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Going beyond gadgets: the importance of
scalability for analogue quantum simulators

Dylan Harley 1 , Ishaun Datta 2, Frederik Ravn Klausen1, Andreas Bluhm 3,
Daniel Stilck França 4, Albert H. Werner 1 & Matthias Christandl1

Quantum hardware has the potential to efficiently solve computationally dif-
ficult problems in physics and chemistry to reap enormous practical rewards.
Analogue quantum simulation accomplishes this by using the dynamics of a
controlled many-body system to mimic those of another system; such a
method is feasible on near-term devices. We show that previous theoretical
approaches to analogue quantum simulation suffer from fundamental barriers
which prohibit scalable experimental implementation. By introducing a new
mathematical framework and going beyond the usual toolbox of Hamiltonian
complexity theory with an additional resource of engineered dissipation, we
show that these barriers can be overcome. This provides a powerful new
perspective for the rigorous study of analogue quantum simulators.

The simulation of quantum systems has long been identified as a
potential application for quantum technologies1, for which long-term
benefits may range from condensed matter physics to quantum
chemistry and the life sciences2,3. This problem is classically intract-
able, owing to exponential growth in the number of parameters
required to describe the state of a many-body system, whereas the
advantage of quantum hardware for this purpose is obvious: one
merely has to prepare the required many-body state. On a universal
quantum computer, time evolution can then be discretised and
approximated by a quantum circuit, through a series of quantum
gates4. This approach, known as digital quantum simulation5, has seen
extensive theoretical development6,7 and remains a promising route
towards attaining quantum advantage8. However, useful and scalable
simulations remain out of reach for near-term technology9 due to the
requirement of a large universal fault-tolerant quantum computer. In
this work, we focus on an alternative approach: analogue quantum
simulation.

Broadly speaking, an analogue quantum simulator consists of an
engineered and well-controlled many-body system with adjustable
interactions, with the capability to prepare initial states and perform
measurements10. By tuning such a system, one aims to mimic a dif-
ferent target system; in this way, computing the dynamics of the target
system can be accomplished through the native time evolution of the
simulator, without requiring the application of a universal set of gates.

These more modest physical requirements promise near-term poten-
tial for analogue quantum simulation, despite the inherent limitations
fixed by a given experimental apparatus.

Characterisation of analogue quantum simulators is, unlike the
digital case, relatively under-explored from a theoretical perspective.
Existing work in this direction includes that of Cubitt et al.11, in which
the authors define a notion of Hamiltonian simulation in terms of low-
energy encodings: a low-energy subspace of the simulatorHamiltonian
is required to approximate the spectrum of the target Hamiltonian.
This notion has been extraordinarily successful in making complexity-
theoretic reductions between various Hamiltonians, leading to the
classification of many so-called universal families12–16 which have the
power to simulate all of many-body physics. Such reductions do not
necessarily aim to capture experimental possibilities, however: as we
prove, the relatively simple task of encoding a system of n non-
interacting qutrits into a linear number of qubits in this regimeends up
requiring a simulator system whose individual interactions scale as
Ω(n). This scaling arises due to the dimension mismatch when one
encodes a qutrit into a set of qubits, resulting in unwanted local con-
figurations that must be prohibited in the low-energy subspace by a
large energy penalty (see Fig. 1). Similar scalings are observed to arise
through the use of Hamiltonian gadgets17,18, a tool used for many
Hamiltonian reductions. Although the qutrit-to-qubit result does not
extend to the casewhere thenqutrits are simulatedbyΩ(n2) qubits, we

Received: 16 November 2023

Accepted: 19 July 2024

Check for updates

1Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark. 2Stanford University, 450 Serra Mall,
Stanford, CA 94305, USA. 3Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France. 4Univ. Lyon, ENS Lyon, UCBL, CNRS, Inria, LIP Lyon
Cedex 07, France. e-mail: dh@math.ku.dk

Nature Communications |         (2024) 15:6527 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2927-1034
http://orcid.org/0000-0003-2927-1034
http://orcid.org/0000-0003-2927-1034
http://orcid.org/0000-0003-2927-1034
http://orcid.org/0000-0003-2927-1034
http://orcid.org/0000-0002-2117-9922
http://orcid.org/0000-0002-2117-9922
http://orcid.org/0000-0002-2117-9922
http://orcid.org/0000-0002-2117-9922
http://orcid.org/0000-0002-2117-9922
http://orcid.org/0000-0003-4796-7633
http://orcid.org/0000-0003-4796-7633
http://orcid.org/0000-0003-4796-7633
http://orcid.org/0000-0003-4796-7633
http://orcid.org/0000-0003-4796-7633
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50744-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50744-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50744-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50744-9&domain=pdf
mailto:dh@math.ku.dk


also note that blowing up the system size may, in some cases, neces-
sitate strong interactions in order for correlations to spread fast
enough through the enlarged system.

We argue that for practical applications to large-scale many-body
simulations, such as for quantum chemistry, the simulation of ann-site
many-body system should not require the implementation of indivi-
dual interactions whosemagnitude scales with n. The necessity of this
requirement is clear from a logistical perspective since an experi-
mental device will only be able to implement a bounded range of
energy scales for a single interaction. However, there is also philoso-
phical motivation to be suspicious of such scalings: a many-body
Hamiltonian is inherently a modular object, and an analogue quantum
simulation should reflect this. The addition of a few qubits and local
interactions to one end of the physical system should require an ana-
logous action on the simulator—it shouldnot require the adjustmentof
every other interaction in the system.

Despite this additional requirement of scalability, there is also a
sense in which the framework of11 can be relaxed: the requirement to
simulate the full physics of a target Hamiltonian in the low-energy
subspace of a simulator is unnecessary in many cases. For example,
one may only wish to simulate a specific set of local observables, or
exploit symmetries to restrict to an invariant subspace under the
Hamiltonian (a regime explored, in the case of a low-energy subspace,
by Aharonov et al.19). Furthermore, as the experimental distinction
between analogue and digital devices becomes increasingly
blurred9,20, it is important to consider a range of experimental possi-
bilities beyond pure Hamiltonian evolution, such as intermediate uni-
tary pulses and open-system dynamics.

In this work, we propose a mathematical framework for analogue
quantum simulators to address the above points and capture the full
scope of experimentally realisable systems. We additionally develop a
general characterisation for Hamiltonian gadgets, and find rigorous
no-go results for their scalable use for locality reduction. Finally, we
construct a new dissipative gadget that circumvents the restrictions
we find in the pure Hamiltonian case. In the regime of scalable quan-
tum simulators, we do not expect to talk about a simple class of uni-
versal Hamiltonians that can simulate all others in any sense
resembling previous results. On the other hand, the more general
notion of simulation, which we outline in this work, gives rise to a new
notion of universality, not phrased in terms of Hamiltonian classifica-
tion but rather the dynamics of observables. We expect that here a
resource theory of simulation should arise, with the power of simula-
tors related by a partial order in analogy to the theory of multipartite
states and tensor networks21–23.

Results
The analogue quantum simulator
In this section, we describe our mathematical framework for analogue
quantum simulation, for which further details can be found in the

Methods section. The capabilities of a simulator are characterised by a
target Hamiltonian H, a set of states Ωstate, and a set of observables
Ωobs; the goal of the simulator is then to approximate the evolution of
the observables in Ωobs under H, starting from initial states in Ωstate.
Restricting the set of states Ωstate may offer practical and theoretical
benefits: for example, one could reduce to those that can be reliably
prepared on an experimental device, or take advantage of the sym-
metries of H to restrict Ωstate to a specific invariant subspace and
simulate only the reduced Hamiltonian. Likewise, Ωobs may reflect the
capabilities of themeasurement apparatus, or for amany-body system
one might take advantage of a highly localised set of observables to
only simulate their Lieb-Robinson light cone24, significantly reducing
the hardware overhead necessary to simulate for small times. Such
techniques have been studied in the context of many-body state
exploration25,26, and more recently in the realm of analogue
simulation27.

An analogue quantum simulator can bemathematically described
in terms of three components, whichwe illustrate in Fig. 2. First, a state
encoding Estate, which maps initial states from the target set ρ ∈ Ωstate

into the simulator system. This is defined in terms of a quantum
channel, allowing one to interpret the target state as a quantum input
to the simulator, in contrast to the regime of fault-tolerant digital
quantum computers whose input is ultimately classical. Next, the
simulator’s time evolution is specified by a family of quantumchannels
fTtgt2½0,tmax�. These describe the dynamics of the simulator, for example
the evolution under a simulator Hamiltonian H0. However, one could
also consider Tt accounting for interactions with a bath (such cap-
ability is required by the criteria for analogue simulators given by Cirac
et al.10), modelling errors, or capturing other engineered controls
reflecting the possibilities of the experimental apparatus. The final
component of the simulator is an encoding for observables Eobs, a
unital and completely positive map which sends an observable of
interest O ∈ Ωobs to the relevant observable to be measured on the
simulator system.

After the encoding and time evolution steps for a given initial
state ρ ∈ Ωstate and time t 2 ½0,tmax�, the simulator system lies in the
state ðT

t°EstateÞðρÞ, upon which one measures the encoded observable
EobsðOÞ for a chosen O ∈ Ωobs. The simulation has accuracy ϵ if the
expectation value of this measurement is within ϵ of its target value—
that is, the expected value ofmeasuringO on e−itHρeitH. Note that rather
than a Hamiltonian H, one could just as easily consider the simulation
of an open target system, for instance described by a quantum dyna-
mical semigroup28,29.

For practical simulators, some constraints must be placed on the
maps used in this definition. We generally assume that both Estate and
Eobs are local in a sense we define, to ensure that local errors corre-
spond to local noise on the target system, and that local observables
can be measured locally on the simulator system. Moreover, the time
evolution channel Tt should be implementable without the need for

Fig. 1 | Qutrit-to-qubit encoding energies. A sketch of the on-site energies for a
system of non-interacting qutrits under a low-energy encoding, before and after
simulation in the sense introduced by Cubitt et al.11. In this example, each qutrit is
mapped to a system of two qubits. The original Hamiltonian consists of a sum ∑jP(j)

of rank two projectors P(j) applied to each qutrit, resulting in energy levels 0,1,1. In
order to simulate the qutrit Hamiltonian, an energy penalty of at least Δ must be
given to one of the four local states at each site. This is a simplification: in general
the simulator sites H0

j may interact and hence local energies are not well-defined.
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feed-forward measurement results for adaptive control: the lack of
error correction is an important and characteristic feature of analogue
simulators.

