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A machine learning model that outperforms
conventional global subseasonal
forecast models

Lei Chen1,2,10, Xiaohui Zhong 1,10, Hao Li 1,10 , Jie Wu3,10, Bo Lu 3,4 ,
Deliang Chen 5, Shang-Ping Xie 6, Libo Wu 7,8,9, Qingchen Chao3,
Chensen Lin 1, Zixin Hu1 & Yuan Qi1,2

Skillful subseasonal forecasts are crucial for various sectors of society but pose
a grand scientific challenge. Recently, machine learning-based weather fore-
casting models outperform the most successful numerical weather predic-
tions generated by the European Centre forMedium-RangeWeather Forecasts
(ECMWF), but have not yet surpassed conventional models at subseasonal
timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a
machine learning model that provides global daily mean forecasts up to 42
days, encompassing five upper-air atmospheric variables at 13 pressure levels
and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from
ECMWF ERA5 reanalysis data, outperforms the ECMWF’s state-of-the-art
Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for
total precipitation and outgoing longwave radiation, notably enhancing global
precipitation forecast. The improved performance of FuXi-S2S can be pri-
marily attributed to its superior capability to capture forecast uncertainty and
accurately predict the Madden-Julian Oscillation (MJO), extending the skillful
MJO prediction from30days to 36 days.Moreover, FuXi-S2S not only captures
realistic teleconnections associated with the MJO but also emerges as a valu-
able tool for discovering precursor signals, offering researchers insights and
potentially establishing a new paradigm in Earth system science research.

Subseasonal forecasting, which predicts weather patterns from 2 to 6
weeks in advance, bridges a critical gap between short-term weather
forecasts, typically up to 15 days, and longer-term climate forecasts
that extend to seasonal and longer timescales1. Forecasting at this
intermediate subseasonal timescale is indispensable for a variety of
applications, including agricultural planning, disaster preparedness,
mitigating impacts of extreme events such as heatwaves, droughts,

floods, and cold spells, and water resource management2–5. Despite
its significant socioeconomic benefits, subseasonal forecasting has
historically not received sufficient attention compared to medium-
range weather and climate predictions. This gap existed because
accurate subseasonal forecasts were once considered nearly impos-
sible. Subseasonal forecasts are particularly challenging as they rely
on both atmospheric initial conditions, essential in short-term
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weather forecasts, and boundary conditions at the Earth’s surface, key
to seasonal and climate forecasts6,7. However, neither of these con-
ditions provides sufficient predictability, leaving subseasonal fore-
casts in a so-called predictability desert. Despite these challenges,
recent advances in both physical and statistical modeling have
enabled the regular production of subseasonal forecasts globally.
Nonetheless, there remains a ongoing, strong demand for their
further development to support informed decision-making across
various sectors.

Developing an ensemble prediction system (EPS) based on tradi-
tional physics-based numerical weather prediction (NWP) models is a
widely acknowledged and effectivemethod for enhancing subseasonal
forecast accuracy8,9. Major forecasting centers have implemented such
EPS for subseasonal forecasts3,10–12. However, these systems often
exhibit considerable biases13–17, particularly in predicting extreme
events18. The two primary challenges in this field are ensuring an
adequate ensemble size within computational constraints and
designing ensemble perturbations that accurately reflect uncertainty
in key atmospheric and oceanic variability19. Enlarging the ensemble
size is beneficial for forecast performance20–22, but the substantial
computational costs typically limit ensemble sizes to between 4 and 51
members across 11 international forecasting centers12. Given these
computational limitations, machine learning model emerges as a
promising alternative for direct subseasonal forecasting23. Machine
learning models have the advantages of significantly higher compu-
tational efficiency, facilitating the generation of a large number of
ensemble members which are crucial for prediction skill and
reliability24. Recent advancements in machine learning for medium-
range weather forecasting25–31 have demonstrated that machine
learning models can outperform the high-resolution forecasts (HRES)
generated by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), widely considered as themost accurate globalweather
forecasts32.

Machine learningmodels have achievedmade significant strides in
medium-rangeweather forecasting and seasonal forecasting33, but their
success in subseasonal forecasting has been less pronounced8,34,35. This
shortfall primarily stems from the limited range of variables incorpo-
rated into the models, and more importantly, from the inadequate
methods employed for ensemble generation. Conventional machine
learning techniques for ensemble forecasting, such as introducing
random perturbations into initial conditions and altering model struc-
tures, overlook the background flow and consequently lead to rapid
reduction in ensemble spread. The inadequate representation of the
complexities limits the performance of these prior machine learning-
based subseasonal forecasting models, which do not yet rival that of
traditional EPS based on NWP models. To overcome these challenges,
we introduce the FuXi Subseasonal-to-Seasonal (FuXi-S2S) model,
representing a significant advancement in machine learning for sub-
seasonal forecasting. This model is designed to generate global daily
mean forecasts for 42 days from initialization. Unlike previous models
that incorporated a limited set of variables, it incorporates a compre-
hensive suite of variables, instead of a couple of variables in previous
models: 5 upper-air atmospheric variables at 13 pressure levels and
11 surface variables. Furthermore, it features a innovative perturbation
module specifically designed togenerateflow-dependentperturbations
for ensemble forecasting. This module leverages vast amounts of his-
torical data to learn probability distributions, thereby introducing flow-
dependent perturbations directly into the model’s hidden features.
Compared to conventional NWP ensemble forecasting methods, which
often struggle with constructing initial condition perturbations due to
the complexities of multivariate interactions and the need to maintain
dynamicbalance andensemble spread in simulations36, our approachof
introducing perturbations directly into the model’s latent space, pre-
senting an effective alternative. This perturbation module significantly
enhances the performance of the FuXi-S2S forecasts, as demonstrated

in Supplementary Fig. 1. More details about the FuXi-S2S model archi-
tecture are available in “Methods”.

Remarkably, FuXi-S2S outperforms the ECMWF Subseasonal to
Seasonal (S2S) ensemble, which is recognized as the most skillful S2S
modeling system, in producing both the ensemble mean and prob-
abilistic forecasts5,37. Its efficacy is particularly evident in extreme total
precipitation (TP) forecasting, as exemplified by its accurate forecasts
for the 2022 Pakistan floods. Such capability is closely related to FuXi-
S2S’s improved prediction of the Madden–Julian Oscillation (MJO)38,39,
a key driver of global climate patterns, extending the skillful MJO
prediction from 30 days to 36 days. These results further confirm that
the notable improvement in FuXi-S2S’s performance can be primarily
attributed to the innovative perturbation module for ensemble gen-
eration. Another promising result is the ability of the FuXi-S2S model
to identify potential precursor signals to physical processes. Beyond
mere accuracy, in many applications involving machine learning
forecasts, it is imperative to understand and validate the decision-
making mechanisms of these models. Such understanding not only
leads to enhanced trust in the models’ predictions but also increases
the likelihood of implementing effective actions, particularly in miti-
gating the risks associated with extreme events. Therefore, interpret-
ing machine learning models to align their reasoning with established
knowledge becomes crucial. Recent developments in explainable
machine learning (XML)40–45 methods have facilitated this interpreta-
tion. This study delves into the 2022 Pakistan floods, investigating the
FuXi-S2S model’s predictions to identify key geographic regions that
significantly impact its predictive accuracy. This is achieved through
the generation and analysis of saliency maps46, wherein the identified
regions in close alignment with insights from previous studies47.
Therefore, we argue that FuXi-S2S transcends traditional NWPmodels
in terms of accuracy and speed, potentially unveiling previously
unrecognized processes within Earth’s system in subseasonal
forecasting48,49.

