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SR-TWAS: leveraging multiple reference
panels to improve transcriptome-wide
association study power by ensemble
machine learning

Randy L. Parrish 1,2, Aron S. Buchman 3, Shinya Tasaki3, Yanling Wang 3,
Denis Avey3, Jishu Xu3, Philip L. De Jager 4, David A. Bennett3,
Michael P. Epstein 1 & Jingjing Yang 1

Multiple reference panels of a given tissue or multiple tissues often exist, and
multiple regression methods could be used for training gene expression
imputation models for transcriptome-wide association studies (TWAS). To
leverage expression imputation models (i.e., base models) trained with mul-
tiple reference panels, regression methods, and tissues, we develop a Stacked
Regression based TWAS (SR-TWAS) tool which can obtain optimal linear
combinations of base models for a given validation transcriptomic dataset.
Both simulation and real studies show that SR-TWAS improves power, due to
increased training sample sizes and borrowed strength across multiple
regression methods and tissues. Leveraging base models across multiple
reference panels, tissues, and regression methods, our real studies identify 6
independent significant risk genes for Alzheimer’s disease (AD) dementia for
supplementary motor area tissue and 9 independent significant risk genes for
Parkinson’s disease (PD) for substantia nigra tissue. Relevant biological inter-
pretations are found for these significant risk genes.

Two-stage transcriptome-wide association studies (TWAS) have been
widely used in genetic studies of complex traits due to the con-
venience of using publicly available transcriptomic reference panels
and summary-level genome-wide association study (GWAS) datasets1–5.
The standard two-stage TWAS method6,7

first trains gene expression
imputation models (per gene per tissue) using a transcriptomic
reference panel in Stage I, taking quantitative gene expression traits as
response variables and nearby (cis-) or genome-wide (cis- and trans-)
genetic variants as predictors. The non-zero genetic effect sizes esti-
mated in the gene expression imputationmodels are considered to be
effect sizes of a broad sense of expression quantitative trait loci

(eQTL), which are taken as variant weights to conduct gene-based
association testswithGWASdata (individual-level or summary-level) in
Stage II.

Various TWAS techniques have been developed, employing
diverse regression methods to train models for imputing gene
expression. Additionally, multiple transcriptomic reference panels are
made available to the public and could be used in TWAS. Conse-
quently, it is possible to train multiple gene expression imputation
models by employing distinct regression methods, employing multi-
ple transcriptomic referencepanels of the same tissue type, or utilizing
transcriptomic data from multiple tissues within a given reference
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panel. For example, multiple regression methods, such as penalized
regression with Elastic-Net penalty (used by PrediXcan7,8) and non-
parametric Bayesian Dirichlet process regression (DPR) model (used
by TIGAR9), have trained gene expression imputationmodels using the
same Genotype-Tissue Expression (GTEx)10 V8 reference data of 48
human tissue types. The Religious Orders Study (ROS)11, RushMemory
and Aging Project (MAP)11, and the GTEx10 V8 project all profile tran-
scriptomic data of prefrontal cortex (PFC) brain tissue and genome-
wide genetic data of the same samples, providing multiple reference
panels of PFC tissue for TWAS. Thus, leveraging multiple trained
gene expression imputation models of the same target gene across
multiple regression methods, multiple reference panels, and multiple
tissue types is expected to improve TWAS power, for more robustly
modeling the unknown genetic architecture of the target gene
expression by multiple regression models, having an increased train-
ing sample size with multiple reference panels, or borrowing strength
across multiple tissue types with correlated gene expression.

Multiple approaches that can take advantage of transcriptomic
reference data for multiple tissues and/or multiple reference panels
have been developed. For example, UTMOST uses group LASSO-
penalized multivariate regression to impute cross-tissue expression12.
TisCoMM uses the same multivariate regression model for gene
expression prediction models for leveraging gene expression across
multiple tissues, but utilizes a unified probabilistic model to test the
overall and tissue-specific gene-trait associations13. SWAM estimates a
vector of weights for input expression imputation models such that
the weighted average of the input models will give the lowest mean
squared error with respect to individual-level reference expression of
the target tissue14. However, these approaches have drawbacks, such
as requiring individual-level reference data, being computationally
expensive, and user-unfriendly. For example, UTMOST and TisCoMM
require individual-level reference data for all tissues to train gene
expression imputation models. In order to control for multi-
collinearity, SWAM considers a regularization parameter which
requires fine-tuning based on the covariance structure of Genetically
Regulated gene eXpression (GReX) of all considered tissues, which
must be derived using individual-level reference transcriptomic data14.
Additionally, SWAM requires that the input of trained gene expression
imputation models in the same SQL database format as used for Pre-
diXcan output14.

To fill this gap, we develop a novel TWAS method to leverage
multiple summary-level gene expression imputation models (i.e., base
models) trained for the same target gene by the ensemble machine
learning technique of stacked regression15,16. We refer to this novel
TWAS method as stacked regression-based TWAS (i.e., SR-TWAS). SR-
TWAS first uses a validation transcriptomic dataset of the target tissue
type to optimally train a set of weights for the multiple expression
imputation base models per target gene (Stage I), by optimizing the
gene expression prediction R2 (i.e., the squared correlation between
observed and predicted gene expression levels) in the validation
dataset. Then SR-TWAS takes the weighted average eQTL effect sizes
as the corresponding variant weights for gene-based association tests
in Stage II. The trained expression imputationmodels by SR-TWAS are
specific for the tissue type of the validation data, and the identified
TWAS risk genes are interpreted with potential genetic effects medi-
ated through their gene expression of the validation tissue type.

In this work, we present a novel TWAS tool (SR-TWAS) for lever-
agingmultiple gene expression imputation basemodels. By simulation
studies, we show that SR-TWAS has higher power than TWAS based on
gene expression imputation base models, and that the average of the
SR-TWASmodel andbasemodels of the validationdata has the highest
power inmost scenarios. By validation studieswith real transcriptomic
data, we show that SR-TWAS achieves higher accuracy for prediction
gene expression than base models. By real application studies of Alz-
heimer’s disease (AD) dementia and Parkinson disease (PD), we

demonstrate that the average of the SR-TWASmodel and base models
of the validation transcriptomic data detect the greatest number of
independently significant risk genes with disease-relevant biological
interpretations. In the following sections, we first briefly describe the
stacked regression method used by SR-TWAS and the GTEx V8 and
ROS/MAP reference transcriptomic datasets used in this study. Then
we describe the results of our simulation studies, validation studies
using the real transcriptomic data, as well as application TWAS of AD
dementia and PD. Last, we end with a discussion.

Results
Overview of SR-TWAS
In the framework of TWAS7,9,17, a multiple linear regression model is
assumed for training gene expression imputation models, taking
quantitative gene expression levels Eg of the target gene and tissue as
the response variable and cis-acting genetic variants nearby the target
gene region (genotype matrix G) as predictors, as shown in the fol-
lowing formula:

Eg =Gw+ ϵ,ϵ∼N 0,Ið Þ: ð1Þ

The eQTL effect sizes w could be trained by different regression
methods and/or using different reference panels with matched
expression and genotype data (Eg ,G).

Assume there are a total of K base gene expression imputation
models trained for the same target gene, with bwk ,k = 1, . . . ,K . Let Evg

denote the gene expression levels of the target gene g for the target
tissue type in the validation data, and Gv denote the genotype matrix
of genetic predictors in the validation data. Then the predicted GReX
of the validation samples by the kth basemodel are given byGv bwk . The
stacked regressionmethod15,16 will solve for a set of optimalbasemodel
weights ζ 1, . . . ,ζK , by maximizing the regression R2 between the pro-
filed gene expression Evg and the weighted average GReX,PK

k = 1ζ kGv bwk , of K base models, i.e., minimizing the following loss
function of 1� R2:

minimize ζ k ;k = 1,...,Kð Þ
jjEvg�

PK

k = 1
ζ kGvbwk jj

2

jjEvg��Evg jj
2 , s:t:

PK
k= 1

ζ k = 1,ζ k 2 0,1½ �: ð2Þ

As a result, we will obtain a set of model weights ζ k for k = 1, . . . ,K base
models, and a set of eQTL effect sizes ew given by theweighted average

of the eQTL effect sizes of K base models, ew=
PK

k = 1ζ k bwk (Stage I).
Then, the final predicted GReX for test genotype data Gt is given bydGReXg =Gt ew, and ew will be taken as variant weights in the gene-based
association tests by SR-TWAS in Stage II. Genes with fivefold cross-

validation (CV) R2 >0:5% in the validation dataset by SR-TWAS are
considered as having a valid imputation model and will be tested in
Stage II9. Here, ew is the trained eQTL effect sizes by SR-TWAS (Stage I)
for the target gene of the tissue of the validation data and identified
significant genes from Stage II have potential genetic effects mediated
through the transcriptome of the tissue of the validation data.