Generalising Hamiltonian gadgets
A ubiquitous technique for Hamiltonian reductions in complexity
theory is the use of so-called Hamiltonian gadgets17,18,30,31. These pro-
vide a recipe to simulate complicated many-body interactions from a
more restrictive family, for example, to simulate a 3-body interaction
using 2-body interactions. In this section, we arrive at a general form-
alism for such constructions, in order to prove that they are associated
with unavoidable energy scalingswhichposea significant challenge for
experimental realisations. The usual procedure, as formulated by
Bravyi et al.18 for example, is as follows: starting from a target Hamil-
tonian H (which might be a single interaction in a far larger system),
one first adjoins an ancillary qubit m. On this enlarged system one
defines the gadget Hamiltonian by H0 =Δ∣1i 1h ∣m +V , where Δ ≫ 1 is a
large parameter used to define a low-energy subspace approximately
in termsof the ∣0i state of themediator qubit, andV is a relatively small
termwhich, via a perturbative approximation, effectively simulates the
target H in this low-energy subspace.

It is not surprising that thismethod of construction generically
requires strong interactions corresponding to the large value of Δ
needed to provide a sufficiently high energy penalty, but it is not
immediately clear that there is no way around this cost (possibly
outside of the perturbative regime). Indeed, several works32–34 have
explored the optimisation of Hamiltonian gadgets for practical
implementation, though generally the problem scaling interactions
is not eliminated entirely. In this work, we produce a generalized
framework for gadgets in order to prove a lower bound for
such scalings, suggesting that such techniques may be unsuitable
for experiments on large systems. Our results are summarised in
Fig. 3b, and full mathematical details can be found in the Methods
section.

Let H be the target Hamiltonian on a Hilbert space H, and let the
gadget Hamiltonian H0 act on the space H�A, for A some ancillary
system. We require the following two properties of H0, illustrated
in Fig. 3a:

• Accuracy: The spectrum of H should be approximated by that of
H0, in some subspace defined by a projector P0 2 ProjðH�AÞ, up
to error ϵ≥0.

• Combination: The above property should hold even when any
additional Hamiltonian Helse is added to both H and H0, at the

expense of an additional spectral error ζ∥Helse∥, where ∥ ⋅ ∥
denotes the operator norm.

For small error parameters ϵ and ζ, these properties are—non-
trivially—sufficient to forceH0 to satisfy the following definition, which
resembles previously studied notions of simulation11,18. We say that H0

is an (η, ϵ)-gadget (where η is a new parameter related to ζ, also mea-
suring the ability of the gadget to combine with other terms) for H if
there exists a projector P 2 ProjðAÞ n f0g and a unitary operator U 2
UðH� AÞ satisfying two conditions. Firstly, U must be η-close to the
identity: ∥U − I∥≤η. Then, defining the projector P0 by P0 =UðI� PÞUy

(so that η in some sense quantifies how close P 0 is to a pure projection
on the ancillary system), the second condition ensures that the spec-
trum P0H0P0 should approximate that of H, up to some multi-
plicity: k P0H0P0 � UðH � PÞUy k ≤ ϵ.

This gadget definition expresses the quality of a gadget through
two parameters: ϵ can be thought of as the absolute error of the gad-
get, whilst η bounds the error incurred when the gadget is combined
with other interactions in a Hamiltonian. In particular, when ∥Helse∥ ~ n
grows with the size of the system, η must correspondingly shrink to
hold the error constant.

Despite the generality of this definition, it is sufficient to guaran-
tee that such gadgets can be combined in parallel. That is, given a
many-body Hamiltonian H =∑iHi and sufficiently good gadgets H0

i for
each of the individual terms Hi, the Hamiltonian H0 =

P
iH

0
i constitutes

a good gadget for H. A similar result holds for low-energy gadgets (for
which the projector P0 is replaced by a projector onto the low-energy
subspace of H0), and also leads to a generalisation of the ground state
energy estimation result of Bravyi et al.31.

On the other hand, we show that, when used for certain types of
reduction, gadgets come at an unavoidable energy cost. In particular,
any attempt to simulate a k-body interaction H via a gadget H0 con-
sisting of k0-body interactions for k0<k necessarily requires interaction
strengths scaling as Ω(η−1). In order to control the absolute error of a
many-body system, η−1 must grow with the size of the system, leading
to unfeasible energy scalings and constituting a significant barrier for
Hamiltonian reductions in the regime of experimentally realisable
analogue quantum simulators.

Gadgets from the quantum Zeno effect
To circumvent our no-go result for scalable Hamiltonian locality
reduction, in this section, we exhibit a new kind of gadget, taking
advantage of the non-unitary possibilities afforded by a general

Fig. 2 | Analogue and digital simulation. A schematic description of our frame-
work for analogue quantum simulation, in contrast with the digital approach. Both
approaches aim to compute the observable expectation value

hOiðtÞ= tr½Oe�itHρeitH �, given an initial state ρ. The analogue simulator, which uses
state encodings Estate and Eobs respectively, has accuracy ϵ

if jtr½Oe�itHρeitH � � tr½EobsðOÞðTt°EstateÞðρÞ�j ≤ ϵ.
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simulation channel Tt. This works by restricting the mediator qubit to
its ∣0i state not with a strong interaction but through inertia induced
by the quantum Zeno effect. This powerful resource can be used to
build a direct k-to-(⌈k/3⌉ + 1)-local gadget, without interactions scaling
with the size of the system.

The recipe for this construction is qualitatively similar to that for
usual Hamiltonian gadgets: starting from a target interaction H, a
mediator qubit m is adjoined to the system, and evolves under a
simulatorHamiltonianH0. In this case, however,H0 neednot contain an
interaction Δ∣1i 1h ∣m, with Δ scaling with the size of the system. Instead,
a dissipative channel is applied to the qubit m at regular intervals
separated by time δt. Provided that δt is small enough, the quantum
Zeno effect keeps m effectively fixed in its ∣0i state with high prob-
ability, whilst the remainder of the system evolves as though under the
target Hamiltonian H. This is illustrated by Fig. 4, and a rigorous
description can be found in the Methods.

Thesenon-unitarygadgetsmay be combinedwithother terms in a
Hamiltonian at no extra cost (effectively corresponding to a gadget
with combination error parameter η =0), yielding an improvement on
any possible pure Hamiltonian gadget. On the other hand, the con-
struction has various caveats: strong interactions (though not scaling
with system size) are still necessary for high accuracy of a single

gadget, and we expect that combining multiple such gadgets will
require strong interactions, to suppress the probability of any ancillary
qubit transitioning into the ∣1i state. Moreover, the precisely engi-
neered stroboscopic dissipation channel constitutes a new experi-
mental challenge.

Nevertheless, this construction provides insight into the ways in
which non-unitary dynamicsmight be exploited for practical analogue
quantum simulation problems—indeed, similar tools have already
found applications in theory35,36 and in practice37 for digital quantum
computing. In light of our theorems implying extensive interaction
scaling for qutrit-to-qubit mappings and gadget locality reduction,
which effectively serve as no-go theorems for practical universal
simulators built from pure Hamiltonian dynamics, we anticipate that
similar hybrid techniques will constitute a powerful tool for attaining
useful quantum advantage with quantum simulators.

Methods
Criteria for quantum computation and simulation
In a reviewof the prospective possibilities of quantumcomputing38 the
author provided a set of requirements, now known as the DiVincenzo
criteria, designed to serve as a full specification for implementations of
universal quantum computers. These are summarised in Fig. 5.

Fig. 4 | Dissipative gadget evolution. Circuit representation of the non-unitary
gadget procedure for a single timestep. The initial state ∣ψ0ð0Þ

�
H∣0iA is evolved

under a Hamiltonian H0 for time δt, resulting in a superposition of states with the
ancillary qubit in the ∣0iA and ∣1iA positions. After applying the dissipative channel

to the A system, the system collapses to its ∣0iA state with high probability due to
the quantum Zeno effect. Meanwhile, the resulting state on the H system
approximately corresponds to evolution under a different Hamiltonian, HH.

Fig. 3 | Hamiltonian gadget characterisation. a The interaction hypergraph of a
Hamiltonian containing a 3-local interaction which is replaced by a 2-local gadget.
The gadget property requires that the spectrum is unchanged up to ϵ + ζ∥Helse∥, for
ϵ, ζ >0, when restricted by a projector P0. b Structure of gadget results; boxes
highlighted in yellow indicate the central argument for the energy scaling no-go.

We first formalise the desirable properties of gadgets and show that they imply a
general definition, fromwhichwe can prove the energy scaling theorem along with
various combination properties, including a generalisation of a result of Bravyi
et al.31 for ground state energy (GSE) estimation.

Article https://doi.org/10.1038/s41467-024-50744-9

Nature Communications |         (2024) 15:6527 4



As well as concretely providing the experimentalist with a neces-
sary set of criteria to aim towards, the sufficiency of the DiVincenzo
criteria provides the theorist with a canonical yardstick to judge the
applicability of their protocol to idealised quantum hardware. It is,
therefore, important that such requirements reflect exactly what can
be expected from quantum technology in the long term, neither
excluding feasible technologies nor including unfeasible procedures.

A similar set of criteria for analogue quantum simulators is dis-
cussed by Cirac et al.10, also summarised in Fig. 5. These are all natural
requirements to ask of a quantum simulator, but it is noteworthy that
criterion III does not provide any restriction on the interactions that
one should expect the simulator to include. This leads to a problem
which does not arise for the DiVincenzo criteria: whereas a quantum
computer can approximate arbitrary k-qubit gates from the compact
set UððC2Þ�kÞ of unitary transformations relatively cheaply due to the
Solovay-Kitaev theorem39, the task of an analogue quantum simulator
is to implement k-qudit interactions from the unbounded set of pos-
sible Hamiltonians Herm ððCÞdÞ�kÞ. The ability to realise arbitrarily
strong interactions on a physical device is clearly an impossibility.

Thus, the key extra criterion which we demand of an analogue
quantum simulator is that the encoding of the target Hamiltonian
should be size-independent. Concretely, if the Hamiltonian H to be
encoded consists of local interactions ðhiÞmi= 1 on n sites then the
encoding of individual terms should not depend, for instance by
polynomial scaling of interaction strengths, on the size of the physical
system n. In particular, we argue that methods for practical analogue
quantum simulation must respect a limit on the interaction strengths
of the simulator Hamiltonian. The strongest interactions should be
bounded by some constant fixed by physical limitations, and the
weakest interactions should be similarly bounded from below (since
sufficiently weak interactions will be overwhelmed by noise in the
simulator). In addition, in order to ensure the local and size-
independent encoding of each site into the simulator, we argue that
the simulator should grow no faster than linearly with the size of the
target system. If each site is encoded into more than O(1) simulator
sites, it will be impossible to encode the full system into a simulator of
the same dimension while preserving geometric locality (without
introducing scaling interactions). We summarise these requirements
with the following qualitative definition:

Definition 1. (Size-independent simulation) We say that an analogue
quantum simulation is size-independent if the simulation of a n-site
Hamiltonian canbe implemented scalablywithn. By this, wemean that
thenumber of qubits used in the simulation shouldgrowno faster than

linearly in n, and the interaction strengths necessary should
remain Θ(1).