Results
This study conducts a thorough evaluation of the 51-member FuXi-S2S
forecasts by analyzing testing data spanning from 2017 to 2021. It
compares the performance of FuXi-S2S with that of the 11-member
ECMWF S2S reforecasts from the model cycle C47r3 over the same
period. The analysis primarily focuses on average forecasts for week 3
(days 15–21), week 4 (days 22–28), week 5 (days 29–35), and week 6
(days 36–42), weeks 3–4, and weeks 5–6. The evaluation employs a
comprehensive set of metrics, including deterministic metrics for the
ensemble mean, probabilistic metrics for all ensemble members, pre-
diction skills specific for MJO forecasts, and tailored assessments for
extreme events, notably the 2022 Pakistan floods. Furthermore, the
study explores the underlying processes driving the FuXi-S2S model’s
predictions for the 2022 Pakistan floods. This is accomplished by
generating and analyzing the saliency maps, which provide profound
insights into the model’s predictive processes.

Additional evaluations, including an analysis of energy spectra50,
are available in the Supplementary Material.

Deterministic metrics
This subsection compares the performance of ensemble mean fore-
casts from FuXi-S2S and ECMWF S2S based on deterministic metrics.
Figure 1 presents the globally-averaged and latitude-weighted tem-
poral anomaly correlation coefficient (TCC) for both FuXi-S2S and
ECMWF S2S, considering four variables: TP, 2m temperature (T2M),
geopotential at 500hPa (Z500), and outgoing longwave radiation
(OLR), across forecast lead times of 3, 4, 5, 6, 3–4, and 5–6 weeks.
Significance testing is conducted as described in “Evaluationmethod”.
When the FuXi-S2S forecasts do not show a statistically significant
improvement over the ECMWF S2S reforecasts, these are indicated
with a pale color scheme. It is evident that the ensemble mean
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forecasts from FuXi-S2S significantly outperform ECMWF S2S for TP
and OLR, but not for T2M and Z500. The analysis is based on the
averaged TCC computed from all testing data spanning the period
from 2017 to 2021. The FuXi-S2S forecasts generally demonstrate
higher TCC values than the ECMWF S2S reforecasts for TP and OLR at
all lead times, while comparable TCC values for Z500 and T2M. Spe-
cifically, regarding Z500, the FuXi-S2S forecasts are superior to the
ECMWF S2S reforecasts at lead times of 3, 4, 5, and 3–4 weeks, and
have inferior performance at lead times of 6 and 5–6 weeks.

Supplementary Fig. 2 provides the spatial distributions of
temporally-averaged TCC for both ECMWF S2S and FuXi-S2S, along
with the differences in TCC between FuXi-S2S and ECMWF S2S for TP,
T2M, Z500, and OLR forecasts at lead times of 3–4 and 5–6 weeks,
respectively. The spatial distributions of TCC reveal considerably
higher values over tropics, and greater values over oceans than over
land. The TCC differences are described in red (positive values), blue
(negative values), andwhite (zerovalues)patterns, suggestingwhether
FuXi-S2S’s performance is superior, inferior, or equivalent to ECMWF
S2S, respectively. Overall, FuXi-S2S demonstrates positive TCC differ-
ences for TP and OLR in most regions worldwide, consistent with the
findings presented in Fig. 1. Moreover, FuXi-S2S also outperforms
ECMWF in amajority of extra-tropical regions for both T2M and Z500,
although its performance is generally less skillful in the tropical areas.

Probabilistic metrics
Deterministic metrics, evaluated using the ensemble mean, exhibit
limited predictive skill, with TCC values below 0.5 for all subseasonal
forecast lead times. Therefore, ensemble forecasts are essential for
detecting predictable signals at subseasonal timescales.

The first two rows of Fig. 2 present the spatial distribution of the
temporally-averaged ranked probability skill score (RPSS)51,52 for
ECMWF S2S and FuXi-S2S, as well as the RPSS differences between
FuXi-S2S and ECMWF S2S for TP forecasts over 3–4 and 5–6 week lead
times. This analysis utilizes RPSS data which are temporally averaged
from 2017 to 2021. The red contour lines in the first and second col-
umns highlight areas with positive RPSS values, which indicate more
skillful prediction than climatology forecast can be obtained over
these areas. Notably, FuXi-S2S predicts more areas with positive RPSS
values than ECMWF S2S. The color coding in the right panels of Fig. 2

(red, blue, and white) indicates regions where FuXi-S2S performs
better, worse, or equivalently compared to ECMWF S2S, respectively.
The global distribution of RPSS suggests that both ECMWF S2S and
FuXi-S2S primarily exhibit skill in tropical regions, whereas they lack
skill in the extra-tropics compared to climatology. In contrast, RPSS
demonstrates positive values (depicted in red color) in tropical
regions, indicating enhanced predictive skills relative to climatology.
Moreover, the RPSS values are notably higher over oceans compared
to land areas. Predominantly, FuXi-S2S demonstrates nearly global
positive RPSS differences for TP, except in some tropical regions
where bothmodels have quite high RPSS values. Compared to ECMWF
S2S, whose skillful predictions are primarily confined to tropical ocean
areas, FuXi-S2S demonstrates the capability of skillful predictions over
more extra-tropical regions, such as East Asia, the North Pacific, and
the Arctic.

The latitude-weighted RPSS for the same 4 variables as in Fig. 1
over forecast lead times of 3, 4, 5, 6, 3–4, and 5–6 weeks are given in
Supplementary Fig. 6. FuXi-S2S shows higher RPSS values than
ECMWF S2S across most regions for all the examined variables: TP,
T2M, Z500, and OLR. This superiority is especially noticeable in
extra-tropical averages. However, in the tropics, ECMWF S2S out-
performs FuXi-S2S at lead times of 3 to 6 weeks for 1-week averages,
whereas FuXi-S2S surpasses ECMWF S2S for 2-week averages. This
discrepancy in performance likely arises from the fact that 1-week
averages filter out variability with periods shorter than 2weeks, while
2-week averages attenuate variability with periods shorter than
4 weeks. Thus, the skill differences between the 1-week and 2-week
averages may reflect FuXi-S2S’s enhanced ability in capturing lower-
frequency variability. Furthermore, a previous study37 suggests that
dynamical S2S models, particularly ECMWF S2S, demonstrate
improved performance in the central-eastern Pacific, potentially due
to their effective simulation of the realistic air-sea interactions in
these regions.

Extreme forecast
A primary target of subseasonal forecasts is extreme weather events,
to better prepare for disasters like droughts and floods. This subsec-
tion focuses on the prediction skills for extreme precipitation events.
Such events are identified when TP exceeds the 90th climatological

Fig. 1 | Comparison of globally-averaged and latitude-weighted temporal
anomaly correlation coefficient (TCC) of the ensemble mean between ECMWF
subseasonal-to-seasonal (S2S) reforecasts (in blue) and FuXi-S2S forecasts (in
red) for total precipitation (TP), 2m temperature (T2M), geopotential at 500
hPa (Z500), and outgoing longwave radiation (OLR).Rows 1 and 2 represent the

performance across these variables, utilizing all testing data from the period
spanning from 2017 to 2021. A bootstrapping approach, repeated 1000 times, is
used for significance testing.When the FuXi-S2S forecasts fail to showa statistically
significant improvement over the ECMWF S2S reforecasts at the 97.5% confidence
level, a pale color scheme is used to denote these results.
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percentile, a threshold that varies based on grid location, forecast
initialization time, and forecast lead time.

The last two rows of Fig. 2 show the spatial distributions of the
temporally-averaged Brier Skill Score (BSS)52 for the extreme pre-
cipitation events, for ECMWF S2S and FuXi-S2S, and their differences
over 3–4 and 5–6 week lead times. Similar to spatial pattern of RPSS,
FuXi-S2S generally exhibits more regions with positive values of BSS
than ECMWF S2S, suggesting more areas with skill relative to clima-
tological forecasts. Similar to spatial pattern of RPSS, the BSS values
are considerably higher over oceans than over land and decrease from
lower latitudes to higher latitudes. Predominantly, the BSS differences
favor FuXi-S2S in TP over land and in extra-tropical regions, marked by
widespread red patterns. This suggests FuXi-S2S’s dominance over
ECMWF S2S in predicting extreme TP across land and extra-tropics,
which is of great importance for disaster preparedness and early
warning.

