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Hardware-accelerated integrated
optoelectronic platform towards real-time
high-resolution hyperspectral video
understanding

Maksim Makarenko1,2,5, Arturo Burguete-Lopez 1,5, Qizhou Wang1,
Silvio Giancola 3, Bernard Ghanem3, Luca Passone4 & Andrea Fratalocchi 1

Recent advancements in artificial intelligence have significantly expanded
capabilities in processing language and images. However, the challenge of
comprehensively understanding video content still needs to be solved. The
main problem is the requirement to process real-time multidimensional video
information at data rates exceeding 1 Tb/s, a demand that current hardware
technologies cannot meet. This work introduces a hardware-accelerated
integrated optoelectronic platform specifically designed for the real-time
analysis of multidimensional video. By leveraging optical information pro-
cessing within artificial intelligence hardware and combining it with advanced
machine vision networks, the platform achieves data processing speeds of
1.2 Tb/s. This capability supports the analysis of hundreds of frequency bands
with megapixel spatial resolution at video frame rates, significantly out-
performing existing technologies in speed by three to four orders of magni-
tude. The platform demonstrates effectiveness for AI-driven tasks, such as
video semantic segmentation and object understanding, across indoor and
aerial scenarios. By overcoming the current data processing speed limitations,
the platform shows promise in real-time AI video understanding, with poten-
tial implications for enhancing human-machine interactions and advancing
cognitive processing technologies.

The autonomous processing of big data via artificial intelligence (AI)1–3

is opening frontiers in medical4,5, security6,7, robotics8–11, automated
speech recognition12, and natural language processing13 with human-
like and—in some cases—better than humanperformances. Foundation
models are accelerating this development significantly with the

emergence of an understanding of human languages, carrying out
tasks the designer never trained the model on14–16. The latest genera-
tion of foundation models in GPT-4 technology extend such learning
abilities by combining information from languages and images using
different datamodalities14,17,18, while the recently proposedGatomodel
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allows generalist agents to communicate, process pictures, play video
games, and control robotic arms at the same time16,19.

The speed of these developments has significantly outpaced the
velocity of hardware progress, with a roadblock looming on multi-
modal AI applications if new technological platforms to acquire and
process data do not materialize20. This issue is particularly significant
in the emerging horizon of video understanding, representing the
subsequent large language model (LLM) development, which requires
grasping context in four-dimensional spatial and temporal data21–23.

Hyperspectral imaging is the closest existing technology to mul-
tidimensional data flow acquisitions24–27. Hyperspectral imaging aug-
ments two-dimensional spatial pixels with a third dimension
comprising hundreds of frequency channels corresponding to narrow
portions of the spectrum within and beyond the visible range28. These
frequency bands encompass spectral signatures essential for the
identification, measurement, and classification of objects, materials,
and compounds while enabling remote monitoring of their properties
in diverse processes of industrial interest4,5,29–32.

Figure 1 provides an overview of the performance of current
spectral imaging equipment, including both commercially available
devices and those demonstrated in academic literature. We compute
the resolution of each camera as the product of the megapixels per
frequency band and the number of frequency bands they output,
indicated in parenthesis for each point. Additionally, we list the frame
rate of every device after the@ symbol. For each point, we determine
the data rate as the product of the resolution, frame rate, and bit depth
of the pixels in each band. In the current standard for digital video33, a
high-resolution hyperspectral datastream at 4 K (3840 × 2160 pixels),
acquired with hundreds of bands in the visible range between the
wavelengths of 350 nm and 750nm, andwith 12 bits per band, requires
processing a data rate over 1 Tb/s.

Currently, the best snapshot hyperspectral devices capable of
recording more than a hundred frequency bands possess between
three and four orders of magnitude slower data rates and cannot
record at video speed34,35 (Fig. 1). Faster hyperspectral and multi-
spectral technologies with frame rates in the 100 Gb/s range reduce
the spectral resolution by one order of magnitude36–42. At the same
time, accurate one-dimensional scanners43–47 do not meet the spatial
resolution required to capture 2D image flows at video rates. The cri-
tical challenge to reaching real-time Tb/s multimodal data processing
is the speed of data transmission in electronics. State-of-the-art DDR5

memory, with a bandwidth of 500 Gb/s48, exemplifies this barrier that
current technology cannot yet overcome (Fig. 1 dashed line).

