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Efficient learning of ground and thermal
states within phases of matter

Cambyse Rouzé1 , Daniel Stilck França 2 , Emilio Onorati 3 &
James D. Watson 4

We consider two related tasks: (a) estimating a parameterisation of a given
Gibbs state and expectation values of Lipschitz observables on this state; (b)
learning the expectation values of local observables within a thermal or
quantum phase of matter. In both cases, we present sample-efficient ways to
learn these properties to high precision. For the first task, we develop tech-
niques to learn parameterisations of classes of systems, including quantum
Gibbs states for classes of non-commuting Hamiltonians. We then give
methods to sample-efficiently infer expectation values of extensive properties
of the state, including quasi-local observables and entropies. For the second
task, we exploit the locality of Hamiltonians to show that M local observables
can be learned with probability 1 − δ and precision ε using
N =O log M

δ

� �
epolylogðε

�1Þ
� �

samples— exponentially improvingprevious bounds.
Our results apply to both families of ground states of Hamiltonians displaying
local topological quantum order, and thermal phases of matter with expo-
nentially decaying correlations.

Tomography of quantum states is among the most important tasks in
quantum information science. In quantum tomography, we have
access to one or more copies of a quantum state and wish to under-
stand the structure of the state. However, for a general quantum state,
all tomographic methods inevitably require resources that scale
exponentially in the size of the system1,2. This is due to the curse of
dimensionality: the number of parameters needed to fully describe a
quantum system scales exponentially with the number of its con-
stituent particles. Obtaining these parameters often necessitates the
preparation and destructive measurement of exponentially many
copies of the quantum system, as well as their storage in a classical
memory. In particular, as the size of quantum devices continues to
increase beyond what can be easily simulated classically, the com-
munity faces new challenges to characterise their output states in a
robust and efficient manner.

Thankfully, only a few physically relevant observables are often
needed to describe the physics of a system, e.g. its entanglement or
energy. Recently, new methods of tomography have been proposed

which precisely leverage this important simplification to develop effi-
cient state learning algorithms. One highly relevant development in
this direction is that of classical shadows3. This new set of protocols
allows for estimating physical observables of quantum spin systems
that only depend on local properties from a number of measurements
that scales logarithmically with the total number of qubits. However,
the number of required measurements still faces an exponential
growth with respect to the size of the observables that we want to
estimate. Thus, using such protocols to learn the expectation values of
physical observables that depend on more than a few qubits quickly
becomes unfeasible.

For the task of state tomography, some simplification can be
achieved from the fact that physically relevant quantum states, such as
ground and Gibbs states of a locally interacting spin system, are
themselves often described by a number of parameters which scales
only polynomially with the number of qubits. From this observation,
another direction in the characterisation of large quantum systems
that has received considerable attention is that of Hamiltonian
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learning and many-body tomography, where it was recently shown
that it is possible to robustly characterise the interactions of a Gibbs
state with a few samples4,5. However, even for many-body states,
recovery in terms of the trace distance requires a number of samples
that scales polynomially in the number of qubits, in contrast to sha-
dows for which the scaling is logarithmic.

These considerations naturally lead to the question of identifying
settings where it is possible to combine the strengths of shadows and
many-body tomography. In6, the authors proposed a first solution by
combining thesewith new insights from theemergingfieldof quantum
optimal transport. They obtained a tomography algorithm that only
requires a number of samples that scales logarithmically in the sys-
tem’s size and learns all quasi-local properties of a state. These prop-
erties are characterised by so-called “Lipschitz observables”. However,
that first step was confined to topologically trivial states such as high-
temperature Gibbs states of commuting Hamiltonians or outputs of
shallow circuits.

We also improve on the limitations of the tomography techniques
discussed: we significantly extend these results beyond topologically
trivial states to all states exhibiting exponential decay of correlations
and the approximate Markov property. This result permits to sig-
nificantly enlarge the class of states for whichwe know how to learn all
quasi-local properties with a number of samples that scales poly-
logarithmically with the system’s size. In particular, our results now
also hold for classes ofGibbs states ofnon-commutingHamiltonians. It
also allows us to learn states with exponentially fewer samples in the
quantum Wasserstein distance than was previously known before.

