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Spin-Peierls instability of the U(1) Dirac
spin liquid

Urban F. P. Seifert1,5,6 , Josef Willsher 2,3,6 , Markus Drescher 2,3,
Frank Pollmann2,3 & Johannes Knolle 2,3,4

Quantum fluctuations can inhibit long-range ordering in frustrated magnets
and potentially lead to quantum spin liquid (QSL) phases. A prime example are
gapless QSLs with emergent U(1) gauge fields, which have been understood to
be described in terms of quantum electrodynamics in 2+1 dimension (QED3).
Despite several promising candidatematerials, however, a complicating factor
for their realisation is the presence of other degrees of freedom. In particular
lattice distortions can act to relieve magnetic frustration, precipitating con-
ventionally ordered states. In this work, we use field-theoretic arguments as
well as extensive numerical simulations to show that the U(1) Dirac QSL on the
triangular and kagome lattices exhibits a weak-coupling instability due to the
coupling of monopoles of the emergent gauge field to lattice distortions,
leading to valence-bond solid ordering. This generalises the spin-Peierls
instability of one-dimensional quantum critical spin chains to two-dimensional
algebraic QSLs. We study static distortions as well as quantum-mechanical
phonons. Even in regimes where the QSL is stable, the singular spin-lattice
coupling leads to marked temperature-dependent corrections to the phonon
spectrum, which provide salient experimental signatures of spin fractionali-
sation. We discuss the coupling of QSLs to the lattice as a general tool for their
discovery and characterisation.

The presence of many competing classical ground states in frustrated
magnets in conjunction with strong quantum fluctuations may stabi-
lise quantum spin liquids (QSL) as exotic states of quantum matter.
They fall outside Landau’s paradigm of symmetry-breaking order, and
are instead characterised by a rich entanglement structure described
in termsof emergent deconfined gauge theories1–3. Howsuchquantum
phases can be realised in two-dimensional frustratedmagnets remains
an open question—definitive experimental evidence of a QSL remains
outstanding despite remarkable progress in the experimental identi-
fication of many candidate materials in recent years. Most pertinently,
many candidates undergo magnetic and structural ordering transi-
tions at low temperatures which relieve magnetic frustration.

A paradigmatic example of the marked impact of spin-lattice
coupling on strongly fluctuating quantum magnets is the spin-Peierls
instability in 1D4,5. The spin-1/2 antiferromagnetic (AFM) Heisenberg
chain has a spin-liquid ground state with algebraically decaying spin

correlations. The coupling of the staggered spin dimerisation ð�1Þi~Si �
~Si + 1 to a finite, alternating lattice dimerisation produces a non-analytic
energy gain by opening a spin gap. This competes with the harmonic
elastic energy cost of the lattice distortion, giving the following
effective potential for the distortion field u:

EðuÞ � EGS =Ku
2 � cðguÞχ : ð1Þ
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Given that for the isotropic Heisenberg AFM χ = 4/3 and c > 0, the
spin liquid is unstable for any finite coupling g >0 and the ground state
is a dimerised valence-bond solid (VBS) state with u > 06,7, as shown in
the top panel of Fig. 1. Such spin-Peierls instabilities have been
experimentally observed in a number of (quasi-)one-dimensional spin-
chain compounds, such as CuGeO3

8.
In this work we investigate spin-Peierls-type instabilities in

higher-dimensional frustrated quantum magnets, with previous
works having focused on degenerate ground states in 2D9,10 or
intrinsic nesting instabilities of spinon Fermi surfaces in 3D11,12.
Motivated by the paradigmatic algebraic spin chain instability in 1D,
we study the crucial question concerning the stability of (otherwise
intrinsically stable) gapless QSL ground states to lattice distortions.
Importantly, the absence of a gapwill by nomeans automatically lead
to an instability. For example in the Z2 QSL with gapless spinons, the
gauge field is always gapped, and thus at low energies the spinons are
effectively non-interacting Dirac fermions. Because these have a
vanishing fermion density of states, Z2 QSLs can be expected to be
stable up to some finite critical lattice coupling gc> 010,13. An open
question is whether an instability might occur in U(1) Dirac spin
liquids, which have been proposed as the stable, gapless ground

state of frustrated Heisenberg AFMs on both the kagome14–16 and
triangular lattices17–19. These are described by a strongly interacting
field theory of fermions in the presence of an emergent compact U(1)
gauge field, which naturally represents a 2D analogue of the 1D
Heisenberg AFM20.

Here, we surprisingly uncover that under lattice coupling, U(1)
Dirac QSLs (DSL) behave much more like their gapless spin-chain
counterparts than previously studied 2D QSLs. That is (unlike 2D free
fermion systems or Z2 QSLs) infinitesimal spin-lattice couplings
destroy the U(1) DSL on the triangular and kagome lattices through a
spin-Peierls instability, as shown in Fig. 1. In fact, some triangular
lattice candidate materials exhibit magnetic ordering transitions at
low temperature that seem to coincide with structural distortions21,22.
In order to study the effect of 2D spin-lattice couplings on the U(1)
DSL in detail, we make use of its low-energy effective continuum
description. This is given by quantum electrodynamics in 2+1
dimensions (QED3), which is believed to flow to a conformally-
invariant fixed point23. Themost relevant operators at this fixed point
are monopole operators, or instantons, that tunnel quanta of mag-
netic flux of the emergent U(1) gauge field, which can be identified
with fluctuating 120-degree AFM and VBS order parameters20,24,25.
Much like in spin chains, we show that the algebraic correlations of
themonopoles are responsible for a lattice instability; understanding
their symmetry properties and scaling dimension allows us to predict
the ordering pattern of the lattice and spins, and to calculate the
energetic exponent χ [as for 1D in Eq. (1)]. We go on to confirm the
presence of an instability numerically on the triangular lattice, and
provide new theoretical predictions for the regime of stability of the
U(1) DSL against dynamical phonons26.

We suggest that this improved understanding of spin-lattice
coupling for algebraic QSLs may facilitate their experimental identifi-
cation via thermodynamic properties of the ordering transition, or
through spectroscopic signatures of the proximate QSL phase. We
show that the power-law Kohn anomaly of the phonon spectrum
provides a direct experimental probe of proximate DSL physics.
Moreover, taking into account the phonon spectrumwill be crucial for
identifying novel candidate materials. Beyond the example of the 2D
DSL, spin-lattice coupling may be an important mechanism for gen-
erating spin-Peierls phases of other quantum many-body systems
described by emergent strongly coupled gauge theories.

Results
Spin-lattice coupling
We first consider static displacement fields by neglecting any intrinsic
quantum dynamics, often referred to as the adiabatic limit27,28. We
focus on the DSL state on the triangular and later generalise to the
kagome lattice. Here, in the spirit of generality, we first use a
symmetry-based field-theory approach which is agnostic to specific
microscopic models as long as spin rotation and lattice symmetries
(translations T1, T2, C6 rotations, parity P and time reversal T ) are
preserved. This leverages the continuum field-theoretic formulation of
QED3 in Euclidian spacetimewith coordinates x = (τ, r).We later study a
microscopic model for spin-lattice couplings and test our findings
using numerical methods.

