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Unique genetic and risk-factor profiles in
clusters of major depressive disorder-related
multimorbidity trajectories
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Nora Eszlari5,6, Gabor Hullam1,5, Tamas Nagy1,5,6, Sarah Bonk2,
Rubèn González-Colom 7, Xenia Gonda 5,6,8, Linda Garvert 2,
Teemu Paajanen 4, Zsofia Gal 5,6, Kevin Kirchner2, Andras Millinghoffer9,
Carsten O. Schmidt 10, Bence Bolgar1, Josep Roca7, Isaac Cano 7,
Mikko Kuokkanen 4,11,12, Peter Antal 1,14 & Gabriella Juhasz 5,6,14

The heterogeneity and complexity of symptom presentation, comorbidities
and genetic factors pose challenges to the identification of biological
mechanisms underlying complex diseases. Current approaches used to iden-
tify biological subtypes of major depressive disorder (MDD) mainly focus on
clinical characteristics that cannot be linked to specific biological models.
Here, we examined multimorbidities to identify MDD subtypes with distinct
genetic and non-genetic factors. We leveraged dynamic Bayesian network
approaches to determine a minimal set of multimorbidities relevant to MDD
and identified seven clusters of disease-burden trajectories throughout the
lifespan among 1.2 million participants from cohorts in the UK, Finland, and
Spain. The clusters had clear protective- and risk-factor profiles as well as age-
specific clinical courses mainly driven by inflammatory processes, and a
comprehensive map of heritability and genetic correlations among these
clusters was revealed. Our results can guide the development of personalized
treatments forMDDbased on the unique genetic, clinical and non-genetic risk-
factor profiles of patients.

Major depressive disorder (MDD), characterized by depressed mood
and loss of interest, is one of the most common mental disorders and
typically has a recurrent or chronic course that leads to suffering,
disability, increased suicide risk, and increased all-cause mortality1.
Additionally, approximately one-third of patients are resistant to cur-
rent treatments2, partly due to the lack of a comprehensive biological
model, as MDD shows remarkable heterogeneity in both its clinical
manifestation and underlying neurobiology3.

Genome-wide association studies (GWASs) have suggested
divergent pathways andmostly nonspecific cellularprocesses involved
in MDD. Furthermore, genetic correlation studies have indicated
shared genetic contributions to several somatic and mental disorders,

reflecting the pleiotropy of genetic variants and common biological
processes involved4–6. As twin studies have estimated that only 40% of
phenotype heritability can be attributed to additive genetic effects6,
this suggests the involvement of comorbid conditions andnon-genetic
risk factors.

The inclusion of additional phenotypic information when sub-
typing depressive disorders can indeed reduce genetic heterogeneity
and inform the development of aetiological models, even if such
subtyping was based on restricted sets of predefined criteria and
associated symptoms7. Furthermore, a recent study demonstrated
strong multimorbidity patterns among 439 common diseases on both
phenotypic and genetic levels8, revealing strong correlation patterns
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between psychiatric and cardiovascular and respiratory disorders. The
multimorbidity paradigm shift also highlights the importance of con-
sidering multimorbidity patterns when identifying depression sub-
types and determining distinct biological pathways in their
background9,10.

Thus, in the Temporal Disease Map-Based Stratification of
Depression-Related Multimorbidities (TRAJECTOME) project, our aim is
to filter and include all relevant information on trajectories of MDD-
related multimorbidities from large population cohorts, including
individuals with and without MDD, to facilitate the identification of
biologically and clinically informative depression subtypes as well as
their distinct neurobiological and genetic backgrounds, and thereby
suggest potential biomarkers for precision screening and treatment.
Our main hypothesis was that the use of age-dependent strongly
relevant MDD-related multimorbidities enriches the genetic basis of
MDD, such that specific participant clusters are associated with dis-
tinct genetic profiles contributing to the pathology of major depres-
sive disorder.

To date, studies attempting to identify subgroups within chronic
somatic diseases have mainly used cross-sectional data and have not
considered associations with psychiatric disorders11–13. Recently, this
approach was expanded from phenotypic data to genetic data8,
explaining 46% of identified multimorbidities according to shared
genetic components and identifying central hub diseases that are
highly relevant to the majority of multimorbidity relationships. Fur-
thermore, a Danish group identified five time-dependent psychiatric-
multimorbidity clusters in schizophrenia patients associated with
heterogeneity in aetiological factors14.

Moving beyond these attempts, our approach is based on
dynamic Bayesian networks to identify aminimal, nonredundant set of
MDD-related multimorbidity trajectories that convey all relevant
information about MDD in an individual’s entire medical history. This
filtered set includes all multimorbidities with nonmediated causal
relationships toMDD and thosewith potential shared genetic and non-
genetic factors. In a previous cross-sectional analysis, we demon-
strated that such Bayesian filtering of pairwise comorbidity associa-
tions significantly boosted the shared molecular background15. In this
project, we leveraged this enrichment effect and extended our pre-
vious approach into the temporal dimension. The method involved
three steps. First, we utilized the statistical concept of the Markov
boundary to identify the minimal set of multimorbidity trajectories
relevant to a target variable (MDD). Second, we developed a unique,
data-driven method of measuring patient similarity in this filtered set
of MDD-related trajectories. Finally, we used privacy-preserving
Bayesian federated clustering of individuals in a transcohort setting:
we used five general-population cohorts (N = 1,189,509) for discovery
and two additional cohorts (N = 387,089) to validate the clusters’
associated genetic profiles and non-genetic risk factors.

This approachprovides a temporal, systems-basedperspective on
the complex pattern of time- and comorbidity-dependent courses of
MDD and their associated biological risk factors, yielding a distilled
molecular understanding of the disease network and possibly indi-
cating novel long-term treatment approaches. Moreover, our
approach enables the dissection of shared genetic factors between
MDD and related conditions and may pave the way for personalized
treatment plans targeting not diseases but specific shared pathways in
multimorbid conditions, particularly in the realm of psychiatric
disorders.

Results
The TRAJECTOME project involves data from 1,576,598 participants
from seven European general-population cohorts (Table 1, Supple-
mentary Data 1A, B). To identify distinct MDD-related multimorbidity-
based clusters and assess their biological profiles, we used individual
disease onset information from large cohorts divided into discovery

and validation cohorts. The observed differences between cohorts
included age range, birth year, and socioeconomic factors, whichmay
have influenced the availability of medical care and disease diagnosis
and affected the prevalence rates of lifetimeMDDdiagnosis (7–19%) in
the cohorts (Supplementary Figs. S1 and S2).

Dynamic Bayesian network analysis reveals seven MDD-related
multimorbidity clusters
To identify MDD-related multimorbidity clusters from the discovery
cohorts’ temporal trajectories, we selected 86 predetermined cross-
cohort diseases strongly related to MDD (Methods, Fig. 1, Supplemen-
tary Data 2 and 3). Based on these diseases, we computed weighted
direct MDD-related multimorbidity scores for each participant in each
cohort over different time intervals and used these scores as input in
the cluster analysis. The seven identified clusters reflected different
temporal trajectories of the MDD-related multimorbidity burden
throughout the lifespan (Supplementary Fig. S3.1) and corresponded
to specific clinical subtypes, which we characterized according to
genetic profiles and non-genetic risk factors. The fundamental
hypothesis of our method was that defining the clusters based only on
diseases strongly relevant toMDDwould focus the clusters’ profiles on
pleiotropic genetic and non-genetic factors of thesediseases (Fig. 1). In
contrast, the influence of factors affecting MDD only through other
diseases was diminished (such indirectly related diseases are asso-
ciated with but not strongly relevant to MDD15). The resulting clusters
represent special multitraits and, as such, combine evidence from the
multimorbidities strongly relevant to MDD and enrich their common
influencing factors. Therefore, our framework represents a more
powerful method of identifying shared mechanisms influencing MDD
and each identified clinical subtype.