Beyond the limits of the specific tomography techniques sketched
above, tomographical techniques by themselves are somewhat limited
in that they tell us nothing about nearby related states - often states
belong to a phase of matter in which the properties of the states vary
smoothly and are in some sense “well behaved”, and we wish to learn
properties of this entire phase of matter. A recent line of research in
this direction that has gained significant attention from the quantum
community is that of combining machine learning methods with the
ability to sample complex quantum states from a phase of matter to
efficiently characterise the entire phase7,8, as well as using ML techni-
ques to improve identifying phases of matter9–11 and approximating
quantum states12–15. It is well known that these tasks are computa-
tionally intractable in general16–18, and so having access to data from an
externally generated source could conceivably speed up these com-
putations. A landmark result in this direction is19. There the authors
showedhow to usemachine learningmethods combinedwith classical
shadows to learn local linear and nonlinear functions of states
belonging to a gapped phase of matter with a number of samples that
only grows logarithmically with the system’s size. That is, given states
from that phase drawn from a distribution and the corresponding
parameters of the Hamiltonian, one can train a classical algorithm that
would predict local properties of other points of the phase. However,
there are some caveats to this scheme: (i) the scaling of the number of
samples in terms of the precision is exponential, (ii) it does not
immediately apply to phases of matter beyond gapped ground states,
(iii) the results only come with guarantees on the errors in the pre-
diction in expectation. That is, given another state sampled from the
same distribution as the one used to train, only on average is the error
made by the ML algorithm proven to be small.

In this work, we address all of these shortcomings. First, our result
extends to thermal phases of matter which exhibit exponential decay
of correlations, which includes thermal systems away from criticality/
poles in the partition function20,Section 5]. Our result also extends to
phases that satisfy a generalised version local topological quantum
order21–23 which includes not only Gibbs states with exponentially
decaying correlations, but also ground states of gapped Hamiltonians.
Furthermore, the sample complexity of our algorithm is quasi-
polynomial in the desired precision, which is an exponential

improvement over previous work19. Importantly, it also comes with
point-wise guarantees on the quality of the recovery, as opposed to
average guarantees.

Results
In this paper, we consider a quantum system defined over a D-
dimensional finite regular lattice Λ= ½�L,L�D, where n= ð2L+ 1ÞD
denotes the total number of qubits constituting the system. We
assume for simplicity that each site of the lattice hosts a qubit, so that
the total system’s Hilbert space is HΛ : =

N
j2ΛC

2, although all of the
results presented here easily extend to qudits.

We prove two sets of results. In subections ‘Preliminaries’,
‘Tomography: Optimal Tomography of Many-Body Quantum States’,
and ‘Tomography: Beyond linear functionals’ we summarise our
results on tomography; in particular, how to estimate all quasi-local
properties of a given state given identical copies of it. This is the tra-
ditional setting of quantum tomography. We give our second set of
results in subsections ‘Learning Phases: Learning Expectation Values of
Parameterised Families of Many-Body Quantum Systems’ and ‘Learn-
ing Phases: Learning Beyond Exponentially Decaying Phases’where we
summarise our results on how to learn local properties of a class of
states given samples from different states from that class. This is the
setting of19 where ground states of gapped quantum phases of matter
were studied. Here we consider (a) thermal phases of matter with
exponentially decaying correlations and (b) ground states satisfying
what we call ‘Generalised Approximate Local Indistinguishability’
(GALI). We show that ground state phases of gapped Hamiltonians
satisfy this GALI condition.

Our focus in thiswork are nontrivial statements aboutwhat can be
learned aboutmany-body states of n qubits in the settingwherewe are
only given ΘðpolylogðnÞÞ copies. The common theme is that we will
assume exponential decay of correlations for our class of states. This
underlying assumption to our results is not an artificial constraint, but
naturally appears in a broad range of physical settings, e.g., this is well-
known to hold for ground states of uniformly gapped local
Hamiltonians24. Exponential decay of correlations also arises for high-
temperature systems20,25–28, 1D Gibbs states at any constant
temperature20,29, the Ising model away from critical points30 and in the
context of stationary states of Liouvillians that feature rapid mixing31.

Preliminaries
We first consider the task of obtaining a good approximation of
expected values of extensive properties of a fixed unknown n-qubit
state over Λ. The state is assumed to be a Gibbs state of an unknown
local HamiltonianH(x): =∑j∈Λ hj(x(j)), x = {x(j)}∈ [−1, 1]m, defined through
geometrically local interactions hj(x(j)), each depending on parameters
x(j) ∈ [−1, 1]ℓ for some fixed integer ℓ and supported on a ball Aj around
site j∈ Λ of radius r0. We also assume that the matrix-valued functions
x(j) ↦ hj(x(j)) as well as their derivatives are uniformly bounded:
∥hj∥∞, ∥∇hj∥∞≤h. Here, “uniformly”means that the bound applies to all
system sizes, with constants that are independent of system size. The
corresponding Gibbs state at inverse temperature β > 0, and the
ground state as β → ∞ take the form

σðβ, xÞ : = e�βHðxÞ

tr e�βHðxÞ� � and ψg ðxÞ : = lim
β!1

σðβ, xÞ : ð1Þ

In the casewhen ½hjðxjÞ,hj0 ðxj0 Þ�=0 for all j, j0 2 Λ, the HamiltonianH(x)
and its associated Gibbs states σ(β, x) are said to be commuting.

