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Decoding the genomic landscape of
chromatin-associated biomolecular
condensates

Zhaowei Yu1,5,QiWang1,5,QichenZhang2,3,5, YawenTian3, GuoYan3, JidongZhu4,
Guangya Zhu 3 & Yong Zhang 1

Biomolecular condensates play a significant role in chromatin activities, pri-
marily by concentrating and compartmentalizing proteins and/or nucleic
acids. However, their genomic landscapes and compositions remain largely
unexplored due to a lack of dedicated computational tools for systematic
identification in vivo. To address this, we develop CondSigDetector, a com-
putational framework designed to detect condensate-like chromatin-asso-
ciated protein co-occupancy signatures (CondSigs), to predict genomic loci
and component proteins of distinct chromatin-associated biomolecular con-
densates. Applying this framework tomouse embryonic stem cells (mESC) and
human K562 cells enable us to depict the high-resolution genomic landscape
of chromatin-associated biomolecular condensates, and uncover both known
and potentially unknown biomolecular condensates. Multi-omics analysis and
experimental validation further verify the condensation properties of Con-
dSigs. Additionally, our investigation sheds light on the impact of chromatin-
associated biomolecular condensates on chromatin activities. Collectively,
CondSigDetector provides an approach to decode the genomic landscape of
chromatin-associated condensates, facilitating a deeper understanding of
their biological functions and underlying mechanisms in cells.

Over the last decade, there has been growing appreciation for the
biological role of biomolecular condensates, which aremembrane-less
compartments that compartmentalize and concentrate specific pro-
teins and/or nucleic acids1,2. Liquid-liquid phase separation (LLPS) has
been proposed as a key organizing principle of biomolecular con-
densates, driven by weak, multivalent, and highly collaborative mole-
cular interactions2. The molecular interactions inside biomolecular
condensates usually involve diverse collaborative components that
can be categorized into two main groups: scaffolds and clients. Scaf-
folds drive the formation of condensates, while clients participate by
binding to scaffolds3–6. Biomolecular condensates are implicated in

various cellular functions, and their aberrations are associated with
numerous diseases1,7. Recently, growing evidences have demonstrated
the widespread existence and functional significance of chromatin-
associated biomolecular condensates. Many chromatin-associated
processes, such as DNA replication8, DNA repair9, transcription
control10–13, and chromatin organization14–17, have been found to take
place within biomolecular condensates at chromatin18 (Supplemen-
tary Data 1).

Understanding chromatin-associated biomolecular condensates,
including their genomic loci and collaborative components, is crucial
for elucidating their impact on chromatin activities. Although some
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chromatin-associated biomolecular condensates have been linked to
well-characterized chromatin states, such as super-enhancer10,11 and
heterochromatin15–17, these connections have generally been reported
without comprehensive associations with genome-wide loci, except
for a few loci of interest validated by low-throughput experiments.
Until now, the genomic landscape of chromatin-associated biomole-
cular condensates has remained poorly understood. However, no
genomic approach has been designed yet to capture the comprehen-
sive genomic landscape of chromatin-associated biomolecular con-
densates, primarily due to the following challenges. First, the
complexity of biomolecular condensates arising from their diverse
components18 and context-specific molecular collaborations among
these components along the chromatin13, making it difficult to sys-
tematically capture chromatin-associated biomolecular condensates
by targeting a single factor. Second, even for chromatin-associated
protein (CAP) with experimental evidence of condensation3–6,19, dis-
tinguishing its condensation-associated binding sites from non-
associated binding sites in individual datasets is not a straightfor-
ward task.

With the rapid accumulation of CAP occupancy profiles and
proteome-scale characterization of condensation potential, it is now
possible to overcome the above challenges of decoding the genomic
landscape of chromatin-associated biomolecular condensates by
integrating multi-dimensional data. In this study, we introduce Con-
dSigDetector, a computational framework that systematically predicts
chromatin-associated biomolecular condensates. This framework
overcomes the two challenges mentioned above by utilizing topic
modeling to detect genome-wide context-dependent collaborations
among CAPs possessing high condensation potential from hundreds
of CAP occupancy profiles. These collaborations along the chromatin
are termed Condensate-like chromatin-associated protein co-
occupancy Signatures (CondSigs). The framework not only identifies
the collaborative components of distinct biomolecular condensates,
but also assigns them to the associated genomic loci. We apply this
computational framework to two cell types with abundant ChIP-seq
data, and predict hundreds of chromatin-associated biomolecular
condensates, along with their genomic loci, which are supported by
multi-omics data and experimental evidences. CondSigDetector is a
computational framework for decoding the genomic landscape of
chromatin-associated biomolecular condensates, providing a valuable
resource for investigating the functional effects and underlying
mechanisms of chromatin-associated biomolecular condensates on
chromatin activities.

Results
Overall design of CondSigDetector
By integrating ChIP-seq datasets of hundreds of CAPs in the same cell
type, we observed frequent co-occupancy of CAPs across the genome
(Supplementary Fig. 1a, b). However, co-occupancy events could not
be fully explained by DNA binding motifs or chromatin accessibility
(Supplementary Fig. 1c–f), two known determinants of CAP co-
occupancy events20. Furthermore, neither the presence of histone
modifications nor physical protein-protein interactions could fully
account for all co-occupancy events (Supplementary Fig. 1e–h). This
suggests that alternative mechanisms may also be responsible for
organizing genome-wide co-occupancy events of CAPs. Biomolecular
condensation at chromatin may explain a part of such events, as bio-
molecular condensates are thought to be mediated by collaborations
of components2, and condensations of CAPs have been reported to
influence their chromatin occupancy10,21. This suggests that specific
CAP co-occupancy events could act as signatures of chromatin-
associated biomolecular condensates. Consequently, identifying spe-
cific CAP co-occupancy patterns, particularly those mediated by CAPs
with high condensation potentials, offers a powerful approach to

predict the presence of chromatin-associated biomolecular con-
densate in the genome.

In this study, we aim to predict chromatin-associated biomole-
cular condensates by detecting genome-wide context-dependent col-
laborations of CAPs with high condensation potential, termed
CondSig. We developed a computational framework, Con-
dSigDetector, to systematically detect CondSigs by integrating hun-
dreds ofChIP-seq datasets and condensation-related characterizations
of CAPs (Fig. 1). CondSigDetector comprises three steps: data pro-
cessing, co-occupancy signatures identification, and condensation
potential filtration.

In the first step, the input data, i.e., the collected ChIP-seq profiles
of all CAPs from an identical cell type, is converted into an occupancy
matrix at genome-wide consecutive bins. To address the sparsity of this
matrix, CondSigDetector applies an iterative segmentation method for
each target CAP, which segments the entire occupancy matrix into
smaller sub-matrices (see Methods for details). This segmentation
approach can enhance the detection of CAP collaborations in local
contexts by substantially increasing the occurrence frequency of co-
occupancy events within the sub-matrices (Supplementary Fig. 2a, b).

In the second step, CondSigDetector utilizes a topic model to
identify co-occupancy signatures of CAPs, representing frequent CAP
collaborations, from the sub-matrices. Given the significant differ-
ences in co-occupancy frequencies between promoter and non-
promoter regions (Supplementary Fig. 1a, b), the sub-matrices are
categorized into either promoter or non-promoter groups to identify
co-occupancy signatures separately.Within the topicmodel, each sub-
matrix is treated as a set of documents, where each genomic bin
represents a document and CAPs occupying the bin are considered as
words in the document. Intuitively, the topics learned from topic
modeling, which indicate specific word combinations, can be inter-
preted as co-occupancy signatures of CAPs. Since the number of co-
occupied CAPs within a bin is typically sparse (Supplementary
Fig. 1a, b), CondSigDetector utilizes the biterm topic model, which
outperforms traditional models such as Latent Dirichlet Allocation for
short text22. It has been confirmed that the co-occupancy signatures of
CAPs derived from the biterm topic model exhibit high topic coher-
ence and repeatability among replicates (see Methods for details;
Supplementary Fig. 2c–f).

