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Quantum chemical (QC) property prediction is crucial for computational
materials and drug design, but relies on expensive electronic structure cal-
culations like density functional theory (DFT). Recent deep learning methods
accelerate this process using 1D SMILES or 2D graphs as inputs but struggle to
achieve high accuracy as most QC properties depend on refined 3D molecular
equilibrium conformations. We introduce Uni-Mol+, a deep learning
approach that leverages 3D conformations for accurate QC property predic-
tion. Uni-Mo1+ first generates a raw 3D conformation using RDKit then
iteratively refines it towards DFT equilibrium conformation using neural net-
works, which is finally used to predict the QC properties. To effectively learn

this conformation update process, we introduce a two-track Transformer
model backbone and a novel training approach. Our benchmarking results
demonstrate that the proposed Uni-Mo1+ significantly improves the accuracy
of QC property prediction in various datasets.

The application of computational methods has become a widely
employed strategy in the development of new materials and drugs. A
crucial aspect of this approach involves the calculation of quantum
chemical (QC) properties of molecular structures'. These quantitative
properties are highly dependent on the refined equilibrium con-
formations of molecules.

In the field of materials and drug design, researchers primarily
focus on the quantitative properties of equilibrium conformations.
The process to achieve this generally involves two key steps, both of
which depend on electronic structure methods such as density func-
tional theory (DFT)2 The initial step entails performing conformation
optimization, also known as energy minimization, on the molecular
structure to determine the equilibrium conformation. Subsequently,
the quantum chemical (QC) properties of this equilibrium conforma-
tion are computed. However, the combined process of conformation
optimization and property calculation using DFT can be extremely
time-consuming and computationally expensive, potentially requiring
several hours to evaluate the properties of just a single molecule. This
constraint hinders the applicability of DFT in large-scale data screening
endeavors. Consequently, it is of paramount importance to develop

alternative methods that maintain the requisite accuracy while redu-
cing computational costs.

Recent studies have demonstrated the potential of using deep
learning to accelerate QC property calculations®™. This approach
involves training a deep neural network model to predict the property
using molecular inputs, thereby circumventing the need for
computationally-intensive DFT calculations. Prior research has mainly
utilized 1D SMILES®® sequences or 2D molecular graphs*’™ as mole-
cular inputs due to their easy obtainability. However, predicting QC
properties from 1D SMILES and 2D molecular graphs can be ineffective
since most QC properties are highly related to the refined 3D equili-
brium conformations.

To address this challenge, we propose a method called uni-Mo1+
in this paper, illustrated in Fig. 1a. In contrast to previous approaches
that directly predict QC properties from 1D/2D data, Uni-Mo1+ takes
advantage of the 3D conformation of the molecule as input, in accor-
dance with physical principles. Uni-Mo1+ first generates a raw 3D
conformation from 1D/2D data using cheap methods, such as RDKit".
As the raw conformation is inaccurate, Uni-Mol+ then iteratively
updates it towards the DFT equilibrium conformation using neural
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Fig. 1| Overall architecture of Uni-Mol+. a In contrast to prior methods that
directly predict QC properties from 1D/2D data, Uni-Mo1+ uses a different
approach. It first generates raw 3D conformation from 1D/2D data using cheap tools
like RDKit, and then iteratively updates it towards the DFT equilibrium conforma-
tion. Finally, it predicts QC properties using the learned conformation. The
abbreviation HOMO-LUMO gap represents the Highest Occupied Molecular Orbital
— Lowest Unoccupied Molecular Orbital gap. b The uni-Mo1+ backbone consists
of L blocks, each of which maintains two tracks of representations—atom and pair,
initialized by atom features and 2D graph/3D conformation, respectively. These
representations communicate with each other at every block. Based on this

backbone model, uni-Mo1l+ iteratively updates the raw conformation (i.e., 3D
coordinates of atoms) towards the DFT equilibrium conformation for R iterations.
The abbreviation FFN represents the Feed-Forward Neural network and QC prop-
erty represents Quantum Chemical property. ¢ A linear noisy interpolation between
raw conformation and DFT conformation is used to generate a pseudo trajectory,
effectively augmenting the input conformations. Uni-Mol+ uses a mixture of
Bernoulli distribution and Uniform distribution to sample the noise interpolation
weight g during training. The symbol g represents the interpolation weight between
raw conformation and DFT conformation.

networks and predicts QC properties from the learned conformation.
To obtain accurate equilibrium conformation predictions, we use
large-scale datasets (e.g., PCQM4MV2 benchmark) to build up millions
of pairs of RDKit-generated raw conformation and high-quality DFT
equilibrium conformation and learn the update process from this
supervised information. With a carefully designed model backbone
and training strategy, Uni-Mo1l+ shows superior performance in var-
ious benchmarks.
Our main contributions can be summarized as follows:

* We develop a novel paradigm for QC property prediction by
leveraging the conformation optimization from RDKit-generated
conformation to DFT equilibrium conformation.

* We create a new training strategy for 3D conformation optimi-
zation by generating a pseudo trajectory and a sampling strategy
from it, based on a mixture of Bernoulli distribution and Uniform
distribution.

* The entire framework of Uni-Mo1+ holds significant empirical
value, as it achieves markedly better performance than all pre-
vious works on two widely recognized benchmarks, PCQM4MV2"
and Open Catalyst 2020 (OC20)".