We will often require that the states satisfy the property of
exponential decay of correlations: for any twoobservables XA, resp. XB,
supported on region A, resp. B,

Covσðβ,xÞðXA,XBÞ≤C minfjAj,jBjg kXAk1 kXBk1 e�νdistðA,BÞ , ð2Þ
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for some constants C, ν > 0, where dist(A, B) denotes the distance
between regions A and B, and where the covariance is defined by

CovσðX , Y Þ : =
1
2
tr σ X � tr½σX �,Y � tr½σY �� 	� �

: ð3Þ

Wecan also define a slightly stronger version of exponential decay:

Definition 1. (Uniform clustering) The Gibbs state σ(β, x) is said to be
uniformly ζ(ℓ)-clustering if for any X ⊂ Λ and any A⊂ X and B ⊂ X such
that dist(A, B) ≥ ℓ,

Covσðβ,x,X ÞðXA,XBÞ≤ kXAk1 kXBk1 ζ ð‘Þ ð4Þ

for any XA supported on A and XB supported on B σðβ; x;X Þ.
See Fig. 1 for an illustration.We note this condition implies eq. (2).

As pointed out in ref. 32, this property is called uniform clustering to
contrast with regular clustering property that usually only refers to
properties of the state σ(β, x).

Definition 2. (Uniform Markov condition) The Gibbs state σðβ; xÞ is
said to satisfy the uniform δ(ℓ)-Markov condition if for any ABC = X⊂ Λ
with B shielding A away from C (see Fig. 1) and such that dist(i, j) ≥ ℓ for
any i ∈ A and j ∈ C, we have

IðA : CjBÞσðβ,x,X Þ ≤ δð‘Þ : ð5Þ

Wediscuss these conditionsmore in SupplementaryNote 3, III D3.
Part of the work will be focused on obtaining accurate estimates

of quasi-local, extensive properties of quantum states, as such prop-
erties usually suffice to characterise physical properties of a state. For
instance, we are interested in observables O that can be written as

O =
X
j2Λ

Oj , ð6Þ

where Oj is supported on a ball Bj of radius r0 =Oð1Þ around site j and
∥Oj∥∞ ≤ 1 for all j ∈ Λ. Such observables capture physical properties
such as the energy,magnetisation, or the total number of particles.We
might also consider nonlinear properties of the state, such as the
average 2-Renyi entropy of a state ρ over regions:

X
j2Λ

� logðtr½ρ2
Bj
�Þ , ð7Þ

Such properties can be estimated from the reduced density
matrices on each region Bj, but sometimes it is also important to
consider quasi-local properties of quantum states. These are usually
encoded in observablesO like those of Eq. (6), but where eachOj is not
necessarily strictly supported on Bj, but rather have a vanishing tail
outside Bj. Such observables can arise if we e.g. evolve a strictly local
observable by a Hamiltonian with algebraically decaying interactions.

The expectation value of such observables is then no longer deter-
mined by the reduced density of small regions.

Note, however, that when we consider learning protocols that
have guarantees in terms of the trace distance, we have guarantees for
all observables, not only formore physicallymotivated ones discussed
above. Crucially for our results, extensive physical properties of a state
are well-captured by the recently introduced class of Lipschitz
observables33,34.

Definition 3. (Lipschitz Observable34) An observable L onHΛ is said to
be Lipschitz if kLkLip : =maxi2ΛminLic

2kL� Lic � Iik1 =Oð1Þ, where ic

is the complement of the site i in Λ and the scaling is in terms of the
number of qubits in the system.

In words, ∥L∥Lip quantifies the amount by which the expectation
value of L changes for states that are equal when tracing out one site.
Lipschitz observables encompass a variety of physically motivated
observables; indeed, for most physically motivated extensive quan-
tities, it is not the case that flipping one qubit should substantially
change the value of the expectation value. For instance, if we consider
the energywith respect to a local Hamiltonianon a regular lattice, then
acting with a unitary on one of the qubits can only change the energy
by a fixed amount. This is in contrast with arbitrary observables, where
one local change can lead to drastic changes in the expectation value.
Thus, in some sense, Lipschitz observables capture the notion that for
well-defined physical quantities, a local operation should only have a
limited effect. One can readily see that for observables like that of
Eq. (6), kLkLip =Oð1Þ. By a simple triangle inequality together with34,
Proposition 15, one can easily see that ∥L∥∞ ≤ n∥L∥Lip. Given the defi-
nition of the Lipschitz constant, we can also define the quantum
Wasserstein distance of order 1 by duality34.

