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Gradient-concentrationRuCo electrocatalyst
for efficient and stable electroreduction of
nitrate into ammonia

Xinhong Chen1,2, Yumeng Cheng1, Bo Zhang 3, Jia Zhou 1,2 & Sisi He 1,2

Electrocatalytic nitrate reduction to ammonia holds great promise for devel-
oping green technologies for electrochemical ammonia energy conversion
and storage. Considering that real nitrate resources often exhibit low con-
centrations, it is challenging to achieve high activity in low-concentration
nitrate solutions due to the competing reaction of the hydrogen evolution
reaction, let alone considering the catalyst lifetime. Herein, we present a high
nitrate reduction performance electrocatalyst based on a Co nanosheet
structure with a gradient dispersion of Ru, which yields a high NH3 Faraday
efficiency of over 93% at an industrially relevant NH3 current density of 1.0 A/
cm2 in 2000ppm NO3

- electrolyte, while maintaining good stability for 720 h
under −300 mA/cm2. The electrocatalyst maintains high activity even in
62 ppm NO3

- electrolyte. Electrochemical studies, density functional theory,
electrochemical in situ Raman, and Fourier-transformed infrared spectro-
scopy confirm that the gradient concentration design of the catalyst reduces
the reaction energy barrier to improve its activity and suppresses the catalyst
evolution causedby the expansionof theCo lattice to enhance its stability. The
gradient-driven design in this work provides a direction for improving the
performance of electrocatalytic nitrate reduction to ammonia.

Nitrate anions (NO3
−), widely known for their detrimental effects on the

environment andhumanhealth, pose a significant threat as an industrial
and agricultural pollutant1,2. The reduction of NO3

− into a green and
valuable product, i.e., ammonia (NH3), is a sustainable method because
NH3 is a widely used industrial chemical with immense global sig-
nificance, playing a crucial role in supporting human growth and
development3,4. To date, the main route for NH3 synthesis is the Haber-
Bosch process, which operates at high temperatures (between 400 and
500 °C) and high pressures (between 130 and 170bar). This process
accounts for ~1.4%of global energy consumption and contributes to ~1%
of global energy-relatedCO2emissions4,5. Theelectrochemical synthesis
of NH3 from NO3

− by using renewable electricity to supply energy has
attracted increasing attention as a promising alternative to the tradi-
tional Haber-Bosch process.

High NH3 yield rates of electrocatalysts for electrocatalytic
nitrate reduction to ammonia (NRA) are achieved under a relatively
high NO3

− concentration (usually greater than 6192 ppm)6–15. Given
that NO3

− resources in reality often exhibit lower concentrations,
often ~1000–2000ppm in typical industrial wastewater3,16–19, devel-
oping efficient electrocatalysts for nitrate reduction at low NO3

−

concentration is crucial yet challenging. This challenge arises due to
the inevitable competition from hydrogen evolution reaction (HER),
which reduces the yield rate20–22. Due to the susceptibility of cobalt
(Co) sites to adsorb NO3

−, Co-based materials are regarded as
superior catalysts for NO3

− electroreduction to NH3 under low nitrate
concentrations8,23,24, as they enable a spontaneous reduction process
at a positive potential, thus avoiding competition from the HER.
To further improve catalytic activity, doping precious metals in
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Co-based materials accelerate the protonation process during the
electroreduction of nitrite (NO2

−) toNH3 and promote the generation
of high-valence Co species9,25. However, due to the difficulty in
reducing the reconstructed high-valence Co species to metallic Co,
which accelerate the spontaneous reduction reaction with NO3

−

during NRA, such high activity was quickly lost26. The stability
directly affects the service life and reaction efficiency of catalysts,
which also determines the production cost and efficiency of com-
mercial catalysts. Thus, under low nitrate concentration conditions,
improving the stability of the catalyst while maintaining high activity
is challenging but essential for real applications.

Here, we report a highly active and stableNRAelectrocatalystwith
a gradient doping structure to solve the above challenges. Inspired by
the concentration gradientmaterials that previously explored for their
application in coatings and interface layers for lithium batteries to
simultaneously achieve superior electrochemical performance and
excellent cycling stability27–29, we synthesized a concentration gradient
electrocatalyst of Ru atoms in Co nanosheets. This was accomplished
through the Ru cation exchange method with a gradually decreasing
Ru concentration from the surface to the interior. The catalyst exhibits
a high NH3 Faradaic efficiency (FE) of over 93% within a wide potential
range of +0.088 to −0.136 V vs. the reversible hydrogen electrode
(RHE) while delivering an industrially relevant NH3 current density of
1.0 A/cm2 in a low NO3

− concentration of typical industrial wastewater
(2000ppm). The high performance can be maintained for 720 h at
−300 mA/cm2, surpassing the previously reported performance of
NRA catalysts6,11,12,30–32(Supplementary Table 1). The electrocatalyst
maintains high activity even in 62 ppm NO3

− electrolyte with an
excellent NH3 current density of 71mA/cm2 at −0.095 V vs. RHE,
which is superior to the reported performance of catalysts in low
concentrations of nitrate13,33,34(Supplementary Table 2). In situ elec-
trochemical Raman and Fourier-transformed infrared spectroscopy
(FTIR), electron paramagnetic resonance (EPR) characterization, and
density functional theory (DFT) calculations confirmed that the
high activity results from the decreased reaction energy with the
gradient concentration of Ru in Co lattice. Inductively coupled
plasma–optical emission spectroscopy and X-ray diffractometry
(XRD) characterization indicated that the improvement in stability is
due to the inhibition of in situ reconstruction of the Co lattice by
gradient doping.

Results
Preparation and characterization of G-RuCo electrocatalysts
Recent research has found that Ru, Rh, Pd, Ir, and Pt possess mod-
erate adsorption energies for hydrogen atoms35. Ru is considered the
optimal doping element due to its low cost. Therefore, we take the
view that Co-based NRA catalysts with gradient-doped Ru atoms (G-
RuCo catalysts) are promising candidates for high NRA activity and
stability. We tried to prepare the G-RuCo catalyst by gradually
decreasing Ru concentrations from the surface to the interior using
the following steps: In the first step, Ru-Co(OH)2/Co was prepared by
cation exchange reaction through immersing electrodeposited
Co(OH)2/Co loaded on nickel foam (Ni foam) in RuCl3 solution;
Subsequently, by annealing in air, Ru-Co(OH)2/Co was oxidized to
Ru-Co3O4/Co; Finally, Ru-Co3O4/Co was electrochemically reduced
to G-RuCo (Fig. 1; see “Methods” section). Here, Ni foam was
employed as a self-supporting substrate for the nanostructured
electrocatalysts due to its low cost, large geometric surface area, and
high electrical conductivity36(Supplementary Fig. 1). Notably, the
pure Ni foam has no contribution to the NRA process (Supplemen-
tary Fig. 2), consistent with other reported results37,38. The catalysts’
crystal structural transformation and morphological changes during
the preparation process were tracked by XRD and scanning electron
microscopy (SEM) (Supplementary Figs. 3 and 4). Control samples of
the non-gradient Ru-doped Co-based catalyst (NG-RuCo catalyst),

pure Co and Ru were synthesized and characterized for comparison
(Supplementary Figs. 5 and 6, see “Methods” section).

