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Sub-surface thermal measurement in
additive manufacturing via machine
learning-enabled high-resolution fiber optic
sensing

Rongxuan Wang 1, Ruixuan Wang 2, Chaoran Dou3, Shuo Yang4,
Raghav Gnanasambandam 5, Anbo Wang2 & Zhenyu (James) Kong 3

Microstructures of additively manufactured metal parts are crucial since they
determine the mechanical properties. The evolution of the microstructures
during layer-wise printing is complex due to continuous re-melting and
reheating effects. The current approach to studying this phenomenon relies
on time-consuming numerical models such as finite element analysis due to
the lack of effective sub-surface temperature measurement techniques.
Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique
type of fiber optical sensor, has great potential to achieve this goal. However,
using the traditional demodulationmethods, its spatial resolution is limited to
the millimeter level. In addition, embedding it during laser additive manu-
facturing is challenging since the sensor is fragile. This paper implements a
machine learning-assisted approach to demodulate the optical signal to
thermal distribution and significantly improve spatial resolution to 28.8 µm
from the original millimeter level. A sensor embedding technique is also
developed to minimize damage to the sensor and part while ensuring close
contact. The case study demonstrates the excellent performance of the pro-
posed sensor in measuring sharp thermal gradients and fast cooling rates
during the laser powder bed fusion. The developed sensor has a promising
potential to study the fundamental physics of metal additive manufacturing
processes.

Laser powder bed fusion (L-PBF) is one of themost promising additive
manufacturing techniques for fabricating metal parts with complex
geometry and hard-to-process materials. However, achieving high-
quality metal parts without defects using L-PBF is challenging. A non-
homogenous microstructure is one of the crucial defects. Micro-
structures are the crystal structure ofmaterials at themicro level, such

as grains, misalignments, and grain boundaries. It is the intrinsically
driven force of mechanical performance, such as the strength and
hardness of materials. Therefore, it is crucial to understand the for-
mation and evolution of microstructures of the metals during the
L-PBF. Most existing work on microstructure formation focuses on a
single track or point melting due to limited measurement and
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simulation tools1. However, owing to the layer-wise melting and soli-
dification, a deposited layer will be re-melted and reheated due to the
deposition of the following layers. This phenomenon results in a
microstructure change2,3. The analysis of this effect currently relies on
numerical models, such as the finite element method (FEA) and com-
putational fluid dynamics (CFD), due to the lack of direct thermal
measurement methods4,5. However, numerical models suffer from
high computational costs and inaccuracy due to oversimplified
assumptions and boundary conditions.

The extreme shape-forming mechanisms primarily cause the
challenge in the direct thermal measurement of deposited material
during L-PBF. Themelting and solidification speeds of L-PBF are rapid,
given the laser typically travels at around 1000mm/s. As a result, the
material’s thermal gradient and cooling rate are high. According to the
literature, the size of the melt pool can be as small as 100 μm and can
solidify within 1ms6. Therefore, at least 100μm/pixel spatial resolution
and 10 kHz frame rate are needed to observe the near melt pool heat-
affected zone. A High-speed IR camera with a high-magnification lens
may meet these specifications. Still, it can only measure the surface
thermal profile instead of the interior of the material (sub-surface)6,7.

On the other hand, the thermal couple array can be potentially
used for sub-surface measurement. However, its bulky size limits its
sensitivity and spatial resolution8. Moreover, embedding the thermal
couple array weakens the part’s mechanical strength. In addition, the
near-melt pool area has an extreme temperature, easily over 600 °C,
especially for high-melting-point metals such as stainless steels and
Titanium alloys. Such a harsh environment challenges the sensor’s
survivability.

In short, a high-spatial and temporal resolution sub-surface ther-
mal profile technique that can survive under high temperatures does
not exist. This deficiency hinders research on the fundamental physics
of laser powder bed fusion and other processes involving high thermal
gradients.