An in-plane distortion of the lattice Ri → r =Ri+ u(r) can be
described by the classical field u(r). Note that here, we are using
Eulerian coordinates29 in which the displacement field is implicitly
defined with respect to global (lab) coordinates (rather than with
respect to the undistorted lattice) to preserve locality, ensuring a well-
defined continuum limit. The Fourier components of the distortion
field are given byuQ = V −1∫d2r u(r)e−iQ⋅r. By symmetry, we find that there
is an allowed coupling between fluctuating VBS order parameters,
represented by monopoles Φa(x) in the QED3 field theory (with
a = 1, 2, 3), and the longitudinal projections u*

a = isaXa � u*
Xa

of the dis-
tortion field with lattice momenta Xa = −Ka/2 and appropriate signs

Fig. 1 | Spin-Peierls distortions of unstable gapless spin liquids in one and two
dimensions. a In one dimension, the spin-half antiferromagnetic Heisenberg chain
is unstable to dimerisation when coupled to the lattice. The U(1) Dirac spin liquid is
unstable to

ffiffiffiffiffi
12

p
×
ffiffiffiffiffi
12

p
and pinwheel valence-bond order on the b triangular and

c kagome lattices, respectively. The blue shifted dots show the distorted lattice, the
vector displacements inside the unit cell u(r) are highlighted by white arrows. The
enhanced nearest-neighbour bond strengths within each plaquette are depicted in
the left panel, and the short-range spin-spin correlations h~S �~Si are shown on the
right. Structural transitions can be measured thermodynamically, and the corre-
sponding lattice and valence-bond order can be measured with inelastic X-ray and
neutron spectroscopy.
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sa = + 1, + 1, − 1. The corresponding action reads (see “Methods”)

Sg ½~u�= g
X
a

Z
d3x½u*

a ΦaðxÞ+h:c:�, ð2Þ

where~u= ðu1,u2,u3Þ>. In general, the energy cost associatedwith lattice
distortions can be approximated (to lowest order) by a harmonic term
Hph½~u�= κ

P
ajuaj2 where κ is proportional to the lattice stiffness K.

We emphasise that, while the monopoles are strongly relevant
operators in the QED3 CFT and the coupling to the distortion field is
symmetry-allowed, this does not necessarily imply an instability of the
DSL, given the intrinsic elastic energy cost associated with a lattice
distortion. For an instability to occur, the system must dynamically
generate such a distortion, with the energy gain due to VBS ordering
outcompeting the elastic energy cost. We will now analyse this com-
petition using field theory and numerical methods.

Weak-coupling spin-Peierls instability
We calculate the perturbative energy gain of the U(1) DSL coupled to
lattice deformations at wavevectors Xa, using conformal perturbation
theory in the limit of small coupling g with a finite-temperature reg-
ulator β = T −1 (see “Methods”). The effective free energy as a function
of distortion~u, including the energy cost due to lattice stiffness, canbe
written as

Heff ½~u�=Hph½~u�+ EQED3
½~u� � EQED3

½0�
� �

= κ � cΔΦ
g2β3�2ΔΦ

� �
j~uj2 + C1ðβÞj~uj4 + C2ðβÞj~u �~uj2 + . . .

ð3Þ

where we have introduced the numerical constant cΔΦ
=2π=½ðΔΦ �

1Þð3� 2ΔΦÞ�>0 which is positive when the scaling dimension of the
monopoles is in the range 1 <ΔΦ< 3/2, as satisfied by the predicted
value ΔΦ ≈ 1.0230. This perturbative result is controlled for
g2β3�2ΔΦ j~uj2≪1, and this functional may be understood analogous to a
Ginzburg–Landau expansion around small j~uj. We take the constants
C1ðβÞ and C2ðβÞ to be positive (cf. Supplementary Note 1).

In the zero-temperature limit T = β −1 → 0, the quadratic effective
energy functional (3) inverts at small coupling g > 0. It is
therefore energetically preferable for the system to acquire a lattice
distortion and form VBS order. The critical temperature scale TSP = 1/
βc for the ordering instability is obtained by analysing where the
quadratic potential in Heff ½~u� [Eq. (3)] changes sign at small j~uj,
yielding

TSP ∼ ðg2=κÞ1=ð3�2ΔΦÞ: ð4Þ

We conclude the main result of our work: the coupling of spin-singlet
monopoles (acting as fluctuating VBS order parameters) to long-
itudinal displacement modes with wavevectors Xa induces a weak-
coupling instability of the DSL ground state at sufficiently low
temperatures for any finite coupling g >0.

What is the nature of the low-temperature phase T < TSP? Given
C1,2ðβÞ>0, we infer that the ordered state will have a finite distortion
satisfying j~uj=u0 and ~u �~u=0. Working at the level of (3), there is a
continuous SO(3) degeneracy of possible ground states. Taken at face
value, the Mermin–Wagner theorem would prohibit a thermodynamic
ordering transition (unlike the one-dimensional spin-Peierls transition,
where only a discrete Z2 symmetry is broken). However, this con-
tinuous symmetry is only an emergent SO(3) valley symmetry at the
CFT fixed point and is not present in underlying microscopic systems.
Hence, anharmonic terms ~λ u1u2u3 + c:c:

� �
will break the continuous

symmetry back down to the discrete C3 of the lattice. These terms
are either generated by a dangerously irrelevant operator31,32 in the
field theory, or arise from intrinsic interactions between phonons
beyond the harmonic approximation. The resulting energy-minimising

configurations for ~λ<0 are given by

~u0 = ½u0=
ffiffiffi
3

p
� 1, e2πi=3, e�2πi=3
� �>

: ð5Þ

In real-space, the pattern is shown in Fig. 2b. The spins react to the
lattice breaking the translation and C6 rotation symmetries by
forming

ffiffiffiffiffi
12

p
×
ffiffiffiffiffi
12

p
VBS patterns with C3 symmetry (cf. Supplemen-

tary Note 1)33. In the field-theory picture, the choice of ~u=~u0

determines the ordering of the monopole excitations through
minimising the coupling Eq. (2) as sign ðgÞh~Φi∼ �~u0. Using the
leading-order mapping between VBS monopoles and nearest-
neighbour spin-dimer correlations [given by (17) in “Methods”], we
can evaluate the predicted nearest-neighbour spin-spin correlation
function

h~Sri �~Sri +δa
i ’ saRe hΦai eiXa �ri� �

: ð6Þ

The resulting lattice distortion and (leading-order) VBS order from this
analysis are shown in Figs. 2b and e. We emphasise that the computed
patterns above predict the symmetry of the distorted lattice, but the
precise strength of h~Si �~Sji on a given bond is not accessible within our
field-theoretic approach and is expected to depend on microscopic
details. We present analogous results for the kagome lattice in
Supplementary Note 2.