Definition 4. (Quantum Wasserstein Distance34) The Quantum Wasser-
stein distance between two n qubit quantum states ρ0, ρ1 is defined as
W 1ðρ0,ρ1Þ : = supkLkLip ≤ 1 tr Lðρ0 � ρ1Þ

� �
. It satisfies W1(ρ0, ρ1) ≤

n∥ρ0 − ρ1∥1.
Having

W 1ðρ,σÞ=OðεnÞ ð8Þ

is sufficient to guarantee that the expectation value of ρ and σ is the
same up to an error that scales with the Lipschitz norm. This often
implies a multiplicative error for extensive, quasi-local observables.
Indeed, for any extensive, quasi-local observable O of the form of
Eq. (6), we have that kOkLip =Oð1Þ, and thus from an inequality like that
of Eq. (8) we have:

tr Oðρ� σÞ½ �≤ kOkLipW 1ðρ,σÞ=OðεnÞ : ð9Þ

If we normalize the observable O to be traceless and have
operator norm ~ n, then the expectation value of physical quantities
will typically scale like ~ n, which justifies our claim that this recovery
form will often lead to a multiplicative error.

This fact justifies why we focus on learning states up to an error
OðεnÞ in Wasserstein distance instead of the usual trace distance
bound of orderOðεÞ: although a trace distance guarantee of orderOðεÞ
would give the same error estimate, it requires exponentially more
samples even for product states, as shown in ref. 6, Appendix G. We
refer to Supplementary Note 2, for a more thorough discussion of why
Lipschitz observables capture well quasi-local properties of quantum
states.

Fig. 1 | Illustrationof the clustering of correlations andMarkovCondition. Left:
Exponential decay of correlations means the covariance in Eq. (2) must decrease
exponentially between regions (A, B). Right: Roughly, the Markov Condition
implies that themutual information between regions (A,C), which are separated by
a region (B), decreases sufficiently fast as the width of (B) increases.
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Tomography: optimal tomography of many-body
quantum states
We turn our attention to the problem of obtaining approximations to
an unknown Gibbs state with as few samples as possible. That is, given
copies of the unknown Gibbs state σ(β, x), we want to learn a set of
parameters x0 such that the state σðβ, x0Þ provides a good estimate. In
particular, ensuring that our approximation σðβ, x0Þ is OðnεÞ-close to
σ(β, x) in quantum Wasserstein distance guarantees that the descrip-
tion returned by our algorithm, in terms of parameters x0, satisfies
j f Lðβ, x0Þ � f Lðβ, xÞj=OðnεÞ for linear functions of the form f Lðβ, xÞ : =
tr½Lσðβ, xÞ� where L is a Lipschitz observable. For this task we only use
measurements and classical post-processing on the copies of σ(β, x)
provided.

Our first main result is a method to learn Gibbs states with few
copies of the unknown state:

Theorem 1. (Tomography algorithm for decaying Gibbs states (infor-
mal of Supplementary Theorem III.1)) For any unknown commuting
Gibbs state σ(β, x) satisfying exponential decay of correlations in Eq. (2),
there exists an algorithm that outputs parameters x0 such that the state
σðβ, x0Þ approximates σ(β, x) to precision nε in Wasserstein distance
with probability 1 − δ with access to N =Oðlogðδ�1ÞpolylogðnÞ ε�2Þ
samples of the state (see Supplementary Note 3, III D1). The result
extends to non-commuting Hamiltonians whenever one of the follow-
ing two assumptions is satisfied:
(i) the high-temperature regime, β < βc, for some constant

temperature βc =Oð1Þ (see Supplementary Note 3, III D2).
(ii) uniform clustering of correlations (which implies Eq. (2)) & Mar-

kov conditions.In case (ii), we find good approximation guaran-
tees under the following slightly worse scaling in the precision
ε: N =Oðε�4polylogðnδ�1ÞÞ.

Proof ideas. The results for commuting Hamiltonians and in the high-
temperature regime proceed directly from the following continuity
boundon theWassersteindistancebetween twoarbitraryGibbs states,
whose proof requires the notion of quantum belief propagation in the
non-commuting case (see Supplementary Corollary III.4): for any
x, y ∈ [−1, 1]m,

W 1ðσðβ, xÞ, σðβ, yÞÞ= β kx � yk‘1 OðpolylogðnÞÞ : ð10Þ

Furthermore, this inequality is tight up to a polylogðnÞ factor for
β =Θ(1). Equation (10) reduces the problem of recovery inWasserstein
distance to that of recovering the parameters x up to an error
εn=polylogðnÞ in ℓ1 distance. This is a variation of the Hamiltonian
learning problem for Gibbs states5,35 which relies on lower bounding
the ℓ2 strong convexity constant for the log-partition function.