To determine the clinical characteristics of the identified clusters,
we investigated their temporal disease patterns in terms of the mean
and distribution of onset age of each cross-cohort disease (Fig. 2). We
also evaluated the disease risk based on Cox regression for each cross-
cohort disease and the MDD-free survival using Kaplan‒Meier esti-
mates (Fig. 3).

Regarding the mean onset age of the cross-cohort diseases in the
UK Biobank (UKB) cohort (Fig. 2), Clusters 1–4 had a later onset age
and a longer period of low disease burden. Cluster 6 was similar but
hadhigher diseaseprevalence in older age. InCluster 5, themeanonset
ages of diseases, especially musculoskeletal, respiratory, and geni-
tourinary diseases, were earlier, whereas in Cluster 7, the mean onset
ages of allergic and respiratory inflammatory diseases, migraine, and
dermatitis were earlier. Thus, the onset ages of comorbid diseases in
Cluster 7 exhibited a bimodal distribution (Fig. 2B), with the first peak
occurring before the age of 20 years and the second peak, which
reflected age-related disorders, occurring later, comparable to the
peak of Cluster 6 (complete trajectories of all cross-cohort diseases as
well as comparisons among the cohorts are provided in Supplemen-
tary Figs. S3.2 and S4.1–S4.4). The distribution of the onset ages
(Fig. 2B) among the clusters is also reflected in their age distributions.
Clusters 5 and 7 mainly included younger individuals assigned at early
ages of disease onset (Supplementary Fig. S5), whereas the remaining
clustersmainly included older individualswhowereonly assignedwith
high certainty after the first diseases had emerged at an older age.

Concerning theprevalenceof comorbiddiseases,we founda clear
distinction in the burden ofMDD-related disorders among the clusters
(Fig. 3A). Clusters 1–4, and especially Clusters 1–2, exhibited a low
prevalence of almost all cross-cohort diseases. A substantial decrease
in the prevalence rates of psychiatric and respiratory diseases was
observed along with slightly increased prevalence rates of cere-
brovascular and kidney diseases and hypertension (in Cluster 3) or of
lipid metabolic disorders and hypothyroidism (in Cluster 4). Clusters
5–6 exhibited a higher MDD-related disease burden with increased
prevalence rates of almost all cross-cohort diseases (Fig. 3A). In Cluster
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5, the prevalence rates of schizophrenia and musculoskeletal diseases
leading to pain disorders were increased, while in Cluster 6, the pre-
valence rates of severe reactions to stress, somatoform disorders, and
respiratory tract infections were increased. Cluster 7 had a divergent
disease profile, with slight decreases in the prevalence rates of most
disorders, except for allergic and respiratory inflammatory diseases,
migraine, and dermatitis, which each had a strongly increased pre-
valence (Fig. 3A).

Regarding the evaluation of MDD, the same disease-burden pat-
tern in terms of onset age and prevalence was observed in all five
cohorts (Fig. 3B, C), with Clusters 1–4 having a low MDD burden in
contrast to Clusters 5–7 having a high MDD burden with greater var-
iations among the cohorts. Focussing on the complete set of psy-
chiatric diseases (Chapter V. of ICD-10: F00-F99) to assess their
temporal disease patterns across the identified clusters, the analysis
revealed significant differences among the clusters in terms of the
onset and prevalence of various psychiatric disorders (Supplemen-
tary Fig. S6).

This pattern was also reflected in the correlations of cluster
membership probabilities throughout all cohorts (Supplementary
Fig. S7), with strong positive correlations of cluster membership
among Clusters 1–4 and between Clusters 5 and 6 andmainly negative
correlations of cluster membership with Cluster 7, reflecting the three
divergent risk profiles. Distributions of the cluster membership prob-
abilities in the UKB cohort (Supplementary Figs. S8.1–S8.7) and of the
final cluster assignment in all cohorts (Supplementary Fig. S9) showed
that most participants were assigned to one of the low-risk Clusters
1–4. Within the remaining risk-conferring clusters, the majority of
individuals were assigned to the early-onset clusters (Clusters 5&7),
and the fewest individuals were assigned to the late-onset Cluster 6.
These findings suggest that the identified clusters had distinct clinical
characteristics, which could have implications for personalized
healthcare approaches, early intervention strategies16, and targeted
treatment plans for individuals within each cluster.

GWAS analysis of MDD-related multimorbidity clusters in the
UKB cohort identifies immune system-related genetic profiles
To explore the genetic contribution of the clusters, we conducted
GWAS analyses in the UKB cohort (N = 249,167), where the posterior
log-odds of the cluster memberships were used as the target variables.
Analyses of all clusters revealed 6141 distinct genome-wide significant
single-nucleotide polymorphisms (SNPs) spanning 42 risk loci on 20
different chromosomes (Table 2). Individual Manhattan and QQ plots
(Fig. 4A, Supplementary Figs. S10.1–S10.7) and genomic risk loci
(Supplementary Data 4–10), gene-based (Supplementary Data 11–18),
and functional enrichment analyses results (Supplementary Data 19)
are provided in the Supplement.

The overall pattern of risk-conferring and protective clusters
was also apparent at the genetic level (Fig. 4B). In Clusters 1–4,
which had a low disease burden, there were many significant loci,
genes, and gene sets (Table 2) that were mostly linked to the
immune system, including major histocompatibility complex genes
(HLA genes), receptors (interleukin- and Toll-like receptors), and
cytokines. This was also reflected in functional enrichment analyses
that identified significant enrichment in several gene sets (Supple-
mentary Fig. S11), including positive regulation of immune system
process, regulation of cytokine production, MHC class II protein
complex assembly, Toll-like receptor binding, immune receptor
activity, cytokine-cytokine receptor interaction, and Th1 and Th2 cell
differentiation, involved in the immune response. Genome-wide
significant SNPs in Clusters 1–4 exhibited substantial overlap with
allergic diseases (asthma, allergic rhinitis, eczema, and hay fever),
cardiometabolic traits (BMI, C-reactive protein [CRP], and high-
density lipoprotein [HDL]), chronic diseases (rheumatoid arthritis,
multiple sclerosis, and diabetes), inflammatory conditions of the
colon (inflammatory bowel disease), and blood measures (white
blood cell count and vitamin D level), consistent with results from
gene-based and gene set-based analyses, which showed a strong
link to immune-related biological processes (Supplementary

Table 1 | Characteristics of the individual cohorts included in the TRAJECTOME project

UKB (N = 502,504) THL (Finrisk, Health 2000/2011,
FinHealth 2017) (N = 41,092)

CHSS (N = 645,913) FinnGen
(N = 385,640)

SHIP (N = 1449)

Analysis status Discoverya Discovery Discovery Validation Validation

Available information types (clin-
ical, genetic, behavioural factors)

(Yes, Yes, Yes) (Yes, Yes, Yes) (Yes, No, No) (Yes, Yes, No) (No, Yes, Yes)