Due to their miniature footprint and high sensitivity, fiber optic
sensors have recently drawn attention in L-PBF in-situ monitoring9–12.
When using fiber optic sensing, lights with a known spectrum are
emitted to the fiber, and by analyzing the reflection or refraction
spectrum, measurements such as strain, bending, vibrations, and
temperature can be obtained. Optical fibers typically only have
100–300μm in diameter; thus, if embedded properly, the damage
caused to the measured part is minimal. Moreover, the sensitivity of
this type of sensor is high due to itsminiature size and its use of optical
signals. Fiber-optic sensors have two major types, namely, fully-
distributed sensors, such as optical frequency domain reflectometry
(OFDR), and point sensors, such as fiber Bragg gratings (FBGs)10,12.

Hyer andPetrie embeddedOFDR into anL-PBFmanufacturedpart
to measure the strain during the printing13. Similarly, Zou integrated
theOFDR into an LPBFpart tomeasure the strain under the load11. Hehr
et al. attached the OFDR to the backside of an L-PBF substrate to
monitor the delamination and cracking near the build-plate surface.
Practically, the spatial resolution of OFDR is only a fewmillimeters due
to the limited implementable modulation bandwidth and the trade-off
between the number of sampling points and sensing frequency14.

FBGs are one of the most common fiber optic sensor types.
Havermann used FBGs to measure the residual stress-related strain of
an L-PBF part10. Lerner et al.9 embedded afiberwith three FBGs into the
L-PBF part and measured the temperature evolution during the
printing. In their work, the length of the FBGs is 3mm each with a
30mm spacing in between.

Figure 1a (top portion) illustrates that FBGs are groups of points
that periodically modulate the refractive index along an optical fiber’s
light-guiding core, allowing light at only specific wavelengths to be
reflected15. Each group is considered an individual sensor. Figure 1
(bottom portion) demonstrates the reflection spectrum of the sensor
on the top. As it shows, it contains four peaks at different wavelengths

because four sensors along the fiber have different pitch lengths and
reflect the input broadband light at different wavelengths. The spec-
trumwill shift when a specific sensor is subject to temperature change
due to thermal expansion and the thermo-optic effect. Such a shift can
be used tomeasure the temperature change. Formoredetails on FBGs,
please refer to ref. 15. Due to theweak reflection amplitudeof eachdot,
a complete FBG sensor typically contains thousands of dots to ensure
the reflection peak is traceable. However, this level of dot quantity
limits the spatial resolution of FBGs to a millimeter level, which is
insufficient for near-melt pool area monitoring. Without the capability
to measure sharp thermal gradients near the laser-melting zone, the
microstructure evolvement in LPBF can not be fully understood.

To significantly improve the spatial resolution of state-of-the-art
fiber-optic sensing, this work proposes to use a special type of FBGs
called chirped-FBG (C-FBG). As demonstrated in Fig. 1b, a C-FBG has
linear chirped periods along the fiber, resulting in different Bragg
wavelengths at various locations15. Therefore, the spatial information is
encoded in the C-FBG reflection spectrum. Thus, an intra-FBG profile
can be extracted, enabling much higher spatial resolution than the
traditional serial wavelength-division multiplexed FBGs16,17.

To ensure the C-FBG’s survivability under high-temperature con-
ditions in AMprocesses, the femtosecond laser point-by-point (fs-PbP)
method is selected to inscribe the C-FBG18. FBG written by the fs-PbP
method has been demonstrated to operate up to 1000 °C. However,
one drawback of fs-PbP C-FBG is that its reflection spectrum shape
exhibits more ripples (see Fig. 1c), which makes it challenging to use
the existing model-based demodulation method as typically per-
formed in C-FBG written by UV exposure and a phase mask
methods17,19,20. To tackle the above challenge, this work proposes to
use a machine learning-assisted approach to decode the complicated
fs-PbP C-FBG spectrum.