In the third step, CondSigDetector predicts CondSigs by evalu-
ating the condensation potential for each co-occupancy signature of
CAPs. For each genomic bin, 6 condensation-related features are cal-
culated: the fraction of occupied CAPs with reported LLPS capacity,
the fractionofoccupiedCAPs co-occurring in the samemembrane-less
organelle (MLO), the fraction of occupied CAPs with predicted
intrinsically disordered regions (IDRs), the fraction of occupied CAP
pairs having protein-protein interactions (PPIs), the fraction of occu-
pied CAPs predicted as RNA-binding proteins (RBPs), and the RNA-
binding strength (RBS) of the bin. Intuitively, for a co-occupancy sig-
nature ofCAPs, higher values of these condensation-related features at
signature-positive bins indicate a greater condensation potential. Co-
occupancy signatureswith at least three condensation-related features
strongly and positively correlated with their presence are identified as
CondSigs (see Methods for details). It has been confirmed that the
CondSigDetector can successfully recover most of the identified
CondSigs when specific transcription factor families were removed
from the full dataset (Supplementary Fig. 2g, h), which demonstrates
the robustness of the computational framework. Finally, Con-
dSigDetector eliminates redundant CondSigs containing similar
components.

Identification of CondSigs in mouse and human cell lines
CondSigDetectorwas applied to two cell typeswith abundantChIP-seq
data: mESC and human K562 cell line, to identify CondSigs. After
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stringent quality control, we gathered qualified ChIP-seq data for 189
CAPs in mESC and 216 CAPs in K562 (Supplementary Data 2). Due to
the lack of a qualified RNA-binding profile for mESC, the RNA binding
strength, one of the condensation-related features,wasnot included in

mESC. We identified 25 promoter CondSigs and 36 non-promoter
CondSigs in mESC (Fig. 2a), along with 75 promoter CondSigs and 93
non-promoter CondSigs in K562 (Supplementary Fig. 3). Additionally,
we identified 14,345 promoter CondSig-positive sites and 24,500 non-
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NoDerivs 4.0 International license.
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Fig. 2 | CondSigs in mESC and K562. a Heatmaps showing identified CondSigs in
mESC at non-promoter (NP) and promoter (P) regions. Each row represents a
CondSig and the row name indicates the component CAPs of the given CondSig.
Each column represents a condensation-related feature and the colours represent
AUROC. b The stacked bar plots showing the fraction of CondSigs with compo-
nents in known chromatin-associated biomolecular condensates (Supplementary
Data 1). The overlap set of known chromatin-associated biomolecular condensates
and knownMLOs is not considered in the calculation. cHeatmaps showing k-means
clustering for component CAPs in mESC (left) and K562 (right) with PS-Self and PS-
Part ranking score (see Methods for details). Both high PS-Self and PS-Part ranking
score refer to scaffolds in phase separation. Four clusters (“Both”: both Self and
Part, “Self”: Self-only, “Part”: Part-only, and “None”) were shown. d Box plots
showing component CAPs of CondSigs (all, components without known phase-
separation proteins and components without predicted IDR-containing proteins)
and all predicted IDR-containing proteins have higher fractions of charged blocks
in amino acid sequences than control (mouse or human proteome) in mESC and
K562 (see Methods for details about the prediction of IDRs of proteins and the

annotation of charged amino acid blocks). The centre lines in boxes mark the
median, the box limits indicate the 25th and 75th percentiles, and the whiskers
extend to 1.5 × the interquartile range from the 25th and 75th percentiles. Statis-
tical significances between component CAPs / IDPs and control proteome were
evaluated by one-sided Wilcoxon rank sum tests, *** represents p-value < 1 × 10−3

and **** represents p-value < 1 × 10−4. Sample sizes used to derive statistics are 103,
79, 31, 5835 and 55,260 formESC and 176, 151, 62, 6062 and 20,594 for K562. e. Box
plots showing component CAPs (with orwithout knownphase-separating proteins)
have higher PSPire scores than all predicted IDPs or the entire proteome. The
scores were from PSPire, a machine learning predictor for the precise prediction of
phase-separating proteins27. The centre lines in boxes mark the median, the box
limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5 × the
interquartile range from the 25th and 75th percentiles. Statistical significanceswere
evaluated by two-sided Welch’s t-tests, ** represents p-value < 0.01 and **** repre-
sents p-value < 1 × 10−4. Sample sizes used to derive statistics are 101, 78, 5,864 and
21,615 for mESC and 176, 151, 6,096 and 20,296 for K562. Source data are provided
as a Source Data file.
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promoter CondSig-positive sites in mESC, along with 14,201 and
38,963 CondSig-positive sites in K562. To assess the reliability of
identified CondSigs, we examined whether their component CAPs are
involved in known chromatin-associated biomolecular condensates.
Among the identifiedmESCCondSigs, 88.0% of promoter and 91.7% of
non-promoter CondSigs contain at least one component CAP present
in known chromatin-associated biomolecular condensates that do not
overlap with input MLOs (Fig. 2b). For example, a non-promoter
CondSig contains SS18, SMARCA4 (BRG1), and DPF2, which are three
known components of the known SS18 cluster23 (Fig. 2a, Supplemen-
tary Fig. 4a, Supplementary Data 1). In K562 cells, 36.0% of promoter
and 40.9% of non-promoter CondSigs have at least one component
CAP found in known chromatin-associated biomolecular condensates
(Fig. 2b). One example of a non-promoter CondSig includes CBX5
(HP1α), TRIM28 and CBX1 (HP1β) (Supplementary Fig. 4b, Supple-
mentary Data 1), with HP1 and TRIM28 were reported to drive LLPS
with H3K9me3-modified chromatin cooperatively15. These results
provide support for the reliability of the identified CondSigs.

Some component CAPs are found in more than one identified
CondSig (Supplementary Fig. 4c, d). For example, DDX21, a DEAD-box
RNA helicase known to participate in biomolecular condensate24, is
present in 8 non-promoter CondSigs in mESC. We examined the
similarity of present loci betweenCondSigpairs containing at least one
shared component CAP and found that only 0.6% of mESC pairs and
0.9% of K562 pairs had a Jaccard index higher than 0.7. This suggests a
high diversity of present loci of identified CondSigs, even when they
share somecommon components. To investigate the potential roles of
component CAPs in CondSigs, we classified all predicted component
CAPs into four clusters: “both Self and Part”, “Self-only”, “Part-only”,
and “none”, according to their calculated potentials for self-assembly
(PS-Self) or interaction with partners (PS-Part) to undergo phase
separation25 (see Methods for details). 90.2% and 92.6% of component
CAPs in mESC and K562 were classified into “both Self and Part”, “Self-
only” or “Part-only” clusters (Fig. 2c). And the percentages are still high
in mESC (90.9%) and K562 (90.8%) when we excluded known MLO
memberships from the component CAPs (Supplementary Fig. 4e).
Furthermore, we found that component CAPs of CondSigs have a high
fraction of charged amino acid blocks (Fig. 2d), which is an important
resource for multivalency26. After removing phase-separating proteins
or predicted IDR-containing proteins, the remaining component CAPs
still showed comparable fractions to all IDR-containing proteins and
higher fractions than the entire proteome. We also utilized PSPire, a
recently developed machine learning predictor designed to integrate
residue-level and structure-level features for the precise prediction of
phase-separating proteins27, to examine the phase separation capa-
cities of component CAPs. Remarkably, the component CAPs exhib-
ited higher PSPire scores, which remained elevated after the exclusion
of known phase-separating proteins (Fig. 2e). These results suggest
that the component CAPs of identified CondSigs have strong capa-
cities to form biomolecular condensates, and may function in a
context-dependent manner.

Theprevious studiesdemonstrated thatbiomolecular condensate
can form at super-enhancers, i.e., clusters of enhancers densely occu-
pied by the master regulators and mediators, and these condensates
can regulate gene transcription by concentrating transcription
machinery10,28.When comparing the genomic loci of super-enhancers29

and CondSig-positive sites, we found that 93.8% (743 out of 792) of
super-enhancers in mESC and 97.5% (668 out of 685) in K562 over-
lapped with CondSig-positive sites. Moreover, we evaluated the relia-
bility of CondSig-positive sites by considering sites significantly
affected by the inhibition of well-characterized CAPs involved in bio-
molecular condensates as potential positive markers. We re-analyzed
H3K27ac, Pol II ChIP-seq data in mESC following the inhibition of
EP30030, an important chromatin regulator associated with biomole-
cular condensates in mESC31. After treatment with A-485, the EP300

inhibitor, we observed a substantial decrease in H3K27ac and Pol II
signals at EP300 peaks. Specifically, 51.2% (3652 out of 7126) of
CondSig-positive EP300 peaks exhibited a significant decrease in
H3K27ac signals, while only 20.8% (1231 out of 5906) CondSig-negative
EP300 peaks exhibited a similar significant decrease (Supplementary
Fig. 4f). For Pol II, the percentages were 42.7% and 21.9%. The results
indicate that transcription regulation of CondSig-positive sites was
greatly affected by EP300, a condensate-involved CAP, supporting the
accuracy of identified CondSig-positive sites.