Supplementary Fig. 7 compares the latitude-weighted BSS
between FuXi-S2S and ECMWF S2S, focusing on TP, T2M, Z500,
and OLR in five geographical regions: global, in the extra-tropics
(90°S–30° S and 30° N–90° N), in the tropics (30°S–30°N), over land,
and over the ocean. Globally, FuXi-S2S outperforms ECMWF S2S in
termsof BSS for TP, T2M, andOLR. Notably, in contrast to ECMWFS2S,

which exhibits consistently negative globally-averaged BSS values for
TP across all lead times, FuXi-S2S demonstrates positive values for
forecast lead times of 3, 3–4, and 5–6 weeks. In the extra-tropical
regions, though the BSS scores are relatively lower in comparison to
the global average, FuXi-S2S consistently exhibits superior perfor-
mance compared to ECMWF S2S across all four variables. A similar
pattern emerges in tropical regions, where FuXi-S2S demonstrates
superior performance over ECMWF S2S for TP and OLR while achiev-
ing comparable accuracy in T2M and Z500. Over land areas, FuXi-S2S
demonstrates consistently higher BSS values for TP and T2M, sug-
gesting its superior ability to provide more accurate forecasts of
extreme rainfall and high temperatures compared to ECMWF S2S.

MJO forecast
Recent studies have demonstrated the importance of accurately
modeling various sources of subseasonal predictability, particularly
the MJO12,53,54, for improving subseasonal prediction skills. The MJO
has a significant impact on global weather and climate, serving as a
primary source of predictability at subseasonal timescales due to its
quasi-periodic nature55–58. Accurate MJO prediction is essential for
reliable subseasonal predictions. Although current state-of-the-art
dynamical forecasts can predict the MJO up to 3–4 weeks in advance,

Fig. 2 | Maps displaying the average Ranked Probability skill Score (RPSS) (first
and second rows) and Brier Skill Score (BSS) (third and fourth rows) without
latitude weighting, comparing ECMWF subseasonal-to-seasonal (S2S) (first
column) and FuXi-S2S (second column) forecasts.Additionally, the third column
depicts the difference in RPSS and BSS between FuXi-S2S and ECMWF S2S for total
precipitation (TP) at forecast lead times of weeks 3–4 (first and third rows) and
weeks 5–6 (second and fourth rows), utilizing all testing data from 2017 to 2021.

Red contour lines in the first and second columns indicate areas with positive
values of RPSS and BSS. Stippling on themap denotes areas where the skill score is
statistically significant at the 97.5%confidence level. Specifically, in columns 1 and2,
stippling indicates regions where the skill scores of the ECMWF S2S and FuXi-S2S
models significantly surpass those of climatology. In column 3, stippling highlights
areas where the FuXi-S2S model significantly outperforms the ECMWF S2S.
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this falls short of the theoretical potential predictability of approxi-
mately 6–7 weeks58–60. In recent years, increasing efforts have focused
on applying machine learning models to improve MJO forecasts,
either by post-processing dynamical forecasts61–63 or through direct
forecasting44,64,65. However, only improving MJO predictions with
machine learning models does not inherently ensure improved fore-
casts of related weather phenomena, such as tropical cyclones and
monsoons, which also depend on accurate predictions of various
weather parameters by the model. Therefore, continuous improve-
ment in forecasting models is essential for advancing subseasonal
prediction capabilities. This section specifically examines the per-
formance of our FuXi-S2S model in MJO forecasts, although it is not
explicitly optimized for this purpose.

In this study, we employed the real-time multivariate MJO (RMM)
index66, alongwith the commonly usedmetrics of bivariate correlation
coefficient (COR), to evaluate the forecasting skill of the MJO. The
RMM index used for verification was calculated using the Climate
Prediction Center (CPC) OLR (CBO) data, in conjunction with the ERA5
zonal-wind component at 850hPa and 200hPa. Figure 3 presents the
bivariate correlation (COR) skills of the RMM index for the ensemble
meanof ECMWFS2S reforecasts and FuXi-S2S forecasts, averagedover
the testing data spanning from 2017 to 2021. The results show a
decrease in COR values as forecast lead times increase. Particularly,
FuXi-S2S outperforms ECMWF S2S in MJO prediction, maintaining
higherCORvalues for up to 42days.When applying aCOR thresholdof
0.5 to determine skillful MJO forecast, FuXi-S2S extends the skillful
forecast lead time from 30 days to 36 days, surpassing the perfor-
mance of ECMWF S2S. Furthermore, the MJO prediction skills also
dependon the seasonal cycle, as illustrated in Fig. 3. Both FuXi-S2S and
ECMWF S2S demonstrate higher MJO prediction skills in September
and October. Additionally, FuXi-S2S exhibits superior skills compared
to ECMWF S2S during the boreal spring and winter, with skillful pre-
dictions extending beyond 42 days in April and May, which is the
longest forecast lead time achievable by the FuXi-S2S model. More-
over, Supplementary Fig. 9 presents the COR and error for the
amplitude and phase of the MJO. These are calculated using the
ensemble mean of ECMWF S2S reforecasts and FuXi-S2S forecasts,
averaged across over the 2017–2021 testing dataset. The results sug-
gest that the FuXi-S2S model outperforms the ECMWF S2S model in
predicting the MJO, primarily due to its superior capability in

forecasting the MJO phase. Additionally, FuXi-S2S demonstrates
smaller amplitude errors, suggesting it more accurately maintains the
amplitude of MJO events.

A two-dimensional phase-space diagram is commonly used to
characterize the phase and amplitude of the MJO, using the x-axis and
y-axis to represent the first and second principal components of
Empirical Orthogonal Functions (EOFs) (RMM1 and RMM2), respec-
tively. Supplementary Fig. 10 illustrates the forecast performance of
four distinct MJO events with initialization dates of 27 June 2018, 3
November 2018, 18 April 2019, and 21 March 2021, as predicted by
ECMWF S2S and FuXi-S2S. Data points on this two-dimensional phase-
space diagram are plotted at 5-day intervals. The phase of the MJO is
determined by the azimuth of the combined RMM indices 1 and 2
(RMM1 and RMM2), while its amplitude is represented by the radial
distance from the origin. As visually shown in Supplementary Fig. 10,
the counterclockwise movement of data points signifies the eastward
propagation of MJO-associated convection, with the distance between
successive points reflecting the propagation speed. In comparison to
the observed MJO derived from CBO and ERA5 reanalysis data, both
ECMWF S2S and FuXi-S2S exhibit slower propagation speeds and
reduced amplitudes as the forecast lead time increases, particularly
noticeable for MJO forecasts initialized on 21 March 2021. However,
FuXi-S2S shows a more consistent alignment with observations across
all MJO phases, especially in mitigating the negative amplitude biases
in MJO forecasts when compared to ECMWF S2S.

The MJO originates from interactions of tropical convection and
circulation but its effect is of global reach. Indeed, large TCC for Z500
over the extra-tropical Pacific is found along the path of the Pacific
North/South American (PNA/PSA)67,68 teleconnection pattern (Sup-
plementary Fig. 2, rows 6 and 7). Compared to ECMWF S2S, improved
MJO forecast in FuXi-S2S elevates TCC for these teleconnection pat-
terns, especially along the PSAwave train in the Southern Hemisphere.
Furthermore, the MJO is critical for stimulating these important tele-
connection patterns, significantly affecting extra-tropical anomalies.
Therefore, the accurate representationofMJO-related teleconnections
is imperative for effective subseasonal forecasts. Supplementary Fig. 11
demonstrates that the FuXi-S2S model showcases enhanced skills in
MJO prediction and realistic simulations of MJO teleconnections,
which substantially contribute to its superior performance in sub-
seasonal forecasts, particularly over extra-tropical regions.