Machine learning (ML) has recently been applied to demodulate
traditional uniform FBGs. Zhao et al.21 used a convolutional neural
network (CNN) to extract the effective information of some complex
signals in fiber sensing and demonstrated the feasibility of using CNN
for demodulation. Djurhuus et al. implemented a Gaussian process
regression approach to demodulate FBGs, proving that the result is
more accurate than the traditional method22. Sarkar et al.23 demon-
strated that ML can discriminate between the strain and temperature
effects on FBGs. Li et al. introduced generative adversarial networks
(GAN) and dense neural networks (DNN) to demodulate FBGs
sensors24. Specifically, GAN was used for data augmentation, and DNN
was used for wavelength interrogation. Jiang et al.25 presented that
extreme learning machines can improve the demodulation accuracy
when the signal of multiple FBGs on a single fiber overlaps. Similarly,
Manie et al.26 used deep learning to improve the accuracy. Kokha-
novskiy et al. adopteddeepneural networks (DNNs) todemodulate the
complex reflectance spectrum caused by densely inscribed FBGs. This
work achieved a 1mm spatial resolution but is still insufficient for
closed-to-melt pool area measurement. Using ML on C-FBG for intra-
FBG measurement has not been reported. Intra-FBG means position-
dependent information within the sensor can be obtained, trans-
forming single-point measurement to array measurement.

Moreover, embedding fiber-optic sensors in L-PBF conditions is
also challenging, as optical fibers are small and fragile. Havermann and
Zou electroplate the fiber with copper for better protection10,11. The
electroplated region was melted and bounded with the surrounding
material during the embedding. This method only works for iso-
thermal strain measurement. The fiber must stay in a strain-free
environment for an accurate thermal measurement. In other words,
the fiber cannot be bound to the substrate or part. To achieve the
strain-free condition, Lerner et al.9 micro-welded a metal tube into the
workpiece and then fed the fiber through it for temperature mea-
surement. In this process, a grove with a 500 µm diameter is first
printed on the workpiece, and then the workpiece is removed for
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cleaning, tube positioning, and micro-welding. After that, the work-
piece is placed back into the chamber, and the machine directly prints
the rest onto the top surface. This method would potentially damage
the recoating system as the top half of the tube (200 µm indiameter) is
significantly higher than a typical L-PBF layer height (20–100 µm). In
addition, such metal tubes are expensive and hard to fabricate.
Therefore, in this work, an easy-to-implement fiber embedding
method is also introduced.

In summary, though there is a strong need for studying the
reheating of L-PBF, accurate and direct measurement does not exist
due to challenges such as high spatial-temporal resolution require-
ment, complex signal demodulation, sensor survivability, and missing
an effective embedding technique.

In this work, C-FBG is used as the candidate to improve the spatial
resolution of the measurement without sacrificing the sensing fre-
quency. An ML-assisted demodulation model is developed to convert
optical signals to thermal profiles. A fiber embedding technique is
proposed to couple fiber optical sensors to additively manufactured
parts with high precision. The proposed sensor and embedding
method is deployed in an L-PBF machine and achieves subsurface
thermal measurement during the printing. Information such as ther-
mal gradient and cooling rate can be extracted. The developed sensor
provides a tool for studying the reheating and re-melting in L-PBF,
enabling future microstructure control.

Results and discussion
As explained in the Introduction section and illustrated in Fig. 1c, the
existing methods cannot demodulate the fs-PbP C-FBG reflection
spectrum due to the complexity of the signals. This work proposes an

ML data-driven approach to address this issue. In Fig. 1d, the trained
neural network takes the C-FBG reflection spectrum (dimension:
1 × 800) as input and outputs the thermal profile (dimension: 1×480)
with 28.8μm/pixel spatial resolution. The C-FBG reflection spectrum is
collected by a data acquisition system (Fig. 1e). The details are pro-
vided in the “Method” section. In this ML-assisted sensing system, the
spatial resolution is only limited by the IR camera’s spatial resolution.
This is because when using the trained model for demodulation, the
output will always retain the same format and share the same physical
meaning and resolution as the thermal profile collected by the IR
camera. Note that the spectrometer has a higher spatial resolution
than the IR camera. Therefore, it will not become the bottleneck. The
training and testing data of the ML model is acquired by a special
procedure on a customized calibration system.