Results

In this section, we initially present a concise overview of the Uni-Mo1+
framework, followed by comprehensive benchmarking using two well-
recognized public datasets: PCQM4MV2" and OC20'. These datasets
enable the assessment of Uni-Mol+ s performance in small organic
molecules and catalyst systems. Following this, we perform an ablation
study to investigate the impact of various model components and
training strategies on the overall performance. Lastly, we present a
visual analysis to effectively demonstrate the conformation update
process within Uni-Mo1+. The complete model configuration can be
found in the Supplementary Section 2.
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Uni-Mol+ overview

As illustrated in Fig. 1a, for any molecule, Uni-Mo1+ first obtains a raw
3D conformation generated by cheap methods, such as template-
based methods from RDKit and OpenBabel. It then learns the target
conformation, i.e., the equilibrium conformation optimized by DFT, by
an iterative update process from the raw conformation. In the final
step, the QC properties are predicted based on the learned con-
formation. To achieve this goal, we introduce a new model backbone
and a novel training strategy for updating conformation and predict-
ing QC properties.

The Uni-Mol+ ‘s model backbone is a two-track transformer,
consisting of an atom representation track and a pair representation
track, as shown in Fig. 1b. In comparison to the transformer backbone
used in the prior study Uni-Mol”, two significant updates have been
implemented. i) The pair representation is enhanced by an outer
product of the atom representation (referred to OuterpProduct) for
atom-to-pair communication, and a triangular operator (referred to
TriangularUpdate) to bolster the 3D geometric information. These
two operators are proven effective in AlphaFold2'. ii) An iterative
process is employed to continuously update the 3D coordinates
towards the equilibrium conformation. We use R to denote the number
of rounds for conformation optimization.

For the learning of the conformation update process, we intro-
duce a novel training strategy as shown in Fig. 1c. We sample con-
formations from the trajectory between the RDKit-generated raw
conformation and the DFT equilibrium conformation, and use the
sampled conformation as input to predict the equilibrium conforma-
tion. It is crucial to note that the actual trajectory is often unknown in
many datasets; therefore, we utilize a pseudo trajectory that presumes
alinear process between two conformations. Furthermore, we devise a
sampling strategy for obtaining conformations from the pseudo tra-
jectory to serve as the model’s input during training. This strategy uses
a mixture of Bernoulli distribution and Uniform distribution. The
Bernoulli distribution addresses (1) the distributional shift between
training and inference and (2) enhances the learning of an accurate
mapping from the equilibrium conformation to the QC properties.
Meanwhile, the Uniform distribution generates additional inter-
mediate states to serve as model inputs, effectively augmenting the
input conformations. The details of uni-Mo1+ can be found in Sec. 4.

Benchmark on small molecule (PCQM4MV2)

The PCQM4Mv2 dataset, derived from the OGB Large-Scale
Challenge®, is designed to facilitate the development and evaluation
of machine learning models for predicting QC properties of molecules,
specifically the target property known as the HOMO-LUMO gap. This
property represents the difference between the energies of the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). The dataset, consisting of approximately 4
million molecules represented by SMILES notations, offers HOMO-
LUMO gap labels for the training and validation sets; however, the
labels for the test set remain undisclosed. Furthermore, the training set
encompasses the DFT equilibrium conformation, which is not included
in the validation and test sets. The benchmark’s goal is to utilize
SMILES notation, without the DFT equilibrium conformation, to pre-
dict the HOMO-LUMO gap during the inference process.

Based on SMILES, we generate 8 initial conformations for each
molecule by RDKit, at a per-molecule cost of about 0.01 seconds.
Specifically, we use ETKDG ** method to generate 3D conformations.
Subsequent optimization of these conformations is achieved through
the MMFF94% force field. In molecules where the generation of a 3D
conformation is unsuccessful, we default to producing a 2D con-
formation with a flat z-axis using RDKit's A11Chem. Compute2DCoords
function instead. During training, we randomly sample 1 conformation
as input at each epoch, while during inference, we use the average
HOMO-LUMO gap prediction based on 8 conformations.

Table 1| The benchmark results on PCQM4MV2

Model # param. #layers Valid MAE (V) Leaderboard
MAE' (V)
MLP-Fingerprint® 16.1M - 0.1735 0.1760
GCN* 2.0M - 0.1379 0.1398
GIN* 3.8M - 0.1195 0.1218
GINE-y 9% 13.2M s 0.1167 s
GCN-y > 4.9M - 0.1153 0.1152
GIN-y % 6.7M - 0.1083 0.1084
DeeperGCN-y y**¢  25.5M 12 0.1021 .
GraphGPSsyai®’ 6.2M 5 0.0938 -
TokenGT" 48.5M 12 0.0910 0.0919
GRPEgase” 46.2M 12 0.0890 .
EGT® 89.3M 24 0.0869 0.0872
GRPE arce"” 46.2M 18 0.0867 0.0876
Graphormer*® 471M 12 0.0864 -
GraphGPSgase” 19.4M 10 0.0858 -
GraphGPSpggp™ 13.8M 16 0.0852 0.0862
GEM-2%¢ 321M 12 0.0793 0.0806
GPS++* 44.3M 16 0.0778 0.0720°
Transformer-M? 471M 12 0.0787 -
69M 18 0.0772 0.0782
Uni-Mol+ 27.7M 6 0.0714 -
+6e-5
52.4M 12 0.0696 0.0708
+ be-5
7™M 18 0.0693 0.0705
+ 3e-5

" The leaderboard was accessed on October 15, 2023, the date of this paper’s submission.

2 GPS++'s leaderboard submission consists of a 112-model ensemble and utilizes the validation
data for training.

We highlight the best results in bold. Source data are provided as a Source Data file.

We incorporate previous submissions to the PCQM4MV?2 leader-
board as baselines. In addition to the default 12-layer model, we eval-
uate the performance of Uni-Mol+ with two variants consisting of 6
and 18 layers, respectively. This aims to explore how model perfor-
mance changes when varying the model parameter sizes.