Chromatin properties of identified CondSigs
To investigate the chromatin features of identified CondSigs, we first
analyzed the concentration levels of the component within CondSigs
by calculating ChIP-seq signal strength for each component. We divi-
ded the ChIP-seq peaks of each component CAP into CondSig-positive
peaks or -negative peaks based on their overlap with sites where the
given CAP was predicted as a component of any CondSigs (see
Methods for details), and compared their ChIP-seq signals. As shown in
Fig. 3a, most component CAPs displayed significantly higher signal
strength at CondSig-positive peaks in mESC, indicating that CondSigs
can concentrate their components at target genomic loci. For exam-
ple, CTCF, a CAP involved in chromatin insulation32, exhibited sig-
nificantly higher signal strength at CondSig-positive CTCF peaks. To
investigate the biological functional effect of CTCF concentration, we
re-analyzed Micro-C data in mESC33 and found that CondSig-positive
CTCF peaks exhibited significantly higher boundary strength than
CondSig-negative CTCF peaks (Fig. 3b), suggesting that CTCF con-
centration contributes to enhanced chromatin insulation activity. We
then merged the adjacent ChIP-seq peaks to obtain domains for each
component CAP (see Methods for details), and compared the width
distributions of CondSig-positive and -negative domains. As shown in
Fig. 3c, CondSig-positive domains are wider on average for 95.2% and
93.5% of all component CAPs of promoter and non-promoter Con-
dSigs, and the CondSig-positive domains of RUVBL1, TCF3, CTR9,
MTF2 and SUPT6H exceeded 10 kb on average. Additionally, we
assessed the component concentration levels and domain widths of
CondSigs in K562 and found largely consistent results (Supplementary
Fig. 5a, b). These results indicate the component concentration
properties of CondSigs, which is a basic feature of known chromatin-
associated biomolecular condensates18, and suggested a potential
association between biomolecular condensation and stronger effects
on chromatin activities.

Based on previous studies that reported spatially proximal chro-
matin could be involved in the same condensates34,35, we processed to
analyze chromatin contact frequencies within and between CondSig-
positive and -negative domains for each component CAP. In order to
minimize the impact of distinct width distributions between CondSig-
positive and -negative domains, we focused on broad domains
(width > 5 kb). We used cohesin ChIA-PET data from mESC36 to mea-
sure chromatin interactions between genomic loci, and found that
CondSig-positive domains exhibited significantly higher intra-domain
interactions than their CondSig-negative counterparts (Fig. 3d). We
further calculated the fractions of domains with chromatin interac-
tions within the same group of domains for each component CAP, and
found significantly higher frequencies between CondSig-positive
domains compared to CondSig-negative domains (Fig. 3e). For each
component CAP presented in both promoter and non-promoter
CondSigs, we calculated fractions of domains with chromatin inter-
actions between its promoter and non-promoter domains. Our analy-
sis observed that CondSig-positive domains showed significantly
higher frequencies between promoter and non-promoter domains
relative to CondSig-negative domains (Fig. 3f). We also utilized Pol II
ChIA-PET data37 to evaluate the chromatin contact frequencies of
CondSigs in K562, and observed largely consistent results (Supple-
mentary Fig. 5c–e). These results confirmed that the components of
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identified CondSigs can be concentrated in trans through spatially
proximal chromatin. Furthermore, to ensure fair comparison, we
refined the criteria for the identification of CondSig-positive and
-negative peaks to make they are matched in terms of chromatin
accessibility or the number of co-occupied CAPs (see Methods for
details). Subsequent comparisons between the refined CondSig-
positive and -negative peaks/domains confirmed that CondSig-
positive groups consistently exhibit higher signal strength and chro-
matin contact frequencies (Supplementary Fig. 6, 7).

Involvement of DDX21 in chromatin-associated biomolecular
condensate
AlthoughDDX21 can undergo phase separation and has been reported
to participate in nucleolar condensate for Pol I transcription24,38,
additional genomic loci where it may involve into biomolecular con-
densate remain to be elucidated. In mESC, we identified 10 CondSigs

with DDX21 as a component, with 15,578 DDX21 ChIP-seq peaks as
CondSig-positive peaks. To verify the presence of DDX21-associated
biomolecular condensate at these genomic loci, we assessed the sen-
sitivity of DDX21 occupancy at these loci to 1,6-hexanediol (1,6-HD), a
compound used for disrupting liquid-like biomolecular condensates39.
Cleavage Under Targets and Release Using Nuclease (CUT&RUN)
experiments were conducted for DDX21 in both wild type and 1,6-HD-
treated mESC. When all peaks were ranked by the extent to which
DDX21 was decreased upon 1,6-HD treatment, CondSig-positive peaks
were significantly enriched among those that lost DDX21 (Supple-
mentary Fig. 8a, b), demonstrating the strong effect of biomolecular
condensate disruption on CondSig-positive peaks of DDX21. 2,5-HD,
while chemically similar to 1,6-HD, is not as strong as 1,6-HD in dis-
solving the hydrophobicity-dependent condensate39, so it was con-
sidered as a negative control of 1,6-HD. The strong association
between the presence of CondSig and the decrease of DDX21 was also
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Fig. 3 | Chromatin properties of predicted chromatin-associated biomolecular
condensates. a Volcano plots showing concentration levels of component CAPs in
CondSigs in mESC. X-axis represents the log2-transformed fold change of ChIP-seq
signals at CondSig-positive peaks compared to CondSig-negative peaks, while Y-
axis represents the negative log10-transformed adjusted p-value. Statistical sig-
nificance between groups was evaluated by a two-sided Welch’s t-test and the
Benjamini-Hochberg (BH) procedure was applied to adjust p-values for multiple
testing. The vertical dashed line corresponds fold change = 1 and the horizontal
dashed line corresponds to p-value = 0.001. b Line charts showing boundary
strength around CondSig-positive and -negative CTCF peaks. Boundary strength
was calculated using Micro-C data inmESC from the previous study (GSE13027533).
c Scatter plots showing width comparison of CondSig-positive and -negative
domains inmESC. X-axis represents the ratio towhich theCondSig-positive domain
width exceeds the CondSig-negative domain width, and Y-axis represents the
positive domain width. Component CAPs having CondSig-positive domains
exceeding 10 kb on average were labeled. d Intra-domain chromatin contacts of
CondSig-positive or -negative broad domains in mESC. For each component CAP,
an average valid paired-end tags count in each broad domain ( > 5 kb) was calcu-
lated to represent intra-domain contacts. The centre linesmark themedian, the box
limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5 × the
interquartile range from the 25th and 75th percentiles. Statistical significance

between groups was evaluated by a one-sided Welch’s t-test, * represents p-
value < 0.05 and **** represents p-value < 1 × 10−4. Sample size used to derive sta-
tistics is 61 for promoter regions and 91 for non-promoter regions. Cohesin ChIA-
PET data used in the analysis was from the previous study (GSE5791336). e Box plots
showing intra-group chromatin contacts between CondSig-positive or -negative
domains inmESC. For each component CAP, the fraction of domains having at least
one valid paired-end tagwith other intra-group domains was calculated. The centre
linesmark themedian, the box limits indicate the 25th and 75th percentiles, and the
whiskers extend to 1.5 × the interquartile range from the 25th and 75th percentiles.
Statistical significance between groups was evaluated by a one-sidedWelch’s t-test,
*** represents p-value < 1 × 10−3 and **** represents p-value < 1 × 10−4. Sample size
used to derive statistics is 61 for promoter regions and 91 for non-promoter
regions. f. Box plots showing NP (non-promoter)-P (promoter) chromatin contacts
between CondSig-positive or -negative domains in mESC. For each component
CAP, the fraction of non-promoter domains having at least one valid paired-end tag
with its promoter domains was calculated. The centre lines mark the median, the
box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5 ×
the interquartile range from the 25th and 75th percentiles. Statistical significance
between groups was evaluated by a one-sided Welch’s t-test, **** represents p-
value < 1 × 10−4. Sample size used to derive statistics is 53. Source data are provided
as a Source Data file.
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observed when we used 2,5-HD treatment as the control condition of
1,6-HD treatment (Supplementary Fig. 8b–e). These evidences sug-
gested that DDX21 participates in biomolecular condensates at these
loci. We further investigated the potential impact of DDX21-associated
biomolecular condensates at these genomic loci. We found that target
genes of the CondSig-positive peaks of DDX21 displayed significantly
higher expression levels than other genes (Supplementary Fig. 8f),
suggesting that DDX21-associated biomolecular condensate may
enhance the transcription of target genes.