Calibration system
The calibration system aims to create different thermal profiles on the
C-FBG, enabling synchronized IR and spectrometer measurement. As
shown in Fig. 2a, this system contains a calibration platform that can
create a controlled thermal profile on the C-FBG, a direct current (DC)
power supply to power the heating hot wire, and monitors that can
observe the positioning and thermal information of the C-FBG.

Figure 2b illustrates the components of the calibration platform in
Fig. 2a. A fiber holder is used to mount the optical fiber and is fixed to
the bottom breadboard. An IR camera (Micro-epsilon, thermoIMAGER
TIM VGA) monitors the thermal profile along the fiber during the
experiments. The testing stage has two stainless steel blocks with
round top surfaces and notches. They are used for mounting the hot
wire (36 GA Nichrome 60 Round Resistance Wire), which is heated by

d)

a)

Wavelength

Am
pl

itu
de

FBG 1
4 mm

FBG 2
4 mm

FBG 3
4 mm

FBG 4
4 mm

Chirped FBG
3 mm

Wavelength

Am
pl

itu
de

After heating
Reference

b) c)

Heating

Input 
layer

Hidden layers Output 
layer

Deep neural network

…

e)

C-FBG Reflection Spectrum

C-FBG Reflection spectrum Thermal profile

Heating Heating

Fig. 1 | C-FBG background and proposed system illustration. a The illustration of the FBG working principle, b The illustration of the C-FBG working principle, c An
experimental complex C-FBG reflection spectrum, d An illustration of the ML-assisted demodulation method, and e The C-FBG data acquisition system.
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DC. These twometal blocks also serve as DCpoles. They are connected
to a DC power supply, which controls the hot wire temperature by
voltage.

As shown in Fig. 2c, theNichrome hotwire is positioned below the
fiber and mounted onto two metal blocks. These two blocks are
attached to a plastic holder as an electrical insulator and structure
support. The plastic holder is then attached to a high-precision
translational stage (1 μm resolution, ThorLabs MBT616D), which
moves the hotwire in both the fiber direction (X) and vertical direction
(Z) to create different heating locations and concentrations on the
C-FBG. The hot wire is fixed by a screw on the ground pole side block,
hanging freely on the other end. The free end is connected to a wire
tension block. This block uses its weight to pull the hot wire, keeping it
straight under the thermal expansion. Adigitalmicroscope ensures the
distance between the fiber optic and the hotwire.

Calibration data collection
In this work, 14 calibration experiments were performed with various
conditions, referred to as cases. During these experiments, synchro-
nized data (IR and spectrometer) was collected. Among all the cases,
thirteen were used as training, and one was left for testing (the selec-
tion will be explained). The variation was achieved by altering the
location and temperature of the hotwire. As a result, thermal profiles

with different temperatures (ranging from 23 to 800 °C) and dis-
tribution can be obtained, improving the model’s accuracy. These 14
experimental cases can be separated into four categories: horizontal
moving, distance cycle, thermal cycle, and reference. The illustration is
provided in Fig. 3a–c. In horizontal moving cases (Fig. 3a), the hotwire
waspositioned 50 µmunder theC-FBG. Then, the hotwiremoved from
0.5mm left of the C-FBG to 0.5mm right. The hot wire temperature
(controlled by DC voltage) remained constant for each case. In total, 11
horizontalmoving caseswere tested. The correspondingpower supply
voltages were 1.5 V to 6.0 V with 0.5 V incensement (used for model
training) and 5.3 V (used for model testing).