The crystalline structure of our G-RuCo catalyst was investigated
by XRD, and a slight left shift of the Co (002) diffraction peak was
observed upon introducing Ru into Co lattice (Supplementary Fig. 7).
This shift can be attributed to the expansion of the lattice spacing
resulting from the substitution of larger diameter Ru atoms for Co
atoms39. Transmission electron microscopy shows that the lattice
spacing of the Co (100) plane increased from 0.21 nm in the pure Co
catalyst to 0.22 nm after atomic exchange with Ru (Supplementary
Figs. 8 and 9). To further explore the crystal structure of G-RuCo, we
conducted grazing incident X-ray diffraction (GIXRD) measurements
to estimate the residual strain at different depths of the catalysts40,41.
By tuning the incidence angleα from0.1° to 0.5°, the diffraction peaks
gradually shift to a higher degree for G-RuCo, while it maintains the
same degree for NG-RuCo (Fig. 2a). The crystal plane distance of
G-RuCo is larger at the top surface compared to the interior, a feature
not present in NG-RuCo. This suggests that more Ru atoms with a
larger diameter are doped into the Co lattice at the top surface than in
the interior for G-RuCo. In contrast, a constant concentration of Ru
atoms is doped into theCo lattice for NG-RuCo. Ar+ sputtering-assisted
X-ray photoelectron spectroscopy (XPS) in depth was applied to
clearly show the difference of element distribution between the
G-RuCo and NG-RuCo (Fig. 2b–g). With increasing Ar+ etching depth
from 0nm to 24 nm, the content of Ru in G-RuCo decreases as the
content of Co increased, while the content of Ru in NG-RuCo remains
unchanged (Fig. 2b, c, e, f). The calculated atomic ratio of Ru/Co fur-
ther confirms the gradient distribution of Ru from the surface to the
interior in G-RuCo, compared with the constant atomic ratio of Ru/Co
in NG-RuCo (Fig. 2d, g). In addition, the elemental composition of Ru
and Co in the G-RuCo electrocatalyst was further revealed by energy-
dispersive X-ray spectrometry (Supplementary Fig. 10). Figure 2h, i
shows the time of flight secondary ion mass spectrometry results for
G-RuCo and NG-RuCo sputtered with ~25 nm of Ar+, which also con-
firms the concentration gradient distribution of Ru in G-RuCo.
The reconstructed three-dimensional distribution of the selected
species is shown in the inset figures, which agree well with the depth
profiling results and clearly show the structural difference of G-RuCo
and NG-RuCo.

The electronic structures of NG-RuCo and G-RuCo were further
investigated by XPS (Supplementary Fig. 11). The peaks corresponding
to Ru0 3d5/2 and Ru0 3d3/2 in NG-RuCo and G-RuCo is basically con-
sistent with those in pure Ru, indicating that the Ru elements in these
two catalysts exhibit metallic properties42. According to the high-
resolution Co 2p spectrum, there are no significant shifts in the peaks
corresponding to metallic cobalt (Co0) in NG-RuCo and G-RuCo com-
pared to pure Co, indicating that cobalt cations in these catalysts have
been reduced to metallic cobalt23. This metal feature can be further
demonstrated using extendedX-ray absorption fine structure (EXAFS).
The EXAFS spectrum of the Co L3-edge shows that the Co-O bonds
disappear in the catalyst after the electrochemical reduction reaction,
and a Co-Co or Co-Ru bonds appear, further confirming that the cat-
alyst has been reduced (Supplementary Fig. 12). Moreover, in the
wavelet transform of Co L3-edge EXAFS spectrum, a wavelet aggrega-
tion peak appears atR ≈ 2.5 Å, k ≈ 12.8 Å−1, which is absent in Co foil and
can be attributed to Co-Ru scattering.

Electrochemical activity and stability of NRA
The electrochemical NRA performance of the G-RuCo and NG-RuCo
catalysts was investigated using a standard three-electrode H-type cell
under ambient temperature and pressure conditions (details including
the experimental set-up are provided in the Methods). In this
study, ultraviolet‒visible (UV‒vis) spectrophotometry and calibration
curves were used to quantify NH3, NO2

− and NO3
− (Supplementary

Figs. 13–15). The quantification accuracy of NH3 is also confirmed by
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1H nuclear magnetic resonance (NMR) of 15NH4
+ and 14NH4

+ detection14

(Supplementary Fig. 16). Furthermore, a continuous electrolyte flow
system was employed to maintain a typical industrial wastewater level
NO3

− concentration of 2000ppm, thereby reducing the impact on the
measured catalytic performance. G-RuCo exhibits amaximumNH3-FE of
99.7% at −0.042V vs. RHE andmaintains a high FE plateau across a wide
potential range from +0.088 to −0.136V vs. RHE, comparable to the
performance of NG-RuCo but notably surpassing that of pure Co or Ru
(Fig. 3a, Supplementary Figs. 17–20). Moreover, the activity of the
G-RuCo catalyst shows superior performance in the electrochemical
NRA process compared to the NG-RuCo catalyst (Fig. 3b, c and Sup-
plementary Fig. 21). The G-RuCo catalyst requires a positive potential of
only 0.055 V vs. RHE to achieve a high current density of −410mA/cm2.
Importantly, no notably competitive HER occurs at such a positive
potential, ensuring a high NH3-FE of 94.5%. Notably, the I-V curves and
corresponding NH3-FE values indicate that the catalytic performance of
G-RuCo (−1135mA/cm2 at −0.136V vs. RHE, 93.1%) is superior to that of
NG-RuCo (−884mA/cm2 at −0.136V vs. RHE, 90.3%). The G-RuCo cata-
lyst exhibits a high NH3 partial current of −1057mA/cm2 with an
ammonia generation rate of 5.564mmol/h/cm2, i.e. 94,000μg/h/cm2,
not only surpassing the NG-RuCo catalyst with 71961μg/h/cm2 but also
outperforming previously reported catalysts6,11,12,30–32,43–51 (Supplemen-
tary Fig. 22 and Supplementary Table 1). We also tested the catalytic
performance of G-RuCo catalyst at different nitrate concentrations to
demonstrate its widespread application. Different concentrations of
NO3