The results are summarized in Table 1, and our observations are as
follows: (1) Uni-Mol+ surpasses the previous SOTA by a margin of
0.0079 on validation data on single-model performance, a relative
improvement of 11.4%. (2) All three variants of uni-Mo1+ demonstrate
substantial performance improvements over previous baselines. (3)
The 6-layer uni-Mol+, despite having considerably fewer model
parameters, outperforms all prior baselines. (4) Increasing the layers
from 6 to 12 results in a significant accuracy enhancement, surpassing
all baselines by a considerable margin. (5) The 18-layer Uni-Mol+
exhibits the highest performance, outperforming all baselines by a
remarkable margin. These findings underscore the effectiveness of
Uni-Mol+. (6) The performance of a single 18-layer uni-Mo1+ model
on the leaderboard (test-dev set) is noteworthy, particularly as it sur-
passes previous state-of-the-art methods without employing an
ensemble or additional techniques. In contrast, the previous state-of-
the-art GPS++ relied on a 112-model ensemble and included the vali-
dation set for training.

Benchmark on catalyst system (0C20)

The Open Catalyst 2020 (0C20) dataset' is specifically designed to
promote the development of machine-learning models for catalyst
discovery and optimization. OC20 encompasses three tasks: Structure
to Energy and Force (S2EF), Initial Structure to Relaxed Structure
(IS2RS), and Initial Structure to Relaxed Energy (IS2RE). In this paper,
we focus on the IS2RE task, as it aligns well with the objectives of the
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Table 2 | The benchmark results on OC20 IS2RE task

Results on validation set

Energy MAE (eV) ¥ EwWT (%) 1
Model ID OOD Ads. OOD Cat. OOD Both AVG. 1D 0OD Ads. OOD Cat. OOD Both AVG.
SchNet?® 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 222 3.03 2.38 2.65
DimeNet++*© 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.40 2.56 3.42
GemNet-T 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 224 4.37 2.38 3.38
SphereNet* 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
Graphormer-3D° 0.4329 0.5850 0.444 0.5299 0.4980 - -
GNS* 0.54 0.65 0.55 0.59 0.5825 - -
GNS+NN* 0.47 0.51 0.48 0.46 0.4800 - -
EquiFormer* 0.4222 0.5420 0.4231 0.4754 0.4657 7.23 3.77 713 410 5.56
EquiFormer+NN* 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04
DRFormer® 0.4187 0.4863 0.4321 0.4332 0.4425 8.39 5.42 8.12 5.44 6.84
Uni-Mol+ 0.3787 0.4519 0.4009 0.4048 0.4119 11.02 6.61 10.00 6.38 8.60
+0.0007 +0.0049 + 0.0001 +0.0037 + 0.0036
Results on test set
SchNet” 0.639 0.734 0.662 0.704 0.6848 2.96 2.33 2.94 221 2.61
DimeNet++*° 0.562 0.725 0.576 0.661 0.631 4.25 2.07 4.1 2.4 3.21
SphereNet* 0.563 0.703 0.571 0.638 0.6188 4.47 2.29 4.09 2.4 3.32
Graphormer-3D° 0.3976 0.5719 0.4166 0.5029 0.4722 8.97 3.45 8.18 3.79 6.1
GNS+NN* 0.4219 0.5678 0.4366 0.4651 0.4728 9.12 4.25 8.01 4.64 6.5
EquiFormer® 0.5037 0.6881 0.5213 0.6301 0.5858 5.14 2.41 4.67 2.69 3.73
EquiFormer+NN* 0.4171 0.5479 0.4248 0.4741 0.4660 7.7 3.70 7.15 4.07 5.66
DRFormer® 0.3865 0.5435 0.4060 0.4677 0.4509 9.18 4.01 8.39 4.33 6.48
Uni-Mol+ 0.3745 0.4760 0.3980 0.4086 0.4143 1.29 6.05 9.53 6.06 8.23

NN refers to Noisy Nodes™. We highlight the best results in bold. Source data are provided as a Source Data file.

proposed methodology. The goal of the IS2RE task is to predict the
relaxed energy based on the initial conformation. It comprises
approximately 460K training data points. While DFT equilibrium
conformations are provided for training, they are not permitted for
use during inference. Moreover, in contrast to the PCQM4MV2 dataset,
the initial conformation is already supplied in the OC20 IS2RE task,
eliminating the need to generate the initial input conformation by
ourselves.

We present a performance comparison of various models on the
0OC20 IS2RE validation and test set, as illustrated in Table 2. The table
displays the Mean Absolute Error (MAE) for energy in electron volts
(eV) and the percentage of Energies Within a Threshold (EwT) for each
model. As evident from the tables, our proposed Uni-Mol+ sig-
nificantly outperforms all previous baselines in terms of both MAE and
EwT. For example, in the test set, Uni-Mol+ exceeds the previous
SOTA in Average MAE and Average EwT by margins of 0.0366 (8.8%
relative improvement) and 173 (26.6% relative improvement),
respectively. This demonstrates the exceptional performance of Uni -
Mol+. Notably, our method attains the lowest MAEs across all cate-
gories, including In-Domain (ID), Out-of-Domain Adsorption (OOD
Ads.), Out-of-Domain Catalysis (OOD Cat.), Out-of-Domain Both (OOD
Both), and Average (AVG.). Furthermore, in terms of EWT, Uni-Mol+
consistently achieves the highest values in all categories. These find-
ings underscore the robustness of our method in handling both in-
domain and out-of-domain data. In conclusion, the results emphasize
the efficacy of our approach in capturing intricate interactions in
material systems and its potential for extensive applicability in various
computational material science tasks.

Ablation study
In this subsection, we present a comprehensive ablation study for
Uni-Mol+. To fully comprehend the configurations discussed herein,

we recommend referring to the “Methods” section and the model
specifications detailed in Supplementary Section 2. We conduct the
ablation study on the PCQM4Mv2 dataset, employing the default 12-
layer Uni-Mol+ configuration. The findings are summarized in
Table 3, where No. 1 is the default setting, and No.2-7 focus on the
examination of the model backbone, and No. 8 to No. 17 focus on the
examination of the training strategies. A detailed analysis follows in the
subsequent paragraphs.

