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Single-cell long-read targeted sequencing
reveals transcriptional variation in ovarian
cancer

Ashley Byrne 1,4, Daniel Le1,4, Kostianna Sereti2, Hari Menon1, Samir Vaidya1,
Neha Patel1, Jessica Lund1, Ana Xavier-Magalhães1, Minyi Shi1, Yuxin Liang1,
Timothy Sterne-Weiler 2,3, Zora Modrusan1 & William Stephenson1

Single-cell RNA sequencing predominantly employs short-read sequencing to
characterize cell types, states and dynamics; however, it is inadequate for
comprehensive characterization of RNA isoforms. Long-read sequencing
technologies enable single-cell RNA isoform detection but are hampered by
lower throughput and unintended sequencing of artifacts. Here we develop
Single-cell Targeted Isoform Long-Read Sequencing (scTaILoR-seq), a hybri-
dization capture method which targets over a thousand genes of interest,
improving the median number of on-target transcripts per cell by 29-fold. We
use scTaILoR-seq to identify and quantify RNA isoforms from ovarian cancer
cell lines andprimary tumors, yielding 10,796 single-cell transcriptomes. Using
long-read variant calling we reveal associations of expressed single nucleotide
variants (SNVs) with alternative transcript structures. Phasing of SNVs across
transcripts enables the measurement of allelic imbalance within distinct cell
populations. Overall, scTaILoR-seq is a long-read targeted RNA sequencing
method and analytical framework for exploring transcriptional variation at
single-cell resolution.

Alternative RNA splicing is a key driver of proteome complexity and
cellular phenotypic diversity. Approximately 95%of humanmulti-exon
genes are alternatively spliced and 15–25% of human hereditary dis-
eases and cancers are linked to alternative splicing1–3. Although short-
read RNA sequencing has been widely adopted to measure gene
expression, it remains challenging to identify full-length isoforms with
only 20–40% of the human transcriptome being assembled using gold
standard isoform reconstruction tools4–6. In addition, alternative spli-
cing, cleavage and polyadenylation events have been shown to be
highly tissue-specific7,8. Thus, to better understand cellular diversity
and dynamics in health and disease, isoform-level transcriptomic
information is required.

Single-cell RNA sequencing (scRNA-seq) has advanced our
understanding of cellular heterogeneity, delivering transformative

insights into a wide array of pathologies, including autoimmune
diseases9,10, neurological disorders11,12 and cancer13,14. To date, the vast
majority of single-cell RNA profiling studies have employed short-read
sequencing to measure gene expression which is typically quantified
by counting reads derived from the 3’- or 5’-ends of genes.While useful
for gene expression analysis, identification of isoforms remains chal-
lenging for single-cell short-read sequencing due to limited gene body
coverage. To address this, multiple groups have performed long-read
sequencing of cDNA from single cellswhichenables sequencing of full-
length molecules15–22. However, to accurately identify cell barcodes
(CBs) and uniquemolecular identifiers (UMIs),most of these strategies
have implemented short-read sequencing paired with long-read
sequencing to assist CB/UMI demultiplexing or specialized library
preparation steps to improve read accuracy at the cost of sequencing
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throughput. In addition, the majority of these studies have demon-
strated sequencing of a relatively small number of cells at low per-cell
sequencing depth due to current throughput limitations of long-read
platforms15,18,23,24. Recent efforts have been developed to employ
hybridization-based capture strategies to enrich selected genes of
interest17,25. Gene panel designs utilized in previous studies have typi-
cally focused on specific biological questions and encompassed less
than 50 target genes, which presents a challenge for cell annotation in
complex tissues and requires additional short-read sequencing17,25. A
particular issue inherent to single-cell long-read library preparation
and sequencing is the presence of unwanted artifacts that consume
valuable sequencing throughput. These artifactual reads do not exhi-
bit the expected cDNA structure after reverse transcription and
amplification; rather, often contain template-switching byproducts or
lack adapter sequences16.

To address the aforementioned shortcomings, we have devel-
oped single-cell targeted isoform long-read sequencing (scTaILoR-
seq). scTaILoR-seq makes use of commercially available or custom-
designed gene panels to enrich for greater than 1000genes of interest.
In addition, scTaILoR-seq mitigates the presence of artifacts common
to single-cell RNA-seq cDNA by enriching for molecules with the
expected adapter sequence using biotinylated PCR primers. Following
both gene panel enrichment and artifact mitigation, nanopore long-
read sequencing facilitates the assignment, identification, and quan-
tification of transcript isoforms in thousands of single cells. Using
scTaILoR-seq, we characterize transcript composition and their dif-
ferential expression among three ovarian cancer cell lines and com-
pare it to analogous long-read (LR) untargeted sequencing aswell as to
both targeted and untargeted short-read (SR) sequencing approaches.
Moreover, we evaluate SR-guided and unguided strategies for CB and
UMI identification, demonstrating that an unguided assignment
approach (wf-single-cell) circumvents the need for supplemental SR
sequencing. We then apply scTaILoR-seq with the unguided CB/UMI
assignmentmethod to profile dissociated tumor cells (DTCs) from two
ovarian cancer patients. This enables the identification of cell-type-
specific isoforms, reconstruction of immune repertoires, and detec-
tion of expressed single-nucleotide variants (SNVs) at the single-cell

level. In addition, long reads enable SNV phasing to assemble haplo-
types and estimate allelic imbalance from individual tumor epithe-
lial cells.