− electrolytes, such as 6192 ppm, 1000ppm, 500ppm, 100ppm,
and 62ppm, were selected to cover possible nitrate concentration
ranges in heavy industry wastewater, textile wastewater, and con-
taminated groundwater3 (Supplementary Fig. 23 and Supplementary
Tables 2 and 3). Surprisingly, G-RuCo preformed well even under a low
concentration of NO3

− (62 ppm) and delivered the NH3 current density
of 71mA/cm2 with the NH3-FE of ~88.0%. This performance also far

exceeds NG-RuCo and currently reported NRA catalysts13,33,34 (Supple-
mentary Table 2). Electrochemical double-layer capacitance and the
corresponding redox peak testing were further conducted to probe the
catalyst’s inherent activity to normalize the NH3 current density based
on the electrochemical surface area (ECSA) (Supplementary Figs. 24–27
and Supplementary Table 4). G-RuCo exhibits a higher NH3 current
density after the ECSA normalization, indicating the excellent intrinsic
activity of G-RuCo for NH3 generation. The superior NRA activity of the
G-RuCocatalyst compared to theNG-RuCocatalyst confirms the impact
of the gradient element distribution on catalyst’s performance.

To assess the NO3
− removal capability of G-RuCo in low-

concentration NO3
− solution, we performed batch conversion tests

with an initial 2000ppm NO3
− and measured the remaining products

(Fig. 3d). The selectivity of NO3
− conversion toNH3 reaches 97.8%, while

the overall NH3-FE remains above 98.9% (Supplementary Fig. 28). One
hour after electrolysis, the residual nitrate concentration of 9.77μg/mL
and nitrite concentration of 0.20μg/mL prove that the NO3

− and NO2
−

concentrations are significantly lower than the World Health Organi-
zation guidelines for drinking water25. These results demonstrate the
promising application potential of theG-RuCocatalyst for the complete
removal and/or transformation of NO3

−. To highlight the NRA perfor-
mance of the G-RuCo catalyst, we further evaluated its NRA stability
under high current densities. The G-RuCo catalyst maintains stable
electrolysis for over 720h at −300mA/cm2 with NH3-FE over 81.9%
(Fig. 3e). After prolonged operation, the measured decay rate of the
G-RuCo catalyst shows only 0.451mV/h, which is much better than that
of most recently reported NRA catalysts, indicating its potential as a
commercial catalyst9,23,26(Supplementary Fig. 29). In contrast, NG-RuCo
exhibits considerably poorer stability with a higher decay rate of
3.034mV/h, demonstrating the significant improvement in stability
achievable through a gradient distribution of elements (Supplementary
Table 1). In addition, at an industrially relevant current density of

Gradient-concentration design 

NO3
- NO2

- NH3

RuCo

Co(OH)2 Ru-Co3O4 Ru-Co

Ruδ+ solution

Cation 
exchange

Anneal Electroreduction 

Implanted Ru gradient

Fig. 1 | Catalyst design and synthesis for NRA. The golden, red, and green spheres refer to nitrogen, oxygen, and hydrogen atoms, respectively.
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−1000mA/cm2, the G-RuCo catalyst also shows 381 h of durability and a
stability decay rate of only 1.090mV/h (Supplementary Fig. 30). The
comparison of SEM and ECSA between NG-RuCo and G-RuCo before
and after stability testing further proves the improved stability of
G-RuCo (Supplementary Figs. 31 and 32). Through inductively coupled
plasma–optical emission spectroscopy, the loss of active Co and Ru in
NG-RuCo is more significant than that in G-RuCo (Supplementary
Fig. 33). Thismaybedue to the inhibitionof in situ reconstructionof the
Co lattice by Ru gradient doping. To further observe the crystal
reconstruction after the reaction, XRD characterization was performed,
and the results showthatCo(OH)2 is reconstructed in situon the surface
of NG-RuCo after the reaction. In contrast, the crystal structure of
G-RuCo remains stable (Supplementary Fig. 34).

Mechanistic studies
The NRA reaction process of the G-RuCo and NG-RuCo catalysts in the
electrolyte were monitored through electrochemical studies, Raman
spectroscopy, and a mixed isotope labeling experiment (Fig. 4a–e and
Supplementary Figs. 35–39). After soakingG-RuCo andNG-RuCo in the

electrolyte solution (2000ppmKNO3), nitrate is partially converted to
nitrite (Supplementary Fig. 35). This indicates that it is the sponta-
neous oxidation-reduction between Co0 and NO3

− on the catalyst that
producesNO2

−. Therefore, it can be inferred that bothG-RuCo andNG-
RuCo catalysts can spontaneously absorb NO3

−, and Co will undergo
oxidation by NO3

− to formCo(OH)2, rather than the oxidation of Ru to
Ru(OH)2 (Eq. (1)). This reaction is further proved by the observed
oxidation-reduction peak of Co/Co(OH)2 from the I–V curves of RuCo
catalysts tested in 1.0M KOH solution after being immersed in an
electrolyte solution with 1.0M KOH and 2000ppm KNO3 without
applied voltage (Supplementary Fig. 36). In this case, the Co sites in the
catalyst can spontaneously convert NO3

− to NO2
− at a more positive

potential, which is consistent with the results in Supplementary
Figs. 18 and 20. The oxidization of Co by NO3

− to Co(OH)2 of RuCo
catalysts (Eq. (1)) can also be tracked by Raman spectroscopy (Sup-
plementary Fig. 37). The Raman spectrum of G-RuCo after soaking in
the electrolyte at the open circuit voltage displays three peaks at 479,
522, and 688 cm−1. The characteristic peaks at 479 and 522 cm−1 may be
attributed to the Co-O bond stretching vibrations of Co(OH)2

9,52.
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Thepeak at 688 cm−1 might be associatedwith theCo-Obond vibration
modes of Co(OH)2 or Co3O4