GTEx V8 reference transcriptomic data
The Genotype-Tissue Expression project version 8 (GTEx V8) release
provides a comprehensive reference dataset of Whole Genome
Sequencing (WGS) genotype data with matched RNA-seq tran-
scriptomic data from 54 non-diseased tissues of 838 postmortem
donors of European ancestry10. For our real data analysis, we used
publicly available GReX imputation models trained by TIGAR-V29 and
PrediXcan7,8,18 with GTEx V8 reference data for European subjects as
base models. Supplementary Table 1 shows the disease status of GTEx
subjects for tissues used in theADor PDTWAS. Subjects in theGTExV8
cohort are generally healthy. AD or other dementia was reported for
only 4% of subjects, withmissing data for ~1% of subjects. Themajority
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of GTEx subjects used in PD TWAS were reported to be without PD,
with <1% reportedwith PD andwithmissingdata for 13%of training and
6% of validation subjects.

ROS/MAP reference transcriptomic data
TheReligiousOrders Study (ROS) andRushMemory andAging Project
(MAP) are two longitudinal prospective clinical-pathologic cohort
studies of aging and AD, which are collectively referred to as ROS/
MAP11. ROS recruits participants from religious orders across the Uni-
ted States while MAP recruits lay persons in the northeastern Illinois
area11. All participants in both studies are recruited without known
dementia and agree to annual clinical evaluations and brain donation
upon death11. Only subjects of European ancestry were used in this
study. The disease status of ROS/MAP participants used in this study is
shown in Supplementary Table 1. Of the ROS/MAP subjects used in the
training data of ADTWAS, 57% had normal cognitive function, 40%had
AD or other dementia, and 4% hadmissing disease status. Of the ROS/
MAP subjects used in the validation data of AD TWAS, 75% had normal
cognitive function and 25% had AD or other types of dementia.

Simulation study design
We used the real genotype data of gene ABCA7 from ROS/MAP and
GTEx V8 to simulate gene expression and phenotypes, and considered
multiple scenarios with varying proportions of causal SNPs
(pcausal = ð0:001,0:01,0:05,0:1Þ) and gene expression heritability (i.e.,
the proportion of gene expression variation due to genetics,
h2
e = ð0:1,0:2,0:5Þ). We randomly selected n = 465 training samples with

whole genome sequencing (WGS) genotype data from the ROS/MAP
cohort and GTEx V8 cohort, respectively. We randomly selected
n = 400 and n = 800 samples with WGS genotype data from ROS/MAP
as our validation and test cohorts, respectively. ROS/MAP training,
validation, and test samples were simulated with the same causal SNPs
(i.e., eQTL), while training samples from the GTEx V8 cohort were
simulated with true causal SNPs that were 50% overlapped with the
ones for ROS/MAP samples. The simulated expression heritability was
the same for both ROS/MAP and GTEx V8 samples.

We compared the performance of SR-TWAS with a Naïve
approach (seeMethods)which takes the average of basemodels as the
trained gene expression imputation model, that is, taking
ζ k =

1
K , k = 1, . . . ,K . Two base models per gene were respectively

trained by PrediXcan (penalized regression with Elastic-Net penalty;
PrediXcan-GTEx) with the GTEx training samples (n = 465), and by
TIGAR (nonparametric Bayesian Dirichlet process regression; TIGAR-
ROSMAP) with the ROS/MAP training samples (n = 465). SR-TWAS and
Naïve models were then obtained by using these trained base models.
Validation data (n =400) were used to train SR-TWAS models and an
additional TIGAR base model (TIGAR_ROSMAP_valid). The SR-TWAS
and TIGAR_ROSMAP_valid models were then averaged to create a new
model (Avg-valid + SR, see Methods). Gene expression imputation
models (by SR-TWAS and Naïve methods) with fivefold cross-
validation R2 >0:5% in the validation cohort were considered valid
models,whichwereused toproduce theAvg-valid-SRmodels andused
in the follow-up gene-based association tests. Test data (n = 800) were
used for assessing GReX prediction performance and TWAS power,
with 1000 repeated simulations per scenario. We compared the per-
formance of three base models of the training and validation data
(PrediXcan-GTEx, TIGAR-ROSMAP, and TIGAR-ROSMAP_valid), Naïve
method, SR-TWAS, and Avg-valid + SR models.

Simulation study results
As shown in Fig. 1, we showed that Avg-valid+SR obtained the highest
test R2 for gene expression imputation across 11 of 12 scenarios, and
the SR-TWAS models had the second-best performance. SR-TWAS
obtained the highest test R2 for gene expression imputation in the
pcausal = 0:01 and h2

e =0:5 scenario, where it slightly outperformed the

averaged models. The base models trained by TIGAR with ROS/MAP
training and validation samples (TIGAR-ROSMAP, TIGAR-ROSMAP_va-
lid) performed similarly well, because the test data were generated
under the same model assumptions as the ROS/MAP training and
validation data. Here, the Avg-valid + SR models performed best for
leveraging the predictive information provided by all three base
models. The Naïve method and PrediXcan-GTEx base models did not
perform well because the PrediXcan-GTEx base models were trained
using GTEx training data which only shared half of the true causal SNPs
as the validation and test data. The Naïve approach of taking averages
of the PrediXcan-GTEx and TIGAR-ROSMAP base models had poor
performance because of the heterogeneous genetic architecture
between the GTEx training cohort and test cohort.

As expected, model performance improved with increasing true
expression heritability h2

e with the same training sample size. For all
considered scenarios, the highest testR2 were obtained under a sparse
causality model with pcausal = 0:001, where true causal SNP effect sizes
would be relatively larger given the same h2

e . The comparison of CV R2

and training R2 for Naïve and SR-TWAS approaches (Supplementary
Figs. 1, 2) also showed that SR-TWASoutperformed theNaïve approach
under all scenarios. Because the averaging step used to obtain Avg-
valid+SR models does not include training and cross-validation steps,
no training R2 or CV R2 are obtained for comparison.

In order to assessTWASpower, phenotypeswere simulatedwith a
certain proportion of variance due to simulated gene expression (h2

p).
We considered a series of h2

p values in the range of ð0:05,0:875Þ. The
TWAS power comparison with three base models of the training and
validation data (PrediXcan-GTEx, TIGAR-ROSMAP, and TIGAR-ROS-
MAP_valid), Naïve method, SR-TWAS, and Avg-valid + SR models were
shown in Fig. 2, where the results were consistent with the test R2

comparison as in Fig. 1. The Avg-valid + SR approach performed best,
followed by SR-TWAS, TIGAR-ROSMAP training base models, and
TIGAR-ROSMAP_valid validation basemodels, while the Naïve method
and the PrediXcan_GTEx training base models performed poorly in
comparison. In the pcausal = 0:01 and h2

e =0:5 scenario, SR-TWAS
slightly outperformed Avg-valid + SR and had a noticeable advantage
over the TIGAR-ROSMAP training base models and TIGAR-
ROSMAP_valid validation models. The results showed the SR-TWAS
approach indeed gained power by leveraging basemodels trainedwith
multiple reference panels and by multiple statistical methods.

Although desirable TWAS power ~80% was only obtained in
simulation scenarioswith a relatively high h2

p thatmight be higher than
the value in real studies, simulation power would increase along with
increased test sample sizes. Because real GWAS test data would have a
larger sample size than the 800 considered in our simulations, we
expect desirable power for our SR-TWAS method in real studies.

Additional simulation studies
Additionally, we conducted similar simulation studies for two other
settings, where samples from ROS/MAP and GTEx cohorts have the
same set of true causal SNPs (i.e., the same genetic architecture), and
(i) the expression heritability was the same for both ROS/MAP and
GTEx V8 cohorts or (ii) the expression heritability for GTEx V8 cohort
was half that of the ROS/MAP cohort. The results of these settings
were similar to that of the previously described setting in which the
GTEx V8 cohort had the same heritability and a 50% overlap of true
causal SNPs compared to the ROS/MAP cohort. In these two addi-
tional simulation scenarios, Avg-valid + SR still had the best perfor-
mance, while SR-TWAS, TIGAR-ROSMAP training base models, and
TIGAR-ROSMAP_valid validation base models outperformed the
PrediXcan-GTEx training base models and Naïve models.