Confirmation of identified CondSigs
SUPT6H, SUPT5H and CTR9 have been reported to regulate tran-
scription elongation40,41, but it remains unclear whether these CAPs
function in the form of condensate. In mESC, we identified two Con-
dSigs containing all or at least three of SUPT6H, SUPT5H, CTR9, and
POLR2A simultaneously (Fig. 2a, Supplementary Fig, 9a). Genomic
enrichment analysis found that merged CondSig-positive sites of the
two CondSigs were primarily located at promoters and gene bodies
(especially at exons), and the associated gene bodies were enriched
with H3K36me3 modification, a marker for actively transcribed genes
(Supplementary Fig. 9b, c). This suggested that SUPT6H, SUPT5H and
CTR9 might participate in the same biomolecular condensate to reg-
ulate transcription elongation. To confirm the condensation proper-
ties of these component CAPs, we performed fixed cell
immunofluorescence (IF) with antibodies against SUPT6H, SUPT5H
and CTR9 in mESC. We found that all three CAPs can form nuclear
puncta in cells (Fig. 4a), which is consistent with a recent study
showing the condensation properties of SUPT6H and CTR9 in cells42.
To determine whether these CAPs coexist in the same puncta, we
conducted co-IF analysis and found their high co-localization in nuclei
(Fig. 4a, b). And we also conducted fluorescence recovery after pho-
tobleaching (FRAP) experiments to check the condensate-like prop-
erties of observed nuclear puncta. After photobleaching, SUPT6H,
SUPT5H and CTR9 puncta recovered fluorescence rapidly (Fig. 4c–e).
To further verify the presence of the associated biomolecular con-
densate at these CondSig-positive peaks, we conducted CUT&RUN
experiments for SUPT6H and CTR9 in wild type, 2,5-HD-treated and
1,6-HD-treated mESC. We observed that CondSig-positive peaks
exhibited significantly greater decreases in CUT&RUN signals for both
SUPT6H and CTR9 compared to CondSig-negative peaks upon 1,6-HD
treatment (Fig. 4f–h, Supplementary Fig. 9d–j), in both comparisons
with wild type and 2,5-HD treatment. These results suggested that
SUPT6H, SUPT5H and CTR9 can regulate transcription elongation by
forming biomolecular condensate.

To further strengthen our validations for identified CondSigs,
we next focused on SS18, EP300, and ELL3, which were identified as
component CAPs that co-occurred in three CondSigs in mESC
(Fig. 2a). While the involvement of SS18 and EP300 in biomolecular
condensation has been reported respectively23,31, ELL3’s role
remains unexplored, and their co-condensation is not yet known.
Through co-immunofluorescence staining, we observed that these
three CAPs could form nuclear puncta with high co-localization in
nuclei (Supplementary Fig. 10a, b). Furthermore, FRAP experiments
confirmed the condensate-like properties of SS18 and ELL3 puncta
respectively (Supplementary Fig. 10c, d), complementing the
reported validation for EP30031. And we also conducted CUT&RUN
assays for SS18, EP300, and ELL3 in mESC respectively. The results
showed that all three CAPs exhibited a significant reduction at
CondSig-positive peaks upon 1,6-HD treatment (Supplementary
Fig. 10e–h, Fig. 11a–f).

Effects of biomolecular condensate on chromatin activities
With the availability of CondSig-positive sites, it is possible to investi-
gate the influence of biomolecular condensates on chromatin activ-
ities at a genome-wide scale. Our initial analysis for histone

modifications at CondSig-positive sites revealed a high enrichment of
active histone modifications, such as H3K4me3 and H3K27ac, in both
mESC and K562 (Fig. 5a), suggesting a close association between bio-
molecular condensates and chromatin activities.Wedefined the target
genes associated with the CondSig-positive sites (see Methods for
details), discovering that these genes showed significantly higher
expression levels in both mESC and K562 (Supplementary Fig. 12a, b).
Given that transcriptional bursting is a common characteristic of gene
expression43, and it was hypothesized that biomolecular condensation
can influence the transcriptional bursting frequencies of target
genes44, we generated single-cell RNA-seq data in wild type, 2,5-HD-
treated and 1,6-HD-treated mESC, from which we inferred
transcriptome-wide transcriptional bursting kinetics45. Among the
genes with inferable transcriptional bursting kinetics, those associated
with CondSig-positive sites exhibited significantly higher bursting
frequencies in thewild typemESC (Fig. 5b). They alsodisplayed amore
substantial decrease in transcriptional burst frequencies upon 1,6-HD
treatment compared to other genes (Fig. 5c, Supplementary Fig. 12c).
After assigning genes associated with CondSig-positive sites to indi-
vidual CondSig, we ranked the CondSigs in mESC according to the
decrease level of transcriptional bursting frequencies upon 1,6-HD
treatment. As shown in Fig. 5d, the CondSig containing METTL3,
POLR2A, TMPRSS4, CDK8 and EP300 demonstrated the most sub-
stantial decrease, suggesting that these CAPs may form biomolecular
condensation to enhance the transcriptional bursting frequencies of
their target genes. On the contrary, the CondSig containing SUZ12,
JARID2, KDM4C, PCGF2, EZH2, RNF2 and CBX7 had the most increase,
consistent with their repressive roles in transcription regulation46. We
also performed transcriptional bursting analysis in K562 and found
that CondSig-positive target genes exhibited higher burst frequencies
in thewild typeK562 (Fig. 5e) and exhibiteddecreasedburst frequency
upon 1,6-HD treatment (Fig. 5f, Supplementary Fig. 12d). These results
suggested that biomolecular condensation can regulate gene tran-
scription by influencing burst frequency. To rule out the possibility
that higher burst frequencies are attributable to the stronger epige-
netic modifications at CondSig-positive sites, we compared genes
targeted by CondSig-positive / negative sites with the same histone
modifications or chromatin accessibility (see Methods for details). We
observed that CondSig-positive target genes always showed higher
burst frequencies than CondSig-negative targets (Supplementary
Fig. 12e, f).

Notably, several histone modification writers, such as EP300 and
KMT2D, were included in the components of identified CondSigs.
Given the enrichment of their corresponding histone modifications at
CondSig-positive sites (Fig. 5a), we hypothesized that these histone
modification writers might exhibit stronger catalyzation activities
within biomolecular condensates. We classified each histone mod-
ification writer’s ChIP-seq peaks into CondSig-positive and -negative
peaks, and observed significantly stronger corresponding histone
modification products at CondSig-positive peaks (Supplementary
Fig. 12g, h), suggesting the formation of biomolecular condensation
can boost the catalyzation activities of histone modification writers.
Activemodifications, such as H3K4me3 and H3K27ac, typically display
narrow peaks (width <2 kb), while a small proportion also exists as
broad peaks (width > 5 kb)28,47. The establishment of these broad his-
tone modification domains remains unclear, hence we next investi-
gated whether the involvement of their writer in biomolecular
condensation could play a role. We transformed two histone mod-
ifications’ peaks to domains by merging adjacent peaks not further
than 5 kb. Among 1217 H3K4me3 broad peaks in mESC, 63.3% of them
overlapped with KMT2D-associated CondSig-positive peaks, while the
percentage is only 38.0% for narrow peaks (Fig. 5g). Similar results
were observed for the pair of H3K27ac and EP300, not only in mESC,
but also in K562 (Fig. 5g, h). These results demonstrated that the
involvement of histone modification writers in biomolecular
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linesmark themedian, the box limits indicate the 25th and 75th percentiles, and the
whiskers extend to 1.5 × the interquartile range from the 25th and 75th percentiles.
Statistical significance between groups was evaluated by a one-sidedWelch’s t-test,
** represents p-value < 0.01 and **** represents p-value < 1 × 10−4. Sample size used
to derive statistics is 1195 for target genes and 78 for other genes. The stacked bar
plots showing fractions of broad H3K4me3 or H3K27ac peaks in mESC (g) and
broad H3K27ac peaks in K562 (h) overlapping with CondSig-positive sites. Source
data are provided as a Source Data file.
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condensates can alter chromatin activity by catalyzing broad histone
modification domains.