Instability of the AFM Heisenberg model
We now go beyond field-theoretic arguments and consider the J1–J2
triangular lattice AFM Heisenberg model, for which numerical simu-
lations suggest a U(1) DSL ground state34,35. This microscopic model
allows us to explicitly study the system’s energetic response to lattice
distortions and compare with ΔEQED3

½~u� as constructed above. To this
end, we assume that the couplings Jij between two sites are homo-
genous and decreasing functions with distance ri − rj, and we consider
a simple exponential form Jij ∼ Je�jri�rj jα . In general, we expect that the
first derivative of Jij as a function of distance is non-vanishing, which
implies that for small distortions onemay linearise. Then, the change in
bond length modifies the interaction J1 between nearest-neighbour
unit vectors δ̂a as

Hα ½uðriÞ�=
X
i

X
a= 1,2,3

J1 1 +α δ̂a � ðuðriÞ � uðri +δaÞÞ
h i

~Sri �~Sri +δa
, ð7Þ

as constructed in “Methods”. Here, the (dimensionful) coefficient α is
some constant of proportionality that arises upon linearising and
characterises the degree of spin-lattice coupling in the microscopic
Heisenberg model. We consider four distinct distortion patterns and
perform DMRG simulations on circumference-L cylinders (see “Meth-
ods”). Instead of using β as a regulator, our simulations effectively take
the zero-temperature limit while working on a finite (cylindrical)
geometry with circumference L, which acts as an IR cutoff instead. In
this case, the weak-coupling energy response to distortions ua at the
wavevectors Xa is given by ΔEQED3

½~u�= � ~cΔΦ
g2 L3�2ΔΦ j~uj2, with some

constant ~cΔΦ
. The instability upon coupling to lattice distortions at

wavevectorsXa is reflected in the IR limit by the growth in amplitude of
the energy response; EQED3

½~u� grows as a power of the system size,
which is controlled by the monopole scaling dimension36. In contrast,
we expect that distortions at other momenta, e.g., the K or M points,
will generically produceafinite response that is independent of system
size as L → ∞.

In Fig. 2a, we compare the energy gain of the spin system under
static lattice distortions on the L = 6 cylinder. We compare momenta
at symmetric points in the Brillouin zone to the 12-site distortion
pattern in Fig. 2b. We model the energy gain as �ΔE½δ�=AQðLÞδ2,
where δ =αj~uj is a dimensionless distortion parameter that measures
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the change in bond strength [n.b. we define it as such since the
Hamiltonian Eq. (7) only depends on the product]. All curves are fully
consistent with the predicted quadratic behaviour at small distor-
tions, and we can see that the 12-site unit cell pattern shows the
strongest response amplitude, which we explain as being due to the
coupling to commensurate VBS fluctuations (equivalently, the spin-
singlet monopoles). Figure 2f shows the nearest-neighbour spin-spin
correlations h~S �~Si of the symmetric 12-site pattern DMRG, compared
to the translationally-invariant correlations (with value − 0.18) of the
spin-disordered DSL ground state in the undistorted model. The
variation of singlet correlations in the distorted model shows good
agreement relative to the prediction based on the monopole trans-
formation properties in Fig. 2e where notably we see that the cor-
relations are enhanced on all shortened nearest-neighbour bonds.
The difference in the exact distribution of weight inside the unit cell
is either attributable to neglecting contributions to the nearest-
neighbour correlator by multi-spin operators, or errors introduced
due to the use of an anisotropic L = 6 cylinder geometry. In conclu-
sion, we find that the explicitly enforced 12-site lattice distortion
leads to a strong energetic gain and transition to a short-range cor-
related phase, which is consistent with a DSL–VBS transition on a
finite-circumference cylinder.

Now we turn to the L-dependence of the energy response in the
weak-coupling regime as a signature of an instability. To do this we
calculate the energy gain on L = 3, 6, 9 cylinders for three patterns that
are compatible with the boundary conditions. We find no significant
increase of the energy response forM3 andK3 distortions; in contrast,
the distortion X3 shows significant dependence on system-size, as
plotted in Figs. 2c, d (cf. Supplementary Note 3 for computational

details), strongly suggestive of the IR-divergence predicted from our
field-theoretic analysis. We conclude that the numerical simulations
performed on finite-circumference cylinders are compatible with our
predictions that the instability (in large systems) will be dominated by
distortions at the spin-singlet monopole wavevectors Xa. We suggest
this is a signature of the weak-coupling lattice instability of the U(1)
DSL ground state.

Strong-coupling behaviour
In the previous sections, we have seen that perturbing the CFT fixed
point with a monopole-lattice coupling leads to infrared diver-
gences which must be regulated assuming a finite system size L <∞
(or equivalently finite temperature T > 0). When the breakdown of
perturbation theory g2L3�2ΔΦ j~uj2≫1 signals an instability, the sys-
tem’s response to deforming the CFT fixed point in the thermo-
dynamic limit (i.e., at T = 0 and L → ∞) is expected to lead to a critical
(non-trivial) power-law response, with critical exponents deter-
mined by scaling dimensions of operators at the fixed point (this is
also understood from the fact that at T = 0, L → ∞ the monopole-
lattice coupling constitutes the only energy scale in the otherwise
dimensionless theory—conversely, in the weak-coupling limit, the IR
regulator introduces a second scale). Therefore, we use below a
scaling Ansatz which infers the CFT’s response to the distortion
from scaling and symmetry arguments. This approach will allow us
to generalise the 1D energy response from Eq. (1) to the 2Dmodel, as
well as predicting ground-state properties like the scaling form of
the induced gap size.

From power-counting of Eq. (2) with the QED3 fixed point theory,
one may write down a strong-coupling energy density that is scale-

Fig. 2 | Numerical observation of the spin-Peierls instability of the triangular-
latticeAFMHeisenbergmodel.Densitymatrix renormalisationgroup calculations
of the next-nearest-neighbour frustrated triangular lattice model (J2/J1 = 1/8) are
presented,where the undistorted latticedisplays a gapless spin-liquid ground state.
a Energy gain of the spin system under various simulated lattice distortions on the
L = 6 circumference cylinder. Patterns considered are generated by momenta K3,
andM1,2,3 (here the purple shaded region represents the range of responses for the
three Ma, showing minimal dependence on cylinder orientation; see Supplemen-
tary Note 3), as well as the full 12-site distortion, defined by Eq. (5). b Nearest-
neighbour exchanges under the 12-site unit cell distortion; red/blue bonds show
enhanced/suppressed bonds. c System-size dependence of energy gain for L = 3, 6.
We compare three distinct distortion patterns generated by the momenta K3, M3,

and X3 which are compatible with the cylinder geometry. Logarithmic axes show
the quadratic energy gain for each pattern. d L-dependence of the energy gain for
the data point δ =0.002 for cylinderswith circumferenceof up to L = 9. The colours
indicate the same distortion patterns as in c. Only the distortion atX3 shows strong
L-dependence, which confirms that a weak-coupling instability of the U(1) Dirac
spin liquid is realised in this numerical study of the J1–J2 model. e,f The spin-spin
correlation function on dimers h S!i � S

!
ji in the presence of a 12-site lattice dis-

tortion b. Subfigure e shows the theoretical prediction from the leading order
analysis of the symmetry of operators in the CFT spectrum (on an arbitrary scale);
and f is the numerical calculation performed with DMRG, evaluated with distortion
parameter δ =0.05 and L = 6 and averaged over orientations relative to the cylin-
der axis.
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invariant and compatible with the symmetries of the field theory

Hsc½~u�= κj~uj2 � cscjg~ujχ ð8Þ

with χ = 3/(3−ΔΦ) < 2 and csc > 0 an undetermined positive scaling
constant29. This non-analytic contribution to the ground-state energy
must outcompete the (leading) quadratic energy cost for the
longitudinal displacements. We find it to be energetically preferable
for the system to undergo a lattice distortion with amplitude u0 ≠ 0 as
long as ΔΦ< 3/2. We stress that here, the form (8) possesses an
accidental SO(3)valley symmetry which is emergent at the CFT fixed
point, which will be reduced to a discrete subgroup (compatible with
the discrete UV symmetries of the model) by dangerously irrelevant
operators or anharmonic terms, as discussed above.