53. In contrast, Ru does not exhibit any
characteristic Raman peaks, proving its stability in the electrolyte.

The conversion of nitrite to ammonia driven by Co sites mainly
driven by Co sites can be clearly seen by the in situ Raman spectra
(Fig. 4a–d). Furthermore, with the decreased voltage, the Co-O char-
acteristic peak (688 cm−1) disappears, indicating that Co(OH)2 species,
derived from redox reactions, can be electrochemically reduced in situ
tometallic Co0 (Eq. (2)). The disappeared voltage ofG-RuCowas0 V vs.
RHE, which is more positive than that of NG-RuCo (−0.1 V vs. RHE) and
Co (−0.2 V vs. RHE) (Fig. 4a–c). It indicates that the presence of a
gradually Ru-doped structurepromotes the electrochemical reduction
process to metallic Co0, which promotes the recycling of Co (Eq. (2)).
For Ru catalysts, no significant oxidation peak can be observed,
proving that Ru does not undergo a redox process (Fig. 4d). In this
case, the products of Eq. (1) are further transferred to the final product
of NH3, while the catalysts are reduced to the original valance. To
further prove the effect of gradually doped structure, we further cal-
culated the energy barrier for the reconstructed Co(OH)2 phase in the
catalyst to be converted back into Co phase (Fig. 4e). The phase-
transition energy of the G-RuCo catalyst (0.48 eV) is much lower than
the NG-RuCo catalyst (0.96 eV), indicating that the electrochemical
reduction from Co(OH)2 to Co0 in G-RuCo is much easier than in
NG-RuCo. On the contrary, the transition from Co0 to Co(OH)2 in NG-
RuCo is more rapid, which hinders the occurrence of Eq. (2) and
breaks the recycling mechanism of Co. This process can be
confirmed by experimental results, and it can be observed that the
spontaneous oxidation process on NG-RuCo was faster (Supplemen-
tary Figs. 35 and 36).

As the applied voltage changes from positive to negative, NO2
− is

completely transformed into NH3 (Eq. (3)). The NO2
− electroreduction

reaction insteadofNO3
− to produceNH3was further investigated using

a mixed isotope labeling experiment (Supplementary Fig. 38). The

results further confirm that NO2
− was more easily reduced to NH3 than

NO3
−. Notably, in Eqs. 2 and 3, the formed Co(OH)2 and NO2

− are
converted to Co and NH3, respectively, through electrochemical
reduction and electrocatalytic reduction with the participation of
active H26,54. Therefore, the generation of active H is crucial for the
cyclic conversion mechanism. In general, in the NRA process, the
dynamic evolution mechanism of the catalyst is as follows (Fig. 4e):
NO3

−
first spontaneously undergoes redox atCo sites; Co is oxidized to

Co(OH)2; and NO3
− is reduced to NO2

− (Eq. (1)). As the reaction pro-
gresses, when a more negative potential is applied, Co(OH)2 is elec-
trochemically reduced to Co, and the active H provided at Ru sites
promotes this process (Eq. (2)), achieving a valence state cycle of Co.
At the same time, the NO2

− adsorbed on Co sites is further reduced to
NH3, while the active H provided on Ru sites accelerates the protona-
tion process (Eq. (3)).

NO�
3 +Co+H2O ! NO�

2 +CoðOHÞ2 ð1Þ

CoðOHÞ2 + 2e� ! Co+2OH� ð2Þ

NO�
2 + 6e� + 5H2O ! NH3 + 7OH

� ð3Þ

The moderate adsorption capacity of metallic Ru for hydrogen
atoms benefits the production of active H. The electrochemical quasi-
in-situ EPR results further demonstrates this inference. Nine peaks are
displayed in the EPR results (Supplementary Fig. 39), and the ratio of
peak intensities is 1:1:2:1:2:1:2:1:1, which are characteristic peaks of the
hydrogen-free radical signal6,55. The characteristic peaks of the
hydrogen-free radical signal for Ru are the strongest, and compared to
Co, the characteristic peak of the hydrogen-free radical signal for
G-RuCo is significantly enhanced. The results indicate that the intro-
duction of Ru positively influences the formation of active hydrogen.
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potentials with 50% iR correction (the value of solution resistance is 1.8 Ω). Mea-
surements were taken at least three times and the average FE valves are presented
with the standarddeviationas error bars. cCorrespondingNH3production rate and

partial current density of G-RuCo and NG-RuCo. d Redependence of nitrate con-
centration on the reaction time on G-RuCo at −0.1 V vs. RHE. e Long-term elec-
trocatalytic stability test of the NRA over G-RuCo at −300mA/cm2 using a
continuous-flow system in an H-cell. Black arrows indicate the renewal of fresh
electrolytes.
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In this case, Co in G-RuCo is beneficial for converting NO3
− to NO2

−,
while Ru in G-RuCo is more effective in promoting the conversion of
NO2

− to NH3, which can be further confirmed through testing the
electrochemical behaviors of Ru and Co in KNO2 solution (Supple-
mentary Fig. 40).

NRA reaction pathway analysis
To further understand themechanism of our catalysts during the NRA
reaction process, we performed in situ FTIR to track intermediates in
solution. As shown in Fig. 4f, g, in the potential range from 0.5 V to
−0.5 V, five obvious absorption bands can be observed due to the
present intermediates in the electrolyte during the reaction
process15,23. The upward absorption bands at 3215 cm−1 correspond to
*NH2, while those at 1625 cm−1 correspond to *NO and H2O. Addition-
ally, the upwardabsorptionbands at 1219 cm−1 correspond to *NO2, and
those at 1115 cm−1 correspond to the stretching vibration of –N-O- in
*NH2OH. The FTIR spectra of G-RuCo and NG-RuCo are similar, which
reveals that the NRA processes are similar. However, the intensity of
*NH2OH in G-RuCo is higher than in NG-RuCo, indicating that both
G-RuCo and NG-RuCo undergo a reaction pathway from *NO to
*NH2OH, and the reaction process of G-RuCo is faster. Therefore, we
propose the following pathway for the NRA reaction process on
G-RuCo and NG-RuCo: NO3

−→ *NO3→
*NO2→

*NO → *NOH → *NHOH →
*NH2OH→ *NH2→

*NH3→NH3, and the introduction of Ru positively
influences the formation of *H, promoting the hydrogenation process
of *NO to *NH2OH.