It is worth noting that further formalisation is required to make
this definition robust. For example, suppose we are given a Hamilto-
nian H = h1 + h2 where ∥h1∥, ∥h2∥ =O(n−1), which violates the size-
independence requirement. One could simply define h0

1 =h1 +K ,
h0
2 =h2 � K , for some K =Θ(1), and then H =h0

1 +h
0
2 can be written in a

form which does not obviously violate Definition 1. To exclude such
possibilities, we could impose an additional requirement that H is
given in a canonical form, such as that described by Wilming et al.40.

As well as being experimentally and qualitatively desirable,
encoding interactions independently has quantitative benefits; as
noted by Cubitt et al.11, for a suitably local Hamiltonian encoding, local
errors on the simulator system will correspond to local errors on the
target system. For NISQ hardware, this represents an extremely useful
way to mitigate the negative effects of a noisy simulation: rather than
random scrambling, noise can be viewed as the manifestation of
physically reasonable noisy effects on the target system.

Finally, studying the power of Hamiltonians subject to interaction
energies that are constant in system size is well-motivated in its own
right, from the perspective of Hamiltonian complexity. For example,
Aharonov et al.19 show that restriction to such Hamiltonians will
necessarily sacrifice some sense of the universality of the simulator.
Earlier results in Hamiltonian complexity theory31, however, show that
inmany cases, it is still possible to simulate ground state energies up to
an extensive error.

Hamiltonian complexity theory
We say that a Hamiltonian H on the space of n qubits H= ðC2Þ�n

is k-
local if it can be written as H =

PN
j = 1hj , where each of the terms hj acts

on at most k of the qubit sites. We consider the hj individual interac-
tions in the Hamiltonian and make reference to the interaction
hypergraph, whose vertices are qubits and whose (hyper)edges are
interactions (joining the qubits on which they act), illustrated in Fig. 6.

Informally, the k-local Hamiltonian problem asks whether the
ground state energy of a k-local Hamiltonian is less than a, or greater
than b, for some real numbers a < b separated by a suitably large gap.
This problem lies in the QMA complexity class: the natural quantum
analogue to the classical NP, containing problems whose solutions can
be efficiently verified (but not necessarily found) on a quantum
computer.

Definition 2. (k-local Hamiltonian problem) The k-local Hamiltonian
problem is the promise problem which takes as its input a k-local
Hamiltonian H =

PN
j = 1 hj on the space of n qubits H= ðC2Þ�n

, where

Fig. 5 | A summary of the DiVincenzo38 and Cirac-Zoller10 criteria. The DiVincenzo criteria provide necessary and sufficient requirements for universal digital quantum
computers. Similarly, the Cirac-Zoller criteria offer a set of requirements for analogue quantum simulation, for which universality may not be available.
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N = poly(n), and for each j we have ∥hj∥ ≤ poly(n) and hj is specified by
O(poly(n)) bits.

Given a < b with b−a > 1/poly(n), let λ0(H) denote the lowest
eigenvalue ofH. Then the output should distinguish between the cases

• Output 0: The ground state energy of H has λ0(H) ≤ a.
• Output 1: The ground state energy of H has λ0(H) ≥ b.
Through the Feynman-Kitaev circuit-to-Hamiltonian

construction41, it was established that the 5-local Hamiltonian pro-
blem is QMA-complete, and subsequent works optimising the
construction30 and using gadget techniques42 reduced this further to
show the QMA-completeness of the 2-local Hamiltonian problem.
Various further optimisations have been found to refine the problem
and further restrict the family of allowed Hamiltonians (see for
example, refs. 43,44); indeed hardness results have been shown to
hold even under the significant restriction to 1-dimensional transla-
tionally invariant systems45. QMA-completeness is closely related to a
notion of universality for simulators; an equivalence was proved by
Kohler et al.15.

The constructions involved in the aforementioned results contain
Hamiltonian interaction strengths which scale polynomially, or expo-
nentially, with system size—such Hamiltonians are infeasible for an
analogue simulator. A notable exception to this is the work of Bravyi
et al.31, in which the authors use the Schrieffer-Wolff transformation to
show that bounded-strength interactions are sufficient for one to
reproduce the ground state energy of the original Hamiltonian up to
an extensive error.

As much of this Hamiltonian simulation literature focuses on
specific complexity-theoretic problems, comparatively little work
has been done to actually define a mathematical framework for
analogue quantum simulation to be used in experiment. Notable
recent work in this direction includes that of Cubitt et al.11, in which
the authors study methods of encoding Hamiltonians via a map
Eobs : HermðHÞ ! HermðH0Þ, which satisfy the natural requirement of
preserving the spectrumof observables. Additionally, in the case that
H=�n

i = 1Hi is a space of many sites, they introduce the further notion
of local encodings, which map local observables in H to local
observables in H0 =�n0

i= 1H0
i. By deriving the most general possible

form of a spectrum-preserving Hamiltonian encoding, and then
imposing natural locality conditions, the authors arrive at the fol-
lowing definition.

Definition 3. (Local Hamiltonian encoding11) A local Hamiltonian
encoding is a map Eobs : Linð�n

i = 1HiÞ ! Linð�n
i= 1H0

iÞ of the form

EobsðMÞ=V ðM � P + �M �QÞV y , ð1Þ

where P and Q are locally distinguishable orthogonal projectors on an
ancillary space A=�n

i= 1Ai, and V =�n
i = 1Vi where Vi 2 IsomðHi �

Ai,H0
iÞ for all i. Here �M denotes the complex conjugate of thematrixM.
Projectors P,Q 2 Projð�iAiÞ are locally distinguishable if, for all i,

thereexistorthogonal projectors Pi,Qi 2 ProjðAiÞ such that (Pi⊗ I)P = P
and (Qi ⊗ I)Q =Q. Generally, we consider the case of rank(P) > 0
(referred to as standard11), for which one can define a corresponding
state encoding

EstateðρÞ=V ðρ� τÞV y , ð2Þ

where τ is a state on A satisfying Pτ = τ.
Moreover, the authors define the following notion of simulation,

which relaxes the requirements of locality and allows for some error in
the simulated eigenvalues.

Definition 4. ((Δ, η, ϵ)-simulation11) A Hamiltonian H0 2
HermðH0Þ=Hermð�n

i = 1H0
iÞ is said to (Δ, η, ϵ)-simulate a Hamiltonian

H 2 HermðHÞ=Hermð�n
i = 1HiÞ if there exists a local encoding (Defini-

tion 3) EobsðMÞ=V ðM � P + �M � QÞV y such that
(i) There exists an encoding ~EobsðMÞ= ~V ðM � P + �M �QÞ~V y

(where
~V 2 IsomðH�A,H0Þ need not have a tensor product structure as
in Definition 3) such that k V � ~V k ≤η and ~EobsðIÞ=P ≤ΔðH0 Þ is the
projection onto the low-energy (≤ Δ) subspace of H0, and

(ii) k P ≤ΔðH0 ÞH
0P ≤ΔðH 0 Þ � ~EobsðHÞ k ≤ ϵ.

This approach (later generalised by Apel et al.46 and refined with
resource constraints by Zhou et al.16) provides an elegant framework to
capture a notion of one Hamiltonian fully simulating another. How-
ever, we believe that this regime does not capture the scope of pos-
sibilities for analogue quantum simulation experiments. On one hand,
the formalism requires the entire physics of the target system to be
encoded into the low-energy subspace of a simulator—this rules out
simulators which only simulate part of the target system, or in a dif-
ferent subspace. On the other hand, the formalism is too broad in the
sense that it does not prohibit unrealistically scaling interaction
strengths in violation of Definition 1.

Framework
The generic task of an analogue quantum simulator is to estimate the
dynamics of observables in a systemH under the evolution of a target
Hamiltonian H, up to some maximum time tmax. In particular, it is not
always necessary to simulate the entire target system in arbitrary
configurations: itmaybe convenient to restrict to aparticular subset of
initial statesΩstate, for example lying in a subspace invariant under the
Hamiltonian or corresponding to the states which can be reliably
prepared by the simulator, and similarly to a particular subset of
observables of interest Ωobs. We denote by H0 the Hilbert space cor-
responding to the simulator system, and for t 2 ½0, tmax� we write Tt :

DðH0Þ ! DðH0Þ for the family of time evolution quantum channels
implemented by the simulator, where DðH0Þ is the set of density
matrices onH0. This approach, in which we view simulations in terms
of individual observables rather than the entire Hamiltonian, has been
considered in earlier work25–27.

The minimal requirement for a simulator is that it should
approximate the expectation values of the elements of Ωobs. That is,
tr½Oe�iHtρeiHt � should be close to tr½O0Ttðρ0Þ� for all ρ ∈ Ωstate and
O∈Ωobs, where ρ0 andO0 are some encoded versions of the states and
operators respectively. Notice that, in principle, the experimentalist
could be using a completely different simulator for each choice of ρ
and O, with H0 a space large enough to contain all of them and by
encoding ρ into several copies. However, this would violate the size-
independence requirement of Definition 1. if Ωobs and Ωstate both do
not only contain O(1) elements. Furthermore, it is natural to consider
analogue quantum simulators as machines taking quantum, rather
than classical, input—possibly prepared by another experiment—which

Fig. 6 | Example Hamiltonian interaction hypergraph. A Hamiltonian H on 4
qubits, and its associated interaction hypergraph. The Hamiltonian consists of a
3-local (orange) and a 2-local (red) term, so we say that H is 3-local.
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cannot be cloned. For this reason, we assume that the state encoding
takes the form of a quantum channel Estate : DðHÞ ! DðH0Þ. Corre-
spondingly, to accommodate for quantum outputs, we require the
observable encodingO 7!O0 to be a unital and completely positivemap
Eobs : HermðHÞ ! HermðH0Þ. This ensures that the Hilbert-Schmidt
dual operator E*

obs is a quantumchannel, someasurementofEobsðOÞ on
ρ0 can equivalently be thought of as a measurement ofO on a decoded
state E*

obsðρÞ. This perspective sets analogue quantum simulators apart
from the framework of digital quantum computation, for which fault-
tolerant architectures require both inputs and outputs to be classical.

This definition is still sufficiently versatile to capture the simula-
tion of global observables that are a sumof local partsO =∑kOk (a task,
for example, useful for variational quantum algorithms47), in the fol-
lowing way. Often the Ok cannot be simultaneously measured due to
non-commutativity relations or experimental limitations. The simplest
approach to estimatingO is to runmany simulations,measuring oneof
the Ok each time (this process can be sped up by combining simulta-
neously measurable terms48), and summing the average results.