Results
Artifact mitigation combined with targeted gene enrichment
enables efficient long-read sequencing of single-cell cDNA
To evaluate gene enrichment, we performed droplet-based single-cell
3’-end RNA sequencing on an equal mixture of three human ovarian
cancer lines (SK-OV-3, COV504, and IGROV-1) (Fig. 1). The resulting
single-cell cDNA was used to evaluate a variety of strategies aimed at
determining optimal conditions for LR sequencing (Fig. 2a, Supple-
mentary Fig. 1, and Supplementary Table 1). Assessment of the tar-
geted approach using a 10x Genomics pan-cancer probe panel
demonstrated efficient enrichment of cancer-associated genes with SR
sequencing (17.7-fold mean read enrichment). We next sought to
maximize the proportion of complete reads (i.e. reads containing both
the template switch oligo (TSO) adapter and poly(A) sequences) using
LR sequencing. A previously described artifact mitigation (AM)
approach was deployed to reduce TSO-TSO byproducts from library
preparation16 using biotinylated PCR primers complementary to the
Read1 sequence, which enabled streptavidin-coated magnetic bead
pull-downand subsequent amplificationof complete cDNAconstructs.
Compared to the targeted approach without AM, the targeted+AM
strategy displayed an 11.8% increase in complete read proportion
concomitant with a marked decrease in TSO-TSO artifacts (Fig. 2a),
which is consistent with improvements observed in a recent single-cell
long-read study26. Next, we investigated an orthogonal TSO-TSO
depletion approach based on circularization of targeted complete
cDNA using rolling circle amplification to concatemeric consensus
(targeted+R2C2)19,27 (“Methods”). Compared to targeted+AM, the tar-
geted+R2C2 approach exhibited a slightly higher proportion of com-
plete reads and fewer TSO-TSO artifacts; however, it yielded much
lower read throughput: 4.4M versus 18M average passed reads per
flow cell compared to the targeted+AM approach (Fig. 2b). Therefore,
the targeted+AM strategy displayed an optimal balance between
increased complete read proportion and higher read throughput. For
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this reason, the targeted+AM approach became the basis of scTaILoR-
seq, which was employed in all subsequent experiments.

scTaILoR-seq increases transcript detection sensitivity while
preserving relative expression levels
Targeted gene enrichment with scTaILoR-seq yielded ~95% of usable
transcript reads thatweremapped to target genes. In contrast, without
gene enrichment (i.e., LR untargeted), only 5% of transcript reads
mapped to target genes (Supplementary Fig. 2). In general, reads
obtained with scTaILoR-seq were slightly longer, consistent with the
increased median transcript length of on-target genes (1360 nt) rela-
tive to that of off-target transcripts (991 nt) (Supplementary Fig. 3a).
scTaILoR-seq also displayed slightly higher relative read depth across
exons compared to the untargeted approach (Supplementary Fig. 3b).
Next, we investigated the accuracy and reproducibility of scTaILoR-seq
by measuring on-target gene expression levels. From read-depth nor-
malized samples, we observe highly correlated mean gene expression
(r =0.92) between scTaILoR-seq and untargeted SR sequencing, indi-
cating that scTaILoR-seq faithfully recapitulates quantitative gene
expression (Fig. 2c and Supplementary Fig. 4). LR sequencing provided
extended coverage over gene bodies compared to SR sequencing.
scTaILoR-seq and untargeted LR sequencing displayed similar

coverage (Fig. 2d) and RNA biotype profiles (Supplementary Fig. 5).
Gene expression was strongly correlated across replicates (r = 0.95)
with 98.8% gene overlap demonstrating the reproducibility of
scTaILoR-seq (Fig. 2e). Moreover, scTaILoR-seq resulted in a 16.4-fold
increase of on-target reads compared to untargeted LR sequencing,
yielding a significant boost in read counts per gene (two-sided
Mann–Whitney U test, P = 3.7 × 10−129) (Fig. 2f).

Next, we sought to characterize the improvement in transcript
detection provided by target enrichment. scTaILoR-seq identified an
additional 279 on-target genes and 2484 annotated transcripts that
were not detected in the untargeted LR approach (Fig. 2g and Sup-
plementary Fig. 3c), representing a 4.5-fold increase in the median
proportion of detected transcripts per gene (Supplementary Fig. 3d).
Transcript expression from scTaILoR-seq was highly correlated with
untargeted LR sequencing (r = 0.87) with some saturation observed
among highly expressed transcripts (Fig. 2h). Relative to the untar-
geted LR approach, scTaILoR-seqdetected ahigher frequencyofNovel
In Catalog (NIC) and Novel Not In Catalog (NNIC) transcript models
associated with targeted genes (Fig. 2i). The NIC transcripts are com-
posed of known annotated splice junctions but occur as novel
arrangements and the NNIC transcripts include unannotated splice
acceptors and donors.
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We also assessed the ability of scTaILoR-seq to detect chimeric
fusion transcripts derived fromgenes on the targeting panel. Using the
fusion detection algorithm JAFFAL28, scTaILoR-seq identified 6.7-fold
more on-target fusions than untargeted LR sequencing (Fig. 2j). We
detected high-confidence and known gene fusions annotated in the
Mitelman database29 which displayed enrichments ranging from 3- to
26.5-fold (Supplementary Fig. 6). Interestingly, the majority of fusions
identified with scTaILoR-seq comprised an on-target gene fused to an
off-target gene partner, suggesting that the probe coverage over one
partner is sufficient to identify fusion events.

Detection of alternative splicing at the single-cell level
Higher error rates observed in nanopore sequencing reads can con-
found CB and UMI assignment, which led to the development of
strategies that leverage supplemental high-accuracy SR sequencing
data16,24. We compared one such guided method, SiCeLoRe16, with a
recently developed unguided approach, wf-single-cell (“Methods”).
This unguided method eliminates the requirement for supplemental
SR sequencing to assign CBs and UMIs (Supplementary Fig. 7a). We
observed a high degree of overlapping CBs between SiCeLoRe and wf-
single-cell assignments.TheseoverlappingCBs encompass nearly all of
those found in the associated untargeted SR sequencing data (Sup-
plementary Fig. 7b). In addition,UMI counts perCB fromSiCeLoRe and
wf-single-cell were highly correlated (r =0.97), with the latter yielding
higher counts (Supplementary Fig. 7c). Gene expression for matched
cell line populations was also highly correlated (Supplementary
Fig. 7d). Taken together, these results indicate that scTaILoR-seq is
compatible with current guided and unguided CB/UMI assignment
methods.