Country UK Finland Spain Finland Germany

Age, years 61.5 (9.31), [37–83] 65.1 (14.02), [21–99] 47.5 (24.36), [0–111] 59.4 (18.3), [0–99] 60.4 (12.8), [36–93]

Sex,
Male
Female

229,122 (45.6%)
273,382 (54.4%)

19,186 (46.7%)
21,906 (53.3%)

306,337 (47.4%)
339,576 (52.6%)

169,103 (43.8%)
216,537 (56.2%)

660 (45.5%)
789 (54.5%)

Education
<10 years
= 10 years
> 10 years

95,403 (19.0%)
132,084 (26.3%)
275,017 (54.7%)

NA NA NA
307 (21.2%)
822 (56.7%)
317 (21.9%) NA:
3 (0.2%)

Year of birth 1951 (8.1), [1934–1971] NA 1971 (24.4),
[1894–2019]

NA 1954 (12.9),
[1921–1978]

Household income
Low
Medium
High

117,737 (23.4%)
358,492 (71.3%)
26,275 (5.2%)

14,787 (36.0%)
13,593 (33.0%)
12,712 (31.0%)

372,238 (57.6%)
249,670 (38.7%)
24,005 (3.7%)

NA 183 (12.6%)
1078 (74.4%)
188 (13.0%)

Lifetime MDD (F32 and F33
combined)

53,473 (10.64%) 3014 (7.33%) 47,162 (7.3%) 46,153 (12.0%) 382 (26.4%)

For continuous variables, the mean (standard deviation) and range are given; for categorical variables, the counts and percentages are given.
NA not applicable.
aPrimary analyses were all performed in the UKB cohort, as this was the largest cohort with all information types available. Included cohorts: the UK Biobank (UKB), Finnish Institute for Health and
Welfare cohorts (THL (Finrisk,Health 2000&2011, FinHealth 2017)),CatalanHealth Surveillance System (CHSS), FinnGenproject (FinnGen), andStudy ofHealth in Pomerania (SHIP). Formoredetails,
see the Methods.
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Data 18 and 19). In addition, the genetic correlations among these
clusters were strong (Fig. 4B).

The three clusters with a high disease burden, Clusters 5–7,
exhibited distinct individual patterns. GWAS signals for Clusters 5–6
were weaker, with only a few GWAS loci showing overlapping results
with psoriasis (Cluster 5) and cardiovascular conditions, asthma,
rheumatoid arthritis and different blood measures (Cluster 6)

(Table 2). In contrast, Cluster 7 had a negative genetic correlation with
all previous clusters and the strongest genetic contribution. Thus, the
effect alleles of significant SNPs completely differed between low-
disease-burden clusters and Cluster 7. Due to the high number of
identified loci, overlap with other diseases was high and included
apolipoprotein A1, coeliac disease, coronary artery disease, vasculitis,
and cholangitis (in addition to the diseases associated with the other
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→ disease networks with direct and mediated relationships
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→ depression-related multimorbidity trajectories can define biologically distinct depression subgroups
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Fig. 1 | Overview of the main methods. A Rationale and hypothesis of the study.
Accumulating evidence suggested that MDD is frequently comorbid not only with
other psychiatric disorders but also with several somatic diseases contributing to
worse health-related outcomes and decreasing quality of life68–71. Thanks to net-
work medicine and system biology approaches, it has been demonstrated that
comorbid conditions partially represent common biological mechanisms72–75. Fur-
thermore, directly related comorbidities of depression, where the relationships are
notmediatedby other disorders, represent strongermolecular-level relationships15

and are time-dependent (i.e., vary with onset age76). Finally, a recent comorbidity
mapping study of asthma supported that comorbidities are indeed suitable to
delineate distinct subgroups of complex multifactorial disorders77. B The cohort-
specific datasets contain the onset ages of diseases in three-character ICD-10
categories. Data were collected from the participants over various periods, depic-
ted by the length of the grey lines, with disease onsets marked by an ‘x’. Participant
trajectorieswere discretized into cumulative time intervals, as shown at the bottom
of the figure. C The structure of the inhomogeneous dynamic Bayesian network

used. The boxes correspond to intervals, the nodes in the boxes correspond to
diseases, and the solid and dashed edges indicate direct relations between the
diseases. This method determined the strongly relevant MDD-related multi-
morbidities; these nodes are in the Markov boundary of the target variable, indi-
cated by the grey-shaded region and a thick black node border. Genetic and other
non-genetic variables also influenced the onset of the diseases (dotted edges). One
aim of the study was to identify pleiotropic genetic variants (edges with α) that
influence the onset of MDD and its related multimorbidities. These variants con-
found the direct relationship (edge β) between MDD and its strongly relevant
comorbid conditions. D Overview of the study pipeline. We determined MDD-
related cross-cohort clusters of all participants in the UKB, CHSS, and THL cohorts
by utilizing the temporal trajectories of the participants’ MDD-related multi-
morbidity burden. The seven identified clusters were then characterized based on
disease and non-genetic risk-factor profiles and genetic contributions, and the
findings were validated in the two independent cohorts (the FinnGen and SHIP
cohorts).
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clusters). A comparison of significant genes and gene sets among
clusters is shown in Fig. 4D and Supplementary Fig. S11. Most genes
were sharedwithCluster 7, as it containedby far the highest number of
significant genes.

To evaluate genetic similarity with other major psychiatric dis-
orders, we assessed genetic correlations with Psychiatric Genomics
Consortium (PGC) GWAS results for MDD, bipolar disorder (BD) and
schizophrenia6,17,18. Only Clusters 5–6 showed a significant positive
genetic correlationwithMDD,whereas Clusters 1–2 exhibited negative
genetic correlations with MDD and BD and Cluster 7 a positive corre-
lation with BD. Regarding schizophrenia, no cluster exhibited a sig-
nificant genetic correlation. Regarding asthma (GWAS on UKB data),
genetic correlations revealed a similar pattern as the genetic correla-
tions among clusters, with negative correlations in Clusters 1–4, posi-
tive correlations in Clusters 5&7, and no significant correlation in
Cluster 6. Moreover, we performed a UKB-specific case-only analysis
focusing on individuals diagnosed with MDD, and found substantial
genetic correlations (0.78–1) between the original population-based
clusters and the MDD-specific clusters, underscoring a significant
genetic similarity across these groups (Supplementary Fig. S12).
However, the reduced sample size (N = 28,853) in the MDD case-only
scenario led to lower heritability estimates compared to the original
clusters. Extending the analysis to various depression phenotypes
(Supplementary Fig. S12) showed high genetic correlation among
these and highly similar genetic correlation patterns observed
between them and the clusters.

To compare clinical observationswith genetic predispositions,we
calculated genetic correlations between the seven MDD-related clus-
ters and all 86 cross-cohort diseases in theUKBcohort. The clinical and
genetic correlations were comparable (Supplementary
Figs. S13 and S14), and Clusters 1–4 and 7 were mainly associated with
lower genetic risk for the diseases (rg < 0), whereas Clusters 5–6 were
associated with a higher disease burden.