Comparisons of CV R2 and training R2 for Naïve and SR-TWAS
approaches for these scenarios (Supplementary Figs. 3–6) showed
that SR-TWAS outperformed the Naïve approach under all scenarios.
For all considered scenarios, again the highest test R2 was obtained
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under a sparse causality model with high expression heritability
(Supplementary Figs. 7, 8). Power comparison results show that the
Avg-valid + SR models obtained the highest power in most scenarios,
while SR-TWAS, TIGAR-ROSMAP training base models, and TIGAR-
ROSMAP_valid validation base models generally outperformed the
PrediXcan-GTEx training base models and the Naïve models (Sup-
plementary Figs. 9, 10). The SR-TWAS approach gainedmore power in
the setting inwhich the expression heritability forGTExV8 cohortwas
only half that of ROS/MAP (Supplementary Fig. 10). SR-TWAS once
again had the best performance in the pcausal = 0:01 and h2

e =0:5 sce-
nario under both of these additional settings.

Simulation study model weights estimated by SR-TWAS
Plots of the weights (zeta values) of base models that were estimated
by SR-TWAS in all three simulation settings and 12 scenarios (Supple-
mentary Fig. 11) showed that the SR-TWAS training consistently esti-
mated higher weights for the TIGAR-ROSMAP training base models
compared to the PrediXcan-GTEx training base models, with many
models selecting only the TIGAR-ROSMAP training base model (i.e.,
models in which the zeta value estimate for the TIGAR-ROSMAP
training base model is 1 and the zeta value estimate for the PrediXcan-
GTEx model is 0). This makes sense because the validation data were

generated under the samemodel assumptions as the ROSMAP training
data. In particular, when the GTEx training data were also generated
under the same model as the validation data (orange bars in Supple-
mental Fig. 11), zeta value estimates for the TIGAR-ROSMAPmodels are
more evenly distributed in [0, 1] for scenarios with sparse causality
model (pcausal = 0.001) and high expression heritability (h2

e =0.2, 0.5).
When the GTEx training data were generated under a different setting
where half of the true causal eQTL in the validation data were also
causal in the ROSMAP training data (black bars in Supplemental
Fig. 11), the zeta value for the TIGAR-ROSMAP base model is more
frequently estimated to be 1.

Even when both ROSMAP and GTEx training data were generated
under the same model assumptions, the SR-TWAS method is still
shown with gained power because the two base models trained by
TIGAR and PrediXcan have complementary properties. In particular,
PrediXcan uses a parametric penalized regression model with Elastic-
Net penalty which is preferred for sparse genetic architecture of gene
expression quantitative traits. Whereas TIGAR uses a nonparametric
Bayesian Dirichlet process regression model which assumes an infini-
tesimal model for the underlying genetic architecture of gene
expression quantitative traits. As shown in previous studies9, Pre-
diXcan will perform better when the true causal eQTL is sparse, while

Fig. 1 | Boxplots of gene expression prediction R2 for simulations with varying
proportions of true causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1) and true
expression heritability h2

e = 0:1,0:2,0:5ð Þ. Expression was simulated 1000 times
per scenario. Avg-valid + SR models obtained the highest test R2 for gene expres-
sion imputation across all 11 of 12 scenarios, while SR-TWAS performed best in the
scenario with pcausal = 0:01 and h2

e =0:5. This is because test samples are simulated
under the same genetic architecture as the ROSMAP training cohort and the vali-
dation cohort, which only have ~50% overlapped true causal SNPs as the GTEx

training cohort. Gene expression prediction R2 is the squared Pearson correlation
between predicted GReX and simulated true expression. The lower and upper
bounds of the box are 1st and 3rd quartile, respectively. The horizontal line is the
median, the diamond inside the box is the mean, whiskers extend to the most
extreme observation within 1.5 × IQR of the nearest box boundary, and points
beyond the whiskers are outliers. Color indicates model: blue = PrediXcan-GTEx,
gold = TIGAR-ROSMAP, green = TIGAR-ROSMAP-valid, black =Naive, red = SR-
TWAS, purple = Avg-valid+SR.
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TIGAR will perform better as the true causal eQTL proportion increa-
ses. Our simulation studies showed that SR-TWAS had improved per-
formance across various scenarios with (pcausal = 0.001, 0.01, 0.05, 0.1;
h2
e =0.1, 0.2, 0.5; Supplementary Fig. 7).

Type I error assessment simulation study
We also assessed type I error under the example scenario with
pcausal = 0:1, h2

e =0:1. Base model weights for TIGAR-ROSMAP, Pre-
diXcan-GTEx, andTIGAR-ROSMAP-validwere permuted 106 times. The
TIGAR-ROSMAP and PrediXcan-GTEx training base models with per-
muted weights were then used to obtain SR-TWAS and Naïve models.
The Avg-valid + SR was obtained by averaging the SR-TWAS models
and TIGAR-ROSMAP_valid training base models with permuted
weights. All models were then used to conduct gene-based association
tests with a phenotype generated randomly from Nð0,1Þ. As shown in
Supplementary Table 2, all models controlled well for type I errors for
significance thresholds ð10�4, 10�5, 2:5 × 10�6, 10�6Þ. The Quantile-
Quantile (QQ) plots of the TWAS p values in these null simulations
are also shown in Supplementary Fig. 12.

Real validation studies
To compare the GReX prediction accuracy with real gene expression
data, we considered three sets of base models that were trained by
TIGAR with ROS samples (n = 237, TIGAR_ROS_DLPFC) of dorsolateral

prefrontal cortex (DLPFC) tissue, trained by TIGAR with GTEx V8 data
of brain frontal cortex tissue (n = 157, TIGAR_GTEx_BRNCTXB)9, and
trained by PrediXcan with the same GTEx reference data of brain
frontal cortex tissue (n = 157, PrediXcan_GTEx_BRNCTXB)7,8,18. SR-
TWAS (SR-TWAS_MAP_DLPFC) and Naïve (Naive_MAP_DLPFC) models
were trained from these three sets of base models with respect to a
validation dataset with half of the MAP samples (n = 114, randomly
selected) of DLPFC tissue. Valid gene expression imputation models
trained by SR-TWAS and Naïve methods with fivefold CV R2 >0:5% in
validation data were tested using the other half of the MAP samples
(n = 114) of DLPFC tissue.

By comparing testR2 obtained by SR-TWAS, Naïve, and three sets
of base models in the test MAP samples (Supplementary Table 3), we
showed that PrediXcan_GTEx_BRNCTXB7,8,18 had the highest median
(0.070) and mean (0.113) test R2 but only for 867 valid gene expres-
sion imputation models, SR-TWAS had the second highest median
(0.026) and mean (0.068) test R2 for 8425 valid genes expression
imputationmodels, andNaïvemodel performed similarly to SR-TWAS
but with a slightly lower median (0.025) andmean (0.065) test R2 and
fewer valid genes expression imputation models (8360). By pair-wise
comparison of test R2 for all genes with valid expression imputation
models (Supplementary Fig. 13), SR-TWAS (y-axis) performed
noticeably better than the Naïve and three sets of base models
(x-axis).
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Fig. 2 | Power comparison for simulations with varying proportions of true
causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1), true expression heritability
h2
e = 0:1,0:2,0:5ð Þ, and phenotype heritability h2

p 2 0:05,0:875ð Þ. Expression was
simulated 1000 times per scenario. Similar patterns were observed as shown in
Fig. 1, where Avg-valid+SRmodels obtained the highest test R2 for gene expression
imputation across all 11 of 12 scenarios and SR-TWASmodels performed best in the

scenario with pcausal = 0:01 and h2
e =0:5. Power is calculated as the percent of

simulation iterations which have TWAS p value <2:5 × 106. Color and shape indicate
model: blue/square = PrediXcan-GTEx, gold/up-triangle = TIGAR-ROSMAP, green/
down-triangle = TIGAR-ROSMAP-valid, black/cross =Naive, red/circle = SR-TWAS,
purple/diamond =Avg-valid+SR.
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Training expression imputation models of SMA tissue by
SR-TWAS
Weconsidered four sets of basemodels––TIGARandPrediXcanmodels
trained with 465 ROS/MAP samples of DLPFC tissue (TIGAR_ROS-
MAP_DLPFC, PrediXcan_ROSMAP_DLPFC), TIGAR and PrediXcan mod-
els trained with 157 GTEx V8 samples of prefrontal cortex tissue
(TIGAR_GTEx_BRNCTXB9, PrediXcan_GTEx_BRNCTXB7,8,18). An addi-
tional 76 ROS/MAP samples of the supplementary motor area (SMA)
brain tissue were used as the validation dataset to train SR-TWAS
models and to calculate the fivefold CVR2 that was used to select genes
with valid imputation models. Plots of zeta weights estimated by SR-
TWAS for each set of training base models were presented in
Supplementary Fig. 14. We observed that the weights of the
TIGAR_GTEx_BRNCTXB9 training base models were estimated to be 1
more often than the other training base models. These results showed
that the basemodels trained by TIGARwith the GTEx data of BRNCTXB
tissue (TIGAR_GTEx_BRNCTXB9) contributed solely to SR-TWASmodels
for almost half of the genes, which was consistent with the numbers of
valid gene expression imputation models as shown in Table 1.