Fig. 3 | Comparison of real-time multivariate Madden–Julian Oscillation (MJO)
(RMM) bivariate Correlation (COR) of the ensemble means between ECMWF
subseasonal-to-seasonal (S2S) reforecasts (in blue) and FuXi-S2S forecasts (in
red) using all testing data from 2017 to 2021. a Comparison of RMM bivariate
COR as a function of forecast lead times. Dashed black line signifies the prediction

skill threshold of COR=0.5. b The RMM bivariate COR is depicted as a function of
themonth of initialization (x-axis) and forecast lead time (y-axis), with red and blue
lines indicating the skillful MJO prediction days of ECMWF S2S (in blue) and FuXi-
S2S (in red), respectively.
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This study highlights FuXi-S2S proficiency in predicting the MJO.
We envision that FuXi-S2S could serve as a pivotal tool in investigating
other primary modes of subseasonal variability, such as the Boreal
Summer Intraseasonal Oscillation (BSISO)69, North Atlantic Oscillation
(NAO)70, and East Asia–Pacific (EAP) pattern71. Additionally, it would be
worthwhile to explore how the prescribed fixed sea surface tempera-
ture (SST) or its absence impacts the forecast performance of theMJO.
Savarin and Chen72 demonstrated that either using a coupled
atmosphere-ocean model or updating SST with observed values is
essential for accurately modeling the eastward propagation of the
MJO. However, this analysis is beyond the scope of the current study
and will be addressed in future research.

Prediction of the 2022 Pakistan floods
In 2022, Pakistan experienced a series of exceptionally intense mon-
soon rainfall surges from early July to late August, resulting in total

rainfall that reached a level approximately four standard deviations
above the climatological mean73. This extreme rainfall event led to a
significant humanitarian disaster, leaving over 2.1 million people
homeless and resulting in 1730 fatalities. According to theWorld Bank,
the economic damages and losses exceeded USD 30 billion47. Conse-
quently, it is important to assess the ability of subseasonal forecasts to
predict such extreme rainfall events.

Figure 4 illustrates the observed standardized TP anomaly
alongside predictions that were initialized on different dates, gener-
ated by both the FuXi-S2S and ECMWF S2S models. These observa-
tions, taken from the Global Precipitation Climatology Project (GPCP),
are spatially averaged over the Pakistan region (60–70° E in longitude
and 25–35° N in latitude), and temporally over a 2-week period from
August 16th to August 31st, 2022, corresponding to the period ofmost
intense rainfall. The standardized anomaly for observed rainfall is
~6 standard deviations above the climatologicalmean. It is evident that

Fig. 4 | Comparative analysis for the 2022 Pakistan floods predictions between
the ECMWF subseasonal-to-seasonal (S2S) and FuXi-S2S models as well as the
precursor signals that contributed to accurate predictions by the FuXi-
S2S model. Comparison of spatially and temporally averaged standardized total
precipitation (TP) anomaly (a) over the 2 weeks from August 16th to August 31st,
2022, showcasingGPCPobservations (in black) alongsidepredictions fromECMWF
S2S real-time forecasts (in blue) and FuXi-S2S forecasts (in red), with initialization
dates: August 11th (08-11, MM-DD), August 8th (08-08), August 4th (08-04), August
1st (08-01), July 28th (07-28), July 25th (07-25), and July 21st (07-21). The black lines
on the bar of ECMWF S2S and FuXi-S2S forecasts represent the 25th and 75th
percentiles. For the comparison of temporally averaged standardized TP anomaly
maps (b), the first column represents GPCP observations, while the second and

third columns display predictions from ECMWF S2S and FuXi-S2S, respectively,
both initialized on July 28th, and the fourth and fifth columns correspond to pre-
dictions from ECMWF S2S and FuXi-S2S, respectively, with an initialization date of
July 21st. Green contour indicates the border line of Pakistan. The saliencymaps (c)
were generated using the gradient of the negative standardized TP anomaly,
averaged over the Pakistan region, in relation to the input SST. These maps cor-
respond to forecasts initialized on July 28th (07-28, first column) and July 21st (07-
21, second column).Here, the red andblue colors indicate the positive andnegative
correlations between the negative of standardized TP and variations in SST. The
black lines on the bars in this figure represent the 25th and 75th percentiles of the
ensemble forecasts for each start date for both ECMWF and FuXi-S2S models.
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the ECMWF S2S model considerably underestimates rainfall intensity
for forecasts initialized on July 21st, achieving only about one-third of
the observed values. The ECMWF S2S forecasts gradually converge
toward observations as the initialization dates approach the actual
event. In contrast, FuXi-S2S exhibits superior forecast performance in
predicting the intensity of extreme rainfall events earlier compared to
ECMWF S2S. Specifically, FuXi-S2S predicts rainfall levels of at least
4 standard deviations above the climatological mean for forecasts
initialized on July 21st, which is approximately 4 weeks in advance.
Moreover, the spatial distributions of the standardized TP anomaly
reveal that the FuXi-S2SpredictedTPpatternmorecloselymatches the
observations.

Forecast skill typically improves with decreasing lead time, as in
the ECMWF S2S model. The rainfall anomaly grows in FuXi-S2S fore-
casts initialized on July 28 (lead time of 18 days), albeit with a large
forecast spread, possibly due to SST influence. Indeed, the saliency
maps show that the FuXi-S2S forecasts initialized on July 28 and July
21 successfully captured predictable signals from SST anomalies in the
tropical central Pacific and western Indian Ocean (Fig. 4c). At shorter
lead times, the SST influence decreaseswhile the effect of atmospheric
initial conditions increases. The varying importance of SST and initial
conditions may cause variability in the FuXi-S2S forecasts with
lead time.

Discovery of precursor signals for the 2022 Pakistan floods
prediction
Data-driven machine learning forecasting models, such as FuXi-S2S,
often lack explicit integration of prior knowledge about the physical
system they aim to predict. As a result, they are often referred to as
“black boxes”. Although FuXi-S2S has shown accuracy in previous
subsections, the opacity of its predictive processes can diminish con-
fidence in its reliability. Therefore, it is imperative to interpret FuXi-
S2S, ensuring that their underlying reasoning is consistent with
established understanding of weather systems. Here, we generated
saliency maps to disentangle the key driving processes behind the
FuXi-S2S model’s prediction of the 2022 floods in Pakistan.

In this study, we utilized the negative absolute values of the TP
anomaly, averaged across the Pakistan region (outlined by the green
box in Fig. 4c), as a loss function. By implementing backward propa-
gation of this loss function to calculate gradients, we obtained the
saliency maps. These maps use red and blue colors to signify positive
and negative correlations, respectively between the negative of stan-
dardized TP anomaly and SST. Specifically, blue (red) areas indicate
that a decrease (increase) in SST is associated with an increase
(decrease) in thenegative of standardizedTP anomaly, thereby leading
to an increase (decrease) in TP anomaly. Analysis of these saliency
maps facilitated the identification of potential precursor signals and
sources of predictability that contributed to the occurrence of the
extreme TP event. As illustrated in Fig. 4c, SST precursor signals,
identified in forecasts initialized on different dates (July 28th and July
21st in 2022), show remarkable consistency. These signals indicate a
consistent cooling of SST in the equatorial central Pacific and the
tropical western Indian Ocean, along with warming in the tropical
eastern Pacific. This spatial pattern aligns closely with findings from
previous studies47, which pinpointed the rapid development of a La
Niña in the tropical Pacific and a negative phase of the Indian Ocean
Dipole in the summer of 2022 as key precursor signals and driving
forces of Pakistan’s intense TP event. Our results confirm that the high
predictive skill of the FuXi-S2S model can be attributed to its effective
capture of the primary predictable sources of this event. Furthermore,
these findings demonstrate themodel’s potential as a valuable tool for
rapidly exploring the mechanisms behind extreme events and unco-
vering teleconnections within Earth’s systems, thereby enhancing our
physical understanding. Here, we focus on the gradient with respect to
SST. Nevertheless, it is important to acknowledge the existence of

other significant precursor signals that may be associated with this
extreme event, including U, V, and Z anomalies as noted in ref. 73. A
more comprehensive examination of these factors is intended for
future research.