To assess the ability of target enrichment on distinguishing cell
types in the ovarian cell line mixture, we focused on differential
expression variation captured by principal component analysis.
Because each principal component (PC) explains a fraction of overall
transcriptome expression variation (known as the variance ratio), the
cumulative variance ratio of ranked PCs provides a measure of usable
expression information. For the ovarian cell line mixture, we deter-
mined the cumulative variance ratio (PC1-PC10) across SR and LR
sequencing as well as for the untargeted and targeted approaches
(Fig. 3a). This analysis showed that target enrichment marginally
increases the cumulative variance ratio between untargeted and tar-
geted SR methods (0.24 vs. 0.26). However, between the untargeted
LR approach and scTaILoR-seq, we observed a marked 3.2-fold
increase in cumulative variance ratio (0.06 vs. 0.18). This difference
was manifested in cell embeddings using the first three PCs, which
showed separation of genetically deconvoluted cell lines when using
scTaILoR-seq (Fig. 3b and Supplementary Fig. 8). Ultimately, the
expression variation captured by scTaILoR-seq yielded clusters con-
sistent with known cell line genotypes (Fig. 3c). While target enrich-
ment showedmarginal value for SR sequencing,weobserved amarked
improvement in the ability to distinguish cell types using scTaILoR-seq
over an untargeted LR sequencing approach.

Next, we sought to quantify the enrichment performance of
scTaILoR-seq at the single-cell level using the ovarian cell line mixture.
Relative to the untargeted LR sequencing approach, scTaILoR-seq
exhibited a tenfold median increase in on-target genes per cell and a
29-fold median increase in on-target transcripts per cell (Fig. 3d).
Pseudobulk transcript-level expression was highly correlated between
untargeted LR sequencing and scTaILoR-seq for each cell line (SK-OV-
3: r =0.87, IGROV-1: r =0.86, COV504: r = 0.84) (Supplementary Fig. 9).
In addition, the top-25 expressed genes from scTaILoR-seq were
noticeably depleted of mitochondrial and house-keeping genes that
were abundant in the untargeted SR and LR sequencing approaches
(Supplementary Fig. 10). Next, we assessed whether scTaILoR-seq can
beused to identify alternative splicing events across theovarian cancer
cell lines. Using differential transcript expression (two-sided Welch’s t

test), we identified significant cell line-specific isoform usage
(Benjamini–Hochberg adjusted P <0.05; “Methods”) (Supplementary
Fig. 11). For example, we identified alternative 5’ splice site usage of
exon 2 in PARP2, the frequency of which varied across the three cell
lines (Fig. 3e and Supplementary Fig. 12). Exon 2ofPARP2 is localized at
the N-terminal region which is known to facilitate activation on DNA
single-strand breaks. Alternative splicing within this region may mod-
ulate the DNA damage-sensing activity of PARP230. In addition, we
identified a predominant alternative 5’-UTR and the first exon usage
event in the Rho-binding domain of RTKN specific to SK-OV-3 (Fig. 3f
and Supplementary Fig. 13). RTKN is a scaffold protein that interacts
with GTP-bound Rho proteins to subsequently regulate cell growth
and transformation31. These examples demonstrate the ability of
scTaILoR-seq to enrich for genes of interest, which enables the iden-
tification of differential isoform usage events and alternative splicing
patterns at the single-cell level.

Surveying the transcriptional landscape of an ovarian tumor
microenvironment
The tumor microenvironment (TME) is a complex niche characterized
by dynamic interactions among diverse cell types, including epithelial,
stromal, and immune cells. To quantify differential isoform usage and
to annotate cell-type populationswithin the TME, both pan-cancer and
immune enrichment panels were used, targeting a total of 2243 genes.
We performed scTaILoR-seq on dissociated tumor cells (DTCs) from
two stage-III treatment-naive ovarian cancer patients: P1—high-grade
serous ovarian carcinoma (HGSOC), P2—ovarian clear cell carcinoma
(OCCC). Sequencing was performed on the PromethION instrument
resulting in a total of 371 million reads (Supplementary Table 1) with a
median of 4020 and 1867 UMIs per cell for P1 and P2, respectively. We
detected 8695 cells derived from the two patient samples and identi-
fied severalmajor cell types (B cells, T/NK cells,myeloid, fibroblast and
epithelial) (Supplementary Fig. 14). Lineage-specific cell proportions
were consistent between scTaILoR-seq and untargeted SR data gen-
erated from the same single-cell cDNA (Supplementary Fig. 15). Of
particular interestwas sample P1 (n = 2482 cells)whichwas analyzed to
a greater extent since it contains a higher number of EPCAM+ tumor
epithelial cells (n = 1498) in addition to an even representation of both
stromal and immune cells (Fig. 4a and Supplementary Fig. 15). Differ-
ential expression analysis identified transcripts from genes that were
consistent with annotated cell identity such as expression of EPCAM in
epithelial cells,multiple isoformsofCOL3A1 andCOL1A2 in fibroblasts,
CD3E and CD2 in T cells and distinct C1QB isoforms in cells derived
from the myeloid lineage (Fig. 4b).

Provided that alternative splicing events are prevalent in cancer
and the associated TME32,33, we analyzed differential isoform usage
between all cell types. This analysis identified 43 significant events
(Supplementary Table 2) including differential IL-32 isoform usage
between CD8 +T cells and PDGFRɑ-/β+ fibroblasts (two-sided
Mann–Whitney U test; ENST00000530890 P = 4.6 × 10−9 and
ENST00000440815; P = 1.6 × 10−14) (Fig. 4c). Expression of IL-32β iso-
type (ENST00000440815) was dominant across all cell types;whereas,
IL-32θ (ENST00000530890) expressionwasmarkedly low in PDGFRɑ-/
β+ fibroblasts (Supplementary Fig. 16). IL-32β is associated with
hypoxic conditions in solid tumors and IL-32θ inhibits NF-kB which
counters the epithelial-mesenchymal transition34.