Finally, these results allowed us to assess the extent of pleiotropy
among the clusters and MDD at the level of genes and functional
modules of the human interactome, as pleiotropymay point to shared

underlying genetic mechanisms betweenMDD and the clusters. At the
gene level, we defined pleiotropy as the intersection of statistically
significant genes in each cluster and MDD-associated genes according
to the latest GWAS meta-analysis5; in brief, we found 17 pleiotropic
genes (Table 2). Our results demonstrate significant enrichment of
MDD-associated genes within the clusters, validating our hypothesis
that strongly relevant MDD-related multimorbidities enhance the
genetic background of MDD. According to the hypergeometric test,
significant overlap was observed between MDD genes and cluster-
specific genes in three clusters. Additionally, gene set enrichment
analysis revealed that MDD genes were consistently and significantly
enriched across the ranked list of cluster-specific genes in all seven
clusters. Moreover, we identified cluster-specific functional modules
significantly influenced by MDD-associated genes; thus, they can be
considered pleiotropic. We identified 31 relevant modules, at least one
in each cluster (Supplementary Fig. S15.1–S15.7), which indicates that
network-based enrichment captured greater pleiotropy betweenMDD
and the clusters at the level of functional modules than at the level of
individual genes. In these modules, several other MDD-associated
genes had a significant pleiotropic influence, such as ETFDH, PAX5,
ZDHHC5, DENND1B, PLCG1, MICB, STK19, CDK14, EP300, ERBB4, RERE,
BAG5, CNTNAP5, LRP1B, NRG1, POGZ, and XRCC3. These findings could
provide insights into the complex time- and comorbidity-dependent
courses ofMDD,whichmayguide the development of novel long-term
therapeutic and pharmaceutical approaches.

Non-genetic risk-factor profiles of MDD-related multimorbidity
clusters in the UKB cohort
To assess the non-genetic risk factors collected cross-sectionally
within the clusters, we examined associations of behavioural and
physiological factors with the MDD-related clusters. This analysis
determined the specific risk-factor profiles for each identified MDD-
related cluster, offering a snapshot of all participants at the timewhen
these factors were evaluated. Clusters 1–4 and Clusters 5–6 were
similar as a group but considerably different fromeach other. Cluster 7
appeared unique in terms of several factors (Fig. 5A, Supplementary
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Fig. S16). The structure of the non-genetic risk-factor profiles of the
clusters was consistent with the observations made at the clinical and
genetic levels in the UKB cohort. In sum, Clusters 1–2 were associated
with a higher agebut a lower burdenof several behavioural risk factors.

In contrast, Clusters 3–4 were associated with increases in several
behavioural and physiological risk factors, including higher BMI, lower
education level and smoking, as well as lower income and insomnia (in
Cluster 4). In contrast, the three remaining clusters were associated
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Fig. 3 | Disease risk in the clusters of the discovery and validation cohorts.
A Coefficient of cluster membership (hazard ratio [HR] in the weighted Cox pro-
portional hazards regressionmodel) with respect to the onset of each cross-cohort
disease in the UKB cohort (N = 502,504). The top five diseases with the strongest
increase/decrease in risk in each cluster are indicated in the plot and listed on the
right. The colour of the markers corresponds to the main ICD-10 disease category.
D: Diseases of the blood and blood-forming organs, E: Endocrine, nutritional and
metabolic diseases, F: Mental, behavioural and neurodevelopmental disorders, G:
Diseases of the nervous system, H: Diseases of the eye, ear and mastoid process, I:
Diseases of the circulatory system, J: Diseases of the respiratory system, K: Diseases
of the digestive system, L:Diseasesof the skin and subcutaneous tissue,M:Diseases

of the musculoskeletal system and connective tissue, N: Diseases of the genitour-
inary system. B Values and 95% confidence intervals of cluster membership coef-
ficients (hazard ratios) from the weighted Cox proportional hazards regression
models for the onset of MDD across various cohorts. Points indicate coefficient
values and error bars represent the 95% confidence intervals. Colours represent the
different cohorts. C Weighted Kaplan‒Meier estimates of MDD-free survival in the
various cohorts throughout participants’ lifespans. Survival curves are labelled by
cluster numbers, and the colours of the curves indicate the distinct clusters. The
dotted grey curves indicate the mean MDD-free survival in the whole cohort,
regardless of cluster membership. (In A and C: UKB N = 502,504; THL N = 41,092;
CHSS N = 645,913; FinnGen N = 385,640; SHIP N = 1449).
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with lower age; Clusters 5–6 were additionally associated with overall
increased risk, including stress and psychological traits, while Cluster 7
had a more favourable risk-factor profile in general.

Validation of MDD-related multimorbidity profiles at the
genetic and non-genetic risk-factor levels
In the additional cohorts, we validated the characteristics of MDD-
related multimorbidity profiles identified in the UKB cohort on all
levels. Validation of genetic findings was performed in the Finnish
cohorts (FinnGen and THL cohorts). These isolated populations are of
special interest as they are more likely to exhibit deleterious variants
and yieldpreviously unknowngenetic associations19. Although theTHL
cohorts were considerably smaller, the overall pattern of correlations
among the clusters was replicated in GWAS analyses (Supplementary
Fig. S17) and comparable to those of the UKB cohort. A GWAS of the
23,786 participants, including 8,711,904 SNPs, revealed very small or
negative heritability estimates, indicating limited power to detect
significant loci in this cohort20. As replication at the individual genetic
level was not feasible, we conducted validation at the level of aggre-
gated genetic signals using polygenic risk scores (PRSs) derived from
the UKB summary statistics. Thus, all PRSs showed a significant posi-
tive association with the cluster probability in the THL cohorts
(Benjamini–Hochberg adjusted p-values range from 1.0 × 10-15 to
1.7 × 10-2, Supplementary Fig. S18, see Supplementary Data 20 for
details of explained variance by the PRS).

Using the data from the FinnGen cohort (N = 277,252; 9,706,223
SNPs),which had a sample size comparable to thatof theUKBcohort, a
large proportion of genetic findings were replicated at the levels of
SNPs, genes, and functional enrichment (Table 3; Supplementary
Figs. S19.1–S20, S11; Supplementary Data 21–30). The replicated genes
included HLA genes, especially in Clusters 1–2, and several additional
genes throughout the genome related to Clusters 1–4 and 7 (Supple-
mentary Fig. S20; Supplementary Data 21B). Genetic correlation pat-
terns among the clusters largely overlapped with the patterns
observed in the UKB cohort (Fig. 4C), and the strong genetic correla-
tions among clusters in the FinnGen and UKB cohorts pointed to

similar genetic factors driving the associations (Supplementary
Data S31). Significant loci in the FinnGen clusters also revealed a strong
link with immunological phenotypes (rheumatoid arthritis, asthma,
and IgG levels). The functional enrichment analysis showed several
Gene Ontology (GO) terms that overlapped with the UKB cohort, such
as MHC protein complex assembly and MHC class II receptor activity,
as well as overlaps with numerous Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways related to various diseases, such as type I
diabetesmellitus, rheumatoid arthritis, asthma and IBD in Clusters 1–2
(Supplementary Fig. S11).

The reliability of the non-genetic mostly behavioural risk factors
was validated in the THL cohorts (Supplementary Data 1). Although
overall effects were weaker due to the smaller sample size, the pattern
was similar to that in the UKB cohort (Fig. 5B, Supplementary Fig. S21).
In general, Clusters 1–4 hadmore protective factors, whereas a greater
accumulation of risk factors was observed in Clusters 5–6, and Cluster
7 contained a mixture of protective factors and risk factors. Collec-
tively, these findings show that the characteristics of the MDD-related
multimorbidity clusters, including genetic contributions and non-
genetic risk factors, were validated in additional cohorts, supporting
the robustness and generalizability of the results.