To verify the influence mechanism of the gradient element dis-
tribution and reaction active site on the high NRA activity of G-RuCo,
the minimum energy path of G-RuCo and NG-RuCo was calculated by
DFT according to the results of FTIR. Before calculating the energy
path, the optimal adsorption site is determined by calculating the
adsorption energies of *NO3 on different sites of the catalyst (Supple-
mentary Fig. 41). The results imply that pure Co or Ru may not be the
optimal adsorption site, and the *NO3 adsorption energy is the lowest
on the Co-Ru bridge site, indicating that the joint promotion of Co and
Ru in the actual reaction process promotes the NRA reaction on the
catalyst. We then built different models on the crystal plane Co (100)
observed in the results of TEM characterization. Based on XPS spectral
results, a three-layer gradientmodel of Ru4Co12

1st/Ru2Co14
2nd/Ru1Co15

3rd

for G-RuCo and a non-gradient model of Ru4Co12
1st for NG-RuCo were

set up (the atomic coordinate information of themodels can be found
in the Supplementary Data 1) (Supplementary Fig. 42 and Table 5). The
adsorption configuration of the reaction intermediate was optimized
before the thermodynamic calculations (see details at the bottom of
each energy level diagram in Fig. 5a, Supplementary Tables 6 and 7).
The overall reaction pathway of NO3

− conversion into NH3 occurred
under 0V vs. RHE at pH 14. The energy level diagram shows that the
adsorption and reduction processes of *NO3 for all models may be
exergonic in free energy, which indicates that the conversion of NO3

−

to the *NO intermediate is spontaneous. It suggests that the formation
of NO2

− products is perhaps thermodynamically unfavorable, which is
consistent with the experimentally observed negligible NO2

−-FE (see
“Methods” section, Supplementary Table 8). It was further found that
the subsequent protonation process of the seven models was slightly
hindered, which may be due to the difficulty in capturing *H species
derived from the dissociation of water molecule under alkaline con-
ditions. Given this, we calculated the corresponding free energy,
indicating that the potential determining step (PDS) of the three-layer
gradient model for G-RuCo is probably the desorption of NH3, with an
energy barrier of 0.622 eV (Fig. 5a). In contrast, the PDS of non-
gradient model for NG-RuCo is also the desorption of NH3, with an
energy barrier of 0.652 eV. Obviously, the faster NRA reaction of
G-RuCo may prove its high NRA activity. In the pure Co models, the
PDS of the Co is still the protonation process of *NO→ *NOH. The PDS
of G-RuCo migrates to the desorption of NH3 gas, which may be

attributed to the gradient distribution of Ru in the G-RuCo, reducing
the energy potential barrier of the initial PDS byproviding abundant *H
intermediates.

To further investigate the relationship between the local electron
distribution and the NH3 desorption ability of G-RuCo, we calculated
the projected density of state (PDOS) and d-band centers of the dif-
ferent (100) facets–*NH3 adsorption models for the G-RuCo and NG-
RuCo (Fig. 5b). The results show that compared to the *NH3-NG-RuCo
(100) adsorption model, the d-band center of the *NH3-G-RuCo (100)
adsorption model is further away from the Fermi level, suggesting a
weaker interaction between the *NH3 intermediate and G-RuCo, which
just requires a lower energy barrier to desorb and generate NH3. These
results are also consistent with the observation that the d-orbitals of
themetal atomswith the p-orbitals of nitrogen atoms inNG-RuCo have
a greater overlap area (overlap area of d-p orbitals is 1.834) than that of
in G-RuCo (overlap area of d-p orbitals is 1.831) (Supplementary
Fig. 43). Meanwhile, the d-band centers of the Ru active centers for
adsorbing NH3 on the two models were also calculated. It may be
found that the d-band center of the Ru active center after adsorbing
NH3 on G-RuCo is also further away from the Fermi level than that of
NG-RuCo, which also confirms the above results (Supplementary
Table 9). Furthermore, G-RuCo minimizes competitive HERs than NG-
RuCo, given that the adsorption for *H became stronger with increas-
ing doping gradient, but the adsorption for *NO3 remains unchanged
(Fig. 5c and Supplementary Table 7). These calculation results may
demonstrate that a gradient element distribution optimizes the
adsorption of the reaction intermediate, changes the PDS, reduces the
reaction energy barrier, and thus promotes the reaction pathway of
electrochemical reduction of NO3

− to NH3.
To achieve the practical applicationof electrochemical NRAofCo-

based materials for large-scale industrial NH3 production under
ambient conditions, we assembled an NRA-OER alkaline electrolyser
device usingG-RuCo as the cathode andCo2P as the anode (Fig. 6a, see
theMethods section for details). The anodic electrolyte contains 1.0M
KOH, while the cathodic electrolyte comprised 1.0M KOH and
2000ppmNO3

−. Themembrane electrode assembly (MEA) device can
provide industrial current densities up to 1.5 A/cm2 with a cell voltage
of merely 2.5 V, achieving high-efficiency industrial NH3 production
performance (Fig. 6b). More importantly, the device can operate
continuously for at least 100 h at 1.2A/cm2 while maintaining a stable
voltage (Fig. 6c). To further validate the system’s potential for practical
production, we collected the product aqueous ammonia after elec-
troreduction of nitrate using an acid trap, and calculated the collection
rate of aqueous ammonia (Supplementary Fig. 44). The results
demonstrate that in the actual conversion process, the collection rate
of aqueous ammonia can reach close to 90%.

Discussion
In summary, we propose a high-performance NRA catalyst with a
gradient distribution of Ru atoms on Co nanosheets, which provides
industrially relevant NH3 generation current while maintains a high FE
(over 93.1% within a wide potential range of +0.088 to −0.136 V vs.
RHE) and high stability (720 h at −300mA/cm2) in a 2000ppm NO3

−

electrolyte. The electrocatalyst maintains its high activity even in a
62 ppm NO3

− electrolyte with an excellent NH3 current density of
71mA/cm2 at −0.095 V vs. RHE. Electrochemical testing and in situ
electrochemical Raman, in situ FTIR and EPR characterization con-
firmed that the introduction of Ru is beneficial for the formation of
active H, thereby promoting the electrocatalytic reduction of NO2

− to
NH3 and the electrocatalytic reduction of Co(OH)2 to Co. DFT calcu-
lations further verified that gradient doping of Ru changed the PDS for
the NRA reaction and optimized the reaction energy barrier. In addi-
tion, the MEA with the G-RuCo electrocatalyst as the cathode provides
industrial-grade current density, indicating that it is a promising
commercial catalyst. This work will boost the development of highly
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active and stable NRA catalysts, promoting large-scale industrial elec-
troreduction of NO3

− for NH3 production.