To simulate different thermal profile distributions, a distance
cycle case (Fig. 3b) was conducted. In this case, the wire was first
positioned 50 µm underneath the center of the C-FBG with 5.5 V DC
heating. The hotwire then moved 4mm away from the C-FBG and
moved back. When the hot wire was closed to the C-FBG, the thermal
distribution sharply peaked at the center. When it was far away, the
peak was flattened. To cover additional conditions, a thermal cycle
case (Fig. 3c) was conducted as well. In this case, the hot wire was
positioned 50 µm underneath the center of the C-FBG, and no move-
ment was involved. Instead, the DC power supply was initially set to
5.5 V, then dropped to zero, followed by ramping back. Besides all
these datasets, a reference case was also collected with no heating and
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Fig. 2 | Calibration system forML-assisted fiber-optic sensing. a Calibration systemmain component, b Calibration platform, and c Calibration platform zoom-in view.
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movement involved. All the datasets were collected at 100Hz (80 µs
exposure time) with 20 seconds length.

The hot wire’s moving speed, both in the horizontal and vertical
directions, was ~0.25mm/s, and the voltage ramping speed was
~0.35 V/s. However, they were not precisely controlled in this study.
This is because the calibration of the C-FBG depends on the synchro-
nized IRdata that continuouslymonitors the temperatureprofile along
the fiber. The position and temperature of the hot wire were not used
for calibration. Since thefiber optics has a small size,we assume that its
temperature reaches a steady state faster than the 80 µs exposure
time. During the experiment, the thermal distribution fluctuated due

to ambient air movement, which benefited the training since the
covered distributions were more diverse. Except for the 5.3 V hor-
izontal moving case (for testing), all the others were used for model
training. The visualization of the C-FBG reflection spectrum (training
input data) and the thermal profile (training output data) are provided
in Supplementary Figures. They are Supplementary Figs. 1–13 and
Supplementary Figs. 14–26, respectively.

An example of thermal profile and C-FBG training datasets is
visualized in Fig. 3d, e, respectively. In Fig. 3d, the horizontal axis
represents the location, and the vertical axis represents the time. The
color indicates the temperature, whereas dark red represents 800 °C.

Fig. 3 | Illustration of calibration procedures and example calibration data.
a Experimental procedure illustration for horizontal moving cases, b Experimental
procedure illustration for distance cycle case, and c Experimental procedure

illustration for thermal cycle case. d Distance cycle case in-situ thermal profile (IR)
dataset visualization, e Distance cycle case in-situ reflection spectrum (C-FBG)
dataset visualization. Source data are provided as a Source Data file.
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From the location (horizontal axis) point of view, the hottest tem-
perature appears at the center, which matches the experimental con-
dition. Some fluctuations were overserved due to the air circulation of
the room disturbing the surrounding airflow near the fiber. From the
time (vertical axis) point of view, the temperature decreases and then
ramps back up as designed. Figure 3e is the C-FBG data of the distance
cycle case, where the horizontal and vertical axes represent wave-
length and time, respectively. Again, wavelengths have corresponding
locations on the C-FBG. By visually inspecting the regions cropped by
the gray dashes, the shape of the C-FBG data strongly correlates with
the IR data, demonstrating a strong potential to use machine learning
for demodulation.