In4, the authors give an algorithm estimating the Hamiltonian
parameters xwith eOðβkDÞOðβ�1 logðδ�1nÞε�2Þ copies of σ(β, x) up to ε in
ℓ∞ distance when σ(β, x) belongs to a family of commuting, k-local
Hamiltonians on a D-dimensional lattice. If we assume m=OðnÞ, this
translates to an algorithm with sample complexity
eOðβkDÞOðε�2polylogðδ�1nÞÞ to learn x up to εn in ℓ1 distance. It should
also be noted that the time complexity of the algorithm in ref. 4 is
OðneOðβkDÞε�2polylogðδ�1nÞÞ. Thus, any commuting model at constant
temperature satisfying exponential decay of correlations can be effi-
ciently learned with polylogðnÞ samples. We refer the reader to Sup-
plementary Note 5 for more information and classes of commuting
states that satisfy exponential decay of correlations. In the high-
temperature regime, we rely on a result of5 where the authors give a
computationally efficient algorithm to learn x up to error ε in ℓ∞ norm
from Oðε�2polylogðδ�1nÞÞ samples. This again translates to a OðεnÞ
error in ℓ1 norm thanks to (10).

Furthermore, in Supplementary Note 3, III D3 we more directly
extend the strategy of35 by introducing the notion of a W1 strong

convexity constant for the log-partition function and showing that it
scales linearly with the system size under (a) uniform clustering of
correlations and (b) uniform Markov condition. This result also gen-
eralises the strategy of6 which relied on the existence of a so-called
transportation cost inequality previously shown to be satisfied for
commuting models at high-temperature. For the larger class of states
satisfying conditions (a) and (b), we are able to find x0 s.t.
W 1ðσðβ, xÞ,σðβ, x0ÞÞ=OðεnÞ with Oðε�4polylogðδ�1nÞÞ samples. Note
that the uniformMarkov condition is expected to hold for a large class
of models that goes beyond high-temperature Gibbs states25,36. We
believe that our result is also of interest for classical models. The last
years have seen a flurry of results on learning classical Gibbs states
under various metrics, with a particular focus on learning the para-
meters in some ℓp norm37–41. But, to the best of our knowledge, the
learning inW1 was not considered, particularly the quantum version of
the Wasserstein distance. Furthermore, there are phases of classical
Ising models that exhibit exponential decay of correlations but no
polynomial-time algorithms to sample from the underlying Gibbs
states are known42,43. Note, however, that herewe are assuming that we
have access to samples from the distribution, which makes it possible
to devise efficient learning algorithms evenwhen sampling is expected
to be hard37. Thus, generally speaking, there is no simple connection
between the efficient simulation (classical or quantum) of a class of
Gibbs states and the existence of efficient Hamiltonian learning
algorithms.

Tomography: Beyond linear functionals
So far, we considered properties of the quantum system which could
be related to local linear functionals of the unknown state. In3,19, the
authors propose a simple trick in order to learn non-linear functionals
of many-body quantum systems, e.g. their entropy over a small sub-
region. However, such methods require a number of samples scaling
exponentially with the size of the subregion, and thus very quickly
become inefficient as the size of the region increases. Here instead, we
use34, Theorem 1, where the authors show the continuity bound on the
von Neumann entropy S:

jSðρÞ � SðσÞj≤ gðW 1ðρ,σÞÞ+W 1ðρ,σÞ logð4nÞ, ð11Þ

where gðtÞ= ðt + 1Þ logðt + 1Þ � t logðtÞ, together with the following
Wasserstein continuity bound in order to estimate the entropic
quantities of Gibbs states over regions of arbitrary size (see Supple-
mentaryCorollary III.6): assuming Eq. (2), for any regionRof the lattice
and any two x, y ∈ [−1, 1]m

W 1ðtrRc ðσðβ, xÞÞ, trRc ðσðβ, yÞÞÞ≤ kxjRðrRÞ � yjRðrRÞk‘1 polylogðjRðrRÞjÞ ,
ð12Þ

where rR = max r0, 2ξ log 2jRjC1kxjRðr0Þ � yjRðr0Þk�1
‘1

� �n o
with r0 being

the smallest integer such that xjRðr0Þ ≠ yjRðr0Þ, and where RðrRÞ :
= fxðjÞj suppðhjðxðjÞÞÞ \ RðrRÞ≠ ;g is the set of parameters x(j) describing
theHamiltonian in the region R(rR), andwhereR(rR): = {i∈ Λ: dist(i, R) ≤
rR}. C1, ξ > 0 are O(1) constants.