In the context of our numerical study, we predict that as the
thermodynamic limit is taken, the quadratic energy gain ∣δ∣2 which
grows with larger system sizes will receive corrections and, for large
enough circumferences, instead be described by a different power law
∣δ∣χ that is L-independent. Probing this non-analytic behaviour directly
and extracting the coefficient csc numerically would allow a concrete
prediction of ground state properties of potentially unstable U(1) DSL
candidate materials.

Within this scaling Ansatz, we can further estimate themagnitude
of the induced displacement field by minimising Hsc½~u� and obtain

u0 =
2

χcsc

κ
gχ

� �	 
1=ðχ�2Þ
: ð9Þ

The corresponding gap scales as Δgap ∼ ðg2=κÞ1=ð3�2ΔΦÞ, in accordance
with the spin-Peierls temperature Eq. (4). We predict that the ratio
Δgap/TSP is system-independent and would be universal for all U(1) DSL
materials which exhibit a spin-Peierls instability in the ground state.

Given that the above discussion is rather general in the sense that
it only relies on the existenceof a symmetry-allowed coupling between
the distortion field and a relevant operator in the CFT, a corollary of
our strong-coupling approach follows: onemay tentatively extend our
results for the DSL to more general couplings between gapless
deconfined phases ofmatter (described by a CFT) to lattice distortions
in any dimension, as in Supplementary Note 4. The criterion for the
spin-Peierls instability to occur is that there is a VBS-order parameter,
expressed as an instanton of an underlying gauge theory, with scaling
dimension Δ < d/2 (note that this is stronger than relevance Δ < d).
Indeed, this criterion corresponds to the collapse of quantum criti-
cality upon identifying the critical exponents ν −1 = d −Δ and z = 137, and
reproduces the regime where antiferromagnetic XXZ chains suffer a
spin-Peierls instability (namely, spin-anisotropy0≥Δaniso ≥ 1

5). Itwill be
interesting to study the physical consequences in detail for deconfined
quantum critical points32,38,39 or non-Lagrangian QSL phases40.

Dynamical phonons
Next, we go beyond the assumption of adiabatic distortions by
promoting the corresponding relevant components of the distortion
field to be dynamical degrees of freedom ua → ua(τ, r) (we work in
imaginary time/Euclidean signature). Such phonon dynamics intro-
duces an additional finite energy scale such that the U(1) DSL may
remain stable even at zero temperature, and conversely the phonon-
monopole coupling will lead to marked signatures in the phonon
spectral function. While we explicitly treat in this section a model of
non-dispersive (optical) phonons, we note that this is also an
appropriate model for generic phonon bands away from the Γ-point,
as we are explicitly interested at small momenta (compared to the
inverse lattice spacing) around the finite lattice momentum of the
singlet monopoles Xa.

We add dynamics for the long-wavelength fluctuations of the Xa-
displacement modes via a kinetic energy term, Skin =ρ

P
aj∂τuaðτ,rÞj2,

where ρ corresponds to a microscopic phonon mass density. The
physical phonon modes have energy ω0 �

ffiffiffiffiffiffiffiffi
κ=ρ

p
at the momentum

Xa; we approximate this as an optical phonon with constant energy5,41,
governed by the action

Sph½~uðτ,rÞ�=
Z

dτ
Z

d2r ρj∂τ~uðτ,rÞj2 + κj~uðτ,rÞj2
� �

: ð10Þ

The full action of the system then reads S½uaðxÞ�=Sph½uaðxÞ�+
SQED3

+ Sg where SQED3
=
R
d3xLQED3

is the fixed-point action for QED3,
and Sg is the coupling between monopoles and (now dynamical)
phonons Eq. (2). The phonon Green’s function from Eq. (10) is

huaðxÞu*
bðyÞiph = δa,bGðx � yÞ= δa,b

δð2Þðrx � ryÞ
2ρω0

e�ω0jτx�τy j: ð11Þ

As long as the phonons remain gapped ω0 > 0, these degrees of free-
dom can be integrated out exactly to obtain a retarded interaction
between QED3 degrees of freedom, giving S=SQED3

+SΦΦ, where

SΦΦ = � g2
X
a

Z
d3x d3yΦy

aðxÞGðx � yÞΦaðyÞ: ð12Þ

In the adiabatic limit ω0 = 0, the monopole-monopole interaction in
(12) becomes temporally non-local, implying that modes become
correlated at large separations and leading to an instability at
infinitesimal couplings as per our earlier treatment. In the opposite,
antiadiabatic, limit ω0 → ∞ (κ constant), the Green’s function becomes
purely local, G(x − y) = (1/2κ) δ (3)(x − y) and the DSL remains stable.
Considering both limits, it becomes clear that there must exist a
transition at some intermediate coupling gc determined by ω0. A
scaling analysis using the exponential form of G(τx − τy) in Eq. (11)
shows that the U(1) DSL is stable for weak-interaction strengths g < gc
set by a power-law of ω0, as

g 2
c ∼ κ ω3�2ΔΦ

0 : ð13Þ

This result is confirmed by a perturbative calculation in Supplemen-
tary Note 5.

We equivalently investigate how the phonon-monopole coupling
is manifested in spectral properties of the phonon by instead inte-
grating out the fluctuations of QED3 perturbatively.Working at second
order in perturbation theory, we find a correction to the propagator of
the phonon mode ua, given by

G�1
a ðωÞ= ρω2 + κ � g2hΦy

aΦaiQED3
ðωÞ: ð14Þ

Continuing to real frequencies, this implies that the phonon quasi-
particle dispersion ωa becomes renormalised and is determined by
solutions to the implicit equation

ω2 =ω2
0 � g2ρ�1χ 0aðω,TÞ, ð15Þ

where χ 0 is the real part of the VBS susceptibility χ 0aðω,TÞ �
Re χVBSðω,Xa + δq,TÞjδq=0, which for momenta close to Xa is given by
singular VBS monopole-monopole correlations24 at T =0.

At zero temperature T =0, the VBS-susceptibility has a power-law
divergence χ 0aðω,TÞ∼ω�ð3�2ΔΦÞ which implies a breakdown of the
quasiparticle picture of the phonon. Instead, around the momenta Xa,
the phonon spectral function will display a quantum-critical con-
tinuum, a signature of deconfinement in the spin sector of the
system39, as shown in Fig. 3b. For temperatures T ≫ ω, there is
no breakdown of the quasiparticle picture but a renormalisation
of the phonon dispersion; scaling arguments imply that42

χ 0aðω,TÞ∼T�ð3�2ΔΦÞ, and from (15) it follows that the phonon frequency
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is shifted downwards.We conclude that there exists a Kohn anomaly in
the phonon dispersion43,44, i.e., at and close to the wavevectors Ka/2
there will be a characteristic softening of the otherwise gapped pho-
non depending on temperature with exponent 2ΔΦ − 3, as shown in
Fig. 3c. Importantly, this provides an experimentally accessible sig-
nature of a proximate U(1) DSL through the monopole-phonon
couplings.