Next, we turned our attention to the immune component of the
TME, where current single-cell TCR/BCR reconstruction with SR
sequencing requires supplemental library preparation and is limited to
5’-expression profiling. A recent single-cell study that implemented
untargeted LR sequencing was unable to obtain sufficient read depth
for low abundance TCR transcripts, indicating a need for increased
detection sensitivity35. Thus, we asked whether scTaILoR-seq (3’-
expression) would be amenable to TCR repertoire profiling. Reads
were processed by TRUST4 which performs single-cell reconstruction
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of TCR sequences36. Of the barcodes associated with successfully
assembled TCRs, 98% corresponded to annotated T cells (Fig. 4d) and
85.9% had at least one chain (α and/or β) identified (Fig. 4e). With
scTaILoR-seq,weobtained aTCRα/β chainpairing rate of 49.7%,which
is a two-fold improvement over previous targeted and untargeted LR
strategies17,27. Within the expanded T-cell population (n = 56 cells), we
identified 15 high-order clonotypes with more than two cells sharing
identical CDR3 regions. The CDR3 sequence CASSYYSTARAGYTF was

detected in seven cells, representing the largest observed clonotype
population (Fig. 4f).

High-grade serous ovarian cancer is characterized by near ubi-
quitous mutation of the tumor suppressor TP53 and approximately
two-thirds ofmutations occur within exons 5-837,38. Characterization of
mutations within this hot-spot region of TP53, specifically in the tumor
epithelial cell population, was of particular interest. scTaILoR-seq
enables the detection of expressed SNVs that are outside the typical
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read coverage of SR single-cell sequencing (Fig. 2d and Supplemental
Fig 17a). For example, using the LR variant caller Clair339, we detected a
SNV in exon 7 of TP53 (chr17:7674241 G>C). This missense variant
(S241C; HGVS 17:g.7674241G >C) alters the DNA-binding domain of
TP53 and is annotated as a putative pathogenic ovarian cancer
mutation40. Despite TP53 exon 7 detection across several other cell
types (Supplemental Fig. 17b), this SNV was exclusive to a sub-
population of tumor epithelial cells (Fig. 4g). Within this subpopula-
tion, 97% of reads harbored the variant whereas only 3% of reads
derived from non-epithelial cells exhibit the same variant (Supple-
mental Fig. 17c). Closer inspection revealed that detection of the SNV
in the remaining tumor epithelial cells was hindered due to lack of
coverage of TP53 exon 7. In general, when compared to untargeted LR
sequencing, scTaILoR-seq improved SNV detection in targeted genes
by ~2.5-fold (673 vs. 1669) (Supplementary Fig. 18).

To assess cancer-associated expression patterns among the epi-
thelial cells, we performed pathway activity analysis using PROGENy41,
which identified two signatures: JAK-STAT/NF-κB/TNFɑ and hypoxia
(Fig. 4h). These two pathways were correlated with single-cell RNA-seq
expression patterns characteristic of tumor cells from treatment-naive
HGSOCpatients: “Cancer.3” and “Cancer.6”13. PROGENy signatures and
associated gene expression were localized to distinct cell subsets
within the epithelial cell embedding (Fig. 4i and Supplementary
Fig. 19). Collectively, these data suggest that a large fraction of the
epithelial cells exhibit distinctive cancer signaling pathways consistent
with ovarian cancer.

Identifying structural transcript variation associated with
expressed SNVs
After determining the ability of scTaILoR-seq to detect SNVs, we asked
whether these expressed variants were associated with differential
transcript structures in HGSOC, as reported in several other tissues
and cell lines42. We utilized a deep learning-based model called
SpliceAI43 to predict and score cryptic splicing events associated with
detected SNVs from targeted transcripts within the tumor epithelial
cell population (Fig. 5a). For the 82 hits from 1669 SNVs (SpliceAI score
>0.1) (Fig. 5b), we identified transcript structure variation by assessing
the coverage divergence (1 − r2) between readsmatching the reference
base (REF) or the alternative base (ALT) for a given SNV site (Fig. 5a).
Among the 82 queried hits, 44 displayed coverage divergence, indi-
cating a differenceof transcript structure betweenREF andALT alleles.
scTaILoR-seq produced a 1.5-fold increase in detected SNVs associated
with alternative transcript structures compared to the untargeted LR
sequencing approach (Supplementary Fig. 20a). In addition, the
divergence scores for alternative transcript structures found in both
scTaILoR-seq and the untargeted LR approach were strongly corre-
lated (r =0.94) (Supplementary Fig. 20b).

Using scTaILoR-seq reads, the local coverage divergence along
transcripts was used to classify transcript structural events into two
categories: “CDS” for protein-coding and “UTR/Intron” for untrans-
lated regions and introns (Fig. 5c). We detected differential ELF3
transcript structures associatedwith chr1:202011127 A >C in exon 2 for
which flanking introns were retained among REF reads (1130 UMIs in
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574 cells); whereas, ALT reads (2962 UMIs in 1013 cells) exhibited
normal splicing (Fig. 5d). ELF3 is a transcription factor highly expres-
sed in epithelial tissue and has been shown to inhibit the epithelial-to-
mesenchymal transition13,44 while supporting angiogenesis45. Another
example of differential transcript structures linked to an SNV
(chr2:190975811 C >A) was observed with the transcription factor
STAT1, which exhibited distinct allele-specific events (REF = 2501 UMIs
in 525 cells and ALT = 1254 UMIs in 353 cells) that spanned both CDS
and UTR/Intron (Fig. 5e). In summary, scTaILoR-seq can provide
insight into variation of transcript structures associated with SNVs,
leading towards an improved understanding of transcriptional com-
plexity associated with genetic alteration in cancerous cells.

Phasing of expressed SNVs reveals allelic imbalance within
tumor epithelial cells
Given the LR output of scTaILoR-seq, we reasoned that transcripts
containing multiple SNVs could be used for haplotype reconstruction
and subsequent allele-specific expression analysis42,46,47. We observed
that the median number of SNVs per gene was two (Supplemental
Fig. 21a) and the median distance between SNVs of the same gene was
511 nucleotides (Supplementary Fig. 21b). Using multi-SNV reads,
haplotypes were revealed by iteratively phasing SNVs along a given
gene (“Methods”). Two haplotypes were reconstructed for 370 genes
with scTaILoR-seq, forwhich94.6%of transcript reads had themajority
of SNVs match a haplotype sequence. In comparison, the LR

untargeted approach yielded only 124 genes with reconstructed hap-
lotypes, 117 of which were also detected with scTaILoR-seq (Supple-
mentary Fig. 22a). Thus, these haplotypes are generally representative
of observed allele-specific transcripts.