As detailed in Sec. 4 and Supplementary Section 1, Uni-Mol+
introduces two novel components, OuterProduct and Triangu-
larUpdate, and iteratively updates the 3D coordinates. An examina-
tion of the results (No. 1-7) in Table 3 provides insights into the
implications of these modifications.

(1) We first examine the necessity of the new components in
the model backbone. Upon examining the first three settings (No. 1to
3), it becomes evident that both TriangularUpdate and Out-
erProduct significantly contribute to the model’s performance. A
comparison between No. 3 and No. 4 reveals that utilizing pair repre-
sentation exclusively, without incorporating outerProduct or Tri-
angularUpdate, does not enhance performance. This result is
expected because the pair representation is not communicated
with the atom representation (without OuterProduct) and is
simply updated by FFN, resulting in a performance that is almost the
same as not using pair representation, as there are merely more
parameters. However, the proposed OuterProduct and Triangu-
larUpdate can better utilize the pair representation, leading to
an overall performance improvement (No.l and No.2). This makes
the pair representation an essential component in the backbone of
our approach, even if its standalone effectiveness might appear
limited.

(2) We then examine the performance brought by iterative coor-
dinate updates. A comparison of No. 1 with No. 5 and No. 6 leads to the

Nature Communications | (2024)15:7104
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Table 3 | Ablation study for model backbone and for sampling strategies for g, on PCQM4MV2

No. TriangularUpdate OuterProduct Pair Repr. R Wio Wo.o Wy Valid MAE (V)
1 v v 4 1 0.1 0.8 0.1 0.0696
Ablation study on model backbone

2 X v v 1 0.1 0.8 0.1 0.0704
3 X X 4 1 0.1 0.8 0.1 0.0710
4 X X X 1 0.1 0.8 0.1 0.0709
5 v v v 0 0.1 0.8 0.1 0.0715
6 4 v 4 2 0.1 0.8 0.1 0.0695
7 X X X 0 0.1 0.8 0.1 0.0738
Ablation study on training strategy

8 v v 4 1 1.0 - - 0.0771
9 v v v 1 1.0 - 0.1122
10 v v v 1 1.0 0.0724
M 4 v v 1 0.1 0.9 - 0.0697
12 v v v 1 0.9 0.1 0.0753
13 v 4 4 1 0.1 0.7 0.2 0.0698
14 4 v 4 1 0.2 0.7 0.1 0.0703
15 v v v 1 0.1 0.6 0.3 0.0702
16 v v v 1 0.2 0.6 0.2 0.0706
17 v v v 1 0.3 0.6 0.1 0.0714
18 v v v 1 Noisy Nodes 0.0760
19 X X X 1 Noisy Nodes 0.0798

R refers to the number of rounds of conformation updates. w; o refers to the sample probability of RDKit conformation, wg ¢ refers to the sample probability of target conformation with noise and w,,
refers to the sa probability of intermediate conformation. We highlight the best results in bold. We use underlines to indicate the results under the standard settings. Source data are provided as a

Source Data file.

conclusion that omitting the iterative update (No. 5) yields suboptimal
results. Note that even without the iterative refinement of 3D con-
formation (R=0), Uni-Mol+ s score of 0.0715 (No. 5) significantly
surpasses the previous SOTA GPS++ (0.0778). However, performing
one additional iteration proves highly effective (No. 1), whereas further
increasing the number of iterations offers marginal improvements
(No. 6).

(3) Lastly, we check the result using the same model backbone as
previous work. In particular, when the model retains the same struc-
ture as the one employed in previous works**"” and excludes the
iterative update (No. 7), its performance is the least favorable. None-
theless, even with this substandard performance, the model surpasses
all prior baselines, thereby highlighting the efficacy of the proposed
training strategy. It is important to note that No.7 employs the pro-
posed training strategy as outlined in Sec. 4.2. Although No.7 does not
explicitly use conformation optimization (R=0), the model is still
trained to predict the target conformation. Consequently, the Atom
Repr. and Pair Repr. of the last layer inherently contain the information
required to predict the target conformation. Hence, even without
explicitly conformation optimization (R=0), the result of No.7 still
supports our primary contribution, namely the accurate prediction of
QC properties by leveraging an auxiliary task of conformation
optimization.

The training strategy primarily concentrates on sampling g
(interpolation weight, details in Sec. 4) to obtain input conformations
during training. Formally, g is sampled from a mixture of Bernoulli and
Uniform distributions, denoted as w; ol 0,(q)+wq0l00)(9) +w,
li0,5(q), where 1,,(q) is an indicator function that equals 1if g=cand O
otherwise, and I, ;1(q) is an indicator function that equals 1ifa<g<b
and O otherwise. The weights w; o, W o, and w, must be non-negative
and add up to 1, i.e., w1 o + wo o + w,=1. In this notation, the default
sampling strategy employed in Uni-Mol+ can be represented as
(w1.0=0.1, wo0=0.8, w,=0.1, [a, b] =[0.4, 0.6]). We investigate addi-
tional settings for the ablation study, and the results are summarized in

Table 3 (No. 8 to No. 17). Except for No. 10 and 12, which use [a, b] =
[0.0, 1.0], all other settings use [a, b] = [0.4, 0.6]. From these results,
we make the following observations:

(1) Comparing No. 8, 9, and 10, we find that sampling from only
one type of conformation is not effective. For No. 8, it lacks data
augmentation and cannot learn an accurate mapping from equilibrium
conformation to QC property. For No. 9, it experiences a distributional
shift between training and inference. Although No. 10 is better, it has a
low probability of sampling 0.0 and 1.0, resulting in suboptimal
performance.