Discussion
The field of biomolecular condensate research associated with chro-
matin has made substantial advancements in recent years. However,
identifying the involvement of a CAP in chromatin-associated biomo-
lecular condensate only scratches the surface of its regulatory roles
due to the following inherent limitations. Firstly, biomolecular con-
densates typically comprise multiple components, each potentially
contributing different regulatory roles. Secondly, profiling the geno-
mic binding sites of a CAP involved in a biomolecular condensate does
not necessarily distinguish its condensation-associated and non-
associated genomic loci in a straightforward manner. Therefore,
there is an urgent need for specialized experimental methods or
bioinformatic tools to provide a detailed genomic landscape of
chromatin-associated biomolecular condensates. A recent study
introduced DisP-seq48, an antibody-independent chemical precipita-
tion assay thatmaps endogenous DNA-associated disordered proteins
at a genomic scale. However, DisP-seq was designed for the broad
detection of disordered proteins rather than specifically targeting
biomolecular condensates. This could potentially result in both false
positives, as not all binding sites of these proteins participate in bio-
molecular condensates, and false negatives, as disordered protein-
guided phase separation is only one mechanism of condensation.
Furthermore, DisP-seq cannot identify the exact components present
at each locus. In response to these challenges, our study presented
CondSigDetector, a computational framework designed to system-
atically identify CondSigs, i.e., the signatures of condensate-like chro-
matin-associated protein co-occupancy, and their associated genomic
loci. CondSigDetectorwas designed basedon the increasing evidences
suggesting chromatin-associated biomolecular condensates are
mediated by collaborative interactions of components at specific
genomic loci18. The key assumption it relies on is that specific colla-
borations among CAPs on the genome, particularly those involving
proteins with high condensation potential (such as known phase-
separating proteins and IDR-containing proteins), may act as sig-
natures of chromatin-associated biomolecular condensates. By lever-
aging the occupancy profiles and condensation-related features of
hundreds of CAPs in the same cell type, CondSigDetector can predict
the genome-wide loci of biomolecular condensates and the compo-
nent CAPs of each condensate. Our study both depicted the chromatin
properties of the identified CondSigs and experimentally validated the
regulatory roles of DDX21, SUPT6H, CTR9 and SUPT5H as components
of biomolecular condensates. Our study further delves deeper into the
significant effects of chromatin-associated biomolecular condensates
on transcriptional bursting and broad active histone modification
domains. These findings underscored the critical role that biomole-
cular condensates play in gene regulation and chromatin activities.

The CondSigs identified in this study provided a comprehensive,
global and genome-wide perspective on distinct chromatin-associated
biomolecular condensates, paving the way for further exploration of
their biological functions and mechanisms. By distinguishing various
biomolecular condensates through the unique component CAPs, the
CondSigs can not only aid in discovering additional components of
known chromatin-associated biomolecular condensates, but also
reveal entirely unknown ones. Furthermore, by pinpointing specific
genomic loci targeted by biomolecular condensates composed of
CAPs, CondSigs provide valuable insights into how dysregulation of
condensation may contribute to disease. This, in turn, could facilitate
the design of potential therapeutic strategies. To benefit future
research in this area, we have made the CondSigs identified in mESC
and K562 publicly available online and provided the source code of
CondSigDetector onGitHub to enable the detection in other biological
systems. However, given the dynamic property of biomolecular

condensates, characterized by their reversible formation and dissolu-
tion, it is possible that not all CondSig-positive sites serve as
condensate-related sites. To further filter high confidence condensate-
related sites from CondSig-positive sites, we required these sites to
exhibit elevated concentrations of all component CAPs (i.e., requiring
each component CAP to havemore than a 1.5-fold increase in signals at
condensate-related sites compared to its peaks not associated with
CondSigs). By this way, we filtered 15,303 and 16,010 high-confidence
condensate-related sites in mESC and K562, which are also publicly
available online.

Despite the significant insights provided by our identified Con-
dSigs, there are some limitations to the predictions. One such limita-
tion is the dependence of CondSig detection on accurate occupancy
profiles of CAPs. The absence or poor quality of ChIP-seq data could
lead to partial or complete omission of biomolecular condensates. For
example, we were able to predict a heterochromatin-related con-
densate consisting of CBX5, TRIM28 and CBX1 in K562, but not in
mESC, due to the unavailability of high-quality ChIP-seq data of these
CAPs in mESC. However, with the rapid increase of ChIP-seq data, and
the implementation of techniques for occupancy map capture, we
anticipate improvements in the sensitivity of CondSigs detection.
Another limitation is the reliance of CondSig detection on specific
collaborations amongCAPs,whichmay result in the loss ofwidespread
collaborations in a global context. In this study, we used a threshold of
1.3 for the z-score normalized occurrence probability of words in
topics to determine the component CAPs of CondSigs. Given the lack
of a standard number for components in collaborations, the compo-
nents listed in CondSig might be incomplete or inaccurate, under-
scoring the need for further in-depth analysis and experiments to
verify the predictions. A recent study reported that fixation, a common
procedure used in X-ChIP, can have diverse effects on biomolecular
condensates in living cells49. To assess the potential impact of fixation
on our prediction results, we selected several component CAPs with
additional available data generated by CUT&RUN, a fixation-free
technology, to evaluate the concentration levels in CondSigs. We
found that, similar to ChIP-seq signals, most component CAPs showed
significantly enriched CUT&RUN signals at CondSig-positive peaks
(Supplementary Fig. 13), implying that the fixation effect in the X-ChIP
procedure is unlikely to significantly impact prediction accuracy. This
potential impact could be further mitigated with the rapid accumula-
tion of more CUT&RUN data for CAPs. In this study, we conducted
experiments with 1,6-HD to investigate the impact of condensate dis-
ruption on burst frequencies of CondSig target genes, as well as
genome-wide occupancy of component CAPs. However, 1,6-HD treat-
ment is harsh and may induce many undesirable effects39. Although
2,5-HD treatment can serve as an effective control for 1,6-HD treat-
ment, more stringent experimental approaches are required in future
studies on investigating genome-wide effects of condensate
disruption.

Methods
ChIP-seq data collection and processing
ChIP-seq data of CAPs were collected from Cistrome Data Browser50

and filtrated using quality control procedures as described in the
previous study51. In brief, only ChIP-seq data that satisfied at least four
out of the five quality control metrics (sequence quality, mapping
quality, library complexity, ChIP-enrichment, and signal-to-noise ratio)
available in Cistrome Data Browser were kept. Whenmultiple qualified
ChIP-seq datasets were available for a given CAP in the same cell type,
all qualified ChIP-seq data were sorted based on quality control
metrics, and the highest-ranked dataset was selected.

We downloaded ChIP-seq peak files (in BED format) and signal
track files (in bigWig format) from Cistrome Data Brower. Although
Cistrome Data Browser stored narrow peaks called by MACS252 for all
CAPs, peak window sizes of distinct CAPs could differ significantly.
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Therefore, to obtain accurate occupancy regions for each CAP, espe-
cially CAPs with broad peaks, we first called broad peaks from the
signal track using “bdgbroadcall” module of MACS2 (v2.1.3) with
default parameters and then merged adjacent peaks within 5 kb. For
each CAP, if more than 1000 re-called peaks were wider than 5 kb, we
replaced the original narrow peaks with re-called broad peaks as the
accurate occupancy regions.

Condensation-related annotation for proteins
Human and mouse proteins with reported LLPS capacity were col-
lected from four databases, DrLLPS6, LLPSDB5, PhaSepDB (two ver-
sions, v1 and v2)3 and PhaSePro4. DrLLPS collected all proteins that
could potentially be involved in LLPS, including scaffolds, regulators
and clients. However, we only regarded scaffolds as LLPS proteins
since DrLLPS contains too many regulators and clients. To create an
annotation of LLPS proteins, we merged all LLPS proteins from dif-
ferent sources. Notably, since the number of collected mouse LLPS
proteins (61) wasmuch lower than human LLPS proteins (437), we also
considered mouse orthologs of human LLPS proteins as mouse LLPS
proteins.