Among the haplotypes, human leukocyte antigen (HLA) alleles
were noteworthy given their diversity and function in adaptive
immunity48. Consistent with their well-known polymorphism, a large
number of SNVs were detected in the HLA genes, ranging from 46 in
HLA-A to 8 in HLA-DRA (Supplementary Fig. 21c). We observed uneven
mapping of transcript reads between the two alleles; HLA-DRA exhib-
ited a striking 3.6-fold bias for transcripts mapping to haplotype 1 (H1)
versus haplotype 2 (H2) (Fig. 6a). Allele-specific expression is recog-
nized as a pervasive feature of cancer, potentially stemming from
alterations such as genomic structural rearrangement and dysfunc-
tional epigenetic regulation49. Here, in the context of HGSOC, we
sought to systematically characterize the allele-specific expression
differences between tumor epithelial cells and the residual TME cell
populations. We identified 33 genes displaying imbalanced allelic
expression within the epithelial cell population but not in the
remaining cells (two-sided Mann–Whitney U test;
Benjamini–Hochberg adjusted P < 10−6 and P >0.05, respectively)
(Fig. 6b). Differential allele expression across epithelial and non-
epithelial cell subsets correlatedwell between scTaILoR-seq and the LR
untargeted approach (Pearson r = 0.76) (Supplementary Fig. 22b).
Among genes exhibiting epithelial-specific imbalanced allelic
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expression, VEGFA and CD276 are therapeutic targets for treatment of
ovarian malignancies like HGSOC50 (Fig. 6c, d). With scTaILoR-seq,
phasing of SNVs permitted high-quality haplotype reconstruction and
enabled quantitation of allele-specific expression among cellular
populations within ovarian tumor samples.

Discussion
Recent improvements in nanopore sequencing chemistries, base-
calling accuracy and bioinformatic tools have enabled single-cell LR
sequencing, which can deliver unprecedented insights into cell-type-
specific transcriptional diversity. However, there remain key chal-
lenges to overcome such as considerably lower throughput and tem-
plate switch artifacts. Here, we developed scTaILoR-seq to address
these challenges using targeted enrichment and artifact mitigation.
Fortunately, several expert-curated commercial gene panels—like the
ones used in this study—are available for a range of biological appli-
cations. The use of custom gene panels further expands the versatility
of scTaILoR-seq to facilitate diverse biological inquiries. This approach
wasdeveloped tooptimally allocate sequencing reads to hundreds or a
few thousand genes of interest; whereas, current methods shallowly
survey the whole transcriptome18,51 or deeply examine a narrow set of
target genes17,25. With our approach, we demonstrate improved tran-
script detection sensitivity for applications ranging from differential
isoform expression analysis to the discovery of sequence variants.

Fundamental to scRNA-seq is the ability to resolve reads by indi-
vidual CBs andUMIs, which enables cell-specific quantification of gene
expression. Given the higher basecalling error rates of nanopore
sequencing compared to SR sequencing, prior single-cell LR approa-
ches have relied on supplemental SR data to improve CB/UMI assign-
ment accuracy16,24. Despite the inherent errors of nanopore reads, we
demonstrate that scTaILoR-seq paired with wf-single-cell CB/UMI
assignment and IsoQuant transcript quantification is capable of accu-
rately producing single-cell transcriptomes from a complex tumor
tissue without supplemental SR data.

Using scTaILoR-seq, we demonstrate that targeted single-cell LR
sequencing is an effective approach to generate TCR repertoires from
a complex tumor tissue. Despite T cells comprising only 12% of the
total cell population, scTaILoR-seq provided sufficient coverage of the

TCR locus for sequence reconstruction. While TCR analysis typically
requires specialized library preparation and/or 5’ RNA-seq with SR
approaches, we demonstrate TCR reconstruction with scTaILoR-seq
using conventional 3’ RNA-seq. In addition, we were able to identify
unique and expanded clonotypes which could provide insight into
TME-specific T-cell interactions and tumor antigens. Both the immune
repertoires and the extent of clonal expansion are key determinants of
the anti-tumor response and outcomes52–54.

Greater read depth and broader transcript coverage enabled
more comprehensive detection of expressed SNVs, which was funda-
mental for the characterization of transcript structure alterations.
Because many of these SNVs are proximal to annotated splice junc-
tions, we suspect sequence-specific impacts on spliceosome function
may contribute to the altered transcript structures. In some cases, a
SNV and its associated site of structural divergence are within an A/T-
rich region, which may be susceptible to internal priming during
reverse transcription and/or second-strand synthesis55. While such
artifacts would be considered false positives, we also observed
opposing examples in which structural divergence was detected in
non-A/T-rich regions. Taken together, scTaILoR-seq facilitates the
characterization of SNV-associated transcript structures whichmay be
particularly impactful in evaluating the functional consequences of
cancer mutations.

By reconstructing haplotypes frommulti-SNV reads, we identified
imbalanced allelic expressionwithin tumor epithelial cells.Of potential
therapeutic relevance is the observed allele-specific expression of
VEGFA, which is the target of bevacizumab (Avastin) for the treatment
of platinum-resistant recurrent epithelial ovarian cancer56,57. In addi-
tion, CD276 showed imbalanced allelic expression and is under clinical
development as a cancer immunotherapy50. Thus, beside the funda-
mental biological insights afforded by scTaILoR-seq, the ability to
simultaneously characterize cell- and allele-specific transcriptional
variation has the potential to impact diagnostic and therapeutic
approaches.

Recently, Oxford Nanopore Technologies introduced “adaptive
sampling” as a method for enrichment or depletion of specific
sequences in real time. Thismethodhas been applied for the detection
of expressed SNVs in single cells58 and established the use of adaptive
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sampling in a transcriptomics application. However, comprehensive
analysis of its efficiency and utility for quantitation of expression is
lacking. Recent long-read metagenomic studies have suggested that
enrichment with adaptive sampling for fragment lengths less than
about 2 kb is not efficient and may negatively impact sequencing
throughput59,60.