The above discussion leads us to the following definition, which is
illustrated in Fig. 2.

Definition 5. (Analogue quantum simulation) Given a set of states
Ωstate on a Hilbert space H, a normalised set of observables Ωobs (i.e.
∥O∥ = 1 for all O∈Ωobs, where ∥ ⋅ ∥ denotes the operator norm), a time
tmax>0, a Hamiltonian H 2 HermðHÞ, and ϵ >0, we say that a family of
quantumchannels Tt : DðH0Þ ! DðH0Þ, for t 2 ½0,tmax� simulatesHwith
respect to Ωstate and Ωobs with accuracy ϵ if there exists
1. A state encoding quantum channel Estate : DðHÞ ! DðH0Þ which

maps states to the simulator Hilbert space H0,
2. An observable encoding, given by a unital and completely positive

map Eobs : Herm ðHÞ ! Herm ðH0Þ,

such that

∣tr½EobsðOÞðTt°EstateÞ ðρÞ� � tr½Oðe�itHρeitHÞ��∣≤ ϵ , ð3Þ

for all ρ ∈ Ωstate, O ∈ Ωobs, and t 2 ½0,tmax�.
Our use of a Hamiltonian H for the target system is mostly for

simplicity; the simulation ofmore general dynamics, of open quantum
systems, for example, can be defined analogously, with the target
Hamiltonian H replaced by any generator of a quantum dynamical
semigroup28,29. It should be noted also that Definition 5 could equiva-
lently have been phrased in terms of a set of POVMs rather than
observables Ωobs. We use the latter for convenience in relating our
work to other results. It is plausible that one could engineer a time-
dependent observable observable encoding Eobs, but here we restrict
our focus to the time-independent case to avoid the complexity of the
simulation task being hidden in this step.

By the triangle inequality, (3) holds for any convex combination of
the states and observables in Ωstate and Ωobs respectively, so we could
without loss of generality assume that the two sets are convex to
begin with.

Often the simulation channelsTt inDefinition5 are taken simply as
time evolution under some simulator HamiltonianH0 2 HermðH0Þ, but
it is useful to consider a more general case. Firstly, this allows one to
directly account for, and possibly exploit, dissipative errors in the
experimental setup49. Secondly, it enables the possibility of a more
complicated simulation experiment, for example involving inter-
mediate measurements. Moreover, it is important to allow the simu-
lation of open quantum systems for our definition to be consistent
with criterion III of Fig. 5. Despite the generality afforded by Definition
5, we emphasise that experimentally practical simulations should be
size-independent as in Definition 1. That is, the implementation of Tt
should not require engineering a system of size, which grows more
than linearly in n, or boundlessly scaling interaction energies. Another

important constraint is that Tt should not include the use of adaptive
channels based on feed-forward measurements—hence distinguishing
the process from digital quantum computation.

We note that Hamiltonian models of quantum computation such
as quantum walks50 and previous notions of dynamical Hamiltonian
simulation51 are not consistent with our definition of analogue simu-
lation: such constructions also incur scalings in both the system size
and in necessary evolution time (corresponding to scalings in inter-
action strength, if time is normalised) which violate the size-
independence conditions of Definition 1.

Local encodings
Although Definition 5 is phrased in terms of general encoding maps, it
is practically useful to ensure that states and observables are encoded
in a way that is both practical to implement and behaves favourably
with respect to noise. In this section, we present such a notion of local
encodings and state some basic properties; proofs are contained in
Supplementary Note 1. A similar discussion is presented for the
stronger case of local Hamiltonian encodings by Cubitt et al.11, and a
discussion of the stability of local observable measurements to local
noise is given by Trivedi et al.27.

Definition 6. (Local state encoding) Let H=�n
i= 1Hi and H0 =�n0

j = 1H0
j .

We say that a state encoding Estate : DðHÞ ! DðH0Þ is local if it has a
Stinespring representation of the form

EstateðρÞ= trE ½Uðρ� ∣0i 0h ∣F ÞUy� , ð4Þ

where F =⊗ kFk and E =⊗ lEl are ancillary systems and U 2 UðH�
F ,H0 � EÞ is a constant-depth quantum circuit.

It is immediate that constant-depth quantum circuits (built from
one-qubit and two-qubit gates) preserve locality. That is, given a local
operator A onH� F , the operator UAU† is local (acting on the forward
light cone of the support of A) onH0 � E, and similarly for the inverse
U†. In fact, it is known in the theory of quantum cellular automata that
this constraint is equivalent to representability as a constant-depth
quantum circuit52.

For simulating physical systems, one particularly desirable feature
of a simulator is local error back-propagation. That is, local noise on
the simulator system should correspond in someway to local (perhaps
realistic) noise on the target system. Ideally, we would like to prove
that for any state ρ 2 DðHÞ and local error channelN 0 : DðH0Þ ! DðH0Þ
on the simulator, there exists a corresponding local error channelN :

DðHÞ ! DðHÞ on the target system satisfying

N 0
°EstateðρÞ =

? Estate°N ðρÞ : ð5Þ

However, we cannot hope to prove this in general, since the noise
operatorN 0 may take the simulator system outside the image of Estate.
Instead we have a slightly weaker version of this statement, which is a
direct consequence of the causal structure of local state encodings.

Proposition 7. (Local error back-propogation) Let Estate : DðHÞ !
DðH0Þ be a local state encoding as in Definition 6, and letN 0 : DðH0Þ !
DðH0Þ be a channel whose Kraus operators fX 0

kg each act onO(1) sites in
H0. Then there exists a channelN : DðH� FÞ ! DðH� FÞwhose Kraus
operators {Xk} each act on O(1) sites in H� F , and such that for all
ρ 2 H,

N 0
°EstateðρÞ= trE ½UN ðρ� ∣0i 0h ∣F ÞUy� : ð6Þ

In other words, local noise on the simulator corresponds to local
noise on the target system and ancillary encoding system. The corre-
sponding result with locality replaced by geometric locality holds in
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the case when the light cones of U are local with respect to the
underlying geometry of the simulator and target systems.

Similarly, we have local forward-propogation under such an
encoding, in the sense that local operations on a siteHi toρ 2 DðHÞwill
not affect the reduced density matrix trA½EstateðρÞ�, where A is the for-
ward light cone of Hi under U in H0.

We define local observable encodings analogously to the state
encoding case.

Definition 8. (Local observable encoding) Let H=�n
i = 1Hi and

H0 =�n0
j = 1H0

j . We say that an observable encoding Eobs : HermðHÞ !
HermðH0Þ is local if it is the adjoint (with respect to theHilbert-Schmidt
inner product) of a local state encoding.

It is immediate from this definition that one can measure the
encoded observable EobsðOÞ by first applying the constant-depth
quantum circuit E*

obs : DðH0Þ ! DðHÞ to ρ0 2 DðH0Þ, and then measur-
ing O. When O is local, we can alternatively implement the measure-
ment via a local POVM directly on the simulator system.

Proposition 9. (Encodedmeasurements) Let Eobs be a local observable
encoding as in Definition 8, and let O be a local operator on H. Then
EobsðOÞ can be measured using a local POVM on H0.

Applications of the framework
In this section, we discuss some basic applications of our notion of
analogue quantum simulation in the sense we have introduced in
Definition 5. Firstly, we give an example of a trivial but illustrative
situation in which encoding qudits into qubits incurs an unavoidable
cost for low-energy encodings, but which is not an issue in our fra-
mework. We then demonstrate the robustness of the definition
under noise, and show that it is consistent with the existing notion of
simulation given in Definition 4. Finally, we note how Lieb-Robinson
bounds can be used to reduce the overhead of simulating local
observables.

Qudits to qubits. To motivate this example, we first notice that the
requirement of Cubitt et al.11 (Definition 4) that the simulator Hamil-
tonian should reproduce the target dynamics in its low-energy sub-
space is too strong for some practical situations. As observed by the
authors, this can require the simulator to use strong interactions to
push unwanted states out of the low-energy subspace. Proposition 10
provides a formal statement of this fact (proved in Supplementary
Note 2) in the context of encoding a simple qutrit Hamiltonian into
qubits.

Here we consider qutrits with individual state spacesC3 spanned
by a basis f∣ #�,∣0i,∣ "�g. We write PðjÞ

0 = ∣0i 0h ∣ and PðjÞ
" = ∣ "� "� ∣, where

the superscript indicates that the projectors act on the jth qutrit.

Proposition 10. LetH= ðC3Þ�n
be the spaceofnqutrits actedon by the

Hamiltonian

Hn =
Xn
j = 1

ðPðjÞ
0 +PðjÞ

" Þ : ð7Þ

Suppose H0
n =

PK
j = 1h

0
j is a k-local Hamiltonian on H0 = ðC2Þ�m

,
where m =O(n1+α), for α ≥0 and k =O(1). Assume the interaction
hypergraph of H0

n has degree bounded by d =O(1).
IfH0

n is a (Δ, η, ϵ)-simulation forHn in the sense of Definition 4, for
η ∈ [0, 1) and ϵ ≥ 0, then

max
j

k h0
j k =Ωðn1�αð1� η2ÞÞ : ð8Þ

From (8) we see that simulating this simple system with a low-
energy encoding, an interaction hypergraph of bounded degree, and
bounded locality, requires either the qubit count or interaction energy

(or a mixture) to scale unfeasibly with n. This constitutes a violation of
the requirements of Definition 1. and imposes an unnecessary experi-
mental requirement for the task of simulating non-interacting qutrits.
The proof of this fact follows from a dimension-counting argument,
since the state space of the qutrits cannot be surjectively encoded into
the qubit simulator, see Fig. 1. In contrast, the simulation task is trivial
in our framework given in Definition 5 because the low-energy
encoding requirement is relaxed.

Letting Hn =
Pn

j = 1ðPðjÞ
0 +PðjÞ

" Þ as in Proposition 10, we can simulate
all observables under Hn on H0 =�n

j = 1ðC2 �C2Þ via any isometry

V : C3 ! C2 �C2 , ð9Þ

encodingeachqutrit into twoqubits. To realise a simulator in the sense
of Definition 5, we let

Estate : ρ 7!V�nρðV�nÞy , Eobs : O 7!V�nOðV�nÞy , ð10Þ

and

Tt = e
�itEobsðHnÞð�ÞeitEobsðHnÞ , ð11Þ

which is just time evolution under a 2-local Hamiltonianwith bounded-
strength interactions.