Methods
Materials and reagents
The nickel foam (NF) (0.58 g/cm2) was purchased from Kunshan
Dessco Electronics Co. Ltd. (Kunshan, China). The reagents hydro-
chloric acid (HCl, 38.0%), ethanol (C2H5OH, 99.7%), cobalt chloride
(CoCl2·6H2O, 99.5%), ammonium chloride (NH4Cl, 99.0%), Rutheniu-
m(III) chloride (RuCl3·xH2O, 37% Ru basis), potassium nitrate (KNO3,
90%) and potassium hydroxide (KOH, 90%) were purchased from
Shanghai Macklin Biochemical Co., Ltd. All reagents were of analytical
purity and used without further purification.

Preparation of G-RuCo
The preparation of G-RuCo on Ni foam was based on a combined
method of electrodeposition, cation exchange, and electrochemical
reduction. A 0.5 × 0.5 cm2 piece of Ni foamwas washed sequentially in
ethanol, 0.1M HCl, and deionized water using an ultrasonic bath to
remove surface oxides. Co(OH)2/Co nanosheetswere first prepared via
an electrodeposition process under a -3 A/cm2 current density for 120 s
in a three-electrode system consisting of a graphite rod as the counter
electrode, Ag/AgCl electrode (saturated KCl solution) as the reference
electrode, and Ni foam as the working electrode. The electrodeposi-
tion solution was an aqueous mixture of 0.12M cobalt chloride, 1.5M
ammonium chloride, and 100mL deionized water. The obtained
Co(OH)2/Co nanosheets were washed with deionized water, and then
cation exchange was conducted by soaking in 30mM RuCl3 solution
under ambient conditions for 40 h. The resultant catalyst was first
dried at 70 °C for 1 h and then annealed in an oven at 240 °C for 3 h to
convert it into Ru-Co3O4/Co. Finally, an in situ electrochemical pre-
reduction step was performed using the chronopotentiometry
method at −800 mA/cm2 for 1 h to obtain the final G-RuCo catalyst.

Preparation of Co
The as-prepared Co(OH)2/Co nanosheets on Ni foam described above
were directly annealed in anoven at 240 °C for 3 h to convert them into
Co3O4/Co nanosheets without cation exchange. The Co catalyst was
finally obtained after electrochemical reduction using the chron-
opotentiometry method at −800mA/cm2 for 1 h.

Preparation of Ru
In the electrolytic cell, an electrolyte of RuCl3 (60mL, 2mg/mL), a
working electrode of 0.5 × 0.5 cm2 Ni foam, and a counter electrode of
a Pt plate were used. Electrodeposition was performed for 15min at
−30 mA/cm2. Subsequently, calcination was carried out at 700 °C for
2 h in a tubular furnace with 10% H2/Ar mixed gas and a heating rate of
10 °C/min to further improve the crystallinity of the Ru product.

Preparation of NG-RuCo
In the electrolytic cell, an electrolyte of RuCl3 (60mL, 2mg/mL) and
CoCl2·6H2O (23mg/mL), a working electrode of as-prepared Co on Ni
foam, and a counter electrode of a graphite rod were used. Electro-
deposition was performed for 15min at −50 mA/cm2. Finally, an in situ
electrochemical prereduction step was performed using the chron-
opotentiometrymethod at −800mA/cm2 for 1 h to obtain the final NG-
RuCo on Ni foam catalyst.

Characterizations
The morphology and elemental composition of catalysts were ana-
lyzed using a scanning electron microscope (SEM, ZEISS Sigma)
equipped with an energy-dispersive X-ray spectrometer at a working
voltage of 15 kV. The lattice arrangement of the catalyst was char-
acterized by transmission electron microscopy (TEM, JEM-2100F,
Japan) at an operating voltage of 200 kV; the tested catalyst comes

from powder samples scraped off the nickel substrate. The crystal
structure of the catalyst was analyzed using an X-ray diffractometer
(XRD, Rigaku, Japan) with a Cu-Kα X-ray source (λ = 1.5418 Å). TOF-
SIMS (PHI Nano TOF II Time-of-Flight SIMS) also was applied to
investigated gradient elements distributions of G-RuCo. The sputter
etching was performed using an Ar+ beam (3 kV 100nA) to obtain a
depth profile. The surface valence state and chemical composition of
the catalyst were studied via X-ray photoelectron spectroscopy (XPS;
Thermo ESCALAB 250) using monochromatic Al-Kα radiation
(1486.6 eV). All XPS spectra were calibrated by shifting the detected
carbon C 1 s peak to 284.8 eV. XAFS experiments were performed at
the 1W1B beamline of the Shanghai SynchrotronRadiation Facility. The
XAFS spectra were analyzed with the Athena software package. The k-
weighting was set to 2 for the Fourier transforms.

Electrochemical measurements
All electrochemical tests were performed under environmental con-
ditions using a three-electrode system, and the results were recorded
by an electrochemical workstation (CS310, Wuhan Kesite) in a custo-
mized H-type cell with an anion exchange membrane (separated by a
Nafion 117 membrane; magnetic stirring at 1500 rpm). A figure of the
experimental set-upwas provided in the Supplementary Fig. 45. Unless
otherwise specified, G-RuCo on Ni foam (0.5 × 0.5 cm2, the loading of
the catalyst is about 8mg/cm2) catalyst was typically employed as the
working electrode, with platinum wire and a Hg/HgO electrode (filled
with 1.0M KOH solution) serving as the counter electrode and refer-
ence electrode, respectively. And the hydrogen reversible reactionwas
used to calibrate the reference electrode. In addition, a solution of
2000ppm NO3

− in 1.0M KOH was used as the electrolyte, with the
initial electrolyte volume set at 30mL for the H-cell measurements.
The electrolyte solution was bubbled with Ar gas for 10min before the
experiment to removeO2 and N2. Before testing, all catalysts were first
electrochemically reduced at −0.2 V vs. RHE for 600 s in a 1.0M KOH
solution to eliminate surface oxidation. Electrochemical NRA mea-
surements were performed using linear sweep voltammetry polariza-
tion curves via the potential dynamic method at a scanning rate of
1mV/s in 1.0M KOH electrolyte (the pH value was 13.7). All potentials
were calibrated to the RHE by the equation:

EðV vs:RHEÞ=E ðV vs:Hg=HgOÞ + 0:0591 × pH+0:098 ð4Þ

Allmeasured potentialswere 50% iR-compensated by the solution
resistance, unless otherwise specified. Electrochemical impedance
spectroscopy (EIS) was performed in the frequency range of
0.1 Hz–200 kHz with the amplitude of 10mV at the overpotentials of
−60mVvs. RHEunder theNRAoperating condition. Rs is related to the
solution resistance. Rct denotes the charge transfer resistance. Long-
term stability was examined through chronopotentiometry tests at
−300 and −1000mA/cm2 in a flow-system H-cell with a 30mL/min
electrolyte flow rate.