(2) By comparing No. 8, 9, and 11, we can deduce that sampling
from the mixture of RDKit and target conformations yields a satisfac-
tory result (Valid MAE with 0.0697). However, if only sampling from
target and intermediate conformations (No. 12), the result is unsa-
tisfactory (Valid MAE with 0.0753). This result indicates that sampling
from w, o is necessary, as it reduces the distributional shift between
training and inference.

(3) The default strategy that samples from three types of con-
formations (No. 1) exhibits the best performance.

(4) Altering the weights of the mixture distribution (No. 13-17)
does not result in better performance over the default strategy. Fur-
thermore, we notice that with a decreased wg o, the performance
worsens. This suggests that the default weighting scheme is appro-
priate for this task.

(5) Upon comparing the results of No.18 and No.], it’s clear that
the performance of Noisy Nodes (No.18, Valid MAE with 0.0760) is
significantly lower than that of Uni-Mol+ (No.l, Valid MAE with
0.0696). This large performance gap (0.0760 vs. 0.0696) highlights
the superior efficacy of the proposed training strategy, as opposed to
the one employed previously.

(6) A comparison between No0.19 and No.18 shows that the
model structure employed in previous works*>" yields worse
results than using Uni-Mol+ ’s backbone when using Noisy Nodes
strategy. This finding lends additional support to the superiority of
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Fig. 2 | Visualization of uni-Mol+ ’s predicted conformations. Comparison of
RDKit-generated conformation and predicted conformations from first (R = 0) and
second (R =1) iterations, superimposed onto the target DFT conformation. Corre-
sponding RMSDs are provided, demonstrating Uni-Mol+ 's effectiveness in
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predicting accurate DFT equilibrium conformations. The abbreviations RMSD
represents Root Mean Square Deviation. The conformations are provided in the
Supplementary Data 1.

Uni-Mol+ ’s backbone over the model architectures previously
proposed.

In conclusion, the ablation study demonstrates the effectiveness
of the default sampling strategy employed in Uni-Mo1+, emphasizing
the importance of utilizing a mixture of different conformations to
achieve superior performance.

Visualized analysis of conformation learning

In addition to QC property prediction, Uni-Mol+ can also predict
equilibrium conformations. Although this study primarily focuses on
QC property prediction and the previous experimental results have
clearly demonstrated the effectiveness of the proposed Uni-Mol+,
visualized results can help to better understand how Uni-Mo1+ works.
Therefore, we also provide two additional analyzes for the conforma-
tion learning of Uni-Mo1+ in the PCQM4MV2 dataset.

The First analysis evaluates the predicted conformations. Since
the DFT conformations of the validation set (and test set) are not
provided by the PCQM4MV2 dataset, we generated DFT conforma-
tions ourselves, using the same settings as the PCQM4MV2 source
data”. As shown in Fig. 2, Uni-Mol+ can effectively predict equili-
brium conformations. Moreover, as the number of update iterations
increases, the RMSD is smaller, further demonstrating the effective-
ness of the proposed iterative coordinate update. We provide the
conformation files used in Fig. 2 in Supplementary Data 1.

The second analysis aims to show that Uni-Mol+ can predict
conformations with lower energies, which approaches equilibrium
conformations. To demonstrate this, we selected 100 data points and
calculated the energies of their initial and predicted conformations
and that between their initial conformations and the DFT conforma-
tions. Here the DFT conformations is Computed by ourself using the
B3LYP functional and 6-31G* basis set, consistent with the settings used
in the PCQM4MV?2 dataset. As shown in Fig. 3, Uni-Mo1l+ can predict

the conformations with lower energies. Moreover, the energy differ-
ence distribution between the initial and predicted conformations
closely aligns with that between the initial and equilibrium con-
formations. This similarity demonstrates Uni-Mo1+ s effectiveness in
predicting equilibrium conformations accurately. We provide the
conformation files used in Fig. 3 in Supplementary Data 1.

The aforementioned results provide additional evidence of the
effectiveness of the proposed Uni-Mol+, as it can indeed predict
conformations with lower energy and iteratively approach the target
DFT conformations.

Discussion

Previous studies have primarily relied on 1D/2D information, such as
SMILES or molecular graphs, for making predictions®’. Recently,
numerous investigations*’ > have employed Transformer models for
graph tasks, resulting in significant advancements. Given the impor-
tance of 3D information in predicting quantum chemistry (QC) prop-
erties, several recent studies have incorporated 3D data into their
approaches.

Some research has utilized 3D structural information and max-
imised mutual information between 2D and 3D molecular to augment
2D representations during training>**2*, However, these studies only
implicitly embed 3D information into 2D representations, with 2D data
utilized exclusively during inference. We represent these models as
Xop = (X3p, ), where x,p represents the 2D molecular graph input, x3p
represents the 3D conformation input and y denotes a QC property. A
crucial shortcoming of these approaches is that they don’t explicitly
learn a mapping from the 3D equilibrium conformation x;p, to y while y
is highly correlated with x3p. Some models, like Transformer-M?,
attempt to learn both x,p > y and x3p > y. However, during inference,
these models rely solely on x,p, which compromises the prediction
performance. Uni-Mol+, on the other hand, employs a strategy
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Fig. 3 | Distribution of delta energy. We selected 100 data points and used DFT to
calculate the following values: (a) the delta energies between their initial and Uni-
Mol+'s predicted conformations; b the delta energies between their initial con-
formations and the DFT conformations, where the DFT conformations are
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calculated by ourselves using DFT tool. Cross-marks indicate data points with
increased energies, while circle-marks denote those with decreased energies. This
visualization demonstrates that uni-Mo1+ effectively predicts conformations with
lower energies. The conformations are provided in the Supplementary Data 1.