Although Proposition 10 does not necessarily rule out simulations
in which the n qutrits are encoded into Ω(n2) qubits, such approaches
suffer from a different problem. Generally, if each qudit in a D-
dimensional system is encoded into Ω(nα) qudits for α > 0, whilst
keeping the dimension fixed, then the inflated system size will neces-
sarily cause the distances between encoded sites to grow with n. In a
systemof interacting qutrits (for which the proof of Proposition 10 still
holds), this means that scaling interactions can be necessary to over-
come Lieb-Robinson bounds and ensure that correlations can spread
sufficiently fast through the enlarged system. The following simple
geometric lemma provides some intuition for a quantitative lower
bound on the growing length scales in such situations.

Lemma 11. Let fxigni= 1 be the points in a hypercube of side length L ~ n1/D

in the square lattice xi 2 ZD. Let E : xi 7!Xi � ZD be a map which
encodes each point xi into a connected set of points in ZD such that
∣Xi∣ =Ω(nα) and Xi \ Xj = ;. Let dðx,yÞ : ZD ×ZD ! Z be the taxicab
metric on ZD.

For a radius R =O(L), and any y 2 ZD, the number of encoded
points intersecting with the ball of radius R centred at y is bounded by

jBRðyÞj : = jfXi : 9x 2 Xi withdðx,yÞ≤Rgj=O n1�minfα,1=Dg
� �

: ð12Þ

Letting λ= minfα, 1=Dg, we see that there are at most O(n1−λ) sites
Xjwithin radius R =O(L) =O(n1/D) of any Xi. On the other hand, there are
at least Ω(n1−λ) of the xj within radius O(n(1−λ)/D) of xi in the original
lattice. In particular, this implies that there exist a pair of sites xi, xjwith
d(xi, xj) =O(n(1−λ)/D) whose encodings have d(Xi, Xj) =Ω(n1/D)—in the
encoded system, the distance is increased by a factor of nλ/D.

The scalings here apply as a result of the requirement that ana-
logue quantum simulators reproduce the dynamics of a target system.
In other situations, such as adiabatic quantum simulation in which an
approximately simulated ground state is the only requirement,
encodings with superlinear qubit overhead are possible53,54.

Noisy analogue simulators. Suppose we have quantum channels Tt,
for t 2 ½0, tmax� which simulate some H 2 HermðHÞ with respect to
Ωstate and Ωobs up to accuracy ϵ as in Definition 5, corresponding to
encoding maps Estate and Eobs.

In practice, the experimental setup will suffer from noise in the
steps of state preparation, evolution, and measurement. This will
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correspond to noisy versions of the above maps, which we denote by
~Tt , ~Estate, and ~Eobs. For any O ∈ Ωobs, ρ ∈ Ωstate, we may bound the
additional error in observable expectation values incurred by the noisy
maps by

jtr½EobsðOÞðTt° EstateÞðρÞ� � tr½~EobsðOÞð~Tt° ~EstateðρÞ�j
= jtr½O E*

obs° Tt° Estate � ~E*
obs° ~Tt° ~Estate

� �
ðρÞ�

≤ k E*
obs° Tt° Estate � ~E*

obs° ~Tt° ~Estatek1!1

≤ k E*
obs � ~E*

obsk1!1 + k Tt � ~Ttk1!1 + k Estate � ~Estatek1!1 ,

ð13Þ

where ∥⋅∥1→1 denotes the one-to-one norm k Λk1!1 = supρ k ΛðρÞk1
(defined as the induced trace norm55—note that this is in particular
upper bounded by the diamond norm), and E* denotes the Hilbert-
Schmidt dual of a superoperator E. Hence the noisy simulator ~Tt also
simulates H with respect to Ωstate and Ωobs, up to error

ϵ0 ≤ ϵ+ supt kTt � ~Ttk1!1 + k Estate � ~Estatek1!1 + k E*
obs � ~E*

obsk1!1 :

ð14Þ
Local Hamiltonian simulation in a subspace. Suppose that H0 is a
(Δ, η, ϵ)-simulation of H as defined by Cubitt et al.11 (Definition 4),
corresponding to encodings Estate and Eobs, with the projector Q =0.
Here we show that the time evolution channel under H0,
ð�Þ7!e�itH0 ð�ÞeitH 0

gives a simulation in our sense, Definition 5.
We make use of the following lemmas. Lemma 12 ensures that

measurement and time evolution are consistent with the encodings of
Definition 4, and Lemma 13 bounds the error of (Δ, η, ϵ)-simulations
under time evolution.

Lemma12. (Cubitt et al., Proposition 411) If Estate and Eobs are encodings
as in Definition 4 and (2), then for all observablesO and states ρ on the
target system H,

tr½EobsðOÞEstateðρÞ�= tr½Oρ� : ð15Þ

Moreover if the encoding is standard (rank(P) > 0 in Definition 4) then

e�iEobsðHÞtEstateðρÞeiEobsðHÞt = Estate e�iHtρeiHt� �
: ð16Þ

Lemma 13. (Cubitt et al., Proposition 2811) Let H0 be a (Δ, η, ϵ)-simu-
lation of H in the sense of Definition 4 corresponding to encodings
Eobs, Estate. If ρ0 is a state in the simulator system H0 satisfying
EobsðIÞρ0 =ρ0, then for all t

k e�iH0tρ0eiH
0t � e�iEobsðHÞtρ0eiEobsðHÞtk1 ≤ 2ϵt +4η : ð17Þ

Combining these lemmas, we see that for any observable O and
state ρ on H,

jtr½EobsðOÞe�iH0tEstateðρÞeiH
0t � � tr½Oe�iHtρeiHt �j

= tr EobsðOÞ e�iH0tEstateðρÞeiH
0t � e�iEobsðHÞtEstateðρÞeiEobsðHÞt

� �h i			 			
≤ kOk ð2ϵt +4ηÞ :

ð18Þ

Hence the channels Tt : ρ
0 7!e�iH0tρ0eiH

0t , for t 2 ½0,tmax� simulate
H in the sense of Definition 5 with respect to any Ωstate and Ωobs, up to
error

ϵ0 ≤ 2ϵtmax + 4η: ð19Þ

This provides some consistency between existing work and our notion
of simulation; we have shown that evolution under a simulator
Hamiltonian in the sense of Cubitt et al.11 constitutes an analogue
quantum simulator in our framework given by Definition 5.

Short-time simulationwith Lieb-Robinsonbounds. One advantage of
only requiring the simulation of a particular set of observables Ωobs in
Definition 5, as opposed to reproducing the entire physical system, is
that one can take advantage of the limited spread of correlations for
short-timedynamics24. The idea of exploiting Lieb-Robinsonbounds to
reduce necessary hardware overhead has already been considered for
the study of many-body quantum states on quantum computers25,26,
and more recently in the setting of analogue simulators27. We explain
here how the latter fits into our framework.

Consider the case of a Hamiltonian Hn on a d-dimensional lattice
of n qubits H ffi ðC2Þ�n

, such that

Hn =
Xn
x = 1

hx , ð20Þ

where the hx is a nearest-neighbour local interaction with ∥hx∥ ≤ 1,
translated to position x in the lattice, so that Hn is translationally
invariant.

If one is only interested in simulating the finite-time dynamics of a
few local observables Ωobs which are contained within a small neigh-
bourhood of the origin, starting from a state ρ= ∣0i 0h ∣�n, then it is
sufficient (up to exponentially small error) to simulate a far smaller
subsystem, corresponding to the Lieb-Robinson light cone, as in Fig. 7.
This situation is studied by Trivedi et al.27, in particular for the ther-
modynamic limit n → ∞.

LetHm =
Pm

y= 1hy be the simulatorHamiltonian, defined identically
to Hn but on a lattice of size m < n, H0 ffi ðC2Þ�m

. We encode ρ and O
simply by restricting them to the smaller subsystem. Then a simulation

Fig. 7 | SimulationwithLieb-Robinsonbounds.Simulation of a 1-dimensional spin systemunder aHamiltonianH for time t. In theory, the systemextends infinitely, but to
estimate the value of a local observable O it is only necessary to simulate a subsystem corresponding to the Lieb-Robinson light cone.
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of an observable O ∈ Ωobs up to accuracy ϵ, satisfying

jtr½Oe�iHntρeiHnt � � tr½EobsðOÞe�iHmtEstateðρÞeiHmt �j≤ ϵ , ð21Þ

can be accomplished in the large-n regime for all t 2 ½0,tmax� if one
takes m=O logdð1=ϵÞ+ tdmax

� �
(see Trivedi et al.27, Lemma 1).

Modular encodings and gadgets
In this section, we focus on the case of a simulator channel Tt given by
time evolution under a local simulator Hamiltonian H0, which should
reproduce the dynamics of the local target Hamiltonian H =∑iHi. In
light of the size-independence requirement of Definition 1., it is natural
to encode each Hi term separately into some term H0

i, but system-
atically doing so is a non-trivial task: we need the encoded terms to
interact with each other in a way that mimics the original system.

This problem can be tackled using perturbative gadgets. Pertur-
bative gadgets were initially introduced by Kempe et al.42 as ameans of
proving QMA-completeness of the 2-local Hamiltonian problem by
reduction from the three-local case30, and have since been used
extensively in the field of Hamiltonian complexity theory. In this work,
we especially focus on the use of gadgets for Hamiltonian locality
reduction, though it should be noted that perturbative gadgets can
also be used to simplify the structure of the interaction hypergraph17

and, in general, to reduce Hamiltonians to more restrictive families of
interactions44,56,57. Moreover, beyond Hamiltonian complexity-
theoretic results, gadgets can be tailored to improve the perfor-
mance of variational quantum algorithms34.

In this work, we introduce a formalism which we argue encom-
passes any attempt at gadgetisation, in a sense which wemake precise
Definition (14), in order to prove general properties of such con-
structions. Note that our approach, and the (η, ϵ) accuracy parameters,
are closely related to those used in other definitions of simulation11,18.
We refine the approach of the latter by generalising to a potentially
non-perturbative regime and by considering the feature of combining
well with other interactions as a generic requirement for gadgets. We
use these results to argue that any size-independent encoding of a
Hamiltonian H into another H0 cannot reduce the locality of interac-
tions (for example, reducing a 3-local Hamiltonian to a 2-local
Hamiltonian).

The setup is as follows: we consider a large system H=�n
i = 1Hi,

within which a local interaction H 2 HermðHÞ acts on a subsystem of
O(1) sites. With the introduction of a small ancillary system A, we aim
to replace H by some gadget H0 2 HermðH�AÞ, which acts on O(1)
sites in H and A.