While we have highlighted key capabilities of scTaILoR-seq, there
are severalways to further improve thismethod. First, abortive reverse
transcription hinders analysis due to truncated long reads andmay be
addressed with alternative reverse transcription strategies. Second,
the analyses presented here focuses primarily on annotated tran-
scripts. We showed that scTaILoR-seq improved sensitivity for dis-
covering novel isoforms and fusions; however, to enable broad
detection of novel transcripts, probe designs may need to be expan-
ded beyond the sequence space of annotated transcripts. Finally, we
expect that this approach can be adapted tomany of the emerging and
existing commercial scRNA-seq platforms (e.g. droplet, nanowell, and
combinatorial indexing) in addition to synergistic technologies like
spatial transcriptomics. With these adaptations in mind, scTaILoR-seq
presents an attractive option for efficient exploration of full-length
transcriptomes, especially for large-scale single-cell atlasing initiatives.
Overall, scTaILoR-seq efficiently allocates sequencing throughput to
improve detection and quantitation of transcripts of interest at mul-
tiple resolutions: from exon structure down to single-nucleotide
variants.

Methods
The described research complies with all relevant Genentech ethical
regulations. Ovarian cancer dissociated tumor cells from de-identified
consented patients were purchased through Discovery Life Sciences
(Huntsville, AL) for research purposes only. Sex or gender analysis was
not relevant for this proof-of-concept study.

Single-cell isolation and 10X Genomics 3’ cDNA generation
Cell lines. To evaluate the sensitivity and the robustness of our
method, we obtained three ovarian cancer cell lines SK-OV-3 (ATCC
[HTB-77]), IGROV-1 (NCI-FC DCTD), and COV504 (ECACC [07I007]).
SK-OV-3 and IGROV-1 were maintained in RPMI-1640 medium, sup-
plemented with 10% fetal bovine serum (FBS) and 2mM L-Glutamine.
COV504 cells were maintained in DMEM supplemented with 10% FBS
and 2mM L-Glutamine. Cells from each cell line were prepared fol-
lowing the 10x Genomics Cell Preparation Guide (CG000053_Cell-
PrepGuide_RevC) and combined at equal cell concentrations prior to
loading onto the 10x Genomics Chromium Controller at a concentra-
tion of 1000 cells/μL. cDNA generated through the single-cell platform
was then split for single-cell targeted LR enrichment (see below) or for
generating scRNA-seq SR libraries using the 10x v3.1 protocol
(CG000204_ChromiumNextGEMSingleCell3’v3.1_RevD).

Dissociated tumor cells. Ovarian cancer dissociated tumor cells were
purchased through Discovery Life Sciences (Huntsville, AL). Both
samples were from untreated female ovarian cancer patients with
stage-III cancer subtypes of Clear Cell Carcinoma and High-Grade
Serous Carcinoma. Cells were thawed and prepared following the
recommended 10x Genomics Cell Preparation Guide shown above
with minor adjustments. Cells were thawed for 2min and placed into
15mL of warmRPMImedia containing 10% FBSmedia. Cells were spun
at 300× g for 5min. DNase I was added after the first spin to prevent
clumping. Three additional spins were performed with 1X PBS with
0.04% BSA to ensure proper removal of DNase I prior to 10x loading.
Cellswere counted and checked for viability usingVi-Cell XR (Beckman
Coulter). The viability was 88.3% and 82.5% and the target capture was
for 6000 cells prior to injection. Both the cell lines and primary tumor
cells were run on Chip G using the 10x v3.1 kit for generating the
cDNA (CG000204_ChromiumNextGEMSingleCell3’v3.1_RevD). The

cDNA amplification step was modified by extending the elongation
time to 2min rather than the recommended 1min. cDNA generated
through the droplet single-cell platform was then split for either LR
enrichment or for preparing scRNA-seq SR libraries using the 10x v3.1
protocol (CG000204_ChromiumNextGEMSingleCell3’v3.1_RevD).

Illumina library generation and sequencing
Whole transcriptome SR libraries were dual-indexed and sequenced
paired-end on the Illumina NovaSeq 6000 p with the recommended
10x run parameters (Read 1—28 cycles, i7—10 cycles, i5—10 cycles, and
Read 2—90 cycles). Targeted SR libraries were dual-indexed and
sequenced paired-end on the Illumina NextSeq 2000 following the
same run parameters as shown above.

Single-cell-targeted gene enrichment for long-read sequencing
Pre-amplification. In total, 10 ng of the 10x cDNAderived from the cell
lines were split into two reactions and amplified an additional five
cycles of PCR using two customized primers: (1) TruSeq Read1 forward
primer 5’ (Fwd_partial_read1) and (2) partial TSO reverse primer
(Rev_partial_TSO) (Supplementary Table 3). The PCR reaction was
carried out using 2X LongAmp Taq (NEB) with the following PCR
parameters 94 °C for 3min, with five cycles of 94 °C 30 s, 60 °C 15 s,
and 65°C for 3min, with a final extension of 65 °C for 5min. The cDNA
was then purified using 0.8× SPRI beads to remove unwanted primers
and eluted in 30μL H2O to yield ~300 ng total.

Targeted gene panels. Enrichment was performed with the Human
Pan-Cancer Panel (PN-1000247) and Human Immunology Panel (PN-
1000259) from 10x Genomics. Biotinylated probes from these
panels are 120 bases in length and tile across annotated exons at 1×
density.

R2C2. Post-enriched cDNA was used for input into an R2C2 reaction
following the protocol previously described19. Briefly, 100 ng of the
targeted cDNA was circularized using Gibson assembly (NEBBuilder
HiFi DNA assembly mix) with a custom splint that is compatible with
10x cDNA containing both the Read1 (10X_UMI_Splint_Forward) and
TSO sequences (10X_UMI_Splint_Reverse) (Supplementary Table 3).
Any non-circularized byproducts were then digested using an exonu-
clease mixture of Lambda, Exo I and Exo III (NEB) and incubated at
37 °C overnight. Post overnight digestion the reaction was cleaned up
with 0.8X SPRI and eluted in 30μL. The circularized product was
separated into three different reactions and amplified using rolling
circular amplification using Phi29 (NEB) and incubated at 30 °C over-
night. To debranch the Phi29 product, a T7 endonuclease (NEB)
digestionwasperformed and incubated at 37 °C on a thermal shaker at
1000 RPM for 2 h. A final 0.5× SPRI purification is performed to enrich
longer molecules >500bp, about 1μg should be recovered.