As only a few cohorts had a lifetime assessment of disease onset
ages, the applicability of the clusters was tested in a setting with lim-
ited availability of disease information. The SHIP study only provided
information for 13 cross-cohort diseases (Supplementary Data 2) to
generate the seven MDD-related comorbidity clusters, as described
above. The correlations among the derived cluster probabilities
exhibited a pattern similar to that in the larger UKB and FinnGen
cohorts (Supplementary Fig. S7). Simulations also showed that the
SHIP dataset had an accuracy of 67.5%, which was far better than that
expected with a totally random null model (14%) and halfway between
the randomly chosen variable set of the same size (52%) and the
optimal set of the same size (81%) (Supplementary Fig. S22).

To evaluate the biological meaningfulness of the profiles, we
calculated PRSs, similar to the THL cohorts, and assessed the profiles
of non-genetic risk factors in comparisonwith thoseof theUKBcohort.

Table 2 | Summary of the GWAS analysis of the MDD-related clusters in the UKB cohort (N = 249,167)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

N per SNP 246,639–249,167

λ 1.2168 1.1523 1.0772 1.0864 1.0833 1.1843 1.1555

h2 0.0483 0.0331 0.0171 0.0186 0.0148 0.037 0.0385

SNPs 6,266,283

Significant SNPsa 1908 1952 1451 1924 1 52 5986

Significant locia 15 18 14 13 1 3 36

Significant genesb 87 62 51 110 5 15 271

Significant gene setsc 62 67 72 87 3 0 129

Significant MDD-
associated genesd

HLA-DQA1, HLA-
DQB1, LIN28B,
LST1, HLA-B

HLA-DQA1,
HLA-DQB1,
ITPR3, HLA-B

HLA-DQA1,
HLA-DQB1,
HLA-B

HLA-DQA1,
HLA-DQB1,
HLA-B,
PSORS1C1, PSORS1C2

LST1 PSORS1C1,
PSORS1C2

HLA-DQA1, HLA-DQB1,
HLA-B, HSPA1A, HSPE1-
MOB4, LST1, MOB4,
PLCL1, PSORS1C1,
PSORS1C2, RFTN2,
SLC44A4, SPPL3,
SF3B1, TRAF3

Enrichment of MDD-
associated genesd

within cluster-
specific genes

P-valueHGT = 0.037
P-valueGSEA < 10

-16
P-valueHGT = 0.047
P-valueGSEA = 5.44 × 10-7

P-valueHGT = 0.064
P-valueGSEA = 6.55 × 10

-7
P-valueHGT = 0.064
P-valueGSEA = 1.56 × 10-10

P-valueHGT = 0.065
P-valueGSEA = 3.79 × 10-5

P-valueHGT = 0.064
P-valueGSEA < 10-16

P-valueHGT = 2.77e-05
P-valueGSEA = 6.55 × 10

-7

λ: genomic inflation factor based on LD score regression; h2: genetic heritability.
Association analyses were performed for each cluster using linear regression to test the association between each SNP and the posterior log odds of cluster membership, controlling for age, sex,
the first ten genetic principal components, and the genotyping array. The significance of the over-enrichment ofMDD-associated genes (according to Howard et al. 5) within the cluster-associated
genes was assessed by conducting one-sided hypergeometric tests and Gene Set Enrichment Analysis (GSEA). To account for multiple comparisons, we applied Holm’s correction method.
GSEA Gene Set Enrichment Analysis, HGT Hypergeometric test.
aThe significance of SNPs refers to a genome-wide significance level of 5 × 10-8.
bResults from MAGMA gene-level analyses, significance based on Holm correction, using 19,843 protein-coding genes.
cResults from the g:Profiler method, significance based on the g:SCS correction algorithm at a significance threshold of 0.01.
dOverlapping significant MDD-associated genes according to the GWAS meta-analysis by Howard et al. 5 of a total of 269 genes.
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Five MDD-related cluster PRSs in the SHIP cohort (N = 1108) were
positively correlated with their cluster membership probability; for
Clusters 1 and 7 these correlations reached (suggestive) significance
(pcl1 = 0.025; pcl7 = 0.067, see Supplementary Data 20 for details of
explained variance by the PRS). The correlation pattern among these
seven PRSs was similar to the correlation patterns observed at the
phenotypic and genetic levels in the UKB and FinnGen cohorts (Sup-
plementary Fig. S23). At the level of non-genetic factors, the associa-
tion patterns of clusters with age, BMI, blood pressure, insomnia,

neuroticism score, and current depression were replicated in the SHIP
cohort (SupplementaryFig. S24). Thesefindings suggest that theMDD-
related multimorbidity clusters can be applied to settings with limited
disease information, which further supports the generalizability of our
approach.

Discussion
In the TRAJECTOME project, we utilized information on lifetime dis-
ease trajectories to define clusters based on temporal patterns of
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MDD-related multimorbidity burden. Based on data from 1.2 million
individuals in the general population of three European countries (i.e.,
discovery cohorts), we identified seven MDD-related clusters with
distinct clinical, genetic, and non-genetic risk-factor profiles. We fur-
ther validated their applicability in independent cohorts, including
thosewith a limited set of disease information. Based on these profiles,
we extracted biologically meaningful information that can be used to
interpret the clusters with respect to their aetiology, clinical relevance,
and possible disease prevention strategies.

We identified four clusters with a low-risk profile accompanied by
a low burden of MDD and MDD-related disorders as well as three
clusters associatedwith risk-conferring profiles. Individuals in Clusters
1–4 were healthy until older age with a low risk of developing MDD.

This favourable clinical pattern regarding MDD was also observed at
the levels of genetic and non-genetic risk-factor profiles.

With the strong genetic correlations among these clusters, GWAS
results suggested a substantial and consistent contribution of the
immune system and protection against allergic, autoimmune, and
inflammatory diseases. However, clear differences in MDD-related
pleiotropic functional genetic modules supported more specificity at
the genetic network level. For example, individuals in Clusters 3–4
developed age-related cerebrovascular or metabolic disorders, possi-
bly due to a slight increase in genetic vulnerability as well as less-
favourable lifestyle habits. Based on large-scale meta-analyses,
depression risk is also dependent on non-genetic behavioural factors,
including sleep, stress, diet, physical activity and social interactions21,22.

Fig. 5 | Non-genetic risk-factor profiles for each cluster in the UKB (N = 249,167)
and THL cohorts (N = 23,786). Simple linear regression models, including one
factor at a time with age and sex as covariates, were calculated for each cluster in
the A UKB cohort and B THL cohorts. The posterior log-odds of being in a given
cluster were the dependent variable. The direction of the triangles reflects the sign
of the coefficient (upwards = positive; downwards = negative), and the colour
reflects the magnitude. Statistical analyses were performed using two-sided t-tests

to assess the significance of each factor’s effect on cluster membership. Adjust-
ments for multiple comparisons were made using the Bonferroni correction. The
size of the triangles is proportional to the −log10p-value, and only significant values
are shown (−log10(p) > 4). Sex was coded as follows: 1 =male, 2 = female. The risk
factors of stress and neuroticism score were not available in the THL cohorts.
*Alcohol intake and depression score were not available in the FinHealth17 and
Finrisk cohorts, respectively, but were available in the other THL cohort.