Component proteins of MLOs in human and mouse were col-
lected from DrLLPS and PhaSepDB (v1 and v2). Proteins that were
assigned to the same MLO in different sources weremerged to form a
comprehensive list of component proteins for that MLO. Similar to
LLPS proteins, mouse orthologs of human proteins assigned to the
sameMLOwas regarded as component proteins of thatMLO inmouse.

Pairwise protein-protein interactions were collected from three
databases, BioGRID53, MINT54 and IntAct55, only physical associations
were kept.

Intrinsically disordered regions of proteins were predicted by
MobiDB-lite (v1.0)56. This optimized method uses eight different pre-
dictors to derive a consensus, which is then filtered for spurious short
predictions in a second step. For each protein, if more than 15.3% of its
regions were predicted to be disordered by MobiDB-lite, the protein
would be regarded as proteins with intrinsically disordered regions.
The threshold of 15.3% corresponds to the 20th percentile of dis-
ordered region fractions of known human LLPS proteins.

RNA-binding proteins were predicted by TriPepSVM (v1.0)57, a
method to perform de novo prediction based on short amino acid
motifs, with parameters “-posW 1.8 -negW 0.2 -thr 0.28”.

Genome-wide RNA-binding strength
We used genome-wide signals of R-ChIP data, an in vivo R-loop pro-
filing approach using catalytically dead RNase H158, to quantify
genome-wide RNA-binding strength in K562 cells. Raw sequencing
reads from GSE9707258 were first aligned to human genome build via
default --local mode of Bowtie2 (v2.3.5.1)59. Lowmapping quality reads
(mapping quality <30) and duplicates were discarded. Then signal
tracks were generated using the “genomecov” command in Bedtools
software (v2.28.0), and normalized to reads per million mapped
reads (RPM).

Motif scan
Motif scans were performed using FIMO (v5.0.5)60 against the JASPAR
core 2020 vertebrates database61 with the following parameters
“--max-stored-scores 1000000”. Motifs with p-values 1 × 10−5 were
used for the following analysis.

CondSigDetector workflow
The framework consists of three steps, data processing, co-occupancy
signature identification and condensation potential filtration.

In the first step, CondSigDetector first defines the mouse (mm10)
or human (hg38) genomic regions as Bmm10 or Bhg38 as a sequence of
1 kb consecutive bins B= b1,b2, � � � ,bn

� �
, where each bi represents i-th

1 kb bin and n is the total number of 1 kb bins in the genome. And it

defines the set of CAPs as C = c1,c2, � � � ,cm
� �

, where each cj represents
j-th CAP and m is the total number of CAPs. Then it generates an
occupancy matrix O with dimension n×m, each element Oi,j of the
matrixO represents the occupancy event of j-th CAP at i-th bin, which
is defined as:

Oi,j =
1, if CAP j has a peak within bin i

0, otherwise

�
ð1Þ

CondSigDetector further apply filters to the occupancy matrix O to
refine the data. It excludesCAPswith fewer than500occupancyevents
to eliminate the effect of low-quality ChIP-seq data. And bins with too
many occupancy events (occupied by more than 90% of CAPs) are
removed to avoid sequencing bias. Additionally, bins in ENCODE
Blacklist genomic regions are also removed.

Identifying co-occupancy signatures from the entire occupancy
matrix O is a complicated task and can result in the loss of low-
frequency signatures in the local context. To address this issue, Con-
dSigDetector iteratively segments the entire occupancy matrix into
sub-matrices, each sub-matrix contains high-frequency co-occupancy
events associated with the given CAP in each iteration. The segmen-
tation of each iteration includes two aspects, identifying the segment
of CAPs showing specific co-occupancy with the given CAP and iden-
tifying the segment of bins showing high co-occupancy events of these
CAPs. During each segmentation iteration, CondSigDetector selects a
focus CAP cf , and identifies other CAPs Csegment � C that are highly co-
occupied with cf . The identification of Csegment is calculated as follows:
for each CAP cj 2 C, CondSigDetector uses its occupancy events

½O1,j ,O2,j,:::,On,j�T to classify occupancy events of cf ½O1,f ,O2,f ,:::,On,f �T
and calculates a F1 score as a measure of co-occupancy level with cf ,
denoted as βj: The top q CAPs ranked by βj are kept as Csegment , where
q= 50 by default. After that, CondSigDetector further selects bins
Bsegment � B that are occupied frequently by CAPs Csegment . The selec-

tion of Bsegment is calculated as follows: for each bin bi 2 B, Con-

dSigDetector calculates an occupancy score δi to evaluate the
occupancy level of the CAPs Csegment as:

δi =
Xq
j = 1

γjOij ð2Þ

Where γj denotes z-score-normalized βj . Only p bins with δi >0 are
kept as Bsegment . Sub-matrix in each iteration Osegment is defined as:

Osegment = Oij

h i
bi2Bsegment,cj2Csegment

ð3Þ

In the second step, each sub-matrixOsegment is classified into promoter
and non-promoter contexts. Promoters are defined as upstream 3 kb
to downstream 3 kb of transcription start sites. CondSigDetector
builds a biterm topic model22 for each sub-matrix to learn specific
collaborative pattern of CAPs, termed co-occupancy signatures. The
topic model is a well-common used machine learning model for
discovering latent topics in a particular set of documents, and it
assumes that each document can be described as a mixture of a small
number of topics, where a topic is a distribution of words.
CondSigDetector lets D= fd1,d2, � � � ,dpg be a collection of “docu-
ments”, where each document di corresponds to occupancy events at
i-th bin Oi, and lets W = fw1,w2, � � � ,wqg be the “vocabulary”, where
each word wj corresponds to a CAP cj . Then the learned latent topics
across “documents” can be regarded as specific collaborative pattern
of CAPs across genome.

The biterm topic model is a type of probabilistic topic model
designed to find topics in collection of short texts, and the goal is to
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learn: (1) θi,t , which is the probability of topic t occurring in document
di; (2)Φt,j , which is the probability of wordwj belonging to topic t. We
implemented the topic model in CondSigDetector using source code
from the previous study22. Finally, the biterm topic model generates
two probability distributions, matrix Gk ×q representing occurrence
probability of q words across k topics and matrix Gp× k representing
occurrence probability of k topics across p documents.

The topic number, k, is a crucial parameter in topicmodeling, as it
affects the topic distribution. CondSigDetector empirically learns
2 ~ 10 topics for each context and then applies an automatic strategy to
select the optimal topic number as described in the previous study62.
The selection principle was based on the idea that the optimal topic
number should distinguish between documents with different topics
asmuch as possible. Hence anoptimal topic number shouldmatch the
following two criteria:

• The occurrence probability of each topic in different documents
should be as different as possible, which is measured by the
specificity score (SSk) calculated for all topics under a certain
topic number k.

SSk = log
1
k

Xk
j = 1

σj

μj
2

 !
ð4Þ

where σj and μj are the variance and mean, respectively, of the
j-th column ofGp× k . A higher specificity score indicates a better-
selected topic number.

• The fewer topics that occur in each document, the better. Such a
measurement was defined as a purity score (PSk) for all topics
under a certain topic number k.

PSk = log
1
p

Xp
i= 1

σi

 !
ð5Þ

where σi is the variance of i-th row of Gp× k .The larger the purity
score, the better the selected topic number.
Finally, we defined the combination score (CSk), which is a
weighted average of the specificity score and purity score. The
combination score (CSk) is calculated as

CSk =αSSk + 1� αð ÞPSk ð6Þ
where α is calculated as

α =
PSk

SSk + PSk
ð7Þ

We selected the optimal topic number k from 2 ~ 10 which have
the highest combination score.
After the selection of optimal topic number k, CondSigDetector
interpretated learned topics to co-occupancy signatures. We
determined component CAPs of each co-occupancy signature
based on matrix Gk ×q representing q CAPs’ occurrence prob-
ability in k co-occupancy signatures. For each signature t, a CAP
cj was considered as a component if Z ðGt,jÞ>λ, where Z is the
z-score normalization function and λ is the threshold set to 1.3
by default. And a 1 kb bins bi was defined as signature-positive
sites if it is occupied bymore than 80% of components CAPs. By
this way, we generated component CAPs Cpos and signature-
positive sites Bpos . Co-occupancy signatures with fewer than 3
components and fewer than 200 signature-positive sites are
discarded.
In the third step, CondSigDetector screens outCondSigs fromall
co-occupancy signatures basedon the condensationpotential of
each signature. To evaluate the condensation potential of each

signature, we quantify associations between condensation-
related features and signature presence at genome-wide bins
for each signature. Intuitively, the higher condensation-related
feature values of occupancy events at signature-positive bins,
the higher condensation potential of the signature. We conduct
Receiver Operating Characteristic (ROC) curve analysis to
compare the distribution of condensation-related feature values
at signature-positive versus signature-negative bins andmeasure
the enrichment of condensation-related features at signature-
positive bins. In ROC analysis, the positive set are positive bins
for the given signature and the negative set are negative bins.
Signature-positive bins have been defined in the above step, and
signature-negative bins Bneg are defined using the following two
criteria:

• Comparability with the signature-positive bins. As the signature-
positive bins are occupied by at least 80% of Cpos, so we required
that signature-negative bins are occupied by at least h CAPs,
with h=0:8× jCposj;

• Differentiation from the signature-positive bins. We required that
signature-negative bins are absence of co-occupancy events of
Cpos; specifically, count of occupied Cpos < 2.