Cell lines. The pan-cancer genepanel (n = 1253genes)wasdesignedby
10x Genomics containing 120 bp probes tiled across known annotated
exons covering both sense and antisense strands. The cDNA hybridi-
zation using the pre-designed panels was performed following the 10x
protocol (CG000293_TargetedGeneExpression_SingleCell_UG_RevF)
withminor changes.We incorporated TSOblockers (1μM)during Step
1.1 in the pre-hybridization pooling and drying step (Supplementary
Table 3). The pre-hybridization was carried out using 300ng of cDNA,
20μL of COT DNA, 0.8μL of TSO blockers, and 2μL of Universal
Blockers. The samples were dried using the SpeedVac Savant DNA120
concentrator (Thermo Fisher Scientific) on “Medium” setting. Follow-
ing the hybridization, five cycles of PCR were performed using the
same cDNA primers described in the Pre-Amplification step (1)
Fwd_partial_read1 and (2) Rev_partial_TSO to amplify molecules off the
bead. The following PCR conditions were the same as described in the
Pre-Amplification step.
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Dissociated tumor cells. For the primary tumor samples, the gene
enrichment was performed as discussed above with the exception that
the same cDNA was separated into two enrichments one using the pan-
cancer gene panel (n= 1253 genes) and the other with the Immune gene
panel (n= 1056 genes). The samples were targeted following the 10x
protocol (CG000293_TargetedGeneExpression_SingleCell_UG_RevF) with
minor changes as indicated above incorporating TSOblockers. Following
the hybridization, 5 cycles of PCR were performed using the non-
biotinylated primers (1) Fwd_3580_partial_read1_defined and (2)
Rev_PR2_partial_TSO_defined from the single-cell ONT protocol (Supple-
mentary Table 3, single-cell-transcriptomics-10x-SST_v9148_v111_revB).
The PCR reaction was carried out using 2× LongAmp Taq (NEB) with the
following PCR parameters 94 °C for 3min, with five cycles of 94 °C 30s,
60 °C 15 s, and 65 °C for 3min, with a final extension of 65 °C for 5min.
The post cDNA hybridized product was then purified with 0.8× SPRI
beads to remove unwanted primers and eluted in 40μL of H2O. cDNA
concentration was measured using Qubit dsDNA HS kit and the size
distribution analyzed using Tapestation D5000 Screen Tape (Agilent
Technologies). A portion of the 10× cDNA generated from the dis-
sociated tumor cells was not subjected to any gene enrichment (i.e.
untargeted) but was cleaned up to remove unwanted TSO artifacts using
the TSO artifact mitigation method discussed below using biotinylated
primers.

TSO artifact mitigation. Post-hybridization artifact mitigation was
performed using the biotinylated version of the forward primer
from the ONT protocol, [Btn]Fwd_3580_partial_read1_defined (Sup-
plementary Table 3). The PCR reaction was carried out using 2×
LongAmp Taq (NEB) with the following PCR parameters 94 °C for
3min, with three cycles of 94 °C 30 s, 60 °C 15 s, and 65 °C for 3min,
with a final extension of 65 °C for 5min. Full-length cDNA was cap-
tured using 15 μL M270 streptavidin beads (Thermo Fisher Scien-
tific) that were washed three times with SSPE buffer (150mM NaCl,
10mM NaH2PO4, and 1mM EDTA) and resuspended in 10 μL of 5×
SSPE buffer (750mM NaCl, 50mM NaH2PO4, and 5mM EDTA). The
cDNA obtained from the gene enrichment step was combined with
10 μL M270 beads and incubated at room temperature for 15min.
After incubation, the cDNA-bead conjugate was washed twice with
1mL of 1× SSPE. A final wash was performed with 200 μL of 10mM
Tris-HCl (pH 8.0) and the beads bound to the sample were resus-
pended in 10 μL H2O. A final PCR was performed on-bead using the
cDNA primers (cPRM) from the SQK-PCS111 kit following the PCR
conditions from the single-cell ONT protocol (single-cell-tran-
scriptomics-10x-SST_v9148_v111_revB). The cDNA was cleaned up
with 0.8X SPRI and eluted in 15 μL. The concentration and quality of
the sample was evaluated with Qubit dsDNA HS kit and Tapestation
D5000 Screen Tape (Agilent Technologies). The expected recovery
was above 50 ng.

ONT library preparation and nanopore sequencing
Cell lines. For the mixed ovarian cell lines, library preparation for
nanopore sequencing was performed according to the LSK-109 pro-
tocol (ONT). For the targeted mixed ovarian cell line samples, the final
libraries (targeted, targeted+AM, and targeted+R2C2) were loaded
onto a total of sevenMinION flowcells (FLO-MIN106D). Approximately
25–30 fmol of the library was loaded for each run. The samples were
sequenced for 72 h and basecalled using Guppy v6.0.1. For the untar-
geted sample, library preparation was performed according to the
LSK-110 protocol. A total of 125 fmol was loaded onto a single Pro-
methION flowcell (FLO-PR002), sequenced for 72 h and basecalled
using Guppy v6.0.1.

Dissociated tumorcells. After post enrichment and artifactmitigation
the rapid adapter addition was performed following SQK-PCS111 pro-
tocol. Final libraries (125 fmol per library) across both patient samples

were loaded onto a total of 4 PromethION flowcells (FLO-PRO002).
The samples were sequenced for 72 h and basecalled using Guppy
v6.0.1. Libraries from the untargeted cDNA were prepared using the
SQK-PCS111 protocol and loaded onto two PromethION flowcells (FLO-
PR002). The samples were sequenced for 90 h and were basecalled
using Guppy v6.01.