While most existing research focuses on acquiring data from
static objects in controlled indoor settings with fixed lighting condi-
tions and scenes, dynamic outdoor data acquisition and processing
presents a challenge49–51. Indoor environments allow controlling fac-
tors such as specular reflections, unwanted shadows, humidity, uneven
spatial and temporal illumination, scene and camera movement, and
the presence of different illumination sources, which dynamically
change outdoors and lead to degraded hyperspectral analysis52–54.
Supplementary Note 1 and Supplementary Fig. 1 provide experimental
examples of these issues with commercially available hyperspectral
devices.

Addressing these problems provides a substantial opportunity in
research to significantly improve this technology, unlocking future
advancements in a wide number of critical applications in the medical,
life sciences, forensics, security, pharmaceutical, environmental,mining
and oil industries that real-time cognitive processing of high-resolution
multidimensional visual data flows could empower4,5,29–32,55–62.

In this work, we present and validate a hardware-accelerated
video understating platform for modern AI learning tasks. We
demonstrate hyperspectral video recording at a rate of 1.175 Tb/s with
>200 frequency bands at 30 FPS and 2% spectral reconstruction error.
Additionally, we present a pipeline that combines motion and spectral
information for video object segmentation and tracking, and show
experimental results on aerial and indoor video sequences.

Results
Figure 2 illustrates the architecture of the hardware-accelerated plat-
form for real-time hyperspectral video understanding we propose to
address the aforementioned issues. A video sequence comprising a
succession of frames (…,βt−1,βt,… )withβt corresponding to the frame
at time t represents the input of the system (Fig. 2a, b). Each frame βt

contains a three-dimensional data representation of the optical infor-
mation flow, with βt

ijðωÞ representing the power density spectrum
emanating from a single spatial point (i, j) in the scene (Fig. 2b, solid
red area).

Figure 2c illustrates the physical components of the hardware-
accelerated platform, comprising a camera sensor modified by inte-
grating an encoder array Es over the sensor’s pixels. This array,
represented by the color squares in the panel, consists of a repeating
pattern of nanostructured encoders that extract spectral features from
each video frame. Figure 2d, e present photographs of the experi-
mental implementation of this concept. Figure 2d shows a view of the
manufactured encoder array at 100 ×magnification, with each colored
square corresponding to a different encoder design. Figure 2e shows
an encoder array integrated on a monochrome camera sensor board
capable of recording 12 megapixels video at 30 frames per second
(DFK 37AUX226 from The Imaging Source). The integrated array acts
analogously to the Bayer array of a color camera, with each encoder
covering one camera sensor pixel, and the designs tiling the sensor
area in groups of nine. Figure 2f shows a scanning electronmicroscope
image of one among the nine encoder groups that tile the sensor array.
Each encoder consists of a repeating free-form nanoresonator geo-
metry and possesses a transmission function Λ̂kðωÞ, with k = 1, …, 9.

When the input data flow impinges on one encoder, the camera
sensor converts the spectrum emanating from a spatial point of the
video frame into a digital scalar coefficient Ŝ

t
ijk read by the camera

hardware:

Ŝ
t
ijk = σ

Z
βt
ijðωÞΛ̂kðωÞdω

� �
, ð1Þ

where σ(x) is the readout input-output response of the single camera
pixel63, or an added nonlinearity implemented in software, and Λ̂kðωÞ is
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Fig. 1 | State-of-the-art in the acquisition of multidimensional optical
information flow.Next to each technology, we indicate the number ofmegapixels
times the number of spectral bands @ frames per second (FPS), as the producer
specifies in the technology datasheet of the hardware used. The dashed line indi-
cates a state-of-the-art DDR5 memory’s ideal bandwidth, which provides the upper
theoretical limit of any electronic technology requiring data transfer. Source data
are provided as this figure data.
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the encoder pixel’s transmission function. We inversely design the
nanoresonators in each pixel using universal approximators based on
themethods described in64–66, however, in contrast to these works, we
employ a pipeline that permits free-form optimization. Free-form
nanostructure design permits achieving encoder responses that can
capture spectral features inaccessible to cuboid-based designs (See
Supplementary Note 2 and Supplementary Fig. 2), which results in a
device better suited for non-ideal outdoor illumination. Fabrication of
these free-form structures involves large-area electron beam litho-
graphy patterning, detailed in the Methods section.