For each signature, six condensation-related features are calcu-
lated according to co-occupancy events of Csegment at signature-
positive bins Bpos and signature-negative bins Bneg :

� FLLPS =
Number of occupied CAPs with reported LLPS capacity

Total number of occupied CAPs

� FMLO =
Number of occupied CAPs co� occuring in the same MLO

Total number of occupied CAPs

� FIDR =
Number of occupied CAPs with predicted IDRs

Total number of occupied CAPs

� FPPI =
Number of occupied CAP pairs with protein� protein interactions

Total number of CAP pairs

� FRBP =
Number of occupied CAPs predicted as RBPs

Total number of occupied CAPs

� SRBS =RNA binding strength at the bin

A signature is identified as a CondSig if at least three out of six
condensation-related features exhibit a positive correlation with the
presence of the signature, which is measured by the Area Under the
ROC Curve (AUROC). The criteria for this identification are an AUROC
greater than 0.6 for individual features and a mean AUROC greater
than 0.65 for the top three features.

In the final stage, CondSigs within the same cell type are pooled,
and any duplicated CondSigs are discarded. The redundancy of two
CondSigs is measured based on the extent of overlap among their top
five components, ranked by their probability of occurrence within
each CondSig. We computed the Jaccard index for each pair of Con-
dSigs. If the Jaccard index suggests a high redundancy (a value greater
than 0.25), we then compare the mean AUROC of the two CondSigs
and discard the one with low mean AUROC.

Comparison of BTM and HDP
We built HDP and BTM models on the entire occupancy matrix sepa-
rately, and compared thequality of learned topics.HDPdetermines the
topic number automatically while BTM asks for a given topic number.
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So we first built an HDP model and generated k topics, then we built a
BTM model to generate topics with the given topic number k. The
quality of each learned topic was evaluated by the coherence score of
the top five words, a common quality evaluation metric in topic
model22,63. HDPmodelingwas implemented by using a Python package
“tomotopy”.

Clustering of component CAPs
We performed a k-means clustering for component CAPs in mESC or
K562 according to their potentials for self-assembly (PS-Self) or
interaction with partners (PS-Part) to undergo phase separation. A
recent study employed two machine-learning models, SaPS and PdPS
model, to estimate proteins’ potentials and provided SaPS and PdPS
ranking scores (ranging from 0 to 1) for the human and mouse pro-
teome. We utilized the SaPS and PdPS ranking scores of component
CAPs in mESC or K562 to carry out k-means clustering. In the cluster-
ing, the number of clusterswas set as 4, and the initial cluster centroids
were set as (0.8, 0.8), (0.8, 0.4), (0.4, 0.8), (0.4, 0.4), which corre-
sponds to four clusters: “both Self and Part”, “Self-only”, “Part-only”,
and “none”, respectively.

Annotation for charged amino acid blocks
We calculated NCPR (net charge per residue) employing a 10-residue
sliding window with a step size of 1. This calculation factored in both
positively charged amino acids (R, K and H) and negatively charged
amino acids (D and E). Windows with NCPR greater than 0.5 or less
than -0.5 were defined as charged amino acid blocks, and overlapping
blocks were merged.

Identification of CondSig-positive and -negative peaks and
domains
CondSigDetector identified CondSigs and assigned genome-wide 1 kb
bins to each CondSig. In the chromatin properties and disruption
effect evaluation of CondSigs, we defined CondSig-positive and
-negative peaks/domains for each component CAP to examine its
chromatin properties and disruption effect within these identified
CondSigs. To determine CondSig-positive and -negative peaks for the
given CAP, we classified its ChIP-seq peaks into CondSig-positive or
-negative peaks basedonwhether they overlappedwith siteswhere the
CAP was identified as a component of any CondSigs. To determine
CondSig-positive and -negative domains, we transformed peaks of the
given CAP into domains by merging adjacent peaks not further than n
kb. For component CAPs using narrow peaks as accurate occupancy
regions in ChIP-seq data processing procedure as mentioned above,
we set n = 5, and for component CAPs using broad peaks as accurate
occupancy regions, we set n = 10. Then domains of each component
CAP were classified into CondSig-positive domains and -negative
domains based on overlapping with CondSig-positive peaks.

To ensure a fairer comparison, two additional criteriawere further
applied to refine the identification of CondSig-positive and -negative
peaks, ensuring they are matched in terms of chromatin accessibility
or the number of co-occupied CAPs. Both refined CondSig-positive
and -negative peaks were required to overlap with ATAC-seq peaks or
have the occupancy events of more than 10 CAPs. These refined
CondSig-positive and -negative peaks were then transformed into
refined CondSig-positive and -negative domains in the same way.

3D chromatin contact analysis
PublicMicro-Cdata inmESC,ChIA-PETdata against SMC1 inmESC, and
ChIA-PETdata againstRNAPol II inK562wereused in this study.Micro-
C contact matrices from 2.6 billion reads were downloaded from
GSE13027533, and boundary strength for 400bp resolution calculated
byCooltools64 wasused for the following analysis. SMC1ChIA-PET data
in mESC were downloaded from GSE5791136 and processed with ChIA-

PET265. RNA Pol II ChIA-PET loops were directly downloaded from
ENCSR880DSH37.

Definition for target genes of CondSig-positive sites
In defining target genes of CondSigs, positive sites of all identified
CondSigs weremerged into a total set of CondSig-positive sites. Genes
whose promoter overlaps with the CondSig-positive sites, or which
have long-range chromatin contacts with those sites, were defined as
target genes. These long-range chromatin contacts were determined
using ChIA-PET data from the corresponding cell type. In this study,
SMC1 ChIA-PET data in mESC and RNA Pol II ChIA-PET data in K562
were used.

To rule out the possibility that higher burst frequencies are
attributable to the stronger epigenetic modifications at CondSig-
positive sites, target genes of all CondSig-positive and all CondSig-
negative sties with the same histone modifications or chromatin
accessibilitywere alsodefined.Here, allCondSig-negative sties (i.e., the
total set of CondSig-negative sites) were specified as any 1 kb genomic
bins occupied by at least two CAPs and not identified as CondSig-
positive. Both CondSig-positive and -negative sites were first inter-
sected with ChIP-seq peaks of H3K4me3 or H3K27ac, or ATAC-seq
peaks, and their target genes were then defined in the same manner
mentioned above.

Cell culture
Mouse embryonic stem cells (mESC), C57BL/6 strain, were purchased
fromATCC (SCRC-1002) and culturedon a feeder layer ofmitomycinC
(Stemcell, 73272) treated mouse embryonic fibroblast (MEF) in tissue
culture flask coated with 0.1% gelatin. The cells were grown in com-
plete mESC medium, which was composed of EmbryoMax DMEM
(Millipore, SLM-220-B), 15% (v/v) fetal bovine serum (Hyclone,
SH30070.03), 0.1mM nonessential amino acids (Millipore, TMS-001-
C), 1% (v/v) nucleoside (Millipore, ES-008-D), 2mML-glutamine (Mil-
lipore, TMS-002-C), 0.1mM β-mercaptoethanol (Millipore, ES-007-E),
and 1000U/mL recombinant LIF (Millipore, ESG1107).