PrediXcan and TIGAR models trained using the 76 ROS/MAP
samples of the SMA validation dataset (PrediXcan_ROSMAP_SMA,
TIGAR_ROSMAP_SMA) were also included for comparison and were
averaged with SR-TWAS models to obtain an additional set of models
(Avg-valid + SR). Here, we compared Avg-valid+SR and SR-TWAS mod-
els to training basemodels, as well as validation basemodels trained by
PrediXcan and TIGAR using the validation data of the target SMA brain
tissue, to show the advantages of SR-TWAS for leveraging multiple
regression models, multiple reference panels, and multiple tissues.

By comparing the CV R2 and numbers of genes with valid expres-
sion imputation models (Table 1), we found that gene expression
imputation models trained by SR-TWAS for the SMA tissue (SR-
TWAS_ROSMAP_SMA)had thehighestmedianCVR2 (0.072) and second
highest mean CV R2 (0.09) for ~20K genes with valid expression
imputation models. Although the PrediXcan_GTEx_BRNCTXB7,8,18 train-
ing basemodels had the third highestmedian CV R2 (0.061) and highest
mean CV R2 (0.10), only 4563 genes had valid expression imputation
models. These results showed that SR-TWAS obtained improved CV R2

in a real validation cohort of SMA tissue by leveraging multiple regres-
sion methods from two reference panels of multiple relevant tissues.

TWAS results of AD dementia
By using the eQTL weights obtained by training base models, valida-
tion base models, SR-TWAS models, and Avg-valid + SR models, we
conducted TWAS with the summary-level data of the recent GWAS of
AD dementia (n = ~762K)19. Since Avg-valid + SRmodels were shown to

have the best performance in our simulation studies, we focused on
summarizing the results by Avg-valid + SR here. In particular, Avg-
valid + SR identified a total of 89 significant TWAS risk genes of AD
dementia with p values <2:5 × 10�6. Of these, 19 are known GWAS risk
genes, 70 arewithin 1Mbof a knownGWAS risk gene, and 14havebeen
previously observed as TWAS risk genes of AD dementia20–25 (Supple-
mentary Table 4).

Validation of significant TWAS risk genes of AD by PMR-Egger
In order to account for potential horizontal pleiotropy effects (genetic
effects on phenotype that are not mediated by the considered GReX),
we applied the PMR-Egger tool to the 89 significant TWAS risk genes of
AD obtained by the Avg-valid + SR models. This analysis was per-
formed using the same validation transcriptomic dataset and GWAS
summary data as in the application TWAS of AD dementia. Of these 89
analyzed genes, 61 (68.5%) had a significant causal p value by PMR-
Egger after Bonferroni correction for multiple testing.

Independent significant TWAS risk genes of AD dementia
BecauseTWASconsiders genotypedatawithin a±1Mb regionof the test
gene, nearby significantTWASgeneswithoverlapping test regions often
have correlated GReX values and might not represent independent
associations.Wecurated6 independentTWAS risk genesofAD from the
61 significant genes that were validated by PMR-Egger (Table 2 and
Fig. 3) by selecting the most significant gene in a cluster of significant
genes with overlapped test regions as the independent risk gene. We
found that one of these independent risk genes,HLA-DRA, was a known
GWAS22,26 risk gene and was also previously observed as a TWAS risk
gene21. The other five independent risk genes were near known GWAS
risk genes19,21,22,26–28 and near previously observed TWAS risk genes20,22.
Compared to the TWAS results using training base models (Supple-
mentary Fig. 15) and validation base models (Fig. 3), Avg-valid + SR
models identified the greatest number of independent risk genes.

Protein–protein interaction network and enrichment analysis
with risk genes of AD dementia
To investigate the underlying biological mechanisms of our identified
TWAS risk genes of AD, we conducted protein–protein interaction
network and enrichment analysis with our identified TWAS risk genes
by the STRING29 tool (Methods). As shown in Fig. 4A, we identified a
major network consisting of 23 TWAS risk genes, including the well-
known AD risk genes TOMM4030, APOC131, APOC231, and TNF32. Our
identified TWAS risk genes are enriched with known risk genes for AD-
related phenotypes such as family history of AD, lipoprotein measure-
ments, mental or behavioral disorder biomarkers, inflammatory bio-
marker measurement, and beta-amyloid 1–42 measurement (Fig. 4B).

Training expression imputation models of brain substantia
nigra tissue by SR-TWAS
We considered six sets of base models trained by TIGAR on six dif-
ferent tissues from GTEx V8––brain anterior cingulate cortex BA24
(BRNACC) (n = 136), brain caudate basal ganglia (BRNCDT) (n = 173),
brain cortex (BRNCTXA) (n = 184), brain nucleus accumbens basal
ganglia (BRNNCC) (n = 182), brain putamen basal ganglia (BRNPTM)
(n = 154), and whole blood (BLOOD) (n = 574). With these six sets of
training base models, an additional 101 GTEx samples of brain sub-
stantia nigra (BRNSNG) tissue were used as the validation data to train
SR-TWAS models. We presented the plots of zeta weights of training
base models that were estimated by SR-TWAS in Supplementary
Fig. 16. For all six sets of considered training basemodels, zeta weights
were similarly distributed with 0’s for most genes and other values
distributed over (0, 1). Fivefold CVR2 was calculated and used to select
genes with valid expression imputation models for TWAS. PrediXcan
and TIGAR models trained on the validation data of brain substantia
nigra tissue (PrediXcan_GTEx_BRNSNG7,8,18, TIGAR_GTEx_BRNSNG9)

Table 1 | Comparison of CV R2 of SMA tissue for valid gene
expression imputation models given by training base models
with ROS/MAP and GTEx V8 reference panels of DLPFC tis-
sue, validation basemodels, SR-TWASmodels, and Avg-valid
+SR models

Sample Size Median
CV R2

Mean
CV R2

Ngenes

PrediXcan_GTEx_BRNCTXB7,8,18a 157 0.061 0.101 4563

PrediXcan_ROSMAP_DLPFCa 465 - - 6532

TIGAR_GTEx_BRNCTXB9a 157 0.038 0.065 21921

TIGAR_ROSMAP_DLPFC a 465 0.017 0.049 11981

PrediXcan_ROSMAP_SMAb 76 0.031 0.053 23888

TIGAR_ROSMAP_SMA 76 0.064 0.077 32350

SR-TWAS_ROSMAP_SMA - 0.072 0.090 20216

Avg-valid+SR - - - 32238
aBase training model used by SR-TWAS.
bBase validation model.
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Table 2 | Independent TWAS risk genes of AD dementia identified by Avg-valid + SR models of SMA tissue

Avg-valid + SR SR-TWAS PrediXcan TIGAR

ROSMAP
SMA

ROSMAP
SMA

ROSMAP
SMA

ROSMAP
SMA

Gene CHR Z-score P value Z-score P value Z-score P value Z-score P value

HLA-DRAac 6 −6.81 1.00e-11 −6.88 5.93e-12 - - - -

AC092849.1bd 7 6.54 6.23e-11 - - 6.48 9.02e-11 5.98 2.21e-09

SRD5A3P1bd 11 8.73 2.49e-18 - - - - 8.73 2.49e-18

RN7SL225Pbd 11 5.05 4.33e-07 - - 5.03 5.02e-07 4.93 8.04e-07

AL110118.2bd 14 −5.32 1.01e-07 - - −5.25 1.52e-07 −5.63 1.77e-08

FOSBbd 19 29.19 2.44e-187 - - 29.20 1.87e-187 13.79 2.98e-43

Two-sided TWAS Z-scores and p values were presented here for themodels of Avg-valid + SR, SR-TWAS, PrediXcan validation basemodels, and TIGAR validation basemodels. The signs of Z-scores
show the directions of the mediated genetic effects on AD dementia. The genome-wide significance threshold was Bonferroni-corrected for testing ~20 K genes.
aKnown GWAS risk gene of AD.
bGene within 1Mb of known GWAS risk gene of AD.
cPreviously observed TWAS risk gene of AD.
dGene within 1Mb of previously observed TWAS risk gene of AD.
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Fig. 3 | Manhattan plots of TWAS results by validation base models, SR-TWAS
models, and Avg-valid + SR models of SMA tissue for studying AD dementia.
Validation base models were trained by PrediXcan and TIGAR using the ROS/MAP
validation data of SMA tissue. Avg-valid + SR models were obtained by averaging
the SR-TWAS and these two sets of validation base models. A total of 89 (six
independent and significantly causal by PMR-Egger) TWAS risk genes were

identified by the Avg-valid + SR models. P values were obtained from two-sided Z-
score tests. The genome-wide significance threshold was Bonferroni-corrected for
testing ~20K genes. Significant genes are shown in orange, significant genes that
are discussed in themain text are labeled and shown in red, and all other genes are
shown in green.
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wereused toobtain averagemodels (Avg-valid+SR) of these twosets of
validation base models and SR-TWAS models.