Discussion
In this paper, we introduced FuXi-S2S, a machine learning-based sub-
seasonal forecasting model. This model provides global forecasts of
daily mean values for up to 42 days, with a daily temporal resolution
and 1.5° spatial resolution encompassing five upper-air atmospheric
variables across 13 pressure levels and 11 surface variables. The per-
formanceof FuXi-S2Swas rigorously evaluated against ERA5 reanalysis
data and compared with ECMWF S2S reforecasts. A comprehensive
suite of metrics was employed for this evaluation, including the
deterministic metrics of the ensemble mean, the probabilistic metrics
of the ensemble forecast, and the capability to predict extreme events.
Our results demonstrated that FuXi-S2S surpasses ECMWF S2S in
forecast accuracy for the evaluated variables. Furthermore, FuXi-S2S
significantly improves accuracy in predicting the MJO, extending the
skillful MJO prediction from 30 days to 36 days. This improvement is
particularly important given the MJO’s influence on global climate
patterns, and consequently, it improves the model’s TP) forecast
accuracy globally. Moreover, FuXi-S2S has shown utility in practical
scenarios, such as its superior performance in predicting the extreme
rainfall during the 2022 Pakistan floods earlier than the ECMWF S2S
model. This early prediction capability is vital for improving disaster
preparedness and response.

A key contributor to the superiority of FuXi-S2S is its innovative
method of generating perturbations, which is essential for its suc-
cessful ensemble forecasting. Unlike conventionalmodels that employ
random or meticulously calculated perturbations in initial conditions,
FuXi-S2S incorporates background flow-dependent perturbations into
its hidden features. These flow-dependent perturbations have shown
to significantly enhancemodel’s subseasonal forecast performance, as
illustrated in Supplementary Fig. 1. FuXi-S2S, as a machine learning
model, alsodistinguishes itself by its ability to generate large ensemble
forecasts rapidly and efficiently, requiring significantly less time and
computational resources than traditional models. Specifically, it can
complete a comprehensive 42-day forecast with daily time steps in ~7 s
using an Nvidia A100 GPU for a single member. Ensemble size is a
critical determinant of the ensemble forecast skill. Research suggests
that the optimal number of members for subseasonal forecasts
potentially falls within the range of 100 to 200members21. To ensure a
fair comparisonwith the ECMWF S2Smodel, we have currently limited
the FuXi-S2Smodel to a 51-member ensemble. However, it’s important
to note that FuXi-S2S is capable of generating larger ensembles with
only a moderate increase in computational demands. Our Supple-
mentary Fig. 15illustrates that increasing the ensemble size to 101
members further enhances the forecast performance of FuXi-S2S
compared to the 51-member ensemble.

Beyond its computational efficiency and superior accuracy, FuXi-
S2S notably excels in identifying precursor signals and disentangling
the complex processes underlying climate extremes, as demonstrated
by its accurate prediction of the 2022 floods in Pakistan. Many sub-
seasonal forecasting challenges stem from the limited understanding
of these complex processes. Traditional physics-based models often
rely on oversimplified representations of physical processes, which
diminishes their forecast performance and analytical depth. In con-
trast, FuXi-S2S demonstrates proficiency in learning complex patterns
and identifying subtle teleconnections from vast amounts of data. This
approach resonates with Albert Einstein’s insight, “You can’t solve a
problem with the ways of thinking that created it.” In our study of the
2022 extreme rainfall event in Pakistan, wedemonstrate that backward
propagation and the resulting saliency maps successfully reveal that
FuXi-S2S makes accurate forecasts by effectively capturing the key
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predictable sources associated with this event. Moreover, such
gradient-based interpretation methods aid in explaining weather and
climate forecasts made by machine learning models, such as the FuXi-
S2S model74. Therefore, we advocate for a paradigm shift in the
application of machine learning models like FuXi-S2S. The focus
should not extend beyond enhancing forecast accuracy to include the
development of a comprehensive framework for discovering pre-
viously unknown processes within the Earth’s system48,49. We foresee a
growing reliance on machine learning models like FuXi-S2S within the
scientific community, acknowledging their essential role in advancing
scientific discovery in Earth system science.

While FuXi-S2S offers a computationally efficient and accurate
alternative to conventional NWPmodels for subseasonal forecasting, it
also presents significant opportunities for improvement. For instance,
the ECWMF S2S model runs at a spatial resolution of 36 km75, which is
considerably finer than the 1.5° resolution of FuXi-S2S. Currently, FuXi
S2S predicts daily mean values up to 50hPa and lacks critical weather
parameters such as daily maximum and minimum temperatures,
which are essential for some applications. Furthermore, given the
known discrepancies between the ERA5 TP data and actual observa-
tions, as noted in refs. 76,77, GPCP observations have been utilized to
evaluate the TP forecast performance for both ECMWF S2S and FuXi-
S2S (refer to Supplementary Fig. 16). Anticipated future enhancements
to the FuXi-S2S model include increasing the spatial resolution from
1.5° to 0.25°, incorporating additional weather parameters, extending
the forecast beyond the current upper limit of 50 hPa, and employing
more accurate TP data sources to enhance forecast accuracy.

Methods
Data
ERA5 stands as the fifth iteration of the ECMWF reanalysis dataset,
offering a rich array of surface and upper-air variables. It operates at a
remarkable temporal resolution of 1 h and a horizontal resolution of
approximately 31 km, covering data from January 1950 to the present
day78. Recognized for its expansive temporal and spatial coverage
coupled with exceptional accuracy, ERA5 stands as the most compre-
hensive and precise reanalysis archive globally. In our study, we utilize
daily statistics derived from the 1-hourly ERA5 dataset, which has a
spatial resolution of 1.5° (comprising 121 × 240 latitude–longitude grid
points) and a temporal resolution of 1 day. It serves as the sole data
source for training the FuXi-S2S model.

Evaluating MJO predictions against MJO indices derived from
satellite-observed OLR data is a common practice. Therefore, along-
side the ERA5 reanalysis data, a newly developed OLR dataset called
the Climate Prediction Center (CPC) OLR (CBO) has emerged. Span-
ning from 1991 to the present day, this dataset undergoes near real-
time updates. While showing slight differences in magnitude com-
pared to the U.S. National Oceanic and Atmospheric Administration
(NOAA) Advanced Very High-Resolution Radiometer (AVHRR) OLR,
the CBO dataset notably exhibits a high level of similarity in both
pattern and magnitude of anomalies. In our research, we utilize the
CBOdata,whichhas a spatial resolution of 1° and a temporal resolution
of 1 day. This data serves as the ground truth for OLR in the identifi-
cation and verificationofMJO events. Furthermore, for the assessment
of rainfall in the Pakistan region, observed rainfall data are sourced
from the GPCP dataset79. It is noteworthy that the MJO indices derived
from ERA5 OLR data closely align with those derived from CBO
OLR data.