We extend the above analysis in “Methods” to the critical regime
by perturbatively calculating when the softened phonon hits zero
energy and condenses, giving rise to a finite static lattice distortion.
This approach recovers expressions for critical couplings g 2

c ∼T3�2ΔΦ

in the classical (static) limit [as in Eq. (4)] and g 2
c ∼ω3�2ΔΦ

0 in the zero-
temperature limit [as in Eq. (13)]. These two limits are seen to corre-
spond, as the phonon frequencyω0 sets an effective temperature scale
T ∼ω0 (as indicated by the dashed lines) which determines a correla-
tion scale for critical fluctuations in the DSL. Together, we produce the
phase diagram, shown in Fig. 3a.

Discussion
Turning towards experiment, we note that several triangular-lattice
candidate materials have recently been identified, such as
NaYbO2

45,46 and YbZn2GaO5
47, which exhibit broad inelastic neutron-

scattering spectra and T 2-scaling of the magnetic specific heat at low
temperatures, suggestive of Dirac-type gapless excitations. An
instability of spin-Peierls type is potentially realised in the class of
triangular-lattice organic Mott insulators κ-(ET)2X, e.g., where
X =Cu2(CN)3, which has a gapped ground state and finite structural
distortion21. Most interestingly, the anisotropic triangular-lattice
compound κ-(ET)2B(CN)4 has a (field-dependent) transition at
5 K22,48 to a spin-Peierls phase with an anomalously large value of
Δgap/TSP. While this phase was proposed to emerge from a spin-
Peierls instability of coupled spin chains, i.e., a quasi-1D effect, our
work suggests that these structural transitions in spin-lattice coupled
systems could also be of an intrinsically 2D origin. It will be inter-
esting to gain an understanding of the robustness of the spin-Peierls
instability of the DSL in deformed triangular lattices (i.e., with a
reduced UV symmetry group). This hypothesis could be assessed by
more detailed studies that resolve the spatial structure of VBS
ordering and lattice distortion in the above systems.

Our general framework and formalism can be straightforwardly
applied to the U(1) DSL state on the kagome lattice14,20,25, where the
resulting ordered state is the pinwheel VBS order49,50 of Fig. 1c (a state
to which the phonon-free Heisenberg model is remarkably robust51).
This pinwheel order has been measured in the deformed kagome-

lattice AFM Heisenberg compound Rb2Cu3SnF12
50,52 using inelastic

neutron scattering. We predict that U(1) spin liquids with more fer-
mions are stable against infinitesimal lattice distortions as the mono-
pole operator scaling dimension depends on the fermion number; this
means that spin-orbital liquids are not expected to show a spin-Peierls
instability53.

Within the stable DSL, a monopole-phonon coupling is respon-
sible for a Kohn anomaly visible in the phonon spectrum, which may
provide insights into the critical correlations of a DSL, similar to elastic
signatures of quantum critical points54. We further suggest that the
singular response of the DSL to externally induced lattice displace-
ments, in particular via strain, may provide a fruitful avenue for
experimental characterisation.We hope that a better understanding of
the stability of QSLs with respect to coupling to phonons or structural
disorder will help for the eventual discovery of these enigmatic
quantum liquids in real materials.

Methods
Conformal field theory
We introduce here the description of the U(1) DSL as a conformal field
theory (CFT) in 2+1 dimensions30,55–58. The CFT is characterised by its
conformal data, consisting of (1) a spectrum of scaling operators and
(2) the operator product expansion (OPE). For this “Methods” section,
it will suffice to focus on the lowest-lying primary operators in the CFT
spectrum: forNf = 4-flavour QED3, these are the six charge-1monopole
operators. The gauge-invariant combination of monopole operators
and two Dirac zero modes f yα reads20,25

Φy
αβ ∼ f yαf

y
βM

y
2π , ð16Þ

where α, β are SU(4)-indices. A recent CFT bootstrap study30 esti-
mates the scaling dimension ΔΦ ∈ (1.02, 1.04), very similar to the
large-N (subleading order) result ΔΦ ≈ 1.0258 and compatible with
other works57,59. As written here,Φy

αβ transforms in the antisymmetric
rank-2 representation 6 of SU(4). It is convenient to use the
isomorphism SO(6) = SU(4)/Z2, such that we can take Φy

b with
b = 1,…, 6 to transform as a six-dimensional vector. The lowest order
correlation functions are evaluated exactly as〈Φa〉 = 0 and
hΦy

aðxÞΦbðyÞi= δabjx � yj�2ΔΦ . The next-lowest lying primaries are
the fermion bilinears; their properties and the OPEs of the U(1) DSL
are written in Supplementary Note 1.

Importantly, microscopic (lattice) UV symmetries such
as translations, discrete rotations, and reflections are embedded in
the enlarged symmetry group of the IR theory (in other words,
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Fig. 3 | Phase diagram and Kohn anomaly of the U(1) DSL with dynamical
phonons. a Scaling phase diagram for the spin-Peierls-VBS instability of the U(1)
DSL, as a function of coupling g, temperature T and frequency ω0. The shaded
regions indicate the unstable parameter regimes, based on the finite-temperature
calculation in the classical (ω0 → 0) limit and the zero-temperature result for
dynamical phonons (ω0> 0). Phonon spectral function log Sphononðω,kÞ plotted for
b zero and c finite temperature along the momentum slice between Γ and Ka.

Spin-phonon coupling is set to g =0.3. The phonon spectral function is approxi-
mated by extending the interacting phonon propagator Ga(ω) =G(ω, Xa) to
momenta Xa + q given a microscopic model for the bare phonon dispersionω0(q)
(white dashed line). We use a heuristic scaling form for the VBS correlator at finite
temperatures for illustrative purposes (see “Methods”). At finite temperature
T > TSP the phonon dispersion displays a Kohn anomaly, and at zero temperature,
the quasiparticle picture breaks down.
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microscopic symmetries are not broken in the flow to the IR fixed
point). The monopole operators Φb carry non-trivial quantum num-
bers under lattice symmetries, which have been determined in
refs. 20,25 by complementary numerical and spinon band topology-
based analyses. The latter makes evident how non-trivial monopole
quantum numbers follow from the distribution of gauge charges in
the system’s unit cell. The two (independent) microscopic symme-
tries SU(2)valley and SU(2)spin as subgroups of SU(4) correspond to
mutually commuting SO(3)valley and SO(3)spin subgroups of SO(6),
such that we can decompose Φb into valley-triplet, spin-singlet
(b = 1, 2, 3) and valley-singlet, spin-triplet components (4, 5, 6). In
Table 1, we reproduce the transformation of monopoles on the tri-
angular lattice under discrete lattice translations Tj by unit vectors aj,
reflections R in the vertical direction, discrete rotations C6, and time
reversal T . The relevant (inverse) unit vectors and high-symmetry
momenta are shown in Fig. 4.