A simulator Hamiltonian in the sense of Definition 5 need not
necessarily capture the entire spectrum of its target Hamiltonian. In
this case, however, we are thinking of H as a single interaction in a
larger system, and as such we cannot generally assume that its eigen-
spaces will be preserved under time evolution. Therefore, we require
as a minimum that H0 should (when restricted to some subspace
defined by a projector P0) approximately reproduce the full spectrum
ofH. Moreover, forH0 to be a useful gadget, it must combine well with
other Hamiltonian terms acting onH. That is to say, there should exist
P0 2 ProjðH�AÞ such that P0ðH0 +Helse � IÞP0 approximates the spec-
trum of H +Helse, for any Helse 2 HermðHÞ (see Fig. 3a). We formalise
this with the following definition.

Definition 14. ((ζ, ϵ)-gadget property) Given a Hamiltonian H 2
HermðHÞ acting on a systemH=�n

i= 1Hi, and H0 2 HermðH�AÞ for A
an ancillary system, we say that ðH0,AÞ satisfies the (ζ, ϵ)-gadget
property for H if there exists P0 2 ProjðH�AÞ, ~P 2 ProjðAÞ n f0g such
that, for any Helse 2 HermðHÞ, there exists a unitary ~UHelse

2 UðH�AÞ

with

k P0ðH0 +Helse � IÞP0 � ~UHelse
ðH +HelseÞ � ~P

� �
~U
y
Helse

k ≤ ϵ + ζ k Helse k :

ð22Þ

In other words, ðH0,AÞ satisfies the (ζ, ϵ)-gadget property for H if,
when restricted a subspace defined by P0, H0 +Helse � I approximates
the spectrumofH +Helse up to error ϵ + ζ∥Helse∥. Notice that ~P is almost
arbitrary; its rank determines the multiplicity of each eigenvalue of
H +Helse in the simulator system, but otherwise it can be rotated by
~UHelse

, which rotates the eigenvectors of ðH +HelseÞ � ~P approximately
onto those of P 0ðH0 +Helse � IÞP0.

As noted by Cubitt et al.11, there are two distinct types of gadgets
used in literature:

• Mediator gadgets, in which ancillary qubits are inserted between
logical qubits to mediate interactions, and

• Subspace gadgets, in which single logical qubits are encoded into
several physical qubits, restricted to a two-dimensional subspace
by strong interactions.

Definition 14 encompasses the former, but not the latter. Qualitatively
this is because whereas mediator gadgets replace interactions, sub-
space gadgets replace entire qubits, including all of the interactions
they take part in. It would be possible to extend our formalism to
subspace gadgets, by restricting the range of Helse in Definition 14 to
terms, which do not interact with the target qubit. We do not consider
this here, however, for brevity and because subspace gadgets do not
reduce the locality of interactions, which is our primarymotivation for
this section.

Although Definition 14 is a natural requirement, it is not con-
venient to work with due to the appearance of the general Helse acting
on the entire of H, upon which ~U depends. The following alternative
definition does not suffer from this problem.

Definition 15. ((η, ϵ)-gadget) Let H 2 HermðHÞ be a Hamiltonian on a
Hilbert space H, and let A be an ancillary Hilbert space. For
H0 2 HermðH�AÞ, we say that ðH0,AÞ is a (η, ϵ)-gadget for H if there
exists P 2 ProjðAÞ n f0g and U 2 UðH�AÞ such that

k U � I k ≤η , k P0H0P0 � UðH � PÞUy k ≤ ϵ , ð23Þ

where P0 =UðI� PÞUy 2 ProjðH�AÞ.
The advantage of Definition 15 is that it is stated in terms of a local

rather than global property. Assuming that H,H0,P0 act on only O(1)
sites in H and A, we can without loss of generality restrict to this
significantly smaller subspace to check whether H0 is a gadget. This is
in contrastwithDefinition 14,which requires us to inprinciple consider
interactions over the full n-site space in order to check the gadget
property.

To motivate the use of Definition 15, we show that the above
notions are in correspondence; things that look like gadgets are always
gadgets, and vice-versa. This is formalised by the following two theo-
rems, proved in Supplementary Note 3.

Theorem 16. ((η, ϵ)-gadgets have the (ζ, ϵ)-gadget property) Suppose
that ðH0,AÞ is a (η, ϵ)-gadget for H. Then ðH0,AÞ satisfies the (ζ, ϵ)-
gadget property for H, where ζ =O(η).

Theorem 17. (The (ζ, ϵ)-gadget property requires a (η, ϵ)-gadget)
Suppose that ðH0,AÞ satisfies the (ζ, ϵ)-gadget property for H, whereH,
H0, and P0 act onO(1) sites inH=�n

i= 1Hi. Then ðH0,AÞ is a ðη,ϵ0Þ-gadget
for H, where η =OðϵÞ+Oðζ 1

2Þ and ϵ0 =OðϵÞ+Oðζ Þ.
The roles of the η and ϵ parameters are to bound the error in the

eigenvectors and eigenvalues respectively. Roughly speaking, η
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quantifies how well the gadget combines with other terms, and ϵ
quantifies the spectral error of the gadget in isolation. A good gadget
requires both of these parameters to be small. In the next section we
present a 3-to-2 local gadgetwhich is an extreme case of this, with ϵ = 0
at the cost of a large η error.

Prior work in Hamiltonian complexity theory has focused on
gadgetisation in the context of ground state estimation18,30,44 or
simulation in a low-energy subspace11; as a result, a case of particular
relevance is when P0 projects onto the low-energy subspace of H0. For
Δ 2 R, we write P ≤ΔðH0 Þ for the projector onto the span of the eigen-
vectors of H0 with eigenvalues in the range ( − ∞, Δ].

Definition 18. ((Δ, η, ϵ)-gadget) LetH 2 HermðHÞ be aHamiltonianon a
Hilbert space H, and let A be an ancillary Hilbert space. For
H0 2 HermðH�AÞ, we say that ðH0,AÞ is a (Δ, η, ϵ)-gadget for H if
there exists P 2 ProjðAÞ n f0g, and U 2 UðH�AÞ such that
P ≤ΔðH0 Þ =UðI� PÞUy, and

k U � I k ≤ η , k P ≤ΔðH0 ÞH
0P ≤ΔðH0 Þ � UðH � PÞUy k ≤ ϵ : ð24Þ

In other words, the pair ðH0,AÞ satisfy Definition 15, in the special
case where we can use P0 =P ≤ΔðH 0 Þ.

Notice that Definition 18 imposes a significantly stronger
requirement on H0 than Definition 15; a priori there is no reason to
expect that there will exist any choice of P and U such that
P ≤ΔðH0 Þ =UðI� PÞUy. Definitions Definition 15 and Definition 18 are
sufficient to guarantee desirable combination properties, and are
satisfied by widely-used constructions.

Examples of gadgets
Lemmas 4–7 of Bravyi et al.18 can be naturally adapted to give
several constructions for (Δ, η, ϵ) gadgets, which we use to
demonstrate that Definition 15 encompasses commonly-used
techniques. In the following we take H0 =H�A, and A ffi C2.
For V an operator on H0 we write it in block-diagonal form with
respect to the basis of A as

V =
V00 V01

V 10 V 11


 �
, ð25Þ

where, for instance, V00 = ðI� 0h ∣ÞV ðI� ∣0iÞ.

Lemma 19. (First-order gadgets, adapted from Bravyi et al.18) Suppose
H 2 HermðHÞ and V 2 HermðH0Þ are such that

k H � V00 k ≤
ϵ
2
: ð26Þ

Then H0 =ΔH0 +V defines a (O(Δ), η, ϵ)-gadget for H, where
H0 = I� ∣1i 1h ∣, provided that Δ ≥ O(ϵ−1∥V∥2 + η−1∥V∥).

Lemma 20. (Second-order gadgets, adapted from Bravyi et al.18) Let
H 2 HermðHÞ, and suppose V ð1Þ,V ð0Þ 2 HermðH0Þ are such that
∥V(1)∥, ∥V(0)∥ ≤ Λ, V ð0Þ

10 =V ð0Þ
01 =V

ð1Þ
00 =0, and

k H � V ð0Þ
00 +V

ð1Þ
01V

ð1Þ
10 k ≤

ϵ
2
: ð27Þ

Then H0 =ΔH0 +Δ
1
2V ð1Þ +V ð0Þ is a (O(Δ), η, ϵ)-gadget for H, where

H0 = I� ∣1i 1h ∣, if

Δ≥Oðϵ�2Λ6 + η�2Λ2Þ : ð28Þ

Lemma 21. (Third-order gadgets, adapted from Bravyi et al.18) Let
H 2 HermðHÞ, and suppose V ð2Þ,V ð1Þ,V ð0Þ 2 HermðH0Þ are such that
∥V(2)∥, ∥V(1)∥, ∥V(0)∥ ≤ Λ, V ð1Þ

10 =V
ð1Þ
01 =V

ð0Þ
10 =V ð0Þ

01 =0, V
ð2Þ
00 =0,

k H � V ð0Þ
00 � V ð2Þ

01V
ð2Þ
11 V

ð2Þ
10 k ≤

ϵ
2
, and V ð1Þ

00 =V
ð2Þ
01V

ð2Þ
10 : ð29Þ

Then H0 =ΔH0 +Δ
2
3V ð2Þ +Δ

1
3V ð1Þ +V ð0Þ is a (O(Δ), η, ϵ)-gadget for H,

where H0 = I� ∣1i 1h ∣, if

Δ≥Oðϵ�3Λ12 +η�3Λ3Þ : ð30Þ

We illustrate the application of these lemmas to our definition
with the following ubiquitous gadgets from Oliviera et al.17:

Given a target Hamiltonian H =A� B 2 HermðHA �HBÞ, the sub-
division gadget on HA �HB �HC (where HC ffi C2) is defined by

H0 =ΔH0 +Δ
1
2V ð1Þ +V ð0Þ , ð31Þ

where

H0 = I� I� ∣1i 1h ∣ , ð32Þ

V ð1Þ =
1ffiffiffi
2

p ð�A� I + I� BÞ � X , ð33Þ

V ð0Þ =
1
2
ðA2 � I + I� B2Þ � I : ð34Þ

Then by Lemma 20we see that, for sufficiently large Δ, ðH0,HCÞ defines
a (O(Δ), η, ϵ)-gadget for H (see Fig. 8a).

Given a target Hamiltonian
H =A� B� C 2 HermðHA �HB �HC Þ, the 3-to-2 local gadget on
HA �HB �HC �HD (where HD ffi C2) is defined by

H0 =ΔH0 +Δ
2
3V ð2Þ +Δ

1
3V ð1Þ +V ð0Þ , ð35Þ

where

H0 = I� I� I� ∣1i 1h ∣ , ð36Þ

V ð2Þ =
1ffiffiffi
2

p ð�A� I + I� BÞ � I� X � I� I� C � ∣1i 1h ∣ , ð37Þ

V ð1Þ =
1
2
ð�A� I + I� BÞ2 � I� I , ð38Þ

V ð0Þ =
1
2
ðA2 � I + I� B2Þ � C � I : ð39Þ

By Lemma20we see that, for sufficiently largeΔ, ðH0,HDÞ defines a
(O(Δ), η, ϵ)-gadget for H (see Fig. 8b).