The FuXi-S2S model forecasts a total of 76 variables, encom-
passing 5 upper-air atmospheric variables across 13 pressure levels (50,
100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, and 1000hPa),
and 11 surface variables. Among the upper-air atmospheric variables
are geopotential (Z), temperature (T), u component of wind (U), v
component of wind (V), and specific humidity (Q). The surface vari-
ables include 2m temperature (T2M), 2m dewpoint temperature
(D2M), sea surface temperature (SST), OLR, 10m u wind component
(U10), 10m v wind component (V10), 100m u wind component
(U100), 100m v wind component (V100), mean sea-level pressure
(MSL), total columnwater vapor (TCWV), and TP. OLR is known as the
negative of top net thermal radiation (TTR) in ECMWF convention.
Table 1 provides a comprehensive list of these variables along with
their abbreviations. Variables such asU100 and V100were selected for
their potential utility in wind energy forecasting. The selection of the
SST is based on prior research, which suggests that slowly evolving
variables like SST are crucial for identifying predictable signals80–82.
OLR was selected due to its significance in representing MJO events
through OLR anomalies.

Themodel’s training relies on 67 years of data spanning from 1950
to 2016, while evaluation involves a 5-year dataset from 2017 to 2021.
The z-score normalization technique is employed to normalize all
input and output variables, thereby ensuring uniformity in their mean
and variance. For upper-air variables, themean and standard deviation
are calculated separately for different vertical levels, using only the
training dataset. Additionally, the dataset for the year 2022 undergoes
evaluation and comparison against the ECMWFreal-timeS2S forecasts,
specifically concerning the catastrophic flooding in Pakistan. More
detailed evaluations of TP and MJO predictions for the year 2022 can
be found in the Supplementary Material.

In certain cases, subseasonal forecasts receive regular updates
through the implementation of the latest model, incorporating
research discoveries tailored for operational use83. For instance, the
ECMWF S2S reforecasts, often termed hindcasts, which are generated
on-the-fly by employing themost recentmodel version available at the
time of forecast generation. In our research, we utilize the ECMWF S2S
reforecasts generated from model cycle C47r3. These reforecasts
encompass initialization dates over 20 years, ranging from January 3,
2002, to December 29, 2021. The ECMWF S2S reforecasts are initi-
alized twice weekly, aligning with the real-time forecasts. Additionally,
our comparative analysis involves employing the 51-member ECMWF
real-time S2S forecast for the year 2022. For the analysis using testing
data from 2017 to 2021, anomalies for all variables are defined as
deviations from the climatological mean calculated over the 15-year
period from2002 to 2016.Meanwhile, for the analysis basedon testing
data in the year 2022, the climatological mean is calculated over the
period from 2002 to 2021. Furthermore, a set of hindcasts from 2002
to 2016 is generated for FuXi-S2S, which are used to establish a

Table 1 | A summary of all the upper-air and surface variable
names and their abbreviations in this paper

Type Full name Abbreviation

Upper-air variables geopotential Z

temperature T

u component of wind U

v component of wind V

specific humidity Q

Surface variables 2m temperature T2M

2m dewpoint temperature D2M

sea surface temperature SST

outgoing longwave radiation OLR

10m u wind component U10

10m v wind component V10

100m u wind component U100

100m v wind component V100

mean sea-level pressure MSL

total column water vapor TCWV

total precipitation TP
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climatology. This climatology is then subtracted from the FuXi-S2S
forecasts for the testing data spanning from 2017 to 2021. This process
facilitates the calculation of FuXi-S2S anomalies for evaluations.

To ensure equitable comparisons, we evaluate FuXi-S2S forecasts
specifically on identical initialization dates corresponding to those
utilized for both the ECMWF S2S reforecasts and forecasts. This
approach facilitates a fair and direct assessment between FuXi-S2S and
ECMWF S2S.

FuXi-S2S model
Most state-of-the-art machine learning models utilized in medium-
range weather forecasting are built upon encoder-decoder84

architectures27–29,85. These structures are favored due to their profi-
ciency in processing andgenerating sequential and spatial data.Within
these architectures, the encoder processes key features from the input
data and transforms them into a compressed and abstract repre-
sentation in the latent space. The decoder then utilizes this repre-
sentation to generate weather forecasts. The primary objective of
training these models is to minimize differences between the model’s
output and the target data. However, the standard encoder-decoder
structures are inherently deterministic, producing identical forecasts
for the same inputs, which limits their applicability in generating
ensemble forecasts. To overcome this limitation, we introduce the
FuXi-S2S model, drawing inspiration from Variational Autoencoders
(VAEs)86–88. VAEs are inherently probabilistic, making them well-suited
for tasks that require uncertainty quantification. Like VAEs, the FuXi-
S2S model’s encoder does not merely generate a static hidden feature
from input data. Instead, it transforms input data into a Gaussian dis-
tribution in the latent space, which captures the probabilistic char-
acteristics of the data, along with a static hidden feature. Then, the
decoder combines samples from the Gaussian distribution with the
static hidden feature to generate forecasts. This methodology

effectively captures the inherent uncertainty in the data, thereby
enabling the generation of ensemble predictions under identical input
conditions by repeatedly sampling from the Gaussian distribution. For
better understanding, we draw analogies between these machine
learning techniques and the conventional terminology in ensemble
weather/subseasonal forecasting. In our model, the static hidden fea-
ture forms the basis for deterministic forecasts, while sampling from
the Gaussian distribution serves as a perturbation module. This mod-
ule introduces flow-dependent perturbations into the model’s hidden
feature, facilitating the generation of ensemble forecasts.

The FuXi-S2S model, illustrated in Fig. 5a, consists of three pri-
mary components: an encoder P, a perturbation module, and a deco-
der. The encoder, processing predicted weather parameters from two
preceding time steps, with each time step representing 1 day, as FuXi-
S2S is designed to forecast daily mean values. Specifically, it takes X̂

t�1

and X̂
t
as inputs into a two-dimensional (2D) convolution layer with a

kernel size of two, which reduces the dimensions of the input data by
half. Following this, the hidden feature ht (with dimensions of
1536 × 60 × 120) is derived from 12 repeated transformer blocks. The
input to the encoder is a data cube that combines both upper-air and
surface variables, with dimensions of 2 × 76 × 121 × 240. These dimen-
sions represent two preceding time steps (t − 1 and t), the number of
input variables, and the latitude (H) and longitude (W) grid points,
respectively. To account for the accumulation of forecast error over
time, the forecast lead time (t) is also included in the encoder’s input.
Besides ht, the encoder alsogenerates a low-rankmultivariateGaussian
distribution, NðΘt

pÞ, characterized by amean vector μt (128 × 60 × 120),
a covariance matrix σt (1536 × 60 × 120), and a diagonal covariance
matrix diagt (128 × 60 × 120). Intermediate perturbation vectors (ztp,
dimension: 128 × 60 × 120) are sampled from this Gaussiandistribution
(NðΘt

pÞ). These vectors, after being weighted by a learned weight vec-
tor, yield the final perturbation vectors zt (dimension: 1536 × 60 × 120).

Fig. 5 | Schematic diagram of the structures of the FuXi Subseasonal-to-
Seasonal (FuXi-S2S)model. a Inference stage of the FuXi-S2Smodel. ht represents
the hidden feature generated by the Encoder from the input data. The perturbation
vector zt is generated by the perturbation module, resulting in the perturbed

hidden feature ~h
t
. b Training stage of the FuXi-S2Smodel. NðΘt

pÞ and NðΘt
qÞ are the

low-rank multivariate Gaussian distributions generated by encoders P and Q,
respectively. The Kullback–Leibler (KL) divergence loss measures the discrepancy
between the distributions predicted by both encoders, NðΘt

pÞ and NðΘt
qÞ.
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The decoder then processes the perturbed hidden features
(~h

t
=ht + zt) through 24 transformer blocks and a fully connected

layer, resulting in the final ensemble output X̂
t + 1

. The number of
ensemble members generated equals the number of samples drawn
from the Gaussian distribution NðΘt