The three valley-triplet, spin-singlet monopoles (Sa =Φa,a= 1,2,3)
carry the same quantum numbers as order parameters of valence-
bond solids on the triangular lattice with lattice momenta Xa = −Ka/2,
respectively. Hence, we can write a mapping (up to a global multi-
plicative constant not fixed by symmetry)

~Sri �~Sri +δa
’ sa Re½SaðriÞeiXa �ri �, ð17Þ

wherewe introduce the sign factors sa = + 1, + 1, − 1. This leading-order
mapping neglects possible multi-spin terms whichmay have the same
transformation properties. The three spin-triplet monopoles
(Va =Φa+ 3,a= 1,2,3) transform identically as order parameters for
antiferromagnetic 120∘ Néel order which determine the spin density as

Sαi ’ Re½iVαðriÞeiKα �ri �, ð18Þ

where α = x, y, z (1,2,3) denotes the three SU(2)spin components. These
expressions gives way to the interpretation of the monopoles as dis-
order operators60, with their proliferation 〈Φa〉 ≠ 0 yielding con-
ventionally ordered phases. The exact 2-point correlation function
implies that in the U(1) DSL phase, there is diagonal quasi long-range

order of the AFM and VBS order parameters n(x)AFM/VBS with equal
exponents hnðxÞnðyÞiAFM=VBS = jx � yj�2ΔΦ . Consequently, one may say
that the spin-triplet/singlet susceptibility taken at the respective
wavevector behaves as

χVBSðω,Xa +qÞ= χAFMðω,Ka +qÞ= ½c2jqj2 � ω2��ð3=2�ΔΦÞ, ð19Þ

where c is some emergent speed of light.
Due to their non-trivial representations under lattice transfor-

mations, individual monopoles and mass terms cannot trivially be
added to the action20. On the triangular lattice the symmetry-allowed
four-fermion interaction61 and lowest-lying triple-monopole terms are
believed to be irrelevant58, meaning the U(1) DSL can be an intrinsically
stable phase of matter.

Lattice coupling
Our starting point on the triangular lattice is the observation that the
valley-triplet (spin-singlet) monopoles Φa (a = 1, 2, 3), which act as
order parameters for VBS orders, have lattice momenta Xa = −Ka/2.
Using Table 1, we note that the following deformation to the DSL fixed
point is symmetry-allowed,

H∼ eiX1 �RΦ1 + e
iX2 �RΦ2 � eiX3 �RΦ3 + h:c:

� �
: ð20Þ

We emphasise that care must be taken in separating length scales:
R(Xa) are coordinates (wavevectors) on the order of microscopic
length scales such as the lattice constant a, at which theΦa transform
as given in Table 1. The scaling nature of theΦa as primaries in a CFT,
and the corresponding power-law form of correlation functions only
holds on much longer length scales (and, equivalently, sufficiently
smallmomenta), where a low-energy continuum formulation becomes
justified. While Eq. (20) is symmetry allowed, the oscillating prefactors
average out on sufficiently long length scales, such that the
perturbation is strongly irrelevant.

We now consider an in-plane deformation of the real-space lattice
R → r =R + u(r), where u(r) is a displacement field, as shown in Fig. 1b.
Note that we work in implicitly-defined (Eulerian) continuous coordi-
nates r of the deformed system. Expanding Eq. (20) to the first non-
trivial order in juðrÞj=a≪1 (assuming that lattice distortions are small
compared to the lattice constant a), we obtain the monopole-lattice
coupling Hamiltonian

Hg ½uðrÞ�= g
X

a = 1,2,3

sa iXa � uðrÞ
� �

eiXa �rΦa +h:c:
� �

, ð21Þ

where we use again the sign factors sa = + 1, + 1, − 1 for convenience of
notation. We have dropped the 0-th order terms (with oscillating
phases) in the expansion. Note that isaXa ⋅ u transforms as a scalar
under point-group operations R and C6 and is appropriately even
under time reversal T ; therefore the prefactor retains the full
symmetry of the undistorted system Eq. (20). We can expand the
real-component distortion field u(r) in eigenstates of the lattice
momentum uQ

uðrÞ=
X
Q

eiQ�ruQ , ð22Þ

where reality of u(r) implies uQ =u*
�Q . In momentum space, the cou-

pling to monopoles is of the form

Hg ½uðrÞ�= g
X

a= 1,2,3

X
Q

sa iXa � uQ

� �
eiðXa +QÞ�rΦa +h:c:

� �
: ð23Þ

Crucially, only terms with Q = −Xa do not contain any oscillating pre-
factors and will thus be the ones relevant at the lowest energies; these

a2

a1

δ1

δ2

δ3

M3

a b

M2

M1
X1

X2

X3

g1

g2

K2 Γ

K1

K3

Fig. 4 | Unit cell in real and reciprocal space. a Triangular lattice with unit vectors
ai and nearest-neighbour bonds δa highlighted. b Reciprocal lattice with inverse
lattice vectorsgi and high-symmetry points in the Brillouin zoneKa andMa labeled.
The points Xa= −Ka/2 are the momenta eigenvalues of gapless monopole
excitations20,25.

Table 1 | Discrete symmetry transformations of monopole
operators20,25

Tj R C6 T

S1 =Φ1 e�iX1 �ajS1 �S3 Sy
2 Sy

1

S2 =Φ2 e�iX2 �ajS2 S2 �Sy
3 Sy

2

S3 =Φ3 e�iX3 �ajS3 �S1 �Sy
1 Sy

3

Va =Φa+3 e�iKa �ajVa Va �Vy
a �Vy

a
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are

Hg ½uðrÞ�= g
X

a= 1,2,3

sa iXa � u*
Xa

� �
Φa +h:c:

h i
: ð24Þ

Our key observation is that, in analogy to the one-dimensional spin-
Peierls transition, these terms may precipitate an instability. The
response of QED3 to this perturbation will be dominated by lattice
distortions with crystal momentum Xa.

While the irrelevant deformation (20) is a universal expression
written down on symmetry grounds, it can be related to appropriate
microscopic models. By using the mapping (17), we can see that the
perturbation (20) is simply a nearest-neighbour Heisenberg coupling

H ∼ J1
X
i

X
a= 1,2,3

~SRi
�~SRi +δa

: ð25Þ

To implement the distorted lattice in this microscopic model, assume
an exponential form the bond-dependent exchange J(d) = J1e−α∣d∣ which
is independent of bond angle and where J1 = J(δa). A lattice distortion
affects the Hamiltonian (25) bymodifying the coupling constants J(dij),
which typically decrease as a function of distance dij between two
magnetic ions. At u =0 magnetic ions are at equilibrium (minimising
the combinationofmagnetostrictionandelastic energy coston agiven
bond pair). We may then expand in small u, yielding a linear coupling
between spin bilinears and the distortion field, with α∼ ∂J=∂r∣dij

as a
constant of proportionality. More explicitly, taking ri =Ri + u(ri) and
expanding in small juðriÞj=a gives the following spin-lattice coupling

Hα ½uðriÞ� ’ ðαJ1=aÞ
X
i

X
a= 1,2,3

δa � ½uðriÞ � uðri +δaÞ�~Sri �~Sri +δa ð26Þ

at first order. Here, α can be interpreted as a microscopic spin-lattice
coupling parameter, which is non-trivially related to the field-theoretic
monopole coupling g.

We model lattice distortions as having a potential energy that is
quadratic in the relative displacement between nearest-neighbour
sites,

Hph =
K
2

X
hiji

∣uðriÞ � uðrjÞ∣2: ð27Þ

Here, K takes the role of an effective spring constant for the dis-
placement between atoms on the triangular lattice. Taking the con-
tinuum limit, inserting (22), and decomposing into transverse and
longitudinal polarisations uq = ∑s=t,l ϵq,suq,s yields the Hamiltonian
density

Hph½u�=
X
q

Kqjuqj2 =
X
q,s

Kqjuq,sj2,

Kq =
2K
3a2

3� cosðaqxÞ+ 2 cos
aqx

2

� �
cos

ffiffiffi
3

p
aqy

2

 !" # !
:

ð28Þ

The polarisation vectors ϵq,s are orthonormal, where the longitudinal
direction is defined as ϵq,l =q/∣q∣. Importantly, the complex scalar
modes uq,s are independent and degenerate, meaning the Hamiltonian
of the longitudinal modes can be seperated.