By comparing the CV R2 and number of genes with valid expres-
sion imputation models (Table 3), we found that gene expression
imputation models trained by SR-TWAS for the brain substantia nigra
tissue (SR-TWAS_GTEx-BRNSNG9) had the highest median CV R2

(0.068) and highest mean CV R2 (0.094) for ~23 K genes with valid
expression imputation models. These results showed that SR-TWAS
obtained improvedCV R2 in a real validation cohort of substantia nigra
tissue by leveraging multiple regression methods from two reference
panels of multiple relevant tissues.

TWAS results of PD
We conducted TWAS using GWAS summary statistics by the recent
GWAS of PD (n = ~33K cases, ~18K UK Biobank proxy-cases, and ~828K
controls)33, using eQTL weights estimated by the above six sets of
training base models of multiple tissues, validation basemodels of the

BRNSNG tissue, SR-TWAS models, and Avg-valid + SR models (Sup-
plementary Fig. 17). Here, we also focused on the results by using the
Avg-valid + SR models (Fig. 5; Table 4; and Supplementary Table 5),
including a total of 60 significant TWAS risk genes of PD. Of these, 11
are known GWAS risk genes, 47 are within 1Mb of a known GWAS risk
gene, and 11 have been previously observed as TWAS risk genes of PD.

Validation of significant TWAS risk genes of PD by PMR-Egger
We applied the PMR-Egger tool to the 60 significant TWAS risk genes
of PD obtained by the Avg-valid + SR models. This analysis was per-
formed using the same validation transcriptomic dataset and GWAS
summary data as in the application TWAS of PD. Of these genes, 46
(76.6%) had a significant causal p value by PMR-Egger after Bonferroni
correction for multiple testing.

Independent significant PD TWAS risk genes
Similarly, from these 46 replicated risk genes with significant causal p
values by PMR-Egger,we curated nine independent TWAS riskgenes of
PD (Fig. 5 and Table 4), including six novel TWAS risk genes (LA16c-
431H6.7, ADORA2B, AC005082.12, MAPK8IP1P2, MYLPF, and PARL). Of
these novel TWAS risk genes, four (AC005082.12,MAPK8IP1P2,MYLPF,
and PARL) are near known GWAS risk genes (GPNMB33,34, MAPT33,
MCCC133, SETD1A33, ZSWIM735). The other 3 previously observed TWAS
risk geneswere alsoknownGWAS risk genes (CD3834,35,MMRN133,35, and
NDUFAF233). Compared to the TWAS results using these six training
base models (Supplementary Fig. 17) and validation base models
(Fig. 5), Avg-valid + SR models still identified the greatest number of
independent risk genes that were validated by PMR-Egger.

Protein–protein interaction network and enrichment analysis
with risk genes of PD
Similarly, we conducted protein–protein interaction network and
enrichment analysis with our identified TWAS risk genes of PD by the
STRING29 tool (Methods). As shown in Fig. 6A, we identified four net-
works with at least two connected genes, including a major one with
nine genes connected to the well-known PD risk gene MAPT33, and
another network with six genes connected to gene PRSS53, a mapped
PD risk gene in the GWAS Catalog36. Interestingly, our identified TWAS

Fig. 4 | Protein–protein interaction network and enrichment analyses with
TWAS risk genes of AD dementia by Avg-valid + SR models. A A major network
consisting of 23 TWAS risk genes is identified, including the well-known AD risk
genes of TOMM40, APOC1, APOC2, and TNF. B Enriched phenotypes include AD-

relatedphenotypes suchas family historyof AD, lipoproteinmeasurements,mental
or behavioral disorder biomarkers, inflammatory biomarker measurements, and
beta-amyloid 1–42 measurements.

Table3 |ComparisonofCVR2 of BRNSNGtissue for validgene
expression imputation models given by training base models
with GTEx V8 reference panel of multiple tissues, validation
base models, SR-TWAS models, and Avg-valid + SR models

Sample size Median
CV R2

Mean
CV R2

Ngenes

TIGAR_GTEx_BRNACC9a 136 0.040 0.062 23068

TIGAR_GTEx_BRNCDT9a 173 0.034 0.063 23362

TIGAR_GTEx_BRNCTXA9a 184 0.033 0.066 23379

TIGAR_GTEx_BRNNCC9a 182 0.033 0.060 23382

TIGAR_GTEx_BRNPTM9a 154 0.037 0.062 22481

TIGAR_GTEx_BLOOD9a 574 0.020 0.071 16682

TIGAR_GTEx_BRNSNG9b 101 0.050 0.068 23051

PrediXcan_GTEx_BRNSNG7,8,18b 101 0.052 0.080 2559

SR-TWAS_GTEx_BRNSNG - 0.068 0.094 22913

Avg-valid + SR - - - 21683
aBase training model used by SR-TWAS;
bBase validation model.
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risk genes of PD are enriched with known risk genes for mental traits
such as anxiety, white matter microstructure measurement, handed-
ness, and neuroticism measurement (Fig. 6B).

Discussion
Wepresent a novel TWAS tool (SR-TWAS) using the ensemblemachine
learning technique of stacked regression15,16,37 for leveraging multiple
gene expression imputation models (i.e., base models) trained by dif-
ferent regression methods and/or using different transcriptomic
reference panels of different tissue types. We also constructed a set of
averagemodels (Avg-valid + SR) of the SR-TWASmodels and validation
basemodels thatwere trained using the validation data. Different from
existing methods such as UTMOST12 and SWAM14, SR-TWAS requires
only summary-level base models, providing the flexibility of using
publicly available base models.

With comprehensive simulation studies, we compared the
Avg-valid+SR models to SR-TWAS models, the naïve approach of
averaging all training base models, training base models, and

validation base models. We showed that the Avg-valid+SR
expression imputation models had the best prediction accuracy
and led to the best TWAS power across 11 out of 12 considered
scenarios, and that SR-TWAS models performed the best in the
remaining scenario.

In the real data validation and application studies using ROS/MAP
andGTEx V8 reference panels andGWAS summary data of Alzheimer’s
disease (AD) dementia and Parkinson’s disease (PD), Avg-valid + SR
models also outperformed basemodels trained using single reference
panels and tissue types. Avg-valid+SR models identified a greater
number of total independent risk genes that were replicated by PMR-
Egger than any of the base training or validation models. Besides
known GWAS/TWAS risk genes that were identified by Avg-valid + SR
models, we also found five novel independent TWAS risk genes for AD
dementia and six novel independent TWAS risk genes for PD with
known functions in respective disease pathology (Tables 2 and 4).
Most of these novel findings are located within the 1Mb region of
previously known GWAS and TWAS risk genes. Additionally, we found
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Fig. 5 | Manhattan plots of TWAS results by validation base models, SR-TWAS
models, and Avg-valid + SR models of substantia nigra tissue for studying
Parkinson’s disease.Validation basemodels were trained by PrediXcan and TIGAR
using the GTEx validation data of substantia nigra tissue. Avg-valid + SR models
were obtained by averaging the SR-TWAS and these two sets of validation base
models. A total of 60 (nine independent and significantly causal by PMR-Egger)

significant TWAS risk genes were identified by the Avg-valid + SR models. P values
were obtained from two-sided Z-score tests. The genome-wide significance
threshold was Bonferroni-corrected for testing ~20K genes. Significant genes are
shown in orange, significant genes that are discussed in the main text are labeled
and shown in red, and all other genes are shown in green.
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interesting biological interpretations relevant to AD dementia and PD
for our identified TWAS risk genes.

Important findings by application TWAS of AD dementia
The results of the TWAS of AD include genes with known associations
with AD dementia, or with relevant biological processes like immune
response and regulation of AD-associated genes. Among these 6
curated independent significant genes by Avg-valid + SR models
(Table 2),HLA-DRA is located in the major histocompatibility complex
region that is expressed in glial cells38 and which has also been pre-
viously identified by eQTL analysis22. The other five independent sig-
nificant TWAS AD risk genes of AD (AC092849.1, AL110118.2, FOSB,
RN7SL225P, and SRD5A3P1) are within 1Mb of known GWAS risk genes
of AD19,21,22,26–28 and previously observed TWAS risk genes20,21. FOSBwas
the most significant of a cluster of 38 identified significant TWAS risk
geneswith test region overlappedwith thewell-knownGWAS riskgene
APOE19,21,22,28,39,40 (Fig. 3). An alternatively-spliced product of the FOSB
gene has been implicated in the regulation of gene expression and
cognitive dysfunction in mouse models of AD41. SRD5A3P is located in
the AD-associatedMS4A gene cluster27, which containsmultiple known

GWAS risk genes19,21–23 as well as TWAS risk gene MS4A220 of AD. The
MS4A gene cluster is notable due to its role in the regulation of soluble
TREM2, which is encoded by the known AD risk gene TREM2, in cere-
brospinal fluid in AD27.