Let us recall a few definitions: denoting by ρR : = trRc ðρÞ the mar-
ginal of a state ρ 2 DðHΛÞ on a region R ⊂ Λ, and given separated
regions A, B, C ⊂ Λ of the lattice: SðAÞρ : = � tr½ρA logρA� is the von
Neumann entropy of ρ on A, S(A∣B)ρ: = S(AB)ρ − S(B)ρ is the conditional
entropy on region A conditioned on region B, I(A: B)ρ: = S(A)ρ +
S(B)ρ − S(AB)ρ is the mutual information between regions A and B, and
I(A: B∣C)ρ: = S(AC)ρ + S(BC)ρ − S(C)ρ − S(ABC)ρ is the conditional mutual
information between regions A and B conditioned on region C. Equa-
tion (11) can be combined together with Eq. (12) to get the following:

Corollary 1. Assume the decay of correlations holds uniformly, as
specified in Eq. (2), for all fσðβ, xÞgx2½�1,1�m , m=OðnÞ. Then, in the
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notations of the above paragraph, for any two Gibbs states σ(β, x) and
σ(β, y), x, y ∈ [−1, 1]m, and any region A ⊂ Λ:

jSðAÞσðβ,xÞ � SðAÞσðβ,yÞj= k xjRðrRÞ � yjRðrRÞk‘1OðpolylogðjRðrRÞjÞÞ , ð13Þ

for R ≡ A. The same conclusion holds for ∣S(A∣B)σ(β, x) − S(A∣B)σ(β, y)∣,
(R ≡ AB), ∣I(A: B)σ(β, x) − I(A: B)σ(β, y)∣ (R ≡ AB), and ∣I(A: B∣C)σ(β, x) −
I(A: B∣C)σ(β, y)∣ (R ≡ ABC).

Thus, given an an estimate y of x satisfying
kx � yk‘1 =Oðε=polylogðnÞÞ, we can also approximate entropic quan-
tities of the Gibbs state to a multiplicative error. Furthermore, we
remark that for many classes of Gibbs states, including high-
temperature and commuting models4–6, we can obtain such an esti-
matewithOðε�2polylogðnÞÞ samples, and it remains an important open
problem to establish such a result in general for quantum models.
More generally, entropic continuity bounds can be directly used
together with Theorem 1(ii) in order to estimate entropic prop-
erties of Gibbs states satisfying both uniform clustering of cor-
relations and the approximate Markov condition (see
Supplementary Note 3, III D 3 for details).

Learning phases: learning expectation values of parameterised
families of many-body quantum systems
Next, we turn our attention to the task of learning Gibbs or ground
states of a parameterised Hamiltonian H(x) known to the learner and
sampled according to the uniform distribution U over some region
x 2 Φ : =

Qm
i = 1½�1 + x0

i ,1 + x
0
i � (where here

Qm
i= 1 represents the Carte-

sian product over sets). More general distributions can also be dealt
with under a condition of anti-concentration, see Supplementary
Note 4. Here we restrict our results to local observables of the form
O=

PM
i = 1 Oi where Ri: = supp(Oi) is contained in a ball of diameter

independent of the system size. The setup in this section is similar to19.
The idea is that we have access to some samples of a state chosen from
different values of the parameterised Hamiltonian, and wewant to use
these to learn observables everywhere in the parameter space with
high precision.We thenwant to know:what is theminimumnumber of
samples drawn from this distribution which allows us to accurately
predict expectation values of local observables for every choice of
parameters?

The learner is given samples fðxi,σðβ, xiÞÞgNi= 1, where the para-
meters xi ~ U, and their task is to learn f OðxÞ : = tr½σðβ,xÞO� for an
arbitrary value of x∈Φ and an arbitrary local observableO.We assume
that everywhere in the parameter space x ∈ Φ the Gibbs states are in
the same phase of exponentially decaying correlations. Note that this
does not necessarily imply the existence of a fully polynomial time
approximation scheme, and finding under which conditions such
algorithms exist is still a very active area of research42. As discussed at
the beginning of the subsection ‘Tomography: Optimal Tomography
of Many-Body Quantum States’, exponentially decaying correlations is
a natural condition for many physical systems.

Theorem 2. (Learning algorithm for quantum Gibbs states informal
version of Supplementary Theorem IV.4) With the conditions of the
previous paragraph, given a set of N samples fxi,~σðβ,xiÞgNi = 1, where
~σðβ,xiÞ can be stored efficiently classically, and
N =O log M

δ

� �
log n

δ

� �
epolylogðε

�1Þ
� �

, there exists an algorithm that, on
input x∈Φ and a local observableO=

PM
i= 1 Oi, produces an estimator

f̂ O such that, with probability (1 − δ),

sup
x2Φ

jf OðxÞ � f̂ OðxÞj≤ ε
XM
i = 1

kOik1 : ð14Þ

Moreover, the samples ~σðβ, xiÞ are efficiently generated from
measurements of the Gibbs states fσðβ, xiÞgNi = 1 followed by classical
post-processing.