Conformal perturbation theory
Our goal is to study whether the phonon-monopole coupling gen-
erates instability. To this end, we compute the energy of QED3 in the
background of arbitrary displacement fields u(r) and extremise the
resulting energy functional. It is convenient to employ a path-integral
formulation, where we obtain a functional for the effective energy
density E = E=V (per volume V) via the zero-temperature limit of the

free energy,

EQED3
½u�= 1

V
limβ!1FQED3

½u�: ð29Þ

The free energy of QED3 coupled to some background displacement
field u(r),

FQED3
½u�= � 1

β
logZS1β ×Σ

QED3
½u�, ð30Þ

is given in terms of the partition function

ZS1β ×Σ
QED3

½u�=
Z

D½fOCFTg� e�SQED3�Sg ½u� ð31Þ

with the respective actions SA =
R β
0 dτLA on the manifold S1β ×Σ. Here,

S1β corresponds to a circle in the imaginary time direction with cir-
cumference inverse temperatureβ = 1/T, andΣ is somespatialmanifold
(for example a 2-sphere with radius L, S2L). We mostly focus on the
thermodynamic limit Σ= limL!1S2L =R

2 (note that the partition
function Z =ZS3L may also be defined on a 3-sphere with radius L,
see, e.g., ref. 29, making the conformal SO(3, 2) symmetry group
manifest).

In the limit of weak coupling we can work perturbatively and
exploit the fact that two-point functions at the CFT fixed point are
known. We assume that the monopole-lattice action is a small per-
turbation, justified by assuming small coupling g and by our previous
assumption that ∣Xa ⋅ uQ∣ ≪ 1. Expanding the Boltzmann weight to
quadratic order and taking the logarithm, we have

logZQED3
½u�= logZQED3

� hSgiQED3
+
1
2

hS2giQED3
� hSgi2QED3

� �
+ . . . ,

ð32Þ

where the expectation values are to be taken with respect to the path
integral (31) with u ≡0. At finite temperatures β < ∞, one-point
functions of conformalprimaries are generically non-zero62 hOi∼β�ΔO ,
but, importantly, vanish in the zero-temperature limit β → ∞, as also
mandated by conformal invariance on R3. Because we will primarily
focus on the zero-temperature limit, we henceforth take hSgiQED3

=0.
The first non-trivial contribution to EQED3

½u� thus occurs at quad-
ratic order (we use the notation x = (τx, rx) for vectors in 2+1-dim.
Euclidean spacetime),

hS2giQED3
= g2

X
a,b

sasb
X

Q,Q0

Z
S1β ×Σ

d3x d3y

ðiXa � uQÞeiðXa +QÞ�rx ð�iXb � u*
Q0 Þe�iðXb +Q

0 Þ�ry hΦaðxÞΦy
bðyÞiQED3

+ h:c:
h i

= g2βV
X

a

Z β

0
dτx0

Z
Σ
d2rx0 jXa � uQ j2eiðXa +QÞ�rx0 hΦy

aðx0ÞΦað0ÞiQED3
+ h:c:

h i
,

ð33Þ

where V = vol(Σ) = 2πL 2 is a trivial factor of volume, mandated by the
extensiveness. The thermodynamic limit Σ=R2 is obtained by taking
the linear dimension L → ∞.

For Q ≠ − Xa there exist rapidly oscillating terms in Eq. (33) (with
momentum Xa+ Q), which, assuming that the monopole two-point
function varies sufficiently slowly, produce finite contributions to
hS2giQED3

which average out at sufficiently long length scales (in the
continuum limit). The term with Q = −Xa in Eq. (33) hence is the
dominant contribution at low energies, which is due to the (relevant)
coupling betweenmonopoles and displacements at latticemomentum
Xa, as was written before in Eq. (24).

As noted in ref. 62, the cylindrical geometry is conformally flat in
the L→∞ limit, and OPEs converge for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 + jr2j

p
<β ! 1, such that we
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may use above form of the 2-pt. function to do the remaining integral.
This integral is divergent in the thermodynamic, zero temperature
limit, β, L→∞. At any other wavevectorQ ≠ −Xa, the exponential in (33)
cuts off the divergent integral and no instability occurs. We regulate
this divergence by working at finite temperatures β <∞, which allows
us to take the thermodynamic limit L → ∞,

hS2giQED3

βV
= 2g2

X
a

Z β

!0
dτ
Z
Σ
d2r

jXa � uXa
j2

ðτ2 + jrj2ÞΔΦ
= cΔΦ

g2β3�2ΔΦ
X

a
jXa � uXa

j2

ð34Þ
where we have introduced the numerical constant cΔΦ

=2π=½ðΔΦ �
1Þð3� 2ΔΦÞ�>0 for 1 <ΔΦ < 3/2.

We can now obtain the effective energy as a sum of the intrinsic
potential energy cost of deformations at wavevectors Xa and the
relative energy gain of the DSL by coupling to the displacement field,

Heff ½u�=Hph½u�+ EQED3
½u� � EQED3

½0�
� �

=
X

a= 1,2,3

KXa
juXa

j2 � limβ!1cΔΦ
g2β3�2ΔΦ jXa � uXa

j2
� � ð35Þ

We observe that the second term in the parenthesis is minimised by
taking lattice displacements that are longitudinal along the momenta
uXa

= isa ua Xa=jXaj2: The scalar amplitudes ua are the longitudinal
components uXa ,l

at the three independent displacement vectors Xa

(up to a phase), andwe introduce κ =KXa
=jXaj2 ∼K to express Eqs. (24)

and (35) compactly as Eqs. (2) and (3).
Now we turn to an alternative finite-system-size regularisation at

T = 0. For a cylinder geometry with any finite circumference (smaller
than the correlation length), the system’s energy will be an analytic
function in the spin-Peierls coupling g, and the change in energy
ΔEQED3

½~u�= EQED3
½~u� � EQED3

½0� due to coupling to a distortion field can
be obtained using the same perturbative expansion,

ΔEQED3
½~u�= � limβ!1

1
2βV

hS2giQED3
+ . . . , ð36Þ

where hS2giQED3
can be obtained in an analogous manner to (34), but

now performing the space-time integral on the geometry
limβ!1S1β × S

2
L, such that

ΔEQED3
½~u�= ~cΔΦ

g2 L3�2ΔΦ j~uj2 ð37Þ

where the constant ~cΔΦ
=2π3=2ΓðΔΦ � 1=2Þ=½ð3� 2ΔΦÞΓðΔΦÞ�. For the

small systems that can be simulated numerically, we expect to be in the
weak-coupling regime, defined in the new regularisation scheme
as g2L3�2ΔΦ j~uj≪1.