Long-read CB and UMI assignment
“SiCeLoRe” (https://github.com/ucagenomix/sicelore/commit/b057a
a0f7948d2e8f64140b8ec99c2f3bb4b6d53) was used with default set-
tings to process reads when companion SR data were available. When
considering complete reads, 79.5% (averageof two replicates) could be
assigned to a known cell barcode. Of those, ~68% were matched to
UMIs identified from SR data. These values are consistent with recent
single-cell nanopore LR sequencing efforts. Next, for CB/UMI assign-
ment without companion SR data, we used wf-single-cell (https://
github.com/epi2me-labs/wf-single-cell; v0.1.5) with default settings.
UMI-deduplication of the resultant tagged bam file was performed
usingUMI-tools (v1.1.0) with the following settings for the group: --per-
cell --per-gene --extract-umi-method=tag --umi-tag=UB --cell-tag=CB
--gene-tag=GN. The longest read was retrained from each UMI group.
In general, we used the GRCh38 human reference genome and GEN-
CODE v32/Ensembl 98 annotations provided by 10x Genomics (2020-
A; July 7, 2020; https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest).

Single-cell data analysis
Cell-by-transcript count matrices were generated directly from
SiCeLoRe or from IsoQuant (v3.1.0) with default settings using CB-
tagged bam files generated by wf-single-cell. The count matrices
were processed using scanpy (v1.9.1) as follows: (1) normalize counts
per cell (target_sum=106), (2) log1p transform, and (3) scale to unit
variance and zero mean. Unsupervised clustering of cell subgroups
was performed using the Leiden algorithm applied to the neighbor-
hood graph of principal components. Cluster annotation was based
on marker geneset expression. Differential expression of both genes
and transcripts computed using two-sided Welch’s t test (method =
“t-test_overestim_var”). Geneset expression scores were calculated
using the score_genes function from scanpy. Pathway activity scores
were calculated using the progeny function (z_scores=TRUE, organ-
ism= “Human”, top=300, perm=100) from PROGENy (v1.18.0). For
genetic-deconvolution of cell line identity, we used souporcell (v2.0)
with known genotypes provided as a BCFtools-merged Clair3-deri-
ved.vcf file. Cell multiplets were identified using Scrublet (v0.2.3),
implemented within scanpy with default settings. To integrate the
expression matrices from the pan-cancer and immune panels, we
applied a scalar offset. From the transcripts of 258 genes shared
between the two panels, the scalar offset was computed as the mean
slope of tenfold cross-validated (CB-shuffled) linear regression
slopes (sklearn v1.0.1) using mean transcript expression (cell count-
normalized and log1p-transformed). Subsequently, single-cell tran-
script expression values corresponding to the response variables
were multiplied by the scalar offset. To construct the integrated
expression matrix, scaled transcript expression values private to the
response variables were joined (CB-matched) to the expression
matrix corresponding to the predictor variables. Pseudobulk
expression was calculated as mean log(CPM+ 1).

T-cell receptor reconstruction
The immune enrichment panel design comprises probes targeting the
constant TCR genes: TRAC, TRDC, TRBC2, and TRGC1. The TRBC1 and
TRGC2 genes were not included in the panel as they have high
homology to selected probes. scTaILoR-seq reads were processed by
TRUST4 using the parameters --ref human_IMGT+C.fa --barcode
CB --UMI UB.
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Fusion analysis
Fusion analysis was performed with JAFFA using the default para-
meters of JAFFAL.groovy. Only fusions with the classification “High-
Confidence” were considered for enumeration across untargeted LR
sequencing and scTaILoR-seq. Fold-change enrichments were deter-
mined from fusions classified as “HighConfidence”, contained within
the Mitelman database (known = “True” designation) and had
≥2 spanning reads.

Variant analysis
Cell subpopulation reads were aggregated from CB-tagged bam
records using pysam (v0.16.0.1), and then variants were called using
Clair3 (v0.1-r11) with pretrained model r941_prom_hac_g360 + g422
(--platform=ont --enable_phase --fast_mode). For analysis of variants
associatedwith transcript structural divergence, Clair3-derived variant
calls were filtered (within cancer panel exons, DP > = 100 and QUAL >
= 15). Variant calls were scored for cryptic splicing using SpliceAI
(v1.3.1, -D 500). Then, for each variant, aligned reads were partitioned
by observed base-matching REF or ALT values (via pysam). Read cov-
erage of resultant REF- and ALT-specific bam files were computed
using bamCoverage (v3.5.0, --binSize 1). The Pearson correlation
coefficient (r) between REF- and ALT-specific read coverage was cal-
culated (minimum depth > =50). The degree of transcript structural
divergence was defined as the variance unexplained (1 − r2). For var-
iants exhibiting non-zero coverage divergence, linear regression resi-
duals between REF- and ALT-specific coverage at single-base
resolution were mapped to annotated transcript structural features:
CDS and UTR/Intron. Then, the proportion of bases with residual
z-score >0.5 within each structural feature was max-normalized per
variant before agglomerative hierarchical clustering (method= “ward”,
metric = “euclidean”) using SciPy (v1.7.3).

Haplotype analysis
Only reads with at least two detected SNVs were considered for hap-
lotype reconstruction. For each gene, the observed variant status of
each read was encoded as a vector of position-sorted SNV sites
(n=number of detected SNVs within the gene) with the following
values: undetermined=0, REF = 1, ALT = 2. The SNV vector with the
highest readcountwasused as the seedhaplotype. For each element in
this seed vector equal to 0 (i.e., undetermined), the variant status was
determined as follows:
1. Identify all reads that contain at least one determined SNV site

(REF = 1 or ALT = 2) from the current SNV vector in addition to the
undetermined site.

2. Update variant status at undetermined site based on highest fre-
quency nucleotide identity (REF or ALT) at that position.

Haplotype reconstruction was complete when all SNV sites were
determined. Then, allele-specific reads with a majority of SNVs (>50%)
matching the haplotype were masked before a second haplotype was
determined as outlined above. The final allele-specific read annota-
tions were similar to above (i.e., majority of haplotype-matching SNVs
per read) but omits SNV sites with shared identity between H1 and H2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw Illumina (short-read) and Oxford Nanopore Technologies (long-
read) sequencing data were deposited to NCBI Sequence ReadArchive
(SRA) under the BioProject accession PRJNA993664. Supplementary
Fig. source data will be made available on request. Source data are
provided with this paper.

Code availability
The code used to analyze data from this study has been deposited in
the GitHub repository: https://github.com/danledinh/sctailor-tools61.
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