Proof ideas. Our estimator f̂ O is constructed as follows: during a
training stage, we pick N points Y1,…, YN ~ U and estimate the reduced
Gibbs states over large enough enlargements Ri∂ of the supports Ri :

= fxðjÞj suppðhjðxðjÞÞÞ \ Ri∂≠;g \ ½x � ε, x + ε�m of the observables Oi.
Due to the anti-concentration property of the uniformdistribution, the
probability that a small region Ri∂ in parameter space contains t
variables Y i1

, . . . ,Y it
becomes large for N≈ logðMÞ.

We then run a robust version of the classical shadow tomography
protocol on those states in order to construct efficiently describable
and computable product matrices eσðβ,Y 1Þ, . . . ,eσðβ,YNÞ. This is devised
in Supplementary Proposition 4.3. Then for any region Ri, we select the
shadows eσðβ,Y i1

Þ, . . . eσðβ,Y it
Þ such that the restriction of each Y ik

to just
the parameters in Ri are close to that of the target state and construct

the empirical average eσRi
ðxÞ : = 1

t

Pt
j = 1 trRc

i
eσðβ,Y ij

Þ
h i

. That is, the

samples which are included in this sum satisfy that the difference k
Y j jRi

� xjRi
k1 is sufficiently small. Using belief propagation methods

(see Supplementary Proposition IV.3), it is possible to show that
exponential decay of correlations ensures that the estimator is a good
approximation to local observables. Thus such operators can be well
approximated using the reduced state trRc

i
σðβ,xÞ for t≈ logðnÞ. The

estimator f̂ O is then naturally chosen as f̂ OðxÞ : =
PM

i= 1 tr½Oi eσRi
ðxÞ�. A

key part of the proof is demonstrating that exponential decay of cor-
relations implies that fO(x) does not change too much as x varies. See
Fig. 2 for an outline of the algorithm.

We note that the algorithm here strictly works when there is only
one phase of matter. In the presence of more than one phase, the
predictor will give less accurate results as it approaches the phase
boundary, however, it the results of theorem2will holdwithin the bulk
of each phase. Finally, we note that once we have access to the sha-
dows, the algorithm simply performs a nearest-neighbour search with
respect to the parameter of interest, followed by constructing the
estimator, giving a runtime of at most O(nN).

Learning phases: learning beyond exponentially
decaying phases
So far we have only discussed results for families of thermal states
satisfying exponential decay of correlations. It would be desirable to
extend our results to phases for which this is not generally known to
hold, and to be able to extendour results to zero temperature systems.
We introduce a new condition called generalised approximate local
indistinguishability (GALI), under which learning local observables
from samples can be done efficiently. GALI can be shown to hold for all
gapped ground state phases of matter and all thermal states with
exponentially decaying correlations. We refer the reader to Supple-
mentary Note 5 for further details.

Definition 5. (Generalised approximate local indistinguishability
(GALI)) For x0

1 , . . . ,x
0
m 2 R let Φ : =

Qm
i = 1½�1 + x0i ,1 + x

0
i � and for x ∈ Φ

define ρ(x) as either the ground state or thermal state of the local
Hamiltonian H(x). We say that the family of states ρ(x) satisfies gen-
eralised approximate local indistinguishability (GALI) with decay
function f if for any region R and r 2 N there is a set of parameters
x*RðrÞc s.t. for allO supported on R and f OðxÞ : = tr½OρðxÞ� the following
bound holds:

sup
x2Φ

jf OðxÞ � f OððxjRðrÞ,x
*
RðrÞc ÞÞj≤ jRjf ðrÞkOk1 , ð15Þ

for a function f s.t. lim
r!1

f ðrÞ=0.
Under the GALI assumption, we are able to prove the following

generalisation of theorem 2:
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Theorem 3. Let ρ(x), x 2 Φ : =
Qm

i = 1½�1 + x0i , 1 + x
0
i �, be a family of

ground states or Gibbs states satisfying GALI, as per definition 5 with
f ðrÞ=Oðe�r=ξ Þ for some correlation length ξ > 0. Given a set of N

samples fxi, ~ρðxiÞgNi= 1, where ~ρðxiÞ can be stored efficiently classically,

and N =O log M
δ

� �
log n

δ

� �
epolylogðε

�1Þ
� �

, there exists an algorithm that, on

input x∈Φ and a local observableO=
PM

i= 1 Oi, produces an estimator

f̂ O such that, with probability (1 − δ),

sup
x2½�1,1�m

jf OðxÞ � f̂ OðxÞj ≤ ε
XM
i= 1

kOik1 : ð16Þ

Moreover, the samples ~ρðxiÞ are efficiently generated from mea-
surements of the Gibbs states fρðxiÞgNi= 1 followed by classical post-
processing.