pÞ.
The FuXi-S2Smodel’s training primarily focuses on constructing a

Gaussian distribution that accurately represents the uncertainty in the
model’s predictions. A significant challenge in this process is the
deviation of the Gaussian distribution derived from the model’s pre-
dictions from the Gaussian distribution based on the target data, lar-
gely attributable to prediction errors. This challenge is addressed
through knowledge distillation, which enables the transfer of infor-
mation from real-world distributions to those predicted by the model.
Within this framework, the encoder Q plays a crucial role, converting
the target data into a Gaussian distribution. This distribution serves as
a supervisor for the distribution generated by the encoder P, aiming to
align both distributions closely by minimizing the Kullback–Leibler
(KL) divergence loss (LKL). This KL loss measures the discrepancy
between the distributions predicted by both encoders. As illustrated in
the Fig. 5b, during the training phase of the FuXi-S2S model, the
encoder Q, which shares the network structure with the encoder P,
processes a data cube containing target weather parameters from a
preceding and the current time steps:Xt andXt+1. It predicts a low-rank
multivariate Gaussian distribution (NðΘt

qÞ) similar to the encoder P.
Intermediate perturbation vectors are sampled from the encoder Q’s
distribution (NðΘt

qÞ) during training (see Fig. 5b), and from the encoder
P’s distribution (NðΘt

pÞ) during testing (see Fig. 5a). These vectors have
dimensions of 128 × 60 × 120. Additionally, an L1 loss is computed
between the model’s output (X̂

t + 1
) and the target Xt+1. Therefore, the

overall loss function at each autoregressive step is thus determined by
the following equation:

L = λLKLðPt ,QtÞ+ jX̂t + 1 � Xt + 1j ð1Þ

where λ, a tune-able coefficient balancing LKL and L1, is set to 1 × 10−4 in
this study. The design of this loss function serves two purposes: the
first term ensures the perturbation vector closely approximates the
true data distribution, while the second term ensures the prediction
unaffected by any perturbation vectors zt.

In this study, we employ 51 ensemble members for subseasonal
ensemble forecasting. As illustrated in Supplementary Fig. 15, the FuXi-
S2S model, when enhanced with flow-dependent perturbations
incorporated into its hidden features, demonstrates considerably
improved forecast performance compared to the FuXi-S2S model that
combines Perlin noise in the initial conditions with fixed perturbations
added to the hidden features. Notably, the addition of Perlin noise
results in only marginal improvements in forecast accuracy when the
ensemble size is small. However, with larger ensemble sizes, such as
the 51 members in this study, the addition of Perlin noise does not
enhance forecast accuracy.

Similar to FuXi, we utilize an autoregressive, multi-step loss
function to mitigate cumulative errors over long lead times, as out-
lined in Lam et al.27. The training process follows an autoregressive
training regime and a curriculum training schedule, incrementally
increasing the number of autoregressive steps from 1 to 17. Each
autoregressive step undergoes 1000 gradient descent updates,
resulting in a total number of 17,000 training steps. The training
process utilizes 8 Nvidia A100 graphics processing units (GPUs), each
employing a batch size of 1. Optimization is performed using the
AdamW89,90 optimizer with the following parameters: β1= 0.9 and
β2= 0.95, an initial learning rate of 2.5 × 10−4, and a weight decay
coefficient of 0.1. The optimization hyperparameters used for training
are summarized in Supplementary Table 1.

Saliency map
Recent developments in the field of XML have led to the emergence of
various techniques91, including saliency mapping. Saliency mapping
quantifies the influence of amodel’s input on its output46. Thismethod
is characterized by the gradient intensities within the saliency maps;
areas with higher gradients are considered critical by the model for
making accurate predictions.

The generation of saliency maps primarily depends on backward
propagation. This differs from standard model training as the propa-
gation target can be adjusted depending on the specific goal of the
analysis. Here, the saliency of the predicted anomaly relative to the
input data is given by:

JðXðcoÞÞ= �
X
i,j2D

j f nðXÞðco, i, jÞ � μðco, i, jÞj
σðco, i, jÞ ð2Þ

SðcijcoÞ=
∂JðXðcoÞÞ
∂XðciÞ

ð3Þ

where f denotes the FuXi-S2S model and n is the number of forward
steps, while μ and σ are the climatological mean and standard
deviation, respectively. D specify the geographical area of interest. ci
and co represent the input andoutput variables. Awell-trainedmodel is
expected to yield a saliency map that aligns well with the established
physical understanding of weather systems. In our study, we construct
an aggregated saliency map by averaging the individual maps
generated from each of the 51 ensemble members.

Evaluation method
Prior to evaluation, each variable in the 42-day forecasts undergoes a
detrending process to eliminate the linear trend. This step is essential
for removing the linear long-term trends potentially affected by global
warming92. For detrending, a linear regression model is fitted to esti-
mate the weekly mean linear trend from both forecasts and observa-
tions over the hindcast period (2002–2016). For the testing period
(2017–2021), this model takes the week of the year as input data to
calculate the trend, which is then subtracted from both the forecasts
and observations to obtain the detrended fields. Subsequently, the
deterministic metrics of the ensemble mean are evaluated using the
latitude-weighted TCC, which is calculated as follows:

TCCðc,τ, i, jÞ=
P

t02D Â
t0 + τ
c, i, j A

t0 + τ
c, i, jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t02DðÂ
t0 + τ
c, i, j Þ2

P
t02DðA

t0 + τ
c, i, j Þ2

q ð4Þ

where t0 represents the forecast initialization time in the testing
dataset D. H, and W denote the number of grid points in the latitude
and longitudedirections. The indices c, i, and j correspond to variables,
latitude, and longitude coordinates, respectively. τ refers to the fore-
cast lead time steps added to t0. Â

t0 + τ
c,i,j and At0 + τ

c,i,j are the differences
between the forecast or observation and the climatologicalmean, with
the climatological mean derived from data spanning the years from
2002 and 2016.

To evaluate the ensemble forecast performance, we use the
RPSS51,52 which quantifies the comparison between the cumulative
squared probability errors of a given forecast and a climatological
forecast. The calculation of the RPSS metric necessitates prior deter-
mination of the ranked probability scores (RPS) for both the forecast
(RPSforecast) and the climatological forecast (RPSclim) should be calcu-
lated first. The RPS aggregates the squared probability errors across K
(K = 3 in this work) categories, such as tercile, arranged in ascending
order. The tercile bounds are determined based on the average values
over either 1-week or 2-week periods for each corresponding verifica-
tion period. These calculations of tercile bounds are performed
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separately for each forecast model and observation (ERA5 data). The
metric assesses the accuracy with which the probability forecast pre-
dicts the actual observation category. The RPS score is derived from
the sumof the squareddifferences between the cumulative categorical
forecast probability and its observed counterpart, where pO(i) = 1
denotes the observed category and pO(i) = 0 represents other cate-
gories:

RPSforecast =
XK
k = 1

ðFforecastðkÞ � FOðkÞÞ ð5Þ

RPSclim =
XK
k = 1

ðFclimðkÞ � FOðkÞÞ ð6Þ

where FforecastðkÞ =
Pk

i= 1pforecastðiÞ, FclimðkÞ =
Pk

i = 1 pclimðiÞ, FOðkÞ =
Pk

i = 1 pOðiÞ
represent the kth components of the cumulative forecast, climatolo-
gical, and observational distributions, respectively. And pforecast(i),
pclimðiÞ,pO(i) correspond to the forecasted, climatological, andobserved
probability of the event’s occurrence in category i (i ≤ k). Crucially, the
RPS is affected by both the forecast probabilities attributed to the
observed category and the probabilities assigned to other categories.
The RPS value varies between 0 and 1, where a lower value denotes a
smaller forecast probability error, and thus a more accurate forecast.
Specifically, a RPS value of 0 indicates a perfectly accurate categorical
forecast. With the RPS values of both the forecast and the climatolo-
gical forecast, the RPSS can be determined as:

RPSS= 1� <RPSforecast>
<RPSclim>

ð7Þ

where the brackets <...> denote the average of the RPSforecast and
RPSclim values across all forecast-observation pairs. Since each forecast
category is equally probable by design, the climatological forecast
assumes a 33% probability of occurrence for each category. The RPSS
metric serves a comparative measure against the climatological
forecast. Its value ranges from —1 to 1, where 1 corresponds to a
perfect forecast and higher values suggest better forecast perfor-
mance. A positive RPSS value indicates superior accuracy over the
climatological forecast, while a negative value suggests inferior
accuracy. A value of zero suggests that the forecast has no added
skill compared to the climatological forecast.