Cell treatment
1,6-hexanediol (Sigma, 240117) was dissolved in a complete mESC
medium at a concentration of 15% (w/v) to make a storage solution,
similarly, 2,5-hexanediol (Sigma, H11904) was prepared at a 15% (v/v)
concentration in the same medium. mESC were detached using tryp-
sin, pelleted by centrifuging, and then resuspended in a complete
mESC medium. The resuspended cells were transferred into a gelatin-
coated flask and cultured in a 37 °C incubator for 1 hr to remove the
feeder cells. The supernatant cells were collected and washed twice
with PBS. After cell resuspending with medium, either 1,6-hexanediol
or 2,5-hexanediol storage buffer was added at a final concentration of
1.5%. The dishes were put into the incubator immediately for 30min,
and treated cells were immediately used for CUT&RUN assay.

CUT&RUN
The CUT&RUN assay was conducted on 0.2 million cells per sample,
utilizing the Hyperactive pG-MNase CUT&RUN assay kit (Vazyme,
HD102) with slight modifications to the manufacturer’s protocol.
Briefly, cells were harvested and incubated for 10min at room tem-
perature with Concanavalin A-coated magnetic beads, which had
been activated prior to use. Following this, the ConA beads bound
cells were collected using a magnet and resuspended in 100 µl of
antibody buffer containing either 2 µl of DDX21 (Proteintech, 10528-1-
AP, lot # 00088037), 4 µl of CTR9 (Bethyl Laboratories, A301-395A, lot
# 4), 4 µl of SUPT6H (Novus Biologicals, NB100-2582, lot # 2 A), 1.5 µl of
SS18 (Cell Signaling Technology, 21792 (D6I4Z), lot # 1), 1.5 µl of EP300
(Santa Cruz, sc-48343 (F-4), lot # A1323), or 0.5 µl of ELL3 (generously
gifted by Prof. Chengqi Lin, Southeast University, China) primary
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antibody respectively. The samples were then incubated at 4 °C over-
night on rotator. The next day, cells were washed twice with Dig-wash
buffer and resuspended in 100 µl of a premixed pG-MNase Enzyme
solution before incubation at 4 °C for 1 hr with rotation. Following this,
the cells were washed twice with Dig-wash buffer and resuspended in
100 µl of premixed CaCl2 solution, then incubated for 2 h on ice. Fol-
lowing the stop of the reaction, the cut chromatin was released from
cells by incubation at 37 °C for 30min in the absence of agitation. After
centrifuging at 13,400 g for 5min, the supernatant was collected, and
DNA was purified using FastPure gDNA mini columns. The libraries
werepreparedusingNEBNextUltra IIDNA libraryprep kit (NEB, E7645)
with modified amplification condition as 98 °C for 30 s, 15 cycles of
98 °C for 10 s and 65 °C for 17 s, and final extension at 65 °C for 2min
and hold at 4°C.

Single-cell RNA-seq
Single-cell RNA sequencing (scRNA-seq) libraries were prepared using
6000 mES cells, either in a wild type state or treatment with 1,6-hex-
anediol at 1.5% or 2,5-hexanediol at 1.5% for 30min, and K562 cells
(National Collection of Authenticated Cell Cultures, TCHu191), either
in wild type or treatment with 1,6-hexanediol at 10% for 20min. The
libraries were created using the Chromium Single Cell 3’ Library and
Gel Bead Kit V3.1 (10x Genomics, Catalog No. PN1000268) to create
single-cell gel beads in emulsion (GEM). Following preparation, the
libraries were sequenced using the Illumina Novaseq 6000 platform in
a 150bp paired-end mode.

Immunofluorescence staining
CTR9 antibody was labeled with Mix-n-Stain CF488 Antibody labeling
kit (Sigma,MX488AS20), while SUPT6H and ELL3 (Sigma, HPA028938)
antibodies were labeled using Mix-n-Stain CF568 Antibody labeling kit
(Sigma, MX568S20) according to the manufacturer’s instruction. For
co-immunofluorescence study of SUPT6H/CTR9/ /SUPT5H, mESC
were grown as mentioned above on pre-coated coverslips and fixed
with 4% paraformaldehyde solution (Beyotime, P0099) at room tem-
perature for 10min. permeabilization was performed using 0.5% Tri-
ton X-100 (Sigma-Aldrich, 93443) in PBS for 10min. Cells were blocked
with IF blocking solution (Beyotime, P0102) for 1 h at RT, and subse-
quently incubated with a 1:100 diluted SUPT5H primary antibody
(Santa Cruz, 133217 (D3), lot # G1217) in QuickBlock dilution buffer
(Beyotime, P0262) at 4 °C overnight. Following three washes, cells
were incubated with Alexa Fluor 594 goat anti-rabbit secondary anti-
body (ThermoFisher, A11037) at a concentration of 1: 1000 in PBST for
1 h at RT. After three additional washes with PBST, cells were labeled
with both CF488-conjugated CTR9 (1:250 diluted) and CF568-
conjugated SUPT6H (1:200 diluted) antibodies at RT for 2 h. After
threewashes with PBST, the coverslips weremounted onto glass slides
using Vectashield medium with DAPI (Vector Laboratories, H-1200)
and sealed with nail polish. Similarly, For the co-IF experiment of SS18/
EP300/ELL3, blocked mESC were incubated with 1:400 diluted SS18
and 1:200 diluted EP300 (Santa Cruz, 32244 (NM11), lot # H1921) pri-
mary antibodies, followed by incubation with Alexa Fluor 488 goat
anti-rabbit (ThermoFisher, A11008) and Alexa Fluor 594 goat anti-
mouse (ThermoFisher, A11032) secondary antibodies at a concentra-
tion of 1: 1000 for 1 h at RT, then labeled with 1:200 diluted CF568-
conjugated ELL3 antibody for 2 h. Images were acquired using a Zeiss
LSM 710 confocal microscope with 100 × oil objective and ZEN
acquisition software.

Fluorescence recovery after photobleaching (FRAP)
FRAP assay was conducted using the FRAP module of the Leica SP8
confocal microscopy system. The CTR9 and SUPT6H endogenously
tagged with EGFP inmESCwas bleached using a 488 nm laser beam.
The mScalet-SUPT5H overexpressed in mESC was bleached using a
561 nm laser beam. Similarly, mESC overexpressed with SS18-EGFP

and EGFP-ELL3 were bleached using a 488 nm laser beam. Bleach-
ing targeted a specific circular region of interest (ROI) using 100%
laser power and time-lapse images were collected. Fluorescence
intensity was measured using Fiji software, with background
intensity subtracted and values normalized to pre-bleaching time
points.

CUT&RUN, single-cell RNA-seq data processing
CUT&RUN reads were first processed using TrimGalore (v0.6.0) to
trim adaptor and low-quality reads. Trimmed reads were then aligned
to themouse genomebuildmm10 or humangenomebuild hg38 using
Bowtie2 (v2.3.5.1)59 with parameters “--no-mixed --no-discordant --no-
unal”. Low mapping quality reads (mapping quality <30) and dupli-
cates were discarded. Then biological replicates that passed quality
control were pooled together. For the same CAP, the reads in each
condition was down-sampled to the same number. This number was
determined by the minimum reads of the CAP across different con-
ditions: 40 million for DDX21 and SS18, and 50 million for the others.
CUT&RUN peaks were called by MACS2 (v2.1.3)52. Signal tracks were
generated using the “genomecov” command in Bedtools software
(v2.28.0), and normalized to reads per million mapped reads (RPM).
Single-cell RNA-seq data (10x Genomics) were processed with DrSeq2
(v2.2.0)66 and transcriptome-wide transcriptional burst kinetics were
inferred using the model from the previous study45.

Statistics and reproducibility
Statistical analysis was performed using Python, and the statistical
details are shown in the figure legends and Source Data. No statistical
methodwas used to predetermine sample size. No data were excluded
from the analyses. This study did not include complex treatment
conditions, all cells were randomly assigned to each group for imaging
and sequencing. All samples were prepared blinded.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the CUT&RUN and scRNA-seq data generated in this study have
been deposited in Genome Sequence Archive (https://ngdc.cncb.ac.
cn/gsa/) under accession code CRA011710 and HRA005013. All pre-
dicted CondSigs, the associated CondSig-positive sites, and high-
confidence condensate-related sites generated in this study are avail-
able at CondSigDB (https://compbio-zhanglab.org/CondSigDB/index.
html). Source data are provided with this paper.

Code availability
The computational framework and statistical analysis were made
based on shell, Python and R codes. A command-line tool was devel-
oped for the implementation of CondSigDetector, main source codes
are available at the GitHub repository (https://github.com/
TongjiZhanglab/CondSig), which are also deposited at Zenodo67

(https://doi.org/10.5281/zenodo.12526192).
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