Because these nanostructures can approximate arbitrary
responses65, it is possible to inverse-design the transmission Λ̂kðωÞ of
each encoder to represent a user-defined distribution of amplitude
coefficients for the spectral coordinateω. In this condition, the camera
integration (1) implements the hardware equivalent of a neural net-
work’s multiply-accumulate (MAC) operation, where βt

ijðωÞ represents
the input and Λ̂kðωÞ represent neural weights distributed along the
frequency axis ω. We train the weights Λ̂kðωÞ to implement feature
extraction tasks of a traditional software neural network (see Meth-
ods). The hardware encoder array performs feature extraction opera-
tions at optical speed and in parallel for every pixel, generating a flow
of sparse spectral features Ŝ

t
(Fig. 2i). The camera hardware reads the

feature flow Ŝ
t
and sends it to the software motion encoder Em

(Fig. 2g). The encoder Em combines spectral and motion features
extracted from the data flow into the feature flow tensor F̂

t
(Fig. 2j).

The motion features comprise dynamic temporal changes between
video frames, including the direction and speed of movement of
objects, changes in the flow composition, and variations in illumina-
tion over time. The motion encoder processes these features in real-
time with a memory feedback R̂

t
comprising information extracted

from previous time-frames (Fig. 2g, feedback loop). The feature flow
projects sequentially into a decoder D terminating in a nonlinear

readout (Fig. 2g, right side). The decoder processes the feature tensor
F̂
t

for different end-to-end optimizations of user-defined tasks,
including spectral video reconstruction β̂

t
, video object

segmentation57, and spectral object tracking58 (Fig. 2h).

Spectral video reconstruction
The goal of spectral reconstruction is to predict the visual flow β̂

t
while

minimizing the difference Δω = jjβt � β̂
t jj with the original input βt

(Fig. 2h, rec). We configure the system of Fig. 2 for this task by dis-
connecting the recurrent feedback R̂

t
unit (Fig. 2g, top) and set the

motion encoder Em as the identity operator I, carrying out all encoding
operations through the hardware encoder Es. For the type of encoding
used in this work (see Methods), we decode the information flow
through theprojectorD = Λ̂

yðωÞ, with Λ̂ðωÞ= ½Λ̂1ðωÞ, . . . ,~ΛkðωÞ� being the
set of trained encoder transmission functions. When the projector D
operates on the features flow Ŝ

t
ij arising from one camera pixel i, j, we

obtain β̂
t

ijðωÞ=DŜ
t
ij = Λ̂

yðωÞŜtij =
P

k Λ̂kðωÞŜ
t
ijk , which represents the

optimal least square approximation of the spectral video informa-
tion flow67.

After integrating the hardware encoder, we perform a demosai-
cing operation similar to the debayering process used in traditional
color cameras to preserve the sensor’s resolution. We reconstruct full
spectral information from the camera readings using a bilinear inter-
polation algorithm, where we estimate each pixel’s missing spectral
values through the arithmetic mean of adjacent pixels within the same
spectral band. We apply the process iteratively to each channel using
diluted convolution kernels, ensuring the recovery of a full-resolution
hyperspectral image.