Table 3 | Overview of validation results in the FinnGen cohort (N = 277,252)

MDD-related cluster membership

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Significant SNPs in the FinnGen cohorta 221 128 0 9 0 0 6

Significant loci in the FinnGen cohorta 9 4 0 1 0 0 1

Significant genes in the FinnGen cohortb 75 17 3 2 3 13 14

UKB GWAS hits available in the FinnGen cohort 1376 (72%) 1467 (75%) 1052 (72%) 1495 (78%) 1 (100%) 48 (92%) 4950 (83%)

UKB GWAS hits available and nominal significant in the FinnGen
cohort

870 938 759 703 0 43 2260

…and samedirection of effect (%SNPs of availableUKBGWAShits
replicated)

866 (63%) 938 (64%) 759 (72%) 699 (47%) 0 (0%) 43 (90%) 2254 (46%)

Replicated locic 9 (60%) 8 (44%) 4 (29%) 6 (46%) 0 (0%) 2 (67%) 16 (44%)

Replicated genesd (% of UKB GWAS gene hits replicated) 9 (10.3%) 6 (9.7%) 1 (2%) 1 (0.9%) 0 (0%) 0 (0%) 13 (4.8%)

rg_UKB~FG 0.6521 0.5956 0.5389 0.3693 0.7652 0.8005 0.4521

Association analyseswereperformed for each clusterusing linear regression to test the association between eachSNPand the posterior log oddsof clustermembership, controlling for age, sex, and
the first ten genetic principal components.
aThe significance of SNPs refers to a genome-wide significance level of 5 × 10-8.
bResults from MAGMA gene-level analyses, significance based on Holm correction, using 19,173 protein-coding genes.
cNumber of replicated loci at the nominal significance level (p-value <0.05).
dNumber of replicated genes at the genome-wide significance level (Holm’s-adjusted p-value <0.05).
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Our approach extends these findings by using genetic and clinical data
to identify biological subgroups resilient to depression on multiple
levels.

In contrast, Clusters 5–6 exhibited a high-risk profile in terms of
the prevalence of MDD and most MDD-related disorders. The non-
genetic risk-factor profile was largely disadvantageous, and the
genetic profile revealed a strong correlation between Clusters 5 and
6, albeit distinct MDD-related pleiotropic genetic functional net-
works. Differences between these clusters were mainly due to
clinical manifestations, with Cluster 5 showing earlier MDD onset
and the highest risk of schizophrenia; Cluster 6 showed later MDD
onset accompanied by an increased risk of stress-related beha-
vioural problems and somatoform disorders. This pattern of high
MDD risk combined with multimorbidities and poor lifestyle habits
might contribute to the worst outcomes, as a high multimorbidity
burden has a deleterious effect on the clinical course of MDD23, and
the quality of life is dramatically lower in depression patients with
chronic physical conditions24. A recent analysis confirmed this
pattern of known behavioural risk factors for depression using UKB
data, proposing that inflammatory processes are a common neu-
robiological pathway25. Thus, our study provides clear evidence of
disease and risk-factor patterns related to MDD that might benefit
from behavioural interventions.

In contrast to the high disease burden in Clusters 5–6, which were
strongly associated with non-genetic risk factors, Cluster 7 showed a
strong contribution of inflammation-related genetic predispositions
regardless of non-genetic factors. The early manifestation of cluster
assignment also suggests a substantial contribution of genetics rather
than long-term non-genetic risk factors. Although most MDD-related
diseases showed decreased prevalence in this cluster, MDD and a
group of respiratory disorders (asthma and allergic rhinitis) exhibited
sharply increased prevalence, driving the risk association. A strong link
between MDD and highly heritable, usually early-onset immune-rela-
ted diseases has been identified previously at both phenotypic and
genetic levels26–31. The strong genetic correlations between these dis-
eases and Clusters 5&7 point to genetic subgroups within depression
that have a shared aetiology.

The findings obtained by using our approach confirmed that
inflammatory signalling is part of the underlying aetiology of
depression32 in Cluster 7. Despite the low genetic risk of MDD in
Clusters 1–4 and Cluster 7 as well as the advantageous behavioural
profiles, Cluster 7 had an increased risk for early-onset depression,
which might be due to contrasting profiles of genes involved in
inflammatory signalling pathways. However, in Cluster 5, besides
genetic risk, external stressors (such as psychosocial stress or dis-
advantageous behavioural factors33) may also contribute to inflam-
mation. Thus, the temporal trajectories of MDD-related
multimorbidity clusters in our study revealed highly pleiotropic
inflammation-related genetic loci that exert protective or risk effects in
a cluster-specificmanner by engaging distinctmolecular networks and
non-genetic risk factors. The observed heterogeneity within MDD risk
could explain previous contradictory findings regarding the relation-
ship between MDD and inflammatory genes5,6,34–36. Our cluster-related
findings also corroborate previous inflammatory, metabolic and rela-
ted hypotheses regarding pathomechanisms of depression37–40. At the
clinical level, further detailed phenotyping4 of MDD patients within
these clusters could enable phenotypic and biological subtyping of
depression to develop targeted prevention and intervention
strategies.

Although our method was supported by temporal disease infor-
mation from public health data, this approach had several limitations
and involved simplification. Differences in healthcare systems lead to
differences in disease rates, possibly related to differences in year of
birth and age. Additionally, our method is currently unable to distin-
guish between chronic and acute diseases, which may have different

long-term impacts on the development of depression and other con-
ditions. However, the cross-cohort acute diseases were mainly acute
inflammatory diseases that may share pathophysiology with other
immune-related diseases and depression. Finally, our Bayesian net-
workmethodology is sensitive to unknown confounders and selection
bias, potentially causing spurious correlations, but the fairly complete
nature of our cohorts and the cross-cohortdesignmitigate this danger.

In conclusion, we identified seven MDD-related multimorbidity
clusters with unique genetic and non-genetic risk-factor profiles that
highlight the involvement of neuroinflammatory processes in
depression and provide a strategy for subtyping depression patients.
This bridges the gap between complex multimorbidity patterns asso-
ciated with MDD over the course of an individual’s life and recom-
mendations for prevention, early intervention and personalized
psychological and pharmacological therapy. This approach could also
be expanded to other complex diseases with a high load of comor-
bidities and shared genetic and non-genetic risk factors.

Methods
Description of the training cohorts
UK Biobank. Under application number 1602, we extracted data from
the UK Biobank (UKB) database, which includes medical and pheno-
typic data of participants recruited from NHS patient registers of
people aged 40–69 years41. Ethical approval was given by the National
Research Ethics Service Committee North West–Haydock42, and all
participants provided written informed consent. All procedures were
conducted in accordance with the Declaration of Helsinki.

To identify MDD-related clusters based on disease trajectories,
502,504 participants who had available disease onset information for
1,127 ICD-10 categories were included (for details, see the “Cross-
cohort disease categories and relevance scores” section).

Quality control of GWAS data in UKB data. Our genomic quality
control (QC) methods were detailed previously43, but in the present
analyses, we did not restrict participants according to the availability
of complete dietary data.