ECSA analysis
For the electrochemical active surface area (ECSA), we used the
double-layer capacitance method in an electrolyte of 1.0M KOH in the
non-Faradaic potential range with different scanning rates of 10, 20,
30, 40, 50 and 60mV/s. The ECSA of the working electrodes was cal-
culated according to the following equations:

IC = υCdl ð5Þ

ECSA=
Cdl

Cs
ð6Þ

where Ic represents the charging current at different scan rates, ν is the
scan rate, Cdl is the double-layer capacitance, and Cs is the specific
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capacitance for a flatmetallic surface, which is generally in the range of
20–60μF/cm2 (we assume a value of 40μF/cm2 here)37,38.

FE, yield rate and current density determination
The FE of NRA for NH3 and NO2

− was calculated according to:

FE = ðn ×V × c× FÞ=Q ð7Þ

where n is the electron-transfer number (8 for 1mol NH3, 2 for 1mol
NO2

−), V is the volume of the catholyte of the cathode chamber
(30mL), c represents the concentration of the outlet products (M), F is
the Faraday constant (96,485C/mol), and Q represents the applied
overall coulomb quantity (C).

The yield rate and current density of NH3 were calculated
according to the following equations:

YNH3
= ðc×V Þ = ðS× tÞ ð8Þ

jNH3
= ðQ×FENH3

Þ = ðS× tÞ ð9Þ

where S is the area of the geometrical cathode and t is the
electrolysis time.

Ammonia calculation
The concentration of NH3 was spectrophotometrically determined
using the indophenol blue method56,57. First, 2mL of the diluted elec-
trolyte solution wasmixed with 2mL of chromogenic agent (a mixture
of 1.0M KOH solution, 0.36M salicylic acid, and 0.18M sodium
citrate). Then, 100μL of 0.05M NaClO solution (containing
4.00–4.99% effective chlorine) was added, followed by 0.2mL of
0.034M (1 wt.%) sodium nitrite ferrocyanide solution (stored at 4 °C)
to initiate the color reaction. After allowing the mixture to stand at
room temperature for 1 h, the absorbance spectrum was measured
using a UV-vis spectrophotometer, and the formation of indophenol
blue was determined at a wavelength of 655 nm. A standard
concentration–absorbance calibration curve was prepared in advance
using a range of NH4Cl (≥99.5%) solutions; the concentration of the
NH3 product was then calculated based on the measured absorbance
and standard curve.

Nitrite detection
The nitrite concentration was detected using UV‒vis
spectrophotometry10. Initially, the collected electrolyte was diluted to
the detection range. Next, 1mL of 1.0M HCl was added to 5ml of
diluted electrolyte, followed by adding 0.1mL of a NO2

−-specific color
developing agent (a mixed solution of 0.2 g N-(1-naphthyl) ethylene-
diamine hydrochloride, 4.0 g sulfanilamide and 10mLphosphoric acid
(85wt.% in H2O) in 50ml deionizedwater). The absorbance intensity at
a 540 nm wavelength was tested using UV‒vis spectrophotometry
after allowing the resultant solution to react for 20min at room tem-
perature. A concentration–absorbance calibration curve was obtained
by linear fitting of a series of standard potassium nitrite solutions, and
the nitrite concentration was calculated based on the measured
absorbance and standard curve.

Nitrate detection
The nitrate concentration was detected using UV‒vis
spectrophotometry58. First, 4ml of diluted electrolyte was mixed with
1mL of 1.0M HCl and 0.1mL of sulfamic acid (0.8 wt.%) to form a
mixed solution. Following a 20-minute reaction at room temperature,
the absorption intensities at 220 nm and 275 nm wavelengths were
recorded using UV‒vis spectrophotometry. The final absorbance (A)
was calculated with the following equation: A =A220nm−A275nm. A
concentration–absorbance calibration curve was established by linear

fitting of a series of standard potassium nitrate solutions, and the
nitrate concentration was calculated based on the measured absor-
bance and standard calibration curve.

Determination of ammonia by 1H NMR
To detect the FE of 14NH4

+ after 1 h of electrolysis at −0.1 V (vs. RHE) in
2000ppm K14NO3, a calibration curve of 1H NMR (400MHz) mea-
surements was constructed using a series of 14NH4Cl standard solu-
tions with specified concentrations (0, 10, 20, 30, and 40mM).
Subsequently, 0.5mL of electrolyte, mixed with 15mM maleic acid,
50μl of 4M H2SO4, and 50μL DMSO-d6, was sealed into an NMR tube
for 1H NMR. Next, 2000ppm K15NO3 was used to qualitatively deter-
mine the source of NH3. Electrolysis is performed for 1 h at −0.1 V (vs.
RHE), and 15NH4

+ in the electrolyte is detected with 1H NMR59.

H2 detection
For gaseous products (HER, OER), the FE has been monitored by
measuring the volume of gas collected from the working electrode in
an inverted burette or graduated cylinder60. TheH2-FEmeasurement in
the work was based on the water drainage method at different
potentials for 1 h for different catalysts. Firstly, connect the 50ml
inverted burette to the electrolyte (2000ppm NO3

− and 1.0M KOH)
containing electrolysis chamber on one side of the working electrode
through a gas guide tube. Then, apply an external potential and con-
duct an electrolysis reaction at a constant potential. The generated
hydrogen gas enters the top of the inverted burette through the gas
guide tube. Finally, after 1 h of reaction, record the volume of the
hydrogen product generated.