Model tuning and performance
A fully connected Neural Network (NN) of input dimension 800 (based
on a spectrometer) and output dimension 480 (based on IR) is used to
model the data. Before training, the input and the output data are
normalized, i.e., subtracted by the sample mean and then divided by
the sample standard deviation. The loss function is defined by the
Mean Squared Error (MSE) of NN prediction with the Rectified Linear

Unit (ReLU) activation function. The NN parameters are optimized
using Stochastic gradient descent (SGD) with a learning rate of 8 × 10−2

on the training dataset. The tuning of the number of hidden layers and
batch size involved a systematic search across a grid of values. As a
result, three hidden layers were found accurate enough with a steady
decrease in dimension to 700, 600, and 500. A batch size of 50 pro-
vides the best performance. The search results for the best number of
hidden layers and batch sizes are provided in Fig. 4a, b, respectively.
Performance indicators are calculated with the Numpy 1.21.5 package
in Python 3. In these two figures and the rest of this work, intercept
over union (IOU) is used as the primary model performance indicator
since themain objective of themodel is tomeasure the thermalprofile,
not the temperature, at each location. Themeaningof the full regionof
interest (ROI) and the CFBG ROI in these two figures is explained in the
next paragraph. The NN training takes around 10min on NVIDIA 2080
Ti GPU with Python 3 and PyTorch 1.9.0 for 5000 training iterations.
The loss function converged to order 1 × 10−3 on the normalized IR
data. The training loss convergence graph is provided in Fig. 4c. The
average correlation of the testing is 0.996, and the correlation plot is
provided in Fig. 4d. This plot shows that all the data points are closely

Fig. 4 |Model training-relatedperformance plots. aHidden layer determination,b Batch size determination, c Training loss convergence, and dCorrelation plot for the
testing case. Source data are provided as a Source Data file.
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distributed along the 45-degree reference line, indicating a strong
correlation between the experimental and ML-demodulated data.

As mentioned in Calibration data collection, the 5.3 V DC
horizontal moving case is used to test the trained model’s

performance. The visualizations of the experimental thermal
profile and the AI-demodulated thermal profile are presented in
Fig. 5a, b, respectively. Examples of thermal profiles for selected
time steps are shown in Fig. 5c–e, where heating location change

C-FBG Location

a)

)d)c

e)

b)

Fig. 5 | Illustration of AI-demodulation results. a Experimental 5.3 V horizontal moving IR dataset, b 5.3 V case IRML demodulation result based on experimental C-FBG
testing data, c–e Examples of experimental and demodulated thermal profiles at various time steps. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51235-7

Nature Communications |         (2024) 15:7568 7



can be clearly observed. As these three figures show, the demo-
dulated thermal profile nicely matched the experimental IR-
collected data, especially in the center region (between two
dashes). This is because the C-FBG only occupies a portion of the
IR camera field of view, making thermal demodulation of the
outer region less accurate. There are data outside of the C-FBG
covered range because the machine learning demodulation was
based on vector (spectrum intensity) to vector (thermal profile)
correlation, not point (specific wavelength) to point (specific
location) correlation. Thermal profile, in other words, tempera-
ture distribution, is a continuous curve. Therefore, the spectrum
data generated from the C-FBG also contains the thermal infor-
mation adjacent to it. As mentioned in the last paragraph, the full
range of locations refers to full ROI in this work, and C-FBG ROI
refers to the length that C-FBG spans. The same phenomenon can
also be observed by comparing Fig. 5a, b. Even though the outer
C-FBG regions have less accuracy, they still contain useful infor-
mation. Therefore, when estimating the model accuracy, the full
ROI and C-FBG ROI are analyzed separately.

Table 1 logs all the model performance statistics. As it shows, the
IOU within the C-FBG ROI achieves 0.967, a very high performance.
The relative error of the C-FBG ROI is 0.041, and the mean absolute
error is 12.708 °C, which is negligible formeasuring high temperatures
(above 500 °C). The maximum absolute error of the C-FBG ROI is
39.976 °C, reflecting the range of the outlier predictions. By examining
the data, this type of outlier only happens a few times and will not
affect the main purpose of the proposed sensor, which is to measure
the cooling rate and the thermal gradient of the melt pool’s sur-
rounding area.