Specifically, we selected participants with White British ancestry
(UKB data field 22006, defined both by self-report and genetic
ancestry) andwithout putative sex chromosome aneuploidy (datafield
22019). We used v3 genetic data of UKB with genotyped variants and,
when genotyped variants were not present, we used imputed variants
as well and positioned them according to the GRCh37/hg19 genome
assembly. Variant QC consisted of several steps. First, multiallelic
variants as well as variants with a minor allele frequency (MAF) < 0.01
were excluded, retaining only single-nucleotide polymorphisms
(SNPs). For imputed SNPs, both info and certainty parameters had to
be at least 0.9. Furthermore, SNPs and participants were excluded
according to the missingness rate (in an iterative manner, with cut-off
points at 0.1, 0.05 and 0.01), and SNPs violating Hardy-Weinberg
equilibrium (p < 1 × 10-5) were excluded. Before further calculations for
participant filtering, linkage disequilibrium (LD) pruning, with an R2 of
0.2, was applied to SNPs. Themaximal set of unrelated individuals was
selected44 (data field 22020), and a kin-cut-off of 0.044 was applied.
Finally, a sex check and heterozygosity outlier detection were per-
formed, as described previously45.

For the GWAS analyses, we selected participants who did not
withdraw their consent before February 2022 anddid not havemissing
data on sex, age, or genotyping array. To control for population stra-
tification, principal component analysis was performed with the final
set of participants and with the SNP subset after the LD pruning
(described above).

Catalan Health Surveillance System. Since 2011, the Catalan Health
Surveillance System (CHSS) has collected detailed information on
healthcare utilization from the entire population of Catalonia
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(northeastern Spain; 7.5 million inhabitants). The CHSS integrates the
information contained in the Minimum Basic Dataset for Healthcare
Units registry provided by 63 hospitals, 49 mental health centres, 370
primary care teams and 72 long-term care centres every 6months. The
CHSS assembles information on the use of public healthcare resour-
ces, pharmacological treatments, socioeconomic and educational
status, psychological health andother billablehealthcare costs, such as
nonurgent medical transportation, ambulatory rehabilitation, dom-
iciliary oxygen therapy, and dialysis46.

From the 7.5 million individuals documented in the CHSS, we
considered only registry data from all citizens living in the integrated
health district of Barcelona-Esquerra (“AISBE”) between 2011 and 2019
(N = 645,913), with a mainly White European ancestry, as input to
identify MDD-related clusters, extracting over 42 million diagnostic
codes recorded between 1913 and 2019. Notably, approximately 50%
of the records were from the period after 2012, when the Catalan
health system underwent digitization and implemented electronic
medical records. Conversely, only 2 million records were available
from before 2000, with approximately 200,000 records available
from before 1950.

Finnish Institute for Health and Welfare (THL). For cluster analysis,
data from 41,092 participants in Finnish population surveys were
included47; these surveys included Finrisk 1992 (N = 5019), Finrisk
1997 (N = 7130), Finrisk 2002 (N = 7207), Finrisk 2007 (N = 4635),
Finrisk 2012 (N = 5396)48, Health 2000/2011 (N = 6004) and
FinHealth49 2017 (N = 5074) (https://urn.fi/URN:ISBN:978-952-343-
449-3). After excluding related individuals (IBD > 0.2), 30,961 par-
ticipants were retained from the Finnish population surveys47 as
follows: Finrisk 1997 (N = 6723), Finrisk 2002 (N = 5698), Finrisk
2007 (N = 4635), Finrisk 2012 (N = 3078)48, Health 2000/2011
(N = 5944) and FinHealth 2017 (N = 4883). These participants, aged
20–100 years, were chosen at random from the Finnish population
and represented different parts of Finland. For GWAS data used
from THL cohorts, see the “Quality control of GWAS data from the
FinnGen and THL cohorts” section.

Description of validation cohorts
FinnGen project. We used data from the FinnGen project19 (https://
www.finngen.fi/en) from data freeze 10 (DF10; excluding THL
cohorts) to generate the MDD-related clusters in an independent
cohort from the Finnish population. In brief, FinnGen is a public‒
private project aiming to collect genotype data from half a million
Finnish people and combine these data with data from various
health registries. The participants consist of legacy individuals
recruited before the start of the FinnGen project and prospective
individuals; these latter participants were recruited on a voluntary
basis during hospital visits if the patient provided consent for their
data to be entered in the biobank.

The THL cohorts and FinnGen cohort contain disease information
collected in the following registries: Causes of death (STAT, 1969),
Register of Primary Health Care Visits, HILMO (2011), Care Register for
Health Care inpatient visits, HILMO (THL, 1969), Care Register for
Health Care, specialist outpatient visits, HILMO (THL, 1998), Finnish
Cancer Registry (CANC, 1953), Cervical cancer screening (THL, 1991),
Breast cancer screening (THL, 1992), and the Finnish Registry for
Kidney Diseases (1964).

In total, FinnGen DF10 consists of 430,897 participants with
genotype data; after excluding the THL cohorts, 385,640 participants
remained for cluster analysis.

Quality control of GWAS data from the FinnGen and THL cohorts.
The genotyping of FinnGen participants was performed on a
Thermo Fisher axiom custom array consisting of 736,145 probes for
655,793 genetic markers. Processing of samples included removing

samples where the genetic sex did not match the participant-
reported sex in the registries, samples with missing variant infor-
mation >0.02, samples with excess heterozygosity in common
variants (allele frequency >0.05) and samples with excess related-
ness to other samples (IBD > 0.1). The processing of variants
depended on whether the variant was used in imputation. Quality
control included removing variants if allele frequency in the panel
was <0.001 (for imputation QC only), removing variants where the
allele frequency differed significantly among panels, removing a
variant from all batches (FinnGen chip data and legacy data, pro-
cessed separately) if HWE p < 10-10 across all batches; removing any
batch missing >0.03 of data (for legacy samples, the missingness
threshold was 0.05 due to the exclusion of too many variants for
imputation purposes), and removing batches where more than 15%
of the batches had missingness >0.04. Finally, variants within a
batch were removed if the p-value for HWE was >10-6 or if the
missingness rate was >0.02. The legacy participants were geno-
typed on various generations of Illumina GWAS arrays. The Sisuv4
reference panel was used to impute an additional 20,175,454
genetic markers. Information on the generation of the imputation
panel and the QC steps used to produce the imputed genotypes is
available elsewhere (https://finngen.gitbook.io/finngen-analyst-
handbook/finngen-data-specifics/genotype-data/imputation-
panel/sisu-v4-reference-panel).

Finrisk cohorts were genotyped at the Sanger Institute, Hinx-
ton, UK; FIMM, Helsinki, Finland and Broad Institute, Cambridge,
MA, USA using Illumina HumanCoreExome-12v1, Illumina Human-
CoreExome-24v1, Illumina HumanOmniExpress-12v1, Illumina
Human610-Quadv1, and Illumina GSAMD-24v1-0_20011747_A1
arrays. The Health 2000/2011 cohorts were genotyped at the San-
ger Institute, Hinxton, UK; FIMM, Helsinki, Finland and Broad
Institute, Cambridge, MA, USA using IlluminaHuman610K and
Human610-Quadv1; Illumina HumanCoreExome-24-v1; and Broad_-
GWAS_supplemental_15061359_A1 genotyping arrays, respectively.
The FinHealth 2017 cohort was genotyped at Thermo Fisher Scien-
tific, San Diego, CA, USA, using the Affymetrix Axiom FinnGen1
array. Before imputation, variants with call rate <0.98, HWE p < 10-6,
and minor allele count (MAC) < 3 were removed. For THL cohorts,
the Sisuv3 reference panel was used to impute an additional
20,175,454 genetic markers. Information on the generation of the
imputation panel and the QC steps to produce the imputed geno-
types is available elsewhere (https://finngen.gitbook.io/finngen-
analyst-handbook/finngen-data-specifics/genotype-data/
imputation-panel/sisu-v3-reference-panel).