We provide the following example to illustrate the importance of
the η parameter as a quantifier of how well a gadget combines with
other terms.

Let H =A� B� C 2 HermððC2Þ�3Þ be a 3-qubit interaction, and
diagonalise A, B, and C as

A= λA0∣0i 0h ∣+ λA1 ∣1i 1h ∣ , B= λB0∣0i 0h ∣+ λB1 ∣1i 1h ∣ , C = λC0∣0i 0h ∣+ λC1 ∣1i 1h ∣ :
ð40Þ
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Let H0 2 HermððC2Þ�4Þ be defined as

H0 = λB0ðA� λA0IÞ � I� I� C

+ λB1 I� ðA� λA0IÞ � I� C

+ λA0I� I� B� C ,

ð41Þ

and let P0 2 ProjððC2Þ�4Þ be

P0 = ðI� ∣0i 0h ∣� ∣0i 0h ∣+ ∣0i 0h ∣� I� ∣1i 1h ∣Þ � I : ð42Þ

Then in fact the restriction of H0 to the image of P0 exactly
reproduces the spectrumofH. This hence defines a 3-to-2 (η, 0)-gadget
—or a (Δ, η, 0)-gadget, if one adds a termof the formOðΔÞðI� P0Þ toH0.
The caveat is that this gadget has a large η parameter, and hence it
does not combine well with other interactions. For instance, in Defi-
nition 15 we might take P = ∣0i 0h ∣� I� I� I, and U = ðF� ∣0i 0h ∣+
I� I� ∣1i 1h ∣Þ � I, where F is the two-qubit swapping operator. This
gives η = 2.

The construction of H0 can be thought of as splitting the A qubit
into two qubits (see Fig. 9), and controlling whether the first or second
qubit is excited depending on the value of the B qubit. Therefore, if the
full Hamiltonian contains another interaction term that acts on the A
site in H, then the locality of this term will be increased under the
gadgetisation procedure. Such a gadget cannot be used to system-
atically reduce the locality of a Hamiltonian with many interactions.

Gadget combination results
The following results show that gadgets satisfying Definition 15 or
Definition 18 can be systematically combined as desired. Our techni-
ques and proofs extend prior work17,31,58, using the convenient form-
alism of the direct rotation59. The scalings of the parameters η0,ϵ0 are
not necessarily optimal, though they sufficient for application to the
subdivision and 3-to-2 gadget constructions exhibited above. The
proofs of our gadget combination results can be found in Supple-
mentary Note 4.

We summarise the setupbelow,whichwill be used throughout the
following results.

Setup 22. Let H 2 HermðHÞ be a Hamiltonian on n sites, H=�n
i= 1Hi.

AssumeH =
PN

i = 1 Hi, where N =O(n), such that eachHi acts on at most
k =O(1) of the sites Hi, and each site participates in at most d =O(1)

interactions. Assume also that H has bounded interaction strengths,
that is, ∥Hi∥ ≤ J for all i.

In the below propositions we consider a family (depending
on n) of gadgets ðH0

i,AiÞ for Hi, with Ui, Pi, and P0
i defined as in

Definition 15, for each i. Assume that Ai consists of O(1) ancillary
sites and that H0

i is a local Hamiltonian consisting of O(1) inter-
actions, such that

k H0
i k ≤ J0 , k ðI� PiÞH0

iðI� P?
i Þ k ≤ J0O : ð43Þ

Firstly, we state the main result: that gadgets as in Definition 15
may be systematically combined to produce new gadgets.

Proposition 23. (Parallel (η, ϵ)-gadget combination) Let H =∑i Hi be as
in Setup 22, and suppose that each ðH0

i,AiÞ defines a (η, ϵ)-gadget forHi.

Fig. 8 | Existinggadgets. a Interaction hypergraphs of a 2-system interactionbefore (above) and after (below) the use of the subdivisiongadget.b Interactionhypergraphs
of a 3-system interaction before (above) and after (below) the use of the 3-to-2 gadget.

Fig. 9 | The exact 3-to-2 gadget. The (blue) 3-local interaction between A, B, and C
is replaced by a series of (blue) 2-local interactions, where the A site has been split
into two sites A1 and A2. However, after this process, the 2-local interaction (red)
between A and another qubit E is replaced by two 3-local interactions between
E, A1, B and E, A2, B. Compare this with Fig. 8b, for which additional interactions on
qubit A will remain on qubit A of the gadgetised Hamiltonian without any need for
adjustment.
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Define

H0 =
X
i

H0
i 2 Herm H� ð�iAiÞ

� �
: ð44Þ

Then ðH0,�iAiÞ is a ðη0,ϵ0Þ-gadget for H, where

ϵ0 =Oðnϵ+nηJ +nη3J0O +nη4J0Þ , η0 =OðnηÞ : ð45Þ

For completeness, we also prove a similar result that (Δ, η, ϵ)-
gadgets can be combined to create a new ðΔ0,η0,ϵ0Þ-gadget. It follows
from Proposition 23 that the combination of many (Δ, η, ϵ)-gadgets
defines a ðη0,ϵ0Þ-gadget, however it still remains to show that the pro-
jector P0 in the sense of Definition 15 may be taken as a low-energy
projector P ≤Δ0 ðH0 Þ.

Proposition 24. (Parallel (Δ, η, ϵ)-gadget combination) Let H =∑i Hi be
as in Setup 22„ and suppose that each ðH0

i,AiÞ defines a (Δ, η, ϵ)-gadget
for Hi, where

Δ≥
k H k + J +Nðϵ+2JηÞ

1
4 � 2η

=OðnJÞ , ð46Þ

and assume that the scaling of η with n is bounded as

η= oðn�1
2Þ , ð47Þ

and moreover that, for large J0,

nϵ+nηJ +nη3J0O +nη4J0 = oðJ0Þ , J0 =OðΔÞ : ð48Þ

Define

H0 =
X
i

H0
i 2 HermðH� ð�iAiÞÞ : ð49Þ

Then ðH0,�iAiÞ is a ðΔ0,η0,ϵ0Þ-gadget for H, where

Δ0 =
1
2
Δ , ϵ0 =Oðnϵ+nηJ +nη3J0O +n3η4J0Þ , η0 =OðnηÞ : ð50Þ

For an example of how these conditions can be satisfied, consider
the case of combining many of the 3-to-2 gadgets described above.
Setting J = 1 for convenience, we have J0 =ΘðΔÞ, J0O =ΘðΔ2=3Þ, and
ϵ, η =O(Δ−1/3). The errors ϵ0 and η0 both grow as O(nΔ−1/3), so a good
gadget will require Δ =Ω(n3). A direct computation verifies that this
condition also ensures that ((46)–(48)) are satisfied. Hence reduction
from a 3-local to 2-local Hamiltonian in this way requires interaction
strengths to scale as n3.

To combine (Δ, η, ϵ) gadgets using Proposition 24 requires
the unappealing conditions of (46)–(47), which explicitly require
the gadget energies to scale with n. In fact, as noted by Bravyi et
al.31, the regime of bounded-strength interactions does still allow
approximation of the ground state energy of H—the caveat being
that the errors are extensive. Below is a generalisation of their
main result.

Theorem 25. (Ground state energy estimation with (Δ, η, ϵ)-gadgets,
generalising Bravyi et al., Theorem 131) Let H =∑iHi be as in Setup 22,
and suppose that each ðH0

i,AiÞ defines a (Δ, η, ϵ)-gadget for Hi.
Define

H0 =
X
i

H0
i 2 HermðH� ð�iAiÞÞ : ð51Þ

Then the ground state energies of H and H0 satisfy

jλ0ðHÞ � λ0ðH0Þj=Oðnϵ+nηJ +nη3J0O +nη4J0Þ : ð52Þ

Gadget energy scaling
Here we present the main result of the section: general locality
reduction gadgets cannot exist without unfavourably scaling energies.
This result holds in the most general setting of (η, ϵ)-gadgets (Defini-
tion 15), andhence followseven from the relaxed (ζ, ϵ)-gadget property
of Definition 14.

Theorem 26. (Gadget energy scaling) Let H= ðC2Þ�k
be the space of

k =O(1) qubits, and let H be the k-fold tensor product of Pauli Z
operators with strength J > 0,

H = J
Ok
i = 1

Zi : ð53Þ

Suppose ðH0,AÞ is a (η, ϵ)-gadget for H for H0 a k0-local Hamiltonian,
where k0< k.

Then, provided ϵ < J, the gadget must have energy
scale k H0 k ≥ J�ϵ

η =Ωðη�1Þ.
The method of proof (found in Supplementary Note 5) is simple,

and very likelydoes not provide anoptimal lower bound for k H0 k, due
to the lack of any dependence on k. We expect that such dependence
shouldbepresent; any approachwhich iteratively lowers the locality of
an interaction from k-local to 2-local will accumulate scalings from
each round of gadgetisation, but this does not rule out a more direct
approach. Existing methods to reduce locality, such as the subdivision
and 3-to-2 gadgets of Oliviera et al.17 and higher-order gadgets34,60, give
scalings that suggest that any k-to-2-local gadget construction should
require energies which scale exponentially in k. The question of whe-
ther such exponential scaling is the best possible was first raised by
Bravyi et al.31, and is still unresolved. Using the formalism introduced
here, this problem can be precisely stated, and optimisation of Theo-
rem 26 may provide a negative result. Furthermore, we expect that it
may be possible to answer similar questions about gadget energy
scaling in other cases, for example in simplifying the structure of an
interaction graph or reducing to smaller families of interactions.

The significance of Theorem 26 is that it essentially rules out a
size-independent (Definition 1.) simulation of a k-local Hamiltonian H
by another k0-local Hamiltonian H0 for k0< k, for the following reason.
Any modular encodings require the use of term-by-term gadgets,
which must each satisfy the (ζ, ϵ)-gadget property (Definition 14) with
ζ, η =O(n−1) to guarantee that they can be combined (since the rest of
the Hamiltonian will have ∥Helse∥ =O(n)). By Theorem 17, this requires
the use of (η, ϵ)-gadgets (Definition 15) with η =O(n−1/2), and by Theo-
rem 26 this will require interactions which scale at least as Ω(n1/2).