L-PBF sub-surface measurement
To test the performance of the proposed fiber-optic sensing, it is
deployed in a customized multi-sensing L-PBF testing platform
developed in our previouswork (Fig. 6a)27. Figure 6b illustrates that the
laser melts a 2 × 4mm2 region on the substrate with 800mm/s speed

and 200W power in an 80 µm spaced one-directional raster pattern.
The C-FBG is located 230 µmunderneath themelting surface to collect
the in-situ data at 10 kHz. Although this sensing frequency is higher
than the calibration cases, the exposure time of each frame remains at
80 µs. Therefore, the calibration is still valid.

The result of the sub-surface thermalmeasurement is visualized in
Fig. 7. In this figure, the data along the white dashed line represents
the thermal history of a given location, and the data along the blue
dashed line represents the thermal profile along the fiber at a given
time step.

Examples of thermal profiles are shown in Fig. 8a–d. At t = 300ms,
the laser raster lines reach the center of the C-FBG, creating a thermal
profile peaked around 360 °C (Fig. 8a). After 55ms, the rectangular-

Table 1 | Model performance statistics

ROI Training size Training loss Average
correlation

Training
iterations

Relative error Max absolute
error (°C)

Mean absolute
error (°C)

IOU

FULL Range 26000 0.003 0.996 5000 0.089 43.443 15.289 0.915

C-FBGRange 0.041 39.976 12.708 0.967
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Fig. 6 | Fiber optics embedding and testing machine and scan pattern. a The customized multi-sensing L-PBF machine27, b L-PBF melting pattern illustration.
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Fig. 7 | ML-demodulated in-situ sub-surface thermal profile data during the
L-PBF process. Source data are provided as a Source Data file.
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shaped melting is about to finish, and the laser scanning location
moves to the left of the C-FBG, resulting in the peak temperature
location alsomoving to the left (Fig. 8b).Due to the heat accumulation,
the peak temperature increases to ~450 °C. This figure demonstrates

that the thermal gradient is close to a linear form (see the red dashed
line in Fig. 8b) and can be easily extracted. The sharpest thermal gra-
dient of thismonitoring case appears by the endof the scan since it has
the highest peak temperature due to heat accumulation, and the value

Cooling
rate

Thermal
gradient

)b)a

c) d)

e) f)

)h)g

Fig. 8 | Examplemeasurement of thermal profiles and thermal histories using the proposed sensor. a–d Selected thermal profile at different time steps. e–h Selected
thermal history at different locations where the red dot indicates the sampling location along the C-FBG. Source data are provided as a Source Data file.
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is 4 × 105 °C/m, about one order of magnitude smaller than the melt
pool region28. This also implies that the thermal gradient within
0.3mm (about ten layers) from the surface is 1–10 times smaller than
themelt pool region. Figure 8c, d show the thermal profiles during the
cooling.

Figure 8e–h demonstrate the thermal histories at selected
locations. The sharpest cooling rate also appears at the end of
the laser scan due to the heat accumulation (Fig. 8g). The value is
around 3500 °C/s, around three orders of magnitude smaller than
the melt pool region28. Interestingly, comparing Fig. 8h, e, the peak
temperature and cooling rate at the left end of the C-FBG are sig-
nificantly higher than at the beginning of the scan, even though no
laser melting is directly above. This indicates that sub-surface
reheating highly depends on the heat accumulation of the surface
melting, and the affected region can be complicated if hatch angle
rotation (raster angle change between layers) is used during the
printing.