Figure 3 illustrates results of this process for encoder configura-
tions ranging from 2 × 2 to 5 × 5. Figure 3a compares the spatial inter-
polation performance for a single band (monochrome) image sampled
with each encoder configuration. For each image, we report the
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Fig. 2 | Hardware-accelerated video understanding platform. a Example of
hyperspectral video comprising frames βt over time. b Power density distribution
βt
ijðωÞ emanating from one pixel (i, j) in the scene. c Schematics of hardware

encoder placed on top of a camera sensor. d Microscope image of a fabricated
Nk = 9 encoder array. e The visual appearance of an experimental board camera
sensor integratedwith thehardware encoderof (c). fScanning electronmicroscope

(SEM) images of the hardware encoder Es composedof a set of nanoresonatorswith
trained transmission functionsΛk(ω) acting asneuralweights for featureextraction.
g Recurrent AI module comprising a motion encoder, decoder unit, and readout.
h Different video tasks computed by this platform (rec: reconstruction, seg: seg-
mentation, trk: tracking). i Schematic illustration of spectral features read by (c).
j Schematic representation of combined spectral and motion features.

Article https://doi.org/10.1038/s41467-024-51406-6

Nature Communications |         (2024) 15:7051 3



normalized root mean square error (NRMSE), structural similarity
index measure (SSIM), and peak signal-to-noise ratio (PSNR) of the
interpolation compared to the original graphic.

Figure 3b compares the spectral performance of 2 × 2–5 × 5
encoder configurations. The histograms display the distribution of the
spectral reconstruction error for the spectra of each color panel of
the color calibration palette inset in each plot. As in panel Fig. 3a, the
palette image is interpolated according to the number of encoders.
The results show a trade-off between spatial and spectral information
quality for different encoder numbers. The mean spectral recon-
struction difference decreases linearly as the number of encoders
increases from 2× 2 to 4 × 4, with each additional encoder decreasing
the difference by ~0.0032. However, the trend stops at the 4 × 4–5 × 5
transition, as the effect of adding nine additional encoders is less sig-
nificant than adding one encoder in configurations below 4 × 4.

Similarly, the RMSE error for spatial information increases linearly
with the number of encoders. For 2 × 2–4 × 4, each additional encoder
increases the error by ~0.0068 until the 4 × 4–5 × 5 transition shows a
decreased benefit from adding more encoders. Overall, the total spa-
tial reconstruction accuracy regarding NRMSE remains between 0.1
and 0.17 for all encoder configurations. In contrast, the mean spectral
reconstruction error ranges between 0.36 and 0.76.

Figure 3c–e present scanning electron microscope (SEM) images
of experimental realizations of 2 × 2, 3 × 3, and 4 × 4 encoder config-
urations, respectively. Supplementary Note 3 and Supplementary
Fig. 3 discuss the hardware encoder integration with the camera and

the performanceof 2 × 2–5 × 5 encoder configurations onclassification
and segmentation tasks. Table 1 summarizes the results.

Figure 4 presents experimental results of the hardware-
accelerated hyperspectral platform in field applications. Figure 4a
validates the reconstruction of a single video frame by using a cali-
bration palette composed of various colors with known reflection
spectra. The test compares two hyperspectral images with 204 fre-
quency bands each, one captured with our hardware-accelerated
camera with 12 Megapixels, Nk = 9 trained encoders on a publicly
available general hyperspectral dataset54, and a video rate of 30 FPS,
and theotherobtainedwith a commercial SPECIM IQ (Specim, Spectral
Imaging Ltd.) hyperspectral camera, which possesses 0.26 Megapixels
and a 0.016 FPS acquisition rate. We acquired both images outdoors
under direct sunlight illumination, with the SPECIM IQ mounted on a
tripod to avoid motion blur from the low framerate. The solid area in
Fig. 4a shows the distribution P(Δω) of the absolute spectral difference
Δω between the data retrieved with the two cameras. The hardware
accelerated platform, while working at an acquisition rate ~2000 times
faster, provides the same spectral prediction for the same number of
bands, with an average reconstruction difference below 3%. The insets
in Fig. 4a show reconstructed RGB images of the palette from hyper-
spectral data.

