Science Framework (https://osf.io/u3gp4).
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