Summary and future works
This work proposed a type of sensor that integrates ML and fiber-
optic sensing techniques. The developed sensor achieved 28.8 µm/
pixel spatial resolution and 10 kHz sampling frequency, ideal for
measuring sharp thermal gradient and cooling rates in the L-PBF
process. A calibration testbed and calibration procedure are devel-
oped to train the ML-assisted demodulation model. A minimal-
damage embedding technique is also developed to ensure a closed-
contact but strain-free environment for the fiber. The case study
section demonstrates that the proposed sensor can measure crucial
information, such as sub-surface cooling rate and thermal gradient
during the L-PBF process, providing a way to study the reheating
effect associated with the L-PBF. In the future, more testing will be
conducted to cover different process parameter combinations,
depths, and materials. Future collected data can be used to calibrate
existing FEA and CFD models and enable precise microstructure
control in L-PBF. The proposed sensor can also be used for other
advanced measurements that require high spatial resolution and
sensing frequency. For example, to measure the space shuttle ther-
mal tile’s insulation performance and the thermal profile across the
Tokamak fusion reactor wall.

Methods
C-FBG fabrication and data acquisition system
The fabrication method and setup of the C-FBG follow the authors’
previous work29. In short, a femtosecond laser pulse with a fixed
repetition rate is tightly focused into the light-guiding core of an
optical fiber (SMF28, Corning) to induce refractive index modulation.
A C-FBG is formed by translating the optical fiber along its axial
direction with a linearly increasing speed. In this work, a three mm-
long 5th-order C-FBG centered at 855 nm with a chirp rate of 3.33 nm/
cm was fabricated. After the C-FBG encrypting, the acrylate fiber
coating was removed by acetone to reduce the diameter of the fiber.
This step is also crucial for high-temperature sensing because the fiber
coating could melt and burn above 300 °C.

As illustrated in Fig. 1e, the data acquisition system uses a
broadband light source (S840, Superlum) to launch the light into the
C-FBG through a 2×2 fiber coupler (TW805R5F2, Thorlabs). An in-line
high-speed polarization scrambler (NOPS-110210131, Agiltron) was
implemented to minimize the variation of the C-FBG spectrum
induced by polarization perturbation during the measurement. The
reflected light from the C-FBG is routed by the same 2×2 coupler and
detected by a high-speed spectrometer (Max sampling rate: 70 kHz,
C-00116,Wasatch Photonics) for spectrum analysis. This spectrometer
uses a high-efficiency volume phase holographic (VPH) grating to
disperse the input light onto a high-speed one-dimensional camera,
where individual wavelengths are encoded by different pixels and
acquired simultaneously. The spectrometer communicates with the
host computer via CameraLink protocol, allowing full spectrum
acquisition at up to 70 kHz speed.

Fiber embedding procedure
This work also develops a fiber embedding procedure to ensure
minimal damage to the part and a tight fiber fit. Figure 9a illustrates
that a slot with 300 µm width and 355 µm depth is first etched on the
Ti-64 substrate by a wire EDM machine to create a miniature hole.
Then, a precisely ground rectangular cross-section Ti-64 wire fills the
gap between a plain fiber and substrate surface. After that, a layer of
100-µm-thick Ti-64 powder is applied on the substrate surface and
melted by a customized laser powder bed fusionmachine. Themelting
result is demonstrated in Fig. 9b. After that, the plain fiber is retracted

125 µm

300 µm

230 µm

Powder

Wire

Fiber

100 µm

Substrate
3175 µm

3mm

a)

b) c) d)

Fig. 9 | Fiber embedding procedure and results. a Fiber embedding procedure illustration, b Substrate after laser melting, c Substrate after polishing, and d Substrate
with a fiber-optic sensor embedded in.
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and examined to ensure a strain-free condition is achieved, and then,
the substrate’s surface is polished, as shown in Fig. 9c. At this point, the
C-FBG encrypted fiber sensor can be inserted. Figure 9d provides a
detailed view of the embedded result with a fiber-optic sensor passing
through under a strain-free condition. The depth of the slot and
thickness of the wire can be altered to study the thermal history at
different depths.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used to generate all the main and Supplementary Figs. and
are available in Figshare under the accession code [https://doi.org/10.
6084/m9.figshare.25036454].

Code availability
The raw data required to reproduce these findings and the code are
available in Figshare under the accession code [https://doi.org/10.
6084/m9.figshare.25036454].
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