Xy —> ... — X3p — Y. This process starts with a raw 3D conformation
x5, iteratively refines it towards x3p, and then predicts y. By explicitly
learning a mapping from 3D conformation to QC properties, Uni-Mo1l
-+ proves to be more effective than previous models.

A few recent works have focused on property prediction using 3D
conformations as input. For example, Uni-Mol” employs the 3D con-
formation generated by RDKit as input. Uni-Mol is a pre-training
method centred on designing pre-text tasks for molecular data, while
Uni-Mol+ is a supervised learning approach aimed at predicting QC
properties from raw conformations, aided by equilibrium conforma-
tion during training. Graphormer-3D° utilizes the initial 3D conforma-
tion provided by the OC20 dataset™ to predict energy at equilibrium.
However, it focuses on directly learning the mapping from input to
target conformations without considering a training strategy specifi-
cally tailored for conformation optimization, as done in our work. The
Noisy Nodes approach® takes corrupted DFT conformations as inputs
and aims to predict the uncorrupted ones. When an initial 3D con-
formation is provided, as in the OC20 dataset, Noisy Nodes generates
an interpolated conformation between the initial and target con-
formations during training, which is similar to the uniform sampling of
g inour study. In comparison to Noisy Nodes, our training strategy also
incorporates a Bernoulli distribution, which has proven advantageous
in addressing distributional shifts and improving QC property pre-
dictions. Moreover, both Graphformer-3D and Noisy Nodes necessi-
tate the use of initial conformations provided by the dataset. In
contrast, our study is not constrained by this requirement, as it can
employ RDKit to generate initial conformations. Several studies®®>
concentrate on designing new model backbones with rotation and
translation equivalence or invariance in 3D space. In contrast, our work
emphasizes a novel paradigm for QC property prediction, rather than
developing a new model backbone.

Conformation optimization is a critical challenge in computa-
tional chemistry. Density Functional Theory (DFT) is the most pre-
valent method for this task, offering high accuracy but at considerable
computational expense. Several deep learning-based potential energy
models, such as Deep Potential*®, have been proposed to tackle this
issue by using neural networks to replace costly potential calculations
in DFT, thereby enhancing efficiency. However, deep potential models
still necessitate dozens or even hundreds of iterative steps to optimize
the conformation based on predicted potentials. In contrast, our
approach, Uni-Mol+, requires only a few optimization rounds and can
optimize conformations end-to-end, whereas deep potential models
cannot.

Although other studies”" also optimize RDKit-generated con-
formations towards DFT conformations, they primarily focus on
benchmarking conformation rather than predicting QC property.
These works simply employ existing model backbones and learn the

mapping between raw and equilibrium conformations. In contrast,
Uni-Mol+ adopts a novel training strategy to effectively learn con-
formation optimization. However, it is important to note that con-
formation optimization serves merely as an auxiliary task; the primary
objective of Uni-Mo1l+ is to predict QC properties.

The research most closely related to ours is EMPNN*, which uti-
lizes a 2D molecular graph as input for predicting the 3D equilibrium
conformation. However, EMPNN learns to map a 2D graph to a 3D
equilibrium conformation, which differs from our model that opti-
mizes from an RDKit-generated conformation. Moreover, EMPNN
requires an additional model, such as SchNet?, to predict quantum
chemistry (QC) properties using the 3D conformation generated by
EMPNN as input.

In summary, our study presents a novel method capable of
accurately predicting QC properties through an auxiliary task of con-
formation optimization. This approach has the potential to enhance
the efficiency of high-throughput screening and facilitate the design of
innovative materials and molecules in future research.

Method

Model backbone

The designed model backbone can predict the equilibrium con-
formation and QC property simultaneously, denoted as
O, F)=f(X,E,r;0). The model takes three inputs, (i) atom features
(X € R™%, where n is the number of atoms and dj is atom feature
dimension), (ii) edge features (E € R"*"*% where d, is the edge fea-
ture dimension), and (iii) 3D coordinates of atoms (r ¢ R"*3). @ is the
set of learnable parameters. And the model predicts a quantum
property y and updated 3D coordinates # € R"*3,

As illustrated in Fig. 1b, the L-block model maintains two distinct
representation tracks: atom representation and pair representation.
The atom representation is denoted as x ¢ R"*%, where d, represents
the dimension of the atom representation. Similarly, the pair repre-
sentation is denoted as p € R"™*"*%, where d,, signifies the dimension
of the pair representation. The model comprises L blocks, with x and
p? representing the output representations of the [-th block. Within
each block, the atom representation is initially updated through self-
attention, incorporating an attention bias derived from the pair
representation, followed by an update via a feed-forward network
(FFN). Concurrently, the pair representation undergoes a series of
updates, beginning with an outer product of the atom representation
(referred to OuterProduct), followed by triangular multiplication
(referred to TriangularUpdate) as implemented in AlphaFold2'®,
and finally, an update using a FFN. This backbone, in comparison to the
one used in Uni-Mol", enhances the pair representation through two
key improvements: (i) employing an outer product for effective atom-
to-pair communication, and (ii) utilizing a triangular operator to
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bolster the 3D geometric information. Next we will introduce each
module in detail.

Positional encoding. Similar to previous works*", we use pair-wise
encoding to encode the 3D spatial and 2D graph positional informa-
tion. Specifically, for 3D spatial information, we utilize the Gaussian
kernel for encoding, as done in previous studies®”. The encoded 3D
spatial positional encoding is denoted by ¢°.