A couple of notes on gadget energy scalings in existing work:
Bausch61 gives a method to reduce the exponential or doubly-
exponential scaling in perturbative Hamiltonians to polynomial scal-
ing, and Cao et al.33 present gadgets whose interaction strengths do
not grow with accuracy. However, both cases violate size-
independence (Definition 1.) in other ways such as polynomial scal-
ing in the number of simulator qubits or instead shrinking the inter-
action strengths.

Gadgets from the quantum Zeno effect
In this section, we demonstrate an alternative approach for reducing
the locality of an interaction in a Hamiltonian—a task for which Theo-
rem 26 establishes the need for energies which scale with the size of
the system, when conventional gadgets are used. The construction
presented here, however, uses the freedom afforded by the general
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simulation channel Tt in Definition 5 to take advantage of an additional
resource: dissipation.

We will see that, despite some impractical features for experi-
mental implementation, this approach offers a theoretical improve-
ment in scalings over the conventional gadget techniques discussed
earlier in the section. Additionally, this construction captures a key
feature of our framework for analogue simulators given in Definition 5
in contrast with existing work: we define simulators in terms of their
dynamic behaviour, rather than in terms of the properties of static
Hamiltonians.

For the process we describe here, we repeatedly refer to mea-
surement for conceptual simplicity when talking about probabilities,
but this terminology is somewhat misleading; we do not record or use
the outcome.

Let H 2 HermðHÞ be a single interaction in a many-body system,
which we intend to simulate. As before, we will introduce an ancillary
qubitA ffi C2, and evolve under aHamiltonianH0 2 HermðH�AÞ, but
now we supplement the natural time evolution with regular projective
measurements on theA system at time intervals of δt. By the quantum
Zeno effect62, this forces theA system to stay in the ∣0i state with high
probability, meanwhile simulating the desired interaction on the H
system.

The following result, Proposition 27, provides a formal construc-
tion for the measurement-based gadgets described above—see Sup-
plementary Note 6 for the proof. Qualitatively, this result tells us that if
we evolve ∣ψ

�� ∣0i for time δt under the simulator Hamiltonian H0,
and then measure the ancillary qubit, we will obtain a ‘1’ result with
probabilityO((δt)3) (corresponding to an amplitude ofO((δt)3/2). In the
more likely case thatwe obtain ‘0’, the post-measurement state (on the
H space) is e�iδtH ∣ψ

�
, for somenewHamiltonianH, up to errorO((δt)2).

By repeating this process t/δt times, we will hence obtain a state
e�itH ∣ψ

�
+OðtðδtÞÞ on the H space if ‘0’ is measured in every round of

measurement. The probability of a measurement error in this process
scales as t(δt)2, hence can be controlled provided that δt =O(t−1/2),
whichwill always be satisfied if we choose δt =O(t−1) in order to control
the error on the post-measurement state.

Proposition 27. For a Hilbert spaceH and an ancillary qubitA=C2, let
H0 2 HermðH�AÞ be a Hamiltonian given by

H0 =HI � I +HX � X +H∣1i 1h ∣ � ∣1i 1h ∣ , ð54Þ

for some HI,HX ,H∣1i 1h ∣ 2 HermðHÞ depending on a small parameter δt
such that ∥HI∥ =O(1), ∥HX∥ =O((δt)−1/2), and k H∣1i 1h ∣ k =OððδtÞ�1Þ with
H2

∣1i 1h ∣ =ω
2I, ω= 2π

δt .
Then, for any ∣ψ

� 2 H,

e�iδtH0 ð∣ψ�� ∣0iÞ= e�iδtH ∣ψ
�
+OððδtÞ2Þ

� �
� ∣0i+OððδtÞ3=2Þ � ∣1i ,

ð55Þ

where

H =HI � ω�2HXH∣1i 1h ∣HX : ð56Þ

This provides a new 3-to-2-local gadget for Pauli strings. For
example, we can set HI = −Z1, HX =

ffiffiffi
ω
2

p ðZ2 + Z3Þ, H∣1i 1h ∣ = � ωZ 1; this
yields a 2-local Hamiltonian H0 simulating the 3-local interaction
H = Z1 ⊗ Z2 ⊗ Z3. More generally, given three commuting Pauli strings
Aa, Bb, Cc, we can set HI = −Aa, HX =

ffiffiffi
ω
2

p ðBb +CcÞ, H∣1i 1h ∣ = � ωAa to
simulate the interactionH =Aa⊗ Bb⊗ Cc. This proceduremay be used
to simulate a k-local Pauli string using a (⌈k/3⌉ + 1)-local Hamiltonian.

Although Proposition 27 shows that evolution and repeated
measurements under H0 reproduce the dynamics of H, it is also
important to guarantee that it can be combined with other

interactions. Proposition 28 provides the necessary result for this, by
verifying that the conclusions of Proposition 27 also hold when an
additional term Helse 2 HermðHÞ is added to both the target and
simulator Hamiltonian.

Proposition 28. Let Helse =∑ihi be a k-local Hamiltonian on H=�iHi

such that ∥hi∥ =O(1), and whose interaction graph has a degree
bounded by an O(1) constant.

Introduce an ancillary qubitA=C2, and let H0 2 HermðH�AÞ be
a Hamiltonian given by

H0 =HI � I +HX � X +H∣1i 1h ∣ � ∣1i 1h ∣ , ð57Þ

for some HI,HX ,H∣1i 1h ∣ 2 HermðHÞ depending on a small parameter δt
such that ∥HI∥ =O(1), ∥HX∥ =O((δt)−1/2), and k H∣1i 1h ∣ k =OððδtÞ�1Þ with
H2

∣1i 1h ∣ =ω
2I, ω= 2π

δt . Assume that HI, HX, and H∣1i 1h ∣ act on O(1) sites inH.
Then, for any ∣ψ

� 2 H,

e�iδtðH0 +Helse�IÞð∣ψ�� ∣0iÞ = e�iδtðH +HelseÞ∣ψ
�
+OððδtÞ2Þ

� �

� ∣0i+OððδtÞ3=2Þ � ∣1i ,
ð58Þ

where

H =HI � ω�2HXH∣1i 1h ∣HX : ð59Þ

The significance of Proposition 28 is that the errors do notdepend
on the size of the system through ∥Helse∥, due to bounds we place on
the Trotter error in the expansion e�iδtðH +HelseÞ ≈ e�iδtHe�iδtHelse .

Discussion
Given the result of Proposition 28, we can now describe how the
measurement gadget construction fits into our frameworkof analogue
quantum simulation described in Definition 5.

Given a Hamiltonian H = Z1 ⊗ Z2 ⊗ Z3 +Helse on n qubits
H= ðC2Þ�n

, with Helse 2 HermðHÞ satisfying the requirements of Pro-
position 28, we fix some δt >0 and define the simulator space
H0 =H�A, where A=C2. Let H0 2 HermðH0Þ be given by

H0 = � Z 1 � I +

ffiffiffiffi
ω
2

r
ðZ2 +Z3Þ � X � ωZ 1 � ∣1i 1h ∣ , ð60Þ

whereω= 2π
δt . Define the state and observable encodings Estate and Eobs

by

EstateðρÞ=ρ� ∣0i 0h ∣ , EobsðOÞ=O� I , ð61Þ

and define channels Eδt ,M : DðH0Þ ! DðH0Þ by

Eδtðρ0Þ= e�iδtðH0 +Helse�IÞρ0eiδtðH
0 +Helse�IÞ , ð62Þ

Mðρ0Þ= trA½ρ0ðI� ∣0i 0h ∣Þ� � ∣0i 0h ∣+ trA½ρ0 I� ∣1i 1h ∣ð � � ∣1i 1h ∣ , ð63Þ

so that Eδt corresponds to evolution under the Hamiltonian H0 +Helse

for time δt, and M corresponds to a measurement of the A system.
Then, for all t, define the time evolution channel

Tt = ðM°EδtÞ° ðM°EδtÞ°� � � ° ðM°EδtÞ , ð64Þ

containing ⌊t/δt⌋ copies of (M ∘ Eδt). This evolution is described by
Fig. 4. The content of Proposition 28 tells us that

ðT
t°EstateÞðρÞ= e�itHρeitH +OðtδtÞ� �� ∣0i 0h ∣+OðtðδtÞ2Þ � ∣1i 1h ∣ , ð65Þ
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and hence for any observable O 2 HermðHÞ with ∥O∥ = 1,

tr½EobsðOÞðTt°EstateÞðρÞ�= tr½Oe�itHρeitH �+OðtδtÞ : ð66Þ

The channels Tt therefore simulateH (in the sense of Definition 5)
with respect to any statesΩstate and normalised observablesΩobs, up to
accuracy ϵ > 0 and maximum time tmax, provided that one chooses
δt =Oðϵt�1

maxÞ. Therefore we require interaction strengths and mea-
surement frequency which scale as J =Oðϵ�1tmaxÞ—note that this does
not depend on n, the size of the system.

We can compare these scalings with those obtained if we were to
use conventional gadgets. Supposewe have a (η, ϵ)-gadget in the sense
of Definition 15 with η =O(n−1ϵ) to ensure an absolute error of O(ϵ)
when combined with a Hamiltonian of order n, comparable with the
above construction. By Theorem 26, this must involve energy scalings
of J =Ω(ϵ−1n) (and even without Theorem 26, a low-energy (Δ, η, ϵ)-
gadget as in Definition 18 would require energies scaling as Ω(n) to
ensure that unwanted states are sufficiently penalised). In fact, this is
likely not the optimal bound; the best known 3-to-2 gadget construc-
tion requires energy scales of O(ϵ−3 + η−3), which in this case would
require interaction strengths scaling as J =Oððϵ�1nÞ3Þ. Even if the sys-
tem size is restricted via Lieb-Robinson bounds to set
n=Oðlogdð1=ϵÞ+ tdmaxÞ (where d is the dimension of the system), the
measurement-based gadget still provides an improvement.

Despite this advantage, the measurement gadget construction
involves repeated instantaneous decoherence of the ancillary qubit at
precise time intervals without disturbing the rest of the system, and
may still require large (albeit non-scaling) interaction strengths.
Moreover, if Ngad such gadgets were used in parallel, we expect
(though do not calculate here) that an additional overhead of at least

δt =OððtmaxNgadÞ�1=2Þ would be necessary to control the probability of
measuring a 1 at any of the ancillary sites. Nonetheless, the construc-
tion provides a marked improvement in scalings over existing gadgets
for a single 3-local term in aHamiltonian, and gives somepositive clues
as to the ways in which simulators might take advantage of more
general possibilities for channels allowed by Definition 5. We leave the
detailed study of such gadgets, and their robustness to error for future
work. We anticipate that, for a suitable adaptation of Definition 15 for
the dissipative case, there may be similar no-go results preventing
locality reduction by gadgets independently of the size of the system.

Data availability
No datasets were generated or analysed during the current study.
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