Important findings by application TWAS of PD
Similarly, results of the TWAS of PD include genes with known
associations with PD, with related conditions, and with relevant
biological processes like inflammation. Among these nine curated
independent significant genes (Table 4), PARL plays a role in reg-
ulating cellular processing of the mitochondrial kinase protein
encoded by PINK1, mutations in which are a known cause of reces-
sively-inherited, early-onset PD42.NDUFAF2 encodes for a component
of mitochondrial complex I and loss of its functionality results in a
rare mitochondrial encephalopathy with frequent substantia nigra
pathology and motor symptoms43. NDUFAF2 was also identified as a
potential drug target in a Mendelian randomization study of poten-
tial drug targets for PD treatment44. A study of PD-associated
GPNMB found that it is upregulated with the lncRNA gene
AC005082.1245.

Table 4 | Independent TWAS risk genes of Parkinson’s disease identified by Avg-valid + SR models of SMA tissue

Avg-valid + SR SR-TWAS PrediXcan TIGAR

GTEx BRNSNG GTEx BRNSNG GTEx BRNSNG GTEx BRNSNG

Gene CHR Z-score P value Z-score P value Z-score P value Z-score P value

PARLbd 3 −4.75 2.02e-06 - - - - - -

CD38ac 4 7.59 3.31e-14 7.68 1.57e-14 - - - -

MMRN1ac 4 −7.99 1.34e-15 −7.91 2.55e-15 −7.90 2.80e-15 −8.50 1.95e-17

NDUFAF2ac 5 −5.33 9.80e-08 −5.45 4.91e-08 - - - -

AC005082.12bd 7 5.94 2.83e-09 5.47 4.44e-08 - - 5.35 8.66e-08

LA16c-431H6.7 16 −4.95 7.60e-07 - - - - - -

MYLPFbd 16 6.34 2.31e-10 - - - - 6.31 2.78e-10

ADORA2Bd 17 −5.02 5.16e-07 −5.20 2.04e-07 −4.94 7.96e-07 −5.29 1.21e-07

MAPK8IP1P2bd 17 9.31 1.30e-20 9.05 1.39e-19 - - 9.42 4.38e-21

Two-sided TWAS Z-scores and p values were presented here for themodels of Avg-valid + SR, SR-TWAS, PrediXcan validation basemodels, and TIGAR validation basemodels. The signs of Z-scores
show the directions of the mediated genetic effects on AD dementia. The genome-wide significance threshold was Bonferroni-corrected for testing ~20 K genes.
aKnown GWAS risk gene of PD.
bGene within 1Mb of known GWAS risk gene of PD.
cPreviously observed TWAS risk gene of PD.
dGene within 1Mb of previously observed TWAS risk gene of PD.

Fig. 6 | Protein–protein interaction network and enrichment analyses with
TWAS risk genes of PDby Avg-valid + SRmodels. A A total of four networks with
at least two connected genes, including a major one with nine genes connected
through the well-known PD risk gene MAPT, and another one with six genes

connected through PRSS53, which is a mapped PD risk gene in GWAS Catalog.
B Enriched phenotypes include mental traits such as anxiety, white matter micro-
structure measurement, handedness, and neuroticism measurement.
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Additionally, ADORA2B encodes adenosine receptor A2B, which is
an important cell receptor involved in numerous pathways and
implicated in a broad variety of diseases including asthma, sepsis,
inflammatory bowel disease, cancer, renal disease, diabetes, vascular
diseases, and lung disease46,47. The immunomodulatory effects and
role in inflammatory processes have made A2B a target for pharma-
cological therapeutics46and antagonists the similar adenosine receptor
A2A were the first non-dopaminergic drug therapy for PD48. MAP-
K8IP1P2 is a pseudogene near a known TWAS PD risk gene LRRC37A235

(also identified by Avg-valid+SR models). CD38 is involved in neuro-
degeneration, neuroinflammation, and aging35,49. MMRN1 is a carrier
protein for platelet factor V and lies ∼84KB downstream of a well-
established GWAS PD risk locus found in multiple populations33.

Tool for implementing SR-TWAS
The SR-TWAS tool, including options for constructing SR-TWAS
models, models by the Naïve method, and Avg-valid + SR models, is
publicly available on GitHub. The SR-TWAS tool implements user-
friendly features, including accepting genotype data in standard VCF
format as input, enabling parallel computation, and using efficient
computation strategies to reduce time and memory usage. The most
computationally expensive part is to train all base models with dif-
ferent reference panels, which is subject to the regression method.
For example, with training sample size n = 465, PrediXcan (Elastic-
Net) costs ~1 CPU minute, and TIGAR (DPR) costs ~3 CPU minutes on
average per gene. Publicly available trained models can also be used
asbasemodels by the SR-TWAS tool. The process of training SR-TWAS
models from base models and validation data is quite computation-
ally efficient. For example, with the ROS/MAP SMA tissue validation
dataset (n = 76) and four base models in our real studies SR-TWAS
model training costs ~15 CPU seconds per gene. With the GTEx sub-
stantia nigra tissue validation dataset (n = 101) and six base models in
our real studies SR-TWAS model training costs ~103 CPU seconds
per gene.

Limitations
SR-TWAS still has its limitations. For example, SR-TWAS only considers
cis-eQTL during model training, uses the standard two-stage TWAS,
requires an additional validation dataset of the target tissue indepen-
dent of those used for base model training16, and assumes samples of
the reference panels and validation dataset are of the same ancestry50.

First, previous studies have illustrated the importance of con-
sidering both cis- and trans- eQTL in TWAS51, and jointmodeling of the
gene expression imputation and the gene-based association test52,53.
The stacked regression technique used by SR-TWAS also applies to
scenarios considering both cis- and trans- eQTL, when base models
trained with both cis- and trans- eQTL are available.

Second, the standard two-stage TWAS framework (implemented
by SR-TWAS) has limited power due to not considering the uncertainty
of estimated eQTL weights and possible inflated false positives due to
not considering potential horizontal pleiotropy (i.e., genetic effects on
the phenotype of interest that are not mediated by GReX). Alter-
natively, a collaborative mixed model implemented by TWAS tools of
CoMM52 and CoMM-S254 that jointly model the reference tran-
scriptomic and GWAS datasets (instead of two separate stages) is an
effective approach to improve TWAS power by considering the
uncertainty of estimated eQTL weights. The recently proposed PMR-
Egger53 tool (for probabilistic mendelian randomization) can test the
genetic effects mediated through the GReX term (equivalent to TWAS
association tests) while controlling for horizontal pleiotropy could be
used to validate the findings by SR-TWAS.

Third, in this study we only evaluated scenarios where reference
samples used to train base models are of the same ancestry as the
validation data. Although the method can be generalized to scenarios
where base and validation data are of different ancestries, having at

least one set of training base models with the same ancestry as the
validation data would be a requirement for promising TWAS results.
Evaluating the performance of SR-TWAS with base models of multiple
ancestries is beyond the scope of this study, and is part of our
ongoing study.

Summary
Overall, the SR-TWAS tool provides a useful resource for researchers
to take advantage of the publicly available gene expression imputa-
tion models by usingmultiple regression methods (e.g., PrediXcan7,8,
FUSION17, and TIGAR9) and different reference panels of multiple
tissue types (e.g., ROS/MAP11 and GTEx V810). In particular, the final
trained gene expression imputation model by SR-TWAS will be with
respect to the same tissue type as the validation dataset. Because
multiple base models would not only increase the robustness of the
gene expression imputation model but also increase the total effec-
tive training sample size, SR-TWAS is expected to further increase
TWAS power for studying complex human diseases. The approach of
constructing average models of the SR-TWAS models and validation
base models (Avg-valid + SR) provides a set of optimal gene expres-
sion imputation models that can leverage both training base
models and validation base models to achieve the best TWAS
performance.

Methods
SR-TWAS using stacked regression
Stacked regression is a machine learning method for forming optimal
linear combinations of different predictors to improve prediction
accuracy16. The theoretical background for combining predictors
rather than selecting a single best predictor is well-established and has
been developed since the 1970s16,55,56. The stacking method of com-
bining predictors originated in a 1992 paper15 by Wolpert, who
described the concept as any scheme for feeding information from a
set of cross-validated models to another before forming the final
prediction in order to reduce prediction error15. The idea is further
expandedwith stacked regression, a specific framework for combining
the initial predictors by weighted average with coefficient constraints
to control for multicolinearity16.