Numerical study
We use the infinite density matrix renormalization group algorithm
(DMRG)63–66 to study the lattice model on a cylinder of finite cir-
cumference Ly ≡ L 67,68 and infinite length Lx. This limits the scope of the
simulation by the introduction of a finite-size gap to the gapless DSL,
but we will find that strong signatures of the DSL response remain, as
seen in a previous study of the dynamical structure factor on a cylind-
rical geometry34,69. We aim to provide supporting numerical evidence
for our analytical results with a study of the J1–J2 triangular lattice in the
DSL phase by demonstrating a response consistent with a weak cou-
pling instability under lattice distortions. The exchanges are modified
via the (dimensionless) distortion parameter δ =α u for a given pattern,
where α is a constant microscopic spin-lattice coupling. In all cases, the
states can be written as either one or a sum of three momentum
eigenstates satisfying the normalisation ∑q∣uq∣2≡ u 2 = δ 2/α 2; their
explicit real-space forms are given in the Supplementary Materials. The

energy response of the system in the weak-coupling regime may be
written H½δ�= ðKQ=α

2 � AL
QÞ δ2, where AL

Q is the coefficient of the
energy gain of the spins on a finite cylinder, to be computed numeri-
cally. The potential energy cost of the patterns are not necessarily equal,
but through Eq. (28) we evaluate

KM =
8K
3a2

, KK =
5K
3a2

, KX =
ð5� 2

ffiffiffi
3

p
ÞK

3a2
: ð38Þ

The patterns with larger unit cells have a generally smaller energy cost
for the samemomentum-space distortion magnitude u 2, meaning the
Xa patterns have the lowest potential energy cost of the patterns we
will compare.

To model the lattice distortion, we stabilise the spin-disordered
ground state on a translationally invariant lattice (we take the J2= J1/8
parameter value in the spin-liquid regime). We simulate a cylindrical
geometry infinite in the x-direction by repeating an Lx= 3, 6 unit cell
(chosen to be compatible with the distortion pattern). We consider
first a cylinder with circumference L = 6 using the YC6 boundary
conditions19,70. We then introduce a small distortion with magnitude δ
of the lattice according to one of the patterns, modify the NN and NNN
bonds accordingly, and then useDMRG to find the ground state on the
new lattice. We use the spin-disordered ground state as the initial state
and make no assumptions about the resultant spin state. We proceed
by increasing the distortion parameter δ by a small amount and cal-
culating the resultant ground state with its energy. This process is
repeated for increasing bond dimension χ (up to 4000) in order to
ensure the resultant energy differences are well converged. The VBS
correlations shown have been obtained for bond dimension χ = 2000
after adiabatically increasing the distortion δ. The undistorted ground
state had been optimised using the odd-sector method for the same
bond dimension (cf. Supplementary Note 4).

We consider finite-size systems with circumference Ly = 3, 6, 9;
since the symmetric patterncannotfit on these newgeometries,we are
restricted to only studying the momentum-eigenstate patterns
Q =M3, K3, X3. These patterns all fit in a six-site unit cell, which we can
fit on the YCN geometry for N a multiple of 3. The responses ΔE(δ) for
L = 3, 6 are well converged for all δ and well described by a quadratic
(fitted to exponent 2); for L = 9, we are able to converge one point
δ = 0.002 for the three patterns (using up to χ = 7000). Due to this
numerical limitation, we cannot compare the amplitudes obtained
from fitting for all system sizes, so instead we focus on comparing the
energy gain ΔE(δ =0.002) in Fig. 2d as a function of system size.

Dynamical phonons
In this section, we will evaluate the effect of algebraic VBS fluctuations
of the stable DSL phase on the spectrum of the phonons. At zero-
temperature we find a continuous spectrum of phonons39 with a
divergent spectral weight asω → 0. At larger temperature, the analysis
in the main text shows there should instead be a well-defined pole in
the phonon propagator with an energy that corresponds to a renor-
malised phonon frequency.

To describe this effect, we first effectively incorporate the VBS-
monopole fluctuations of the DSL to produce the dressed propa-
gator of the (momentum-dependent) phonon modes at quadratic
order39,

Gðω,kÞ= 1

ω0ðkÞ2 � g2ρ�1χVBSðω,kÞ � ω2
ð39Þ

where we take the bare phonon dispersion ω0ðkÞ2 =Kk=ðρjkj2Þ, which
is valid close to Xa where it remains gapped. The spin-VBS channel
susceptibility is given by Eq. (19) at T = 0, featuring a divergent
continuum of excitations atω > c∣k −Xa∣, but is not generally known at
finite temperature. One can write generally χVBSðω,kÞ=T2ΔΦ�3 Fðω=T ,

Article https://doi.org/10.1038/s41467-024-51367-w

Nature Communications |         (2024) 15:7110 9



cjk� kaj=TÞ, where F is an unknown universal scaling function and
constrain it in the large-temperature limit42,71,72.

First, we derive the phase diagramby evaluating the correction to
the Xa phonon energy ω2

a via Eq. (15). For temperatures T ≫ ω, scaling
arguments imply that to leading order χ 0aðω,TÞ∼T�ð3�2ΔΦÞ c+Oðω=TÞ� �
with some constant c 42, and from (15) it follows that the phonon fre-
quency (pole of Ga(ω)) is shifted downwards.

We can find an explicit solution to the equation (15) by con-
sidering ω → 0 and T >0. In this case, above scaling form for χ 0a
becomes exact, yielding 0=ω2

0 � g2ρ�1χ 0að0,TÞ. This is solved when
1∼ g2κ�1T�ð3�2ΔΦÞ, which precisely recovers the critical scaling of the
spin-Peierls temperature TSP as a function of g in Eq. (4).

Conversely,wecananalyse the zero-temperatureT→0 limit in (15)
working perturbatively: If the second term on the right-hand side of
(15) is much smaller than first term, one can iteratively substitute (the
square root of) the left-hand side for ω on the right-hand side, gen-
erating an order-by-order expansion. To leading order, we thus obtain

ω2 ≈ω2
0 � g2ρ�1χ 0aðω0,0Þ+ . . . : ð40Þ

Using χ 0aðω,0Þ∼ω�ð3�2ΔΦÞ, one obtains that the phonon dispersion is
renormalised down to zero energy ω =0 when 1∼ g2κ�1ω�ð3�2ΔΦÞ

0 ,
which coincides with the parameter regime where the perturbative
treatment of (15) breaks down, and yields the scaling law (13) for the
critical spin-Peierls coupling at finite frequency and zero-temperature.

Now we can calculate the momentum-resolved phonon spectral
function: it is given in terms of (39) by Sphononðω,kÞ=2 ImGðω+ iϵ,kÞ.
This second-order perturbative result is plotted using Eq. (19) at T = 0
in Fig. 3a. While even asymptotic results for the frequency-dependent
susceptibility atfinite-T are not exactly known, for illustrative purposes
we heuristically assume a form similar to the expansion obtained by
Sachdev and Ye71;

F�1ðx,yÞ=C + x2 � γ y2 + � � � ð41Þ

where we choose C =0.3 and γ = 1. In Fig. 3c, we plot the phonon
spectral function in the large-T regime which shows a temperature-
dependent softening of the phonon mode towards zero at the spin-
Peierls temperature. This is accompanied by the emergence of a sharp
divergent continuum of excitations which blurs with the mode at low
energies. A better understanding of the scaling form F would allow a
quantitative prediction of RIXS and neutron scattering experiments, as
well as the full phase diagram.

Data availability
The numerical data presented in this work are available on Zenodo73.

Code availability
The DMRG code is related to the publicly available TeNPy library74

(both deriving from an earlier common version). The lattice-class
implementationwith distortions (alsoused for constructing theDMRG
model), alongside analytic predictions for the phonon spectral func-
tion and the VBS order pattern, are available on Zenodo73.
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