Figure 4b–g illustrate a field application for real-time video
understanding using an Unmanned Aerial Vehicle (UAV). We integrate
the hardware-accelerated platform of Fig. 2e on a Matrice 300 RTK
drone (DJI). Figure 4b shows a photograph of the drone in flight, with
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the inset showing a closeup of the hardware-accelerated hyperspectral
camera. Supplementary Note 4 and Supplementary Fig. 4 present
additional details of this component. We use the drone to record a
total of 80min of aerial hyperspectral video footage at 30 frames per
second, capturing the terrain from an altitude of 50m. Figure 4c dis-
plays a selectionof raw frames fromtheoriginalhyperspectral footage.
Figure 4d shows an extracted hyperspectral video frame, while Fig. 4e
illustrates the reflection spectra associated with one spatial point
(panel d, yellow dot p). Figure 4f shows a complete 3D hyperspectral
map representing a 0.5 km2 area of the terrain obtained by processing
the hyperspectral aerial footage. We compute the map using
Pix4DMapper68, a photogrammetry software that stitches video
frames into 3Dmodelsof surveyed locations.We implement aK-means
clustering algorithm to analyze the hyperspectral data further, seg-
menting it into four distinct clusters based on depth and spectral
dimensions (Fig. 4g). We visualize these clusters by plotting each pixel
of the 3D hyperspectral map with the corresponding spectral color in
panel f. The red pixel cluster in the map represents high-elevation
areas of the buildings hosting metallic heating, ventilation, and air
conditioning (HVAC) units. Light violet pixels correspond to rooftop
surfaces, which the clustering algorithm segments as the strongest
light-reflecting scene objects. Yellow pixel clusters map concrete,
which appears as the buildings’ walls and the building’s rooftop in the
lower right area where dust has accumulated. The blue pixels combine
information about objects above the ground that predominantly
reflect green light, marking the signature of chlorophyll and indicating
specific species of vegetation. Finally, green pixels map the
ground plane.

Hyperspectral video segmentation and tracking
Video Object Segmentation (VOS) in AI video understanding aims to
classify and monitor target objects distinct from the background
across video frames over time. Figure 5 illustrates the two principal
methodologies in VOS. One-Shot VideoObject Segmentation (OVOS)69

uses manually labeled reference frames to instruct the segmentation
algorithm on the initial composition of targets (Fig. 5a, b). This tech-
nique is semi-supervised and necessitates human input to specify the

objects of interest. Target labeling uses either a segmentation map
(Fig. 5b, cyan and yellow transparencies) or a bounding box for visual
object tracking (Fig. 5b, cyan and yellow rectangles). Zero-Shot Video
Object Segmentation (ZVOS), conversely, autonomously processes
objects with different visual characteristics without human-defined
labels (Fig. 5c).

The main limitation of current VOS processes is that AI cannot
segment information that cameras cannot capture, that is, light
beyond RGB colors. The hardware-accelerated hyperspectral platform
introduced in this work addresses this problemby empowering AIwith
spectral features, which provide more comprehensive information
than primary colors. In contrast to methods where the hypercube is
recorded and fed to AI models afterwards, we obtain spectral features
from a scene in real-time thanks to the the optical processing of the
hardware encoder array. This approach allows carrying out VOSon live
video, or at a notable speedup in recordings compared toworkingwith
hypercubes.

Figure 6a illustrates the configuration of the hardware-
accelerated video understanding platform for one-shot video seman-
tic segmentation. In this system, the spectral features arising from the
hardware encoders enter amotion encoder Em comprising five integral
modules that incorporate state-of-the-art spatial-time network
models70–72. The first module, the query key encoder (Fig. 6a, Ek

q unit),
extracts spectral-spatial image features kQ, which the query-memory
projection (Fig. 6a, QMP) processes. The QMP computes similarities
between the kQ features and the spectral-spatial features kM arising
from previous frames extracted by the memory key encoder (Fig. 6a,
Ek
m unit). The QMP evaluates the degree of affinity via a similarity

matrixW 2 RHW ×HW :