In standard two-stage TWAS, we need to first fit a gene expression
imputation model, which is assumed as a multivariable linear regres-
sion model, with quantitative gene expression levels Eg for the target
gene and tissue type as the response variable, and genotype matrix G
of nearby/genome-wide SNPs as predictors,

Eg =GW + , 2i ∼N 0, 1ð Þ: ð3Þ

This gene expression imputation model can be trained per gene per
tissue type, using a transcriptomic reference panel which profiles both
transcriptomic and genetic data of the same training cohort. SNPswith
non-zero effect sizes w are referred to as a broad sense of eQTL. The
eQTL effect sizes w will be estimated from each trained model by
different regression methods and/or using different reference data of
multiple tissue types.

Assume there are a total of K base gene expression imputation
models that are trained for the same target gene and tissue type, withbwk ,k = 1, . . . ,K , as the trained eQTL effect sizes per base model. Let Evg

denote the gene expression levels of the same target gene g and tissue
type in the validation data, and Gv denote the genotype matrix of the
same genetic predictors in the validation data. Then the predicted
Genetically Regulated gene eXpression (GReX) of the validation sam-
ples are given byGv bwk , by the kth basemodel. The stacked regression
method15,16 will solve for a set of optimal model weights ζ 1, . . . ,ζK , by
maximizing the regression R2 between the profiled gene expression
Evg and the weighted average GReX,

PK
k = 1ζ kGv bwk , of K base models,

Article https://doi.org/10.1038/s41467-024-50983-w

Nature Communications |         (2024) 15:6646 11



i.e., minimizing the following loss function of 1� R2:

minimize ζ k ;k = 1,...,Kð Þ
jjEvg�

PK

k = 1
ζ kGvbwk jj

2

jjEvg��Evg jj
2 , s:t:

PK
k= 1ζ k = 1,ζ k 2 0,1½ �: ð4Þ

As a result, we will obtain a set of model weights ζ k for k = 1, . . . ,K base
models, and a set of eQTL effect sizes ew given by theweighted average

of the eQTL effect sizes of K base models, ew=
PK

k = 1ζ k bwk (Stage I).
Then the final predicted GReX for test genotype data Gt is given bydGReXg =Gt ew, and ew will be taken as variant weights in the gene-based
association tests by SR-TWAS in Stage II.

Genes with fivefold CV R2 >0:5% in the validation dataset by SR-
TWAS are considered as having a valid imputation model and will be
tested in Stage II. That is, the validation dataset will be randomly split
into 5 folds. For each fold of data, SR-TWASmodel will be trained using
the other fourfolddata and then use to calculate predictionR2 with the
current fold. The average prediction R2 across all 5 folds of data is
considered as the fivefold CV R2. Here, we use amore liberal threshold
(0.005) than the threshold 0.01 used by previous studies17,57,58 to allow
more genes to be tested in follow-up TWAS. Because the follow-up
gene-based association Z-score test statistic is essentially a weighted
average of single variant GWAS Z-score statistics with variant weights
provided by the eQTL effect sizes9, poorly estimated eQTL weights
would only reduce power butwill not increase false positive rate under
the null hypothesis.

Naïve method
In this paper, we compared SR-TWAS to a Naïve approach which just
takes the average of base models as the trained gene expression
imputation model, that is, takes ζ k =

1
K , k = 1, . . . ,K . Using a validation

dataset, we can still evaluate the validation R2 which can be used to
select valid genes with validation R2 >0:5%.

Avg-valid+ SR models
We further constructed average models of the SR-TWAS models and
validation base models trained using the validation dataset, which are
referred to as Avg-valid+SR models. Because SR-TWAS and validation
base models are averaged directly, training R2 and CV R2 are not
obtained for Avg-valid + SR models. We compared the Avg-valid + SR
models to the SR-TWAS models and validation base models in both
simulation and real studies.

SR-TWAS tool framework
SR-TWAS tool was designed to be compatible with the TIGAR-V2 tool
framework9; it accepts models trained by TIGAR-V2 as input, imports
utility functions from TIGAR-V2, and outputs model files which can be
used as input for TIGAR-V2GReXprediction and summary-level TWAS.
Much of the structure of the SR-TWAS code was derived from existing
TIGAR-V2 scripts and it shares dependencies on TABIX59 and the
Python libraries of numpy60,61, pandas60, scipy62, statsmodels63, and
scikit-learn64,65.

The SR-TWAS script utilizes scikit-learn’s consistent, extensible
interfaces for defining estimators and predictors and for initializing
objects65. The script trains a stacked regression model using a
modified version of scikit-learn’s StackingRegressor class, which
trains a final estimator from cross-validated predictions from base
estimators fitted on the full design matrix. The script defines two
custom classes to be used as input for the stacking regressor object:
a base estimator class (WeightEstimator) which converts trained
GReX prediction models into scikit-learn-compatible estimator
objects and a final estimator class (ZetasEstimator) which obtains the
values of ζ 1, . . . ,ζK that minimize the loss function under the con-
straints ζ k ≥0 and

PK
k = 1ζ k = 1

16.

During the stacked regression, SNP minor allele frequencies and
effect sizes for the specified target are first read from each of the K
user-specified weight files. The SNPs are then matched to SNPs in the
validationgenotypedata andfiltered to exclude effect sizes of SNPs for
which the difference between the MAF of the genotype data and the
MAF from the corresponding weight file exceeds a user-specified MAF
difference threshold. The effect sizes from eachweight file are used to
initialize K separate instances of the WeightEstimator class. These K
WeightEstimator objects are used as base estimators and fit on geno-
type and expression data from the validation data.

A separate script allows users to specify one or more basemodels
trained on the validation data to average with the SR-TWAS model
produced in the previous step. The tool will read SNP effect sizes for
the specified target from each of these models and output an Avg-
valid + SR model averaged from the validation database model(s) and
the model obtained by stacked regression.

Only SR-TWAS models trained from K = 2,4,6 base models are
presented in this paper. The code was designed to accept any K ≥ 2,
andwhile the stacked regression script has been primarily tested using
K = 2,4,6 base models, preliminary testing with dummy weight files
confirms it can train stacked regression models from K > 6 base
models.

ROS/MAP reference panel
TheReligiousOrders Study (ROS) andRushMemory andAging Project
(MAP) are twoongoing longitudinal, epidemiologic clinical-pathologic
cohort studies of aging andAlzheimer’s disease collectively referred to
as ROS/MAP11. ROS enrolls Catholic nuns, priests, and brothers from
religious groups across the United States, primarily from communal
living settings11. While the similar adult lifestyle of participants allows
for more control of potential confounders such as education and
socioeconomic status, it simultaneously limits the ability to study such
variables11.

MAPwas designed to complement and extend studies like ROS by
including subjects from a wider range of life experiences, socio-
economic status, and educational attainment and recruits participants
primarily from retirement communities in the Chicago area, but also
subsidized housing, retirement homes, and through organizations
serving minorities and low-income elderly11. All participants in both
studies are without known dementia and agree to annual clinical eva-
luations and brain donation upon death11. Similarity in study design
and data collection procedures allows the ROS andMAP datasets to be
merged for use in joint analyses11,66.

Quality-controlled ROS/MAP WGS data for European subjects66

were used for both the real data application and simulation studies.
Transcriptomic data of ROS/MAP samples of brain PFC were profiled
by RNA-sequencing (RNA-seq). Gene expression data of Transcripts
Per Million (TPM) per sample were provided by Rush Alzheimer’s
Disease Center. Genes with >0.1 TPM in ≥10 samples were considered.
Raw gene expression data (TPM) were then log2 transformed and
adjusted for age at death, sex, postmortem interval, study (ROS or
MAP), batch effects, RNA integrity number scores, cell type propor-
tions (with respect to oligodendrocytes, astrocytes, microglia, neu-
rons), top five genotype principal components, and top probabilistic
estimation of expression residuals (PEER) factors67 by linear regression
models. SNPswithminor allele frequency (MAF) >1%, Hardy–Weinberg
p value > 10−5 were analyzed. For each gene, cis-SNPswithin 1Mb of the
flanking 5’ and 3’ ends were used in the imputation models as
predictors.

GTEx V8 reference panel
The genotype-tissue expression (GTEx) project V8 profiles both whole
genome sequencing (WGS) genotypedata andRNA-seq transcriptomic
data of 54 human tissues10. The fully processed, filtered, and normal-
ized transcriptomic data used in the GTEx eQTL analysis were
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downloaded from the GTEx portal and used in this study. For each
tissue, samples with <10 million mapped RNA-seq reads were exclu-
ded. For samples with replicates, the replicate with the greatest num-
ber of reads was selected. Gene read counts from each sample were
normalized using size factors calculated by DESeq2 and log-
transformed with an offset of 1. Genes with log-transformed values
>1 in >10% of samples were considered. The resulting gene expression
values were centered with mean 0 and standardized with standard
deviation 1. The resulting matrix was then hierarchically clustered
(based on average and cosine distance), and a chi2 p value was calcu-
lated based onMahalanobis distance. Clusters with ≥60% samples with
Bonferroni-corrected p values <0.05weremarked asoutliers, and their
samples were excluded. Genetic variants with missing rate <20%,
minorallele frequency>0.01, andHardy–Weinberg equilibriump value
>10−5 were considered for fitting the gene expression prediction
models.