In addition to the 3D positional encodings, we also incorporate
graph positional encodings similar to those used in Graphormer. This
includes  the shortest-path  encoding, represented by

,-J'-) =Embedding (sp;) where sp; is the shortest path between atoms
(i, j) in the molecular graph. Additionally, instead of the time-
consuming multi-hop edge encoding method used in Graphormer,
we utilize a more efficient one-hop bond encoding, denoted by
o = Z?gl Embedding (E;), where E; is the i-th edge feature. Com-
bined above, the positional encoding is denoted as
¢ =9 + ¢* + ¢, And the pair representation p is initialized by ¢,
ie, p@=q¢.

Update of atom representation. The atom representation x© is

initialized by the embeddings of atom features, the same as Gra-
phormer. At I-th block, X is sequentially updated as follow:

x“’ = x(lfl) +SelfAttentionPairBias (x(lfl),p(l’U),

1)
x0=x0+FeN (x”)).
The selfAttentionPairBias function is denoted as:
Q(Lh) = x(-D Wg'h); KW = (=D w%'h);
BN = p(l—l) Wg’h); yh = x(-D W(lf'h); @

(Lh) (LT
QUM hy + B(l,h)) .

output = softmax
vy

where d, is the head dimension, W§" W™ W™ e %%,
WP ¢ R%*1, rrN is a feed-forward network with one hidden layer.
For simplicity, layer normalizations are omitted. Compared to the
standard Transformer layer, the only difference here is the usage of
attention bias term B% ? to incorporate p‘’ from the pair
representation track.

Update of pair representation. The pair representation p© is initi-
alized by the positional encoding ¢. The update process of pair
representation begins with an outer product of x, followed by a O(n?)
triangular multiplication, and is then concluded with an FFN layer.
Formally, at Ith block, p® is sequentially updated as follow:

p(’) = p(lfl) +OuterProduct (x(“);
p(’) = p(’) +TriangularUpdate (p(l)); 3)
p(l) = p([) + FFN (p([))

The outerProduct is used for atom-to-pair communication, denoted
as:

—+OwO p=OWwo .
a=x"Wg ,b=x"Wg);
0,-J- = flatten(ai ® bj)7 (4)

output =oW),

where W) W), e R%*%, d, is the hidden dimension of out-
erproduct, and WY, € R%*%, 0=[o; ;1. Please note that a, b, 0 are
temporary  variables in  the OuterProduct  function.

TriangularUpdate is used to enhance pair representation further,
denoted as:

a= sigmoid(p(l) W(TID © (P(l) W(Tlﬁ)
b= sigmoid(p([) W(Tl;) [0} (p(’) Wfrl‘)‘);
0,=) a;,0b,+> a,;0b;

k k

output = sigmoid(p(l) W(Tl;) © <0W¥é),

©)

where WO.WEwWE W), e R4, Wl e RG> D, W) e R,
0=[o, ], and d, is the hidden dimension of TriangularUpdate.a, b, 0
are temporary variables. The TriangularUpdate is inspired by the
Evoformer in AlphaFold2™®. The difference is that AlphaFold2 uses two
modules, “outgoing” (0; ;=Y« a;x ® b;,) and “incoming” (0;;= Y@
© by) respectively. In Uni-Mol+, we merge the two modules into one
to save the computational cost.

Conformation optimization. The conformation optimization process
in many practical applications, such as Molecular Dynamics, is itera-
tive. This approach is also employed in the Uni-Mol+. The number
of conformation update iterations denoted as R, is a hyperparameter.
We use superscripts on r to distinguish the 3D positions of atoms
in different iterations. for example, at the i-th iteration, the update
can be denoted as (y, ¥?) =fiX, E, ¥"Y; 6). It is noteworthy that para-
meters @ are shared across all iterations. Moreover, please note
that the iterative update in uni-Mo1+ involves only a few rounds, such
as 1 or 2, instead of dozens or hundreds of steps in Molecular
Dynamics.

3D position prediction head. Regarding the 3D position prediction
head within Uni-Mol+, we have adopted the 3D prediction
head proposed in Graphormer-3D°, as cited in our manuscript. The
architecture takes atom representation x*, pair representation p*, and
initial coordinates ¢ as inputs. An attention mechanism is initially
employed and then the attention weights is multiplied point-wisely
with the pairwise delta coordinates derived from the initial coordi-
nates. Similar to Sel fAttentionPairBias, the attention mechanism
is denoted as:

Q"= x'wp K" =xwy;
h_ h. yh _ h
B —pLWB; Vi=xtwh,
N
hog!
Agj: softmax 01(71)
Vdy
h,0) _ 4h

€,j= € — ¢ A} =A; © Ac);

(1) _ gh 1. A(h2) _ 4h 2 .
A7 = A 0 Acy; A=A © Ac

+Bf; |; 6)

where dj, is the head dimension, W/, W W" ¢ R%*% wh ¢ R%*1,
A"is the attention weights, Ac; is the delta coordinate between ¢; and ¢;
where the superscript 0, 1 and 2 represent the X axis, Y axis and Z axis
respectively. Then the position prediction head predicts coordinate
updates using three linear projections of the attention head values
onto the three axes, which is denoted as:

o= Concath(/l(h'o) Vh); 0° =Linear;(0°);
o'= Concath(/l(h'h Vvh: o' = Linear,(0Y); o

0= Concath(/l(h‘z) Vh); 0’= Linear3(02);
Ac' = concat([0°,0',0%); ¢ =c+Ac;

where Ac’ is the predicted coordinate updates and ¢’ is the predicted
coordinates.
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As described in the above formula, the coordinate prediction
head used in our study does not inherently enforce strict equivariance.
This challenge can be addressed through one of two strategies: (1)
Strict equivariance of the model can be achieved by sharing the
parameters across the three linear layers in Eq. (7)-denoted as
linear;, linear,, and 1inears-and concurrently eliminating the bias
terms within these layers; (2) the model’s robustness to spatial trans-
formations can be enhanced by incorporating random rotations into
the input coordinates as a form of data augmentation. During our
experimental phase, both techniques were rigorously tested. The latter
approach-data augmentation via random rotations yielded better
accuracy in quantum chemistry property predictions and was thus
selected for our model architecture. In this case, empirical evidence
suggests that with a sufficiently large training dataset, such as the
PCQM4MV?2 dataset, the model naturally tends towards an equivariant
state. Specifically, our observations indicate that the parameters of the
three linear layers tend to converge to the same, and the bias terms
asymptotically approach zero, with the discrepancies being marginal
(on the order of 1e - 4).