Since ground states of Hamiltonians with a non-zero spectral gap
satisfy GALI, we can efficiently learn families of gapped ground states
with the methods in this work. We refer the reader to Supplementary
Note 5 B for proofs.We also note that, as per the thermal state learning
algorithm, in the presence of multiple phases the predictions will be
good in the bulk, but may break down approaching the boundary.

Discussion
In this paper we contributed to the tasks of tomography and learn-
ability of quantum many-body states by combining previous techni-
ques with approaches not considered so far in this field, in order to
obtain novel and powerful features.

First, we extended the results of6 on the efficient tomography of
high-temperature commuting Gibbs states to Gibbs states with expo-
nentially decaying correlations. This result permits to significantly
enlarge the class of states for which we know how to learn all quasi-
local properties with a number of samples that scales poly-
logarithmically with the system’s size. In particular, our results now
also hold for classes of Gibbs states of non-commuting Hamiltonians.
As we require exponentially fewer samples to learn in the Wasserstein
metric when compared with the usual trace distance and still recover
essentially all physically relevant quantities associated to the states, we

hope that our results motivate the community to consider various
tomography problems in the Wasserstein instead of trace distance.

As we achieved this result by reducing the problem of learning
the states to learning the parameters of the Hamiltonian in ℓ1, we hope
our work further motivates the study of the Hamiltonian learning
problem in ℓ1-normwith polylog samples. 1D Gibbs states are a natural
place to start, but obtaining Hamiltonian learning algorithms just
departing from exponential decay of correlations would provide us
with a complete picture. In Supplementary Note 3, III D 3, we also
partially decoupled the Hamiltonian learning problem from the W1

learning one by resorting to the uniform Markov condition. Thus, it
would be important to establish the latter for a larger number of
systems.

It would be interesting to investigate the sharpness of our bounds,
and to understand if exponential decay of correlations is really
necessary. One way of settling this question would be to prove poly-
nomial lower bounds for learning in Wasserstein distance for states at
critical temperatures.

Second, we improved the results of Huang et al.19 for learning a
class of states in several directions, including the sample-complexity
scaling in precision, the classes of states it applies to and the form of
the recovery guarantee. In particular, the results now apply to Gibbs
states, which are the states of matter commonly encountered experi-
mentally. Additionally, we achieve recovery guarantees in the worst
case, whereas Huang et al.19 only gives guarantees on the average-case
error. Interestingly, we did not need to resort to complex machine
learning techniques to achieve an exponentially better scaling in pre-
cision by making arguably mild assumptions on the distributions the
states are drawn from. Our algorithm is essentially a simple nearest-
neighbour algorithm. Although the results proved here push the state-
of-the-art of learning quantum states, we believe that ourmethods, for
instance the novel continuity bounds for various local properties of
quantum many-body states, will find applications in other areas of
quantum information.

Beyond the GALI thermal phases and ground states studied here,
it would be interesting to find other families of states which can be
efficiently learned, and indeed if more restrictive assumptions on the
parameterisation of Hamiltonians can result in more efficient learning.
One interesting open problem that goes beyond the present paper’s

Fig. 2 | Schematic representation of our algorithm to learn phases of matter.
The training stage just consists of collecting shadows corresponding to various
parameters. In the prediction stage, given an observable O and corresponding
parameter y supported on a region R, we search for parameters xi we sampled that

have parameters close to y on an enlarged region, R(r) around R and compute the
expectation value of O on the corresponding shadows. The prediction is then a
median ofmeans estimate on the values. Note that nomachine learning techniques
are required for the estimate.
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scope is finding families of states satisfying GALI without belonging to
a common gapped phase of matter. If such a family existed, it would
clarify the differences between our framework and that of44. We also
refer towork on learning phases ofmatter, where phasehere is defined
under a rapid-mixing condition45. In addition, it would be interesting to
derive lower bounds on the sample complexity for the problem of
learning a quantum phase as in this work. Finally, we realise that
although the results proved here are for lattice systems, they almost
certainly generalise to non-lattice configurations of particles.

We also recognise independent, concurrent work by Lewis et al.44.
Here the authors consider the same setup of gapped ground states as
Huang et al.19 and also improved the sample complexity to achieve the
same scaling as Theorem 3. However, their result is not directly com-
parable to ours. We emphasise that Lewis et al.44 consider gapped,
ground state phases, whereas our work includes thermal phases. We
also note they remove all conditions on the prior distribution over the
samples x, whereas we still need to assume a type of mild anti-
concentration over the local marginals. However, their result is still
stated as an k �kL2 -bound, whereas our more straightforward approx-
imation tools allow us to get stronger bounds in ∥ ⋅ ∥∞. Conceptually
speaking, our methods for approximating local expectation values
requires no knowledge of machine learning techniques. Our work also
shows that it is possible to go beyond gapped quantum phases and
learn thermal phases.
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