W
�
kQ,kM�

i,j =
exp

�
kQ
i � kM

j

�
P

j exp
�
kQ
i � kM

j

� , ð2Þ

where the ⊙ operator is the dot product. The matrix entries Wi,j

furnish a similarity score between the input features kQ and kM ranging
between zero and one. The mask adjustment module (Fig. 6a, MAM)
processes the data by projecting the video mask vM, computed from
previous frames by thememory value encoder (Fig. 6a, Ev

m unit), to the
QMP output using the following similarity matrix W:

vQ =W
�
kQ,kM�vM : ð3Þ

The mask adjustment module output represents the feature ten-
sor F̂

t
for the current timestep t (Fig. 2i). Both key and value encoders

are implemented with the ResNet architecture73, using ResNet50 and
ResNet18 respectively. Adhering to the methodology outlined in the
STM practice70, we utilize res4 features with a stride of 16 from the
foundational ResNets as our principal backbone features, while omit-
ting res5. We employ a 3 × 3 convolutional layer, without nonlinearity
as a projection mechanism from the backbone feature towards either
the key space (dimensionality of Ck = 128) or the value space (dimen-
sionality of Cv = 512). The output decoder further processes F̂

t
to

predict the mask for the frame at timestep t, and output the frame
itself. We utilize the refinement module from74 as the core component
of our decoder. Initially, the read output is condensed to 256 channels
through a convolutional layer and a residual block75. Subsequently,
several refinement modules sequentially double the size of the com-
pressed feature map. Each stage of refinement incorporates the pre-
vious stage’s output and a corresponding scale feature map from the
query encoder via skip connections. The final refinement block’s out-
put undergoes reconstruction into the object mask with a concluding
convolutional layer, succeeded by a softmax function. All convolu-
tional layers within the decoder apply 3 × 3 filters, generating an out-
put of 256 channels, except the ultimate layer,which yields a 2-channel

Table 1 | Performance metrics for different encoder
configurations

Metric Encoder configuration Value

NRMSE (Set12) 2 × 2 0.097

3 × 3 0.119

4 × 4 0.170

5 × 5 0.162

PSNR (dB) (Set12) 2 × 2 24.76

3 × 3 23.12

4 × 4 19.70

5 × 5 20.34

SSIM (Set12) 2 × 2 0.82

3 × 3 0.76

4 × 4 0.61

5 × 5 0.63

Classification Accuracy (Hyperspectral
Flowers)

2 × 2 94.1%

3 × 3 94.5%

4 × 4 92.3%

5 × 5 90.2%

mIoU (FVgNET) 2 × 2 0.71

3 × 3 0.69

4 × 4 0.66

5 × 5 0.63
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output. Thedecoder predicts themask at a quarter scale of the original
input image. The mask and frame then form feedback for the motion
encoder’s successive predictions.

Figure 6b–e presents the results on OVOS using the hardware-
accelerated platform of this work operating with 204 bands
(OVOS204) applied to two distinct segmentation tasks. The first task
(Fig. 6b, c) uses hyperspectral video data acquired with the UAV of
Fig. 4 to track and segment the hyperspectral signature characterizing
a specific car from many with the same visual color appearance in the
aerial footage (Fig. 6b). Accessing hyperspectral signatures allows the
user to find and correctly label objects that color cameras cannot
distinguish due to a lack of information. Figure 6c shows how the
system successfully tracks the target’s position over time. The images
in Fig. 6c depict the data evolution directly from the spectral feature
data stream received by the camera, which contains the features
motion encoder will process. In the second task (Fig. 6d), wemounted
the hardware accelerated camera inside a car and performed the same
type of hyperspectral tracking, segmenting spectral signatures corre-
sponding to specific vehicles (Fig. 6d, e).