Training strategy

In DFT conformation optimization or Molecular Dynamics simulations,
a conformation is optimized step-by-step, resulting in a trajectory
from a raw conformation to the equilibrium conformation in Euclidean
space. However, saving such a trajectory can be expensive, and pub-
licly available datasets usually provide the equilibrium conformations
only. Providing a trajectory would be beneficial as intermediate
states can be used as data augmentation to guide the model’s
training. Inspired by this, we propose a novel training approach,
which generates a pseudo trajectory first, samples a conformation
from it, and uses the sampled conformation as input to predict
the equilibrium conformation. This approach allows us to better
exploit the information in the molecular data, which we found
can greatly improve the model's performance. Specifically, we
assume that the trajectory from a raw conformation r™™ to a target
equilibrium conformation r'' is a linear process. We generate
an intermediate conformation along this trajectory via noisy
interpolation, i.e.,

rO=gr"t+(1-q)(r¢+c), ®

where scalar g ranges from 0O to 1, the Gaussian noise ¢ ¢ R"*3 has a
mean of 0 and standard deviation v (a hyper-parameter). Taking F© as
input, Uni-Mol+ learns to update towards the target equilibrium con-
formation r*. During inference, ¢ is set to 1.0 by default. However,
during training, simply sampling g from a uniform distribution ([0.0, 1.0])
may cause (1) a distributional shift between training and inference, due to
the infrequent sampling of ¢=1.0 (RDKit-generated conformation), and
(2) an inability to learn an accurate mapping from the equilibrium con-
formation to the QC properties, as g= 0.0 (target conformation) is also
not sampled often. Therefore, we employ a mixture of Bernoulli and
Uniform distributions to flexibly assign higher sample probabilities to
g=1.0 and g=0.0, while also sampling from interpolations. The above
process is illustrated in Fig. 1c in Supplementary.

The model takes ¥ as input and generates £® after R iterations.
Then, the model uses #® as input and predicts the QC properties. L1
loss is applied to the QC property regression and the 3D coordinate
prediction. All loss calculations are performed solely on the final
conformer at the last iteration.

Model configuration

Similar to both Graphormer* and Transformer-M?, Uni-Mol+ com-
prises 12 layers with an atom representation dimension of d, = 768 and
a pair representation dimension of d, =256. The hidden dimension of
FFN in the atom representation track is set to 768, while that of the pair

representation track is set to 256. Additionally, the hidden dimension
in the outerProduct is d,=32, and the hidden dimension in the
TriangularUpdate is d; = 32 as well. The number of conformation
optimization iterations R is set to 1, indicating that the model iterates
twice in total (once for conformation optimization and once for
quantum chemistry property prediction). For the training strategy, we
specified a standard deviation of v = 0.2 for random noise and
employed a particular sampling method for g. Specifically, g was set to
0.0 with probability 0.8, set to 1.0 with probability 0.1, and uniformly
sampled from [0.4, 0.6] with probability 0.1. With this setting, the
number of parameters of Uni-Mo1+ is about 52.4M.

Setting for PCQM4MV2

We used the AdamW optimizer with a learning rate of 2e -4, a batch
size of 1024, (B, B,) set to (0.9, 0.999), and gradient clipping set to
5.0 during training, which lasted for 1.5 million steps, with 150K
warmup steps. Additionally, an exponential moving average (EMA)
with a decay rate of 0.999 was utilized. The training took approxi-
mately 5 days, utilizing 8 NVIDIA A100 GPUs. The inference on the 147k
test-dev set took approximately 7 minutes, utilizing 8 NVIDIA
V100 GPUs.

Setting for 0C20

We use the default 12-layer uni-Mol+ setting for OC20 experiments.
The model configuration deviates slightly from the settings employed
in PCQM4MV2. Firstly, since OC20 lacks graph information, graph-
related features are excluded from the model. Secondly, due to
the greater number of atoms present in OC20 compared to
PCQM4MV2, the model capacity is marginally reduced for efficiency
reasons. In particular, the pair representation dimension d,, is set
to 128, while the hidden dimensions in the OuterProduct and
TriangularUpdate are set to d,=16 and d, =16, respectively. Third,
the periodic boundary condition needs to be considered; we adopt
the solution proposed in’, which pre-expands the neighbor cells and
then applies a radius cutoff to reduce the number of atoms. The
AdamW optimizer was employed during the training process, which
lasted for 1.5 million steps, including 150K warmup steps. The opti-
mizer was configured with a learning rate of 2e - 4, a batch size of 64,
(B1, o) values of (0.9, 0.999), and a gradient clipping parameter of 5.0.
The training process spanned approximately 7 days and made use of 16
NVIDIA A100 GPUs.

Data availability

The datasets used in this study are all publicly available. PCQM4MV2
dataset which is to predict HOMO-LUMO GAP on small molecules is
available at https://ogb.stanford.edu/docs/Isc/pcqm4mv2/#dataset
and the OC20 dataset which is to conduct energy prediction on cata-
lyst system is available at https://github.com/Open-Catalyst-Project/
ocp/blob/main/DATASET.md. Source data are provided with
this paper.

Code availability

The source code of this study is publicly available on GitHub(https://
github.com/deepmodeling/Uni-Mol/) and zenodo (https://doi.org/10.
5281/zenodo.12670462) to allow replication of the results.
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