Additionally, we use the BSS52 to evaluate the performance of
extreme forecasts. The BSS, a widely used metric for assessing the
quality of categorical probabilistic forecasts, can be considered as a
special case of the RPSS with two forecast categories93. The BSS is
computed using the following equation:

BSS= 1� <BSforecast>
<BSclim>

ð8Þ

where BSforecast and BSclim represent the Brier Scores (BS)94 for the
model’s forecast and the climatological forecast, respectively. Simi-
lar to the RPS, the BS quantifies themean squareddifference between
the predicted probabilities and observations (either 0 or 1) in binary
probabilistic forecasts. In this study, the BSS is calculated for the
ensemble mean of both FuXi-S2S and ECMWF S2S, using the 90th
climatological percentiles as the threshold for extreme events. The
BS ranges from 0 to 1, with lower values indicating a better
agreement between ensemble forecasts and observations with
0 suggesting the best possible BS score. On the contrary, a higher
BSS, up to a maximum of 1, indicates better performance. The BSS
measures the improvement of a forecast’s BS (BSforecast) relative to
that of a climatological forecast (BSclim) as reference. A BSS of one
indicates a perfect forecast, zero denotes no improvement over

climatology, and negative values suggest inferior performance
compared to climatology.

The evolutionofMJO is typically characterizedusing theReal-time
MultivariateMJO (RMM) index, as originally developedbyWheeler and
Hendon66. TheRMM1 andRMM2 indices represent the first and second
principal components of the combined EOF. This EOF is derived based
on the daily mean values of OLR, zonal wind at 850 hPa (U850), and
zonal wind at 200 hPa (U200), all averagedwithin the latitude range of
15° N and 15° S95. In this study, we use the EOFs derived byWheeler and
Hendon (2004)66. Toobtain the predictedMJO indices, data fromboth
the FuXi-S2S and ECMWF S2S models are firstly interpolated from a
spatial resolution of 1.5°–2.5°, and projected onto the observed EOFs.
After calculating the ensemble mean anomalies, the RMM for the
ensemble mean of both modes was derived. The amplitude and phase
of the MJO are respectively defined by the formulas: RMMA=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RMM12ðtÞ+RMM22ðtÞ
q

and θ= tan�1 RMM22ðtÞ
RMM12ðtÞ. To assess the quality of

the MJO forecasts, we calculate the bivariate COR using the following
equation:

CORðτÞ=
PN

t = 1½a1ðtÞb1ðt,τÞ+a2ðtÞb2ðt,τÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t = 1½a2

1 ðtÞ+a2
2ðtÞ�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t = 1½b2

1 ðt,τÞ+b2
2ðt,τÞ�

q ð9Þ

where a1(t) and a2(t) are the observed RMM1 and RMM2 at time t
derived from the ERA5 reanalysis dataset. Correspondingly, b1(t, τ) and
b2(t, τ) represent the forecasts for time t with a lead time of τ days,
respectively. N denotes the number of total predictions. We apply the
threshold of COR=0.5 for skillful prediction95.

Additionally, we assessed the respective contributions of ampli-
tude and phase to the prediction skills of the MJO by examining the
COR and error metrics of ensemble mean forecasts for each compo-
nent. The COR for amplitude (CORamplitude) and phase (CORphase) were
calculated using the methods outlined by Wang et al.96 as follows:

CORamplitudeðτÞ=
PN

t = 1 RMMAobsðtÞ×RMMAforecastðt,τÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t = 1 RMMA2

obsðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t = 1 RMMA2
forecastðt,τÞ

q ð10Þ

CORphaseðτÞ=
PN

t = 1 RMMAobsðtÞ× cosðθforecastðt,τÞ � θobsðtÞÞPN
t = 1 RMMA2

obsðtÞ
ð11Þ

where RMMAobs and RMMAforecast represent the observed and pre-
dicted amplitudes of the MJO, respectively, while θobs and θforecast
denote the observed andpredictedphases. Additionally, we computed
the average amplitude and phase errors (ERRORamplitude and
ERRORphase) as follows, based on the method described by Rashid
et al.95:

ERRORamplitudeðτÞ=
1
N

XN
t = 1

ðRMMAforecastðt,τÞ � RMMAobsðtÞÞ ð12Þ

ERRORphaseðτÞ=
1
N

XN
t = 1

tan�1 a1ðtÞb2ðt,τÞ � a2ðtÞb1ðt,τÞ
a1ðtÞb1ðt,τÞ+a2ðtÞb2ðt,τÞ

� �
ð13Þ

Further details about the COR and ERROR for the amplitude and phase
are presented in the Supplementary Fig. 9.

Atmospheric predictability exhibits significant day-to-day varia-
bility, which in turn affects the potential accuracy ofweather forecasts.
To determine whether FuXi-S2S consistently outperforms ECMWF S2S
despite this variability, we adopted a bootstrapping approach for sig-
nificance testing. This method involves generating a large number of
synthetic datasets, for example, 1000 in this work. For each day within
these datasets, a forecast is randomly selected from either model A or
model B. The forecast skill of each synthetic dataset is then evaluated
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by comparing it with actual observation. If the performance ofmodel A
surpasses the 97.5th percentile of the skill distribution derived from
the synthetic datasets, it can be considered “significantly better” than
model B. In contrast, if its performance falls below the 2.5th percentile,
it is regarded as “significantlyworse”.We also analyzedwhere the FuXi-
S2S and ECMWF S2S models are significantly better or worse than the
climatological forecasts, with model B representing these forecasts.
Throughout the paper, significance testing has been applied to all bar
plots and spatial maps of statistical metrics. For all the bar plots in the
paper, a pale color is used when the FuXi-S2S model does not show a
statistically significant improvement over the ECMWF S2S model.
Additionally, we have marked areas on all spatial maps where the skill
score is statistically significant with stippling.

Data availability
We downloaded a subset of the daily statistics from the ERA5 hourly
data from the official website of Copernicus Climate Data (CDS) at
https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-
era5-statistics. The ECMWF S2S data were obtained from https://apps.
ecmwf.int/datasets/data/s2s/. The 1° CPCOLRdata are provided by the
NOAAPhysical Sciences Laboratory (PSL) from their website of https://
psl.noaa.gov. Rainfall data from the Global Precipitation Climatology
Project (GPCP) was obtained from the National Oceanic and Atmo-
spheric Administration (NOAA), specifically the National Centers for
Environmental Information (NCEI), which is accessible at https://www.
ncei.noaa.gov/products/global-precipitation-climatology-project. The
relevant data from each figure in the main manuscript and in the
Supplementary Information are provided in https://zenodo.org/
records/1266270297.

Code availability
The source code employed for training and running FuXi-S2Smodels in
this research is accessible within a specific Google Drive folder (https://
drive.google.com/drive/folders/1z47CRQdKFZaOjtKQWSNZobC1_
RePUVIK?usp=sharing)98. As the FuXi-S2S model and code are essential
resources for this study. Currently, access to these resources is limited.
For inquiries and access to the Google Drive link kindly reach out to Li
Hao at the following email address: lihao_lh@fudan.edu.cn. Calculation
of MJO index is based on the EOFs derived by Wheeler and Hendon
(2004)66. The implementation of Perlin noise is based on publicly
available from the GitHub repository: https://github.com/pvigier/
perlin-numpy.
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