Figure 7 showcases additional ZVOS examples of how hyper-
spectral video flows could empower AI understanding. Figure 7a, b

show the system configuration for ZVOS. A query encoder module
(Fig. 7a, Ek

q unit) extracts spectral-spatial features kQ using the same
encoder architectures as in the OVOS task. A query memory corre-
lation module processes these features nonlinearly (Fig. 7a, b,
QMCM). The QMCM understands dense spatial relationships in the
input frame features by using the correlation matrix Wcorr, defined
as:

Wcorr

�
kM ,kQ�= 1

Ck
softmax

�
kM�kQ�y�, ð4Þ

to project the query key feature vector kQ:

vQmem =Wcorr

�
kM ,kQ�kQ

: ð5Þ

The top QMCM understands relationships between present kQ,
and past kM query features arising from the memory encoder Ek

m. The
bottom QMCM understands the correspondence of kQ features with
themselves. The motion encoder Em concatenates the output from
both QMCMs with the initial features kQ. The decoder uses the same
architecture as in the OVOS scheme, outputting the predicted mask
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Fig. 4 | Real-time hyperspectral UAV scene reconstruction. a Distribution of
spectral reconstruction difference for a reconstructed hyperspectral frame image
(inset) at 204bandsusing the platformof Fig. 2 at 30 FPS and a commercial SPECIM
IQ operating at 0.016 FPS.bCameramodulewith hardware encoders integratedon
DJI Matrice 300 RTK drone, the inset shows a closeup of the camera. c Raw frames

in the hyperspectral UAV video sequence. d Visualization of a single hyperspectral
frame acquired by the drone at 30 FPS. e Power density spectrum (PDS) retrieved at
the spatial pixelp in panel d. fReconstructed three-dimensional hyperspectral map
from the video sequences, with spectral distribution visualized via K-MEANS clus-
tering. g Cluster’s spectral distribution. Source data are provided as Fig. 4 data.
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alongside the frame, which becomes feedback for Em as a memory
frame Rt.

We benchmark the hardware-accelerated platform on a hyper-
spectral video dataset (FVgNET-video) built from the public FVgNET
dataset66. FVgNET-video consists of 30 FPS hyperspectral video
sequences of combinations of artificial and natural fruits and vege-
tables placed on a rotating turntable (Fig. 7c, d). Figure 7c–h illustrate
the performance of hardware-accelerated hyperspectral ZVOS on
samples from the dataset. We compare the performance of the
hyperspectral camerawith a simulated RGB camera that records at the
same resolution and frame rate. Figure 7c, d show segmentationmasks
generated in real-time from a video sequence showing two grapes, one
banana, one orange, and one potato on the turntable. One of the grape
bundles is artificial, while the rest are natural. Figure 7c shows the
result of segmentation masks created on RGB data, with each color
marking a different object class. These images show that the RGB
camera cannot distinguish between artificial and natural objects, pre-
dicting that both grapes are of the same type. Figure 7d shows the
segmentation masks resulting from hyperspectral data, allowing AI to
identify all items correctly. Figure 7e presents the CIE 1931 chromati-
city diagramdistribution of the RGB values for the artificial and natural
grape bundles of the video sequence. The panel shows there is little
chromaticity variation between these samples, causing the RGBVOS to
fail. Figure 7d shows the reflection spectra for each grape bundle. In
contrast to panel e, there is significant variation in the spectral
response of the two objects, explaining the success of the hyper-
spectral VOS. Figure 7g, h quantify this performancedifference further
by showing the confusionmatrices for the RGB and hyperspectral VOS
tasks, respectively. In theRGB case, the segmentation fails in twoof the
eight categories, with a substantial number of incorrect pixels for

artificial oranges and real grapes. There is also significant confusion in
the case of artificial grapes, with over 40% of all pixels classified
incorrectly. Conversely, the segmentation is successful for all cate-
gories in the hyperspectral case, with <5% of the pixels incorrectly
classified.

Discussion
This work implemented and field-validated a hardware-accelerated
platform for real-time hyperspectral video understanding, demon-
strating hyperspectral UAV scene reconstruction, hyperspectral
video object segmentation, and classification using >200 frequency
bands at 12-megapixel spatial resolution, and video rates of 30 FPS.
This platform technology processes information beyond 1 Tb/s,
enabling the current generation of AI to understand information that
color video acquisition systems do not discern, and current hyper-
spectral imaging technologies cannot acquire in real-time and at
these resolutions. This work opens research and application oppor-
tunities for AI video understanding utilizing broadband hyperspec-
tral data flows for environmental monitoring, security,
pharmaceutical, mining, and medical diagnostics that require pro-
cessing high-resolution spectral and spatial information at video
rates. Future research can focus on developing scalable systems that
benefit both the adoption of this technology and the ease of
acquiring real-world hyperspectral data flows for subsequent AI
development. The principles andmethodologies devised in this work
can also be generalized across various fields and help impact the way
AI interacts with the visual world, particularly for foundation models
like GPT-4 and Claude2. The technology we have introduced could
empower this generation’s AI to apply its information processing
capacities to a broader set of multimodal tasks, facilitating the