In situ Raman spectroscopy
In situ Raman measurements were carried out using a Raman micro-
scopy system and an electrochemical workstation. Raman spectro-
scopy was conducted with a Lab-RAM HR Raman microscopy system
(Horiba Jobin Yvon, HR550) equipped with a 532 nm laser as the
excitation source, a water immersion objective (Olympus LUMFL,
50×), a monochromator (1800 grooves/mm grating), and a Synapse
charge-coupled device (CCD) detector. The electrolytic cell was made
of polytetrafluoroethylene, and the working electrode was immersed
into the electrolyte through the cell wall, with its plane remaining
perpendicular to the incident laser. Platinum wire and Ag/AgCl elec-
trodes were used as the counter and reference electrodes, respec-
tively. Electrochemical intermittent in situ Raman spectroscopy was
performed with a Renishaw InVia Qontor Raman system at 0.1 V
intervals over a potential range of +0.5 to −0.2 V vs. RHE. After
obtaining the first Raman spectrum, we added 0.1mL of 2000ppm
KNO3 solution to the electrolyte. Each spectrum is an average of five
continuously acquired spectra, with a collection time of 50 s for each
collection. The cycle test was repeated four times.

EPR experiments
5,5-Dimethyl-1-pyrrolineN-oxide (DMPO)was used to capture unstable
hydrogen radicals by forming DMPO-H adducts, and the resulting EPR
spectrawere analyzed to detect the hydrogen radical signals produced
by the catalyst during the reaction process44. In an H-type cell, the
catalyst served as the working electrode, and constant electrolysis was
performed at −0.1 V vs. RHE in a solution of 1.0M KOH and 2000ppm
KNO3 for 5min. After the reaction, 5mL of the electrolyte solutionwas
collected, and 10μL of DMPO capturing agent was added, followed by
Ar2 degassing. EPR measurements were carried out using a Bruker
EMX-10/12 spectrometer under a frequency of ~9.5GHz, a sweep width
of 200G, and a power of 20mW.

In situ FTIR spectroscopy
Electrochemical in situ FTIR spectroscopy measurements were col-
lected using Nicolet Nexus 8700 FTIR spectrometer equipped with a
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liquid N2-cooled system and MCT-A detector23,61. The Hg/HgO elec-
trode and platinum foil electrode (Area~2 cm2) were used as the
reference and counter electrode, respectively. The working electrode
was prepared by depositing our developed catalysts as an active
material over the glassy carbon electrode. The uniform thin layer
(~10μm) on the working electrode was obtained by vertically pressing
it on the CaF2 window. The working electrode surface was set per-
pendicular to incoming infrared beam for obtaining the maximum
response signals during electrochemical NO3

− reduction. The catalyst’s
in situ IR spectra (Rs) were obtained in the potential range of 0.5 V to
−0.5 V at a scan rate of 100mV/s. All the spectrumswere reported after
using the relation:ΔR/R = (RS−RRef)/ RRef, where the spectrumobtained
at 0.5 V were considered as reference RRef.

62.

GIXRD
In the GIXRD configuration, the incident X-ray beamwith awavelength
of 0.6877 Å and an energy of 18 keV is kept at a small angle α con-
cerning the sample surface, and the distance of samples to the
detector was 315mm. The incident X-ray beam with a wavelength of
0.8266Å and an energy of 15 keV is kept at 0.1°, 0.2°, 0.3°, 0.4°, 0.5°
concerning sample surface, and the distance of samples to the
detector was 1946 mm63.

Computational methods
All calculations were carried out using density functional theory with
dispersion correction D3 (DFT-D3), and the projected augmented
wave (PAW) scheme was implemented in the Vienna ab initio simula-
tion software package (VASP)64–66. For the structural relaxation and
energy calculations, the generalized gradient approximation with
Perdew-Burke-Ernzerhof (PBE) parameterization was used. The cut-off
energy of the plane wave function was 500 eV. For the converged unit
cell models of Co (2.49 × 2.05 × 4.02 Å3), the Brillouin zone was sam-
pled with a 15 × 15 × 6 Γ-point centered Monk horst–Pack mesh, the
energy convergence criterion was within 10−5eV, and the force toler-
ance was smaller than 0.01 eVÅ−1 on each atom. The (100) surface of
Co was used as the catalytic substrate, and the Ru-Co gradient model
was constructed based on Co (100). That is because it was observed in
the experiment that the Co (100) crystal plane was exposed and was
the lowest energy crystal plane67. The constructed (100) surface
models contained six layers; the bottom two layers were fixed, and the
top four layers were fully relaxed for geometry optimization. We
applied a vacuum layer of at least 20 Å in the Z-direction of the slab
models to prevent interactions between the slabs in the vertical
direction. The energy convergence criteria were set to 10−4eV, and the
force tolerance of each atomwas smaller than 0.02 eV/Å. The Brillouin
zone was sampled by a k-point mesh of 3 × 3 × 168. The calculations
involving all molecules and intermediate species on the Co (100) and
Ru-Co (100) substrates were conducted with spin polarization.

The Gibbs free energy change for the adsorbed *NO2 on an elec-
trode surface to nitrite in aqueous solution (forming NO2

−(l)) was cal-
culated in three steps using the thermodynamic cycle shown in
equations (Supplementary Table 8)69,70. The formation energy of NO2

−

on G-RuCo and NG-RuCo is calculated with the according to the fol-
lowing formula:

ΔG NO�
2

� �
=G �ð Þ�Gð�NO2Þ+ 1=2Ggas H2

� ��Ggas HNO2

� �

Ggas H2

� �
and Ggas HNO2

� �
are the corresponding Gibbs free

energies ofH2 andHNO2molecules in thegasphaseat 300Kand 1 atm.
The entropic (ΔS) and enthalpic (ΔH) contributions to the free energy
of the gaseous species were obtained from the NIST database.
Nørskov’s computational hydrogen electrode model is used in the
calculations71.

Potential industrial application
For the scaled-up NH3 production process, we used chron-
opotentiometry to demonstrate the potential industrial application. A
homemade NRA-OER industrial electrolytic cell in anMEA flow reactor
was assembled. Here, the Co2P catalyst on Ni foam was selected as
the anode electrode due to the potential of Co2P material in hydrogen
evolution andoxygen evolution72,73. Self-supportedG-RuCoonNi foam
catalysts (1 cm× 1 cm) and self-supported Co2P on Ni foam catalysts
(1 cm× 1 cm) were directly used as cathodes and anodes, respectively,
with anion exchange membranes (Nafion AMI-7001S) as separators.
The catholyte was 1.0M KOH and 2000ppm KNO3 mixed electrolyte,
while the anolyte was 1.0MKOHwith an electrolyte flow rate of 50mL/
min. Polarization curves and chronopotentiometry were used to
evaluate the prospects of industrial nitrate electroreduction for
ammonia production.

Data availability
The data that support the conclusions of this study are available from
the corresponding authors upon request. Source data are provided
with this paper.
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