The fully processed, filtered, and normalized transcriptomic
data were adjusted for the top five genotype principal components,
top probabilistic estimation of expression residuals (PEER)
factors67, sequencing protocol (PCR-based or PCR-free), sequen-
cing platform (Illumina HiSeq 2000 or HiSeq X), and sex, as sug-
gested by the GTEx eQTL data analysis guidelines10. The number of
top PEER factors used to adjust the gene expression traits depends
on the sample size (n) in the reference transcriptomic data cohort—
15 factors for n < 150, 30 factors for 150 ≤ n < 250, 45 factors for 250
≤ n < 350, and 60 factors for n ≥ 350. Only samples with complete
data of these covariates were included in the analyses. Adjusted
gene expression quantitative traits were then taken as response
variables in the gene expression prediction model. For each gene,
cis-SNPs within 1 Mb of the flanking 5’ and 3’ ends were used in the
imputation models as predictors.

Simulation study design
We conducted in-depth simulation studies under various scenarios to
assess the performance of SR-TWAS, Avg-valid + SR, a Naïve method,
and training base models by PrediXcan and TIGAR. We used the real
genotype data of gene ABCA7 fromROS/MAP and GTEx V8 to simulate
gene expression and phenotypes. We considered three different set-
tings: (i) Samples from ROS/MAP and GTEx cohorts have the same set
of true causal SNPs (i.e., the samegenetic architecture). The expression
heritability was the same for both ROS/MAP and GTEx V8 cohorts. (ii)
Samples from ROS/MAP and GTEx cohorts have the same set of true
causal SNPs (i.e., the same genetic architecture). The expression her-
itability for GTEx V8 cohort is only half of the one for ROS/MAP. (iii)
Samples from the ROS/MAP cohort were simulated with the same
causal SNPs (i.e., eQTL), while samples from the GTEx V8 cohort were
simulated with true causal SNPs that were 50% overlapped with the
ones for ROS/MAP. The expression heritability was the same for both
ROS/MAP and GTEx V8 cohorts.

Under each setting,weconsideredmultiple scenarioswith varying
proportions of causal SNPs (pcausal = ð0:001,0:01,0:05,0:1Þ) and gene
expression heritability (i.e., the proportion of gene expression varia-
tion due to genetics, h2

e = ð0:1,0:2,0:5Þ). We randomly selected n = 465
training samples with WGS genotype data from ROS/MAP and GTEx
V8, respectively. We randomly selected n = 400 and n = 800 samples
with WGS genotype data from ROS/MAP as our validation and test
cohorts, respectively. We considered a series of h2

p values, the pro-
portion of phenotype variance due to simulated gene expression, in
the range of (0.05, 0.875).

For each scenario, gene expression Ei for the ith simulation
iteration is generated using the following formula

Ei = γiG
*βi + εi, γi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
e

Var G*β�ið Þ
r

, εi ∼N 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

e

q� �
, ð5Þ

whereG* denotes the genotypematrix ofNcausal randomly chosen true
causal SNPs for all samples, effect size vector βi was generated from
Nð0,IÞ, and γi is a scale factor chosen to ensure the targeted h2

e value.
The phenotype vectorYi for the ith simulation iteration was generated
using the following formula

Yi =φiEi + εi, φi =

ffiffiffiffiffiffiffiffiffiffiffiffi
h2
p

Var Eið Þ
r

, εi ∼N 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p

q� �
ð6Þ

where Ei is the simulated gene expression, and φi is a scale factor to
ensure the targeted h2

p value.
Two base models per gene were trained by PrediXcan with the

GTEx training samples (n = 465) (PrediXcan-GTEx), and by TIGAR with
the ROS/MAP training samples (n = 465) (TIGAR-ROSMAP). SR-TWAS
and Naïve models were then obtained by using these trained base
models. Validation data (n = 400) were used to train SR-TWAS models
and filter out gene expression imputation models with fivefold cross-
validation R2 < 0.5% in the validation cohort for both SR-TWAS and
Naïve models. A validation database model was trained by TIGAR on
the validation data (TIGAR-ROSMAP_valid) to compare results with
that of the ensemblemodels and toobtain amodel from the averageof
the the validation databasemodels and SR-TWAS (Avg-valid + SR). Test
data (n = 800) were used for assessing GReX prediction performance
and TWAS power. Each causal simulation scenario was repeated 1000
times.We compared the performance by SR-TWAS, Avg-valid + SR, the
Naïve method, training base models, and validation base models with
respect to prediction imputation R2 in the test data and the power
of TWASs.

The predicted dGReXi by each trained gene expression imputation
model was used to calculate expression prediction R2, which is
equivalent to the regression R2 between profiled and predicted gene
expression, given by the squared Pearson correlation coefficient,

R2
Ei
=Cor Ei, dGReXi

� �2 ð7Þ

The powerwill be given by the proportion of simulation iterations
that have TWAS p value < 2.5 × 106 out of a total of 1000 simulation
iterations.

Protein–protein interaction network and enrichment analysis
STRING (version 12.0)29 is a bioinformatics web tool that provides
information on protein–protein interactions and networks, as well as
functional characterization of genes and proteins. The tool integrates
different types of evidence from public databases, such as genomic
context, high-throughput experiments, and previous knowledge from
other databases, to generate reliable predictions of protein interac-
tions and build networks and pathways. Provided with a list of gene
names, STRING will construct networks based on the protein–protein
interactions of the corresponding proteins, as well as identify pheno-
types that have risk genes enriched in the provided list. Proteins cor-
responding to provided genes are considered nodes in the
protein–protein interaction network. Protein–protein edges represent
the predicted functional associations, and their color denotes one of
seven different evidence categories––computational interaction pre-
dictions from co-expression, text-mining of scientific literature, data-
bases of interaction experiments (biochemical/genetic data), known
protein complexes or pathways from curated resources, gene co-
occurrence, gene fusion, and gene neighborhood. Gene co-occur-
rence, fusion, and neighborhood represent association predictions
based on whole-genome comparisons. Interactions from these
resources are critically assessed, scored, and subsequently auto-
matically transferred to less well-studied organisms using hierarchical
orthology information29.
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Particularly, the text-mining channel is the result of parsing full-
text articles from the PMC Open Access Subset (up to April 2022),
PubMed abstracts (up to August 2022), as well as summary texts
from OMIM68 and Saccharomyces genome database69 entry descrip-
tions. These texts are all parsed for co-mentions of protein pairs and
assessed against the frequencies of all separate mentions of the
respective proteins. An improved deep learning-based relation
extraction text-mining model was used by STRING v1229. The text-
mining channel significantly increases the number of
protein–protein interactions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All ROS/MAP data analyzed in this study are de-identified and avail-
able to any qualified investigator with application through the Rush
Alzheimer’s Disease Center Research Resource Sharing Hub, [https://
www.radc.rush.edu], which has descriptions of the studies and avail-
able data11. GTEx V8 data are available from dbGaP with accession
phs000424.v8.p2 and GTEx Portal [https://www.gtexportal.org/
home/]10. TIGAR DPR base models trained from GTEx V8 are avail-
able from SYNAPSE with SynID syn16804296 [https://doi.org/10.
7303/syn16804296]. PrediXcan Elastic-Net base models trained from
GTEx V8 are available from the PredictDB Data Repository [https://
predictdb.org/]18. GWAS summary data of AD are available from the
Vrije Universiteit Research Drive, [https://vu.data.surfsara.nl/index.
php/s/jVlyt1m9Bb2mAki]19. GWAS summary data of PD are available
from [https://bit.ly/2ofzGrk]33. TIGAR DPR and PrediXcan Elastic-Net
base models of ROS/MAP tissues (DLPFC, SMA), SR-TWAS and Avg-
valid+SR models trained from ROS/MAP SMA tissue and GTEx brain
substantia nigra tissue in this study, and all TWAS summary statistics
generated in this study are freely available from SYNAPSE with SynID
syn53437281 [https://doi.org/10.7303/syn53437281].

Code availability
The SR-TWAS tool, including the Naïve and Avg-valid + SR methods, is
publicly available on GitHub, [https://github.com/yanglab-emory/SR-
TWAS], with [https://zenodo.org/doi/10.5281/zenodo.12574019]. Code
for replicating analyses described in this paper is available at [https://
github.com/rndparr/SR-TWAS_analysis], with DOI.
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