a

b

predictions

query frames

reference 
(one-shot) label

c predictionsquery frames

Fig. 5 | Approaches to AI video segmentation and tracking. a, b One-shot video object segmentation (OVOS) and (c) zero-shot video object segmentation (ZVOS).
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pursuit of more robust forms of AI, such as Artificial General
Intelligence76.

Methods
Hardware encoder nanofabrication
We start with a 15mm wide and 500 μm thick square piece of fused
silica (UniversityWafer) as our substrate. To ensure a clean surface, we
sonicate the substrate in isopropyl alcohol at 25 KHz for 5min, fol-
lowed by additional sonication at 45 KHz for 5min. We then grow a
200nm thick layer of hydrogenated amorphous silicon (a-Si:H) using
plasma-enhanced chemical vapor deposition (PECVD). Afterward, we
spin coat a positive electron beam resist layer on the sample. Because
of their complex geometry, exposing free-form nanostructures

requires conducting proximity effect correction prior to their writing.
We conduct shape-based proximity effect correction by simulating the
energy absorption of the nine encoders’ design, as shown in Fig. 2b, on
the resist using the software package BEAMER (GenISys GmbH). We
then manually deform the shapes of each of the nine designs so that,
upon exposure, the shape of the energy absorption patches on the
resist matches that of the resonator designs. We print the nanos-
tructures pattern using a JEOL JBX-6300FS electron beam lithography
system at 100 kV accelerating voltage. Following this, we develop the
resist and perform a liftoff process, creating a hard mask with the
shape of the nanostructures on the silicon. Finally, we use reactive ion
etching (RIE) to completely remove the unprotected silicon and
remove the hard mask.
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Hardware encoder training
It is possible to train the encoders response functions Λ̂kðωÞ using
both linear and nonlinear feature extraction schemes. In both cases,
the starting point is to flatten the hyperspectral tensor into a single
matrix containing the power density spectra of a set of camera pixels
on each column, creating a dataset β for subsequent training. To
provide feature extractions to this data, we can use any supervised or
unsupervised techniques developed in deep learning to train the
relevant distributions of coefficient Λ(ω). Once these distributions of
values are found, we use ALFRED64,65, an advanced optimization fra-
mework for the design and implementation of nanoresonators with

user-defined broadband responses across the visible and infrared.
This article uses a linear encoder Λ developed through an unsu-
pervised learning approach utilizing Principal Component Analysis
(PCA). This process entails hardware encoding Es, in which we spe-
cifically selected the nine strongest principal components, denoted
as Λ̂

y
, following the singular value decomposition of data tensor β.

This methodology is not limited to PCA and could be easily extended
into a supervised learning framework. In order to do so, we refine the
encoder’s training process by incorporating differentiable spectra
projector modules64,66, facilitating an iterative refinement where the
model learns to adjust the distributions of Λ(ω) in order to find the
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minimum loss Lðβt , β̂
tÞ in the iterative end-to-end optimization. This

supervised framework enables a more targeted optimization of the
encoders, ensuring that the output not only captures the principal
variances within the dataset but also aligns closely with final appli-
cation goals.

While it is possible to train the hardware encoder to the specific
problem, due to the absence of hyperspectral video training datasets,
we here use in every application the same set of encoders trained from
a publicly available dataset of general hyperspectral images under
various illumination conditions54.

Data availability
Source data are provided with this paper.

Code availability
The code ALFRED used in this work is available at https://github.com/
makamoa/alfred.
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