Study of Health in Pomerania. The Study of Health in Pomerania
(SHIP) is a general-population-based research project on adult resi-
dents in northeastern Germany50. In this study, we analysed data from
the SHIP-START cohort; in this cohort, at baseline, 4308 White Eur-
opean participants were recruited between 1997 and 2001. To date,
three regular follow‐ups have been carried out (SHIP-START-1/2/3) as
well as a detailed assessment of life events andmental disorders (SHIP-
LEGEND) from 2007 to 2010, including 2400 participants from the
baseline SHIP-START-0 cohort51.

For cluster analysis, 1449 participants who took part in SHIP-
START-3 and SHIP-LEGEND and had available baseline information
from SHIP-START-0 were included. Regarding the age of onset of
chronic diseases (Supplementary Data 2), self-reported results were
used frombaseline and follow-up data. The age of onset for diseases in
the F section of ICD-10 codes (F32, F33, F17, F41, F43, F40, and F45) was
determined from a combination of self-reported diagnoses from SHIP-
LEGEND data and data from the health insurance system that have
been collected since the end of 2003. Finally, information for 37 dis-
eases was available. Hereafter, data from the SHIP-START cohort are
referred to as SHIP data.
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Quality control of GWAS data in the SHIP cohort. The SHIP-START-0
participants were genotyped using the Affymetrix Genome-Wide
Human SNP Array 6.0. Hybridization of genomic DNA was per-
formed in accordance with the manufacturer’s standard recommen-
dations. Genetic data were stored using the database Caché
(InterSystems). Genotypes were determined using the Birdseed2
clustering algorithm. For QC purposes, several control samples were
added. At the chip level, only participantswith a genotyping rate onQC
probe sets (QC call rate) of at least 86%were included. Finally, all arrays
had a sample call rate >92%. The overall genotyping efficiency was
98.55%. Imputation of genotypes was performed using the HRCv1.1
reference panel and the Eagle and minimac3 software implemented in
the Michigan Imputation Server for prephasing and imputation,
respectively. SNPswith anHWEp <0.0001 or a call rate <0.95 aswell as
monomorphic SNPs were removed before imputation.

Ethics statements
This study, including both the data collection and the current analyses,
has received ethical approval from appropriate institutional review
boards for all involved cohorts. Specifically, the analysis involved data
from the following cohorts: UK Biobank (UKB), Catalan Health Sur-
veillance System (CHSS), Finnish Institute for Health and Welfare
(THL), FinnGen, and Study of Health in Pomerania (SHIP). Compre-
hensive ethical approvals were obtained for each of these cohorts,
ensuring that all procedures followed were in accordance with the
ethical standards of the responsible committee and with the Helsinki
Declaration.

Furthermore, all participants in the study provided written
informed consent. Detailed information regarding the ethical
approvals, including the specific committees and approval numbers, is
available in the Supplementary Information.

Identification of MDD-related clusters based on disease
trajectories
Assessing diseases strongly relevant to MDD. We used a Bayesian
network-based Markov Chain Monte Carlo (BN-MCMC) method to
assess the strongly relevant variables with respect to our target
variable (MDD). Bayesian networks (BNs) use directed acyclic
graphs (DAGs) to represent multivariate dependencies and condi-
tional independencies among the variables. The nodes in these
graphs represent variables, and the edges represent direct rela-
tionships between the corresponding nodes. Assessments of the
complex structure of the variables are called learning the structure
of the BN based on the observed data. However, inmost cases, there
aremany DAGs with nonnegligible a posteriori probabilities (i.e., the
best network has many alternatives that are almost as probable as
the best network). Even in these cases, there are usually certain
structural features, such as the strong relevance of two variables,
which can be extracted reliably.

Strongly relevant variables statistically isolate the target vari-
able from all other variables. Therefore, strong relevance is a dif-
ferent concept than a standard pairwise association. First, if the
dependency of disease A on the target disease B is indirect (e.g., due
to mediation through a third disease C), then A and B are associated
but not strongly relevant to each other. Second, if A has no direct
effect on B, but A and C interact with each other to affect B (e.g.,
disease A does not cause disease B, and vice versa, but the presence
of diseases A and B together causes C), then A is not associated with
B but is strongly relevant due to the interactional effect. Therefore,
strong relevance indicates either a direct/nonmediated association
or an interactional relevance. Below, we refer to a variable’s prob-
ability of strong relevance with respect to MDD as the variable’s
relevance score.

In the Bayesian learning framework, we can estimate the posterior
probability that two variables are strongly relevant to each other (i.e.,

they have a direct influence on each other) as follows:

Pðstrongly-relevantðX ,Y ÞjDÞ=
X

G
PðGjDÞ � IðEdgeGðX ! Y Þor

EdgeGðY ! X Þor 9Z : ðEdgeGðY ! Z Þand EdgeGðX ! ZÞÞÞ
ð1Þ

where G represents a BN structure (a graph), D is the dataset; I(.)
denotes the indicator function, which is 1 if the property holds and 0
otherwise; and EdgeG X ! Yð Þmeans that an edge points from node X
to Y in theGgraph. Specifically, the indicator function yields 1 if there is
a direct edge from X to Y or from Y to X or if there is a common child
node Z of nodes X and Y.

Note, that in our methodology, the directed arrows in the Baye-
sian network represent direct probabilistic relationships between dis-
eases. Thismeans that the presence of one disease (e.g., MDD) directly
influences the probability distribution of another. To assess the strong
relevance of each disease to MDD, we focused on the concept of the
Markov Boundary, which is the smallest set containing all variables
carrying information about a target variable that cannot be obtained
from any other variable. In other words, we cannot drop any variable
from this set without losing information. By examining the diseases
that are in theMarkov Boundary of the target variable, we calculate the
strength of their probabilistic relationship with the target variable.
More specifically, within the Bayesian statistical framework employed
in our study, we compute the posterior probability of each variable
beingwithin theMarkov Boundary ofMDD (i.e., the probability of their
strong relevance with respect to MDD).

Wealsonote that in ourBayesiannetwork framework,we focus on
capturing structural probabilistic relationships between variables
rather than quantifying interaction terms that occur in regression
models. Although these interactions are quantified at the parametric
level in Bayesian networks—through the conditional probability dis-
tributions of variables given others—our analyses primarily aimed to
elucidate the structural relationships by performing exact Bayesian
averaging over the parametric level rather than quantifying these
interaction effects directly.

It shouldbe alsonoted thatwhile the relationships in our Bayesian
network are direct and unmediated by other diseases, they do not
necessarily imply causation. This directness refers to the absence of
intermediate variables within the network’s model structure, distin-
guishing these relationships frommere correlations at the abstraction
level defined by the entire set of variables in the analysis. However,
direct probabilistic relationships in the Bayesian network are derived
from observational data, not from interventional studies that manip-
ulate one variable to directly observe its effect on another.Without the
ability to control ormanipulate the conditions, the relationshipsmight
still be influenced by unobserved confounding factors. The direct
relationships in the network are based on the strongest statistical
dependencies observed in the data, but these dependencies alone do
not fulfil all criteria required to establish causality, such as eliminating
all potential confounders and demonstrating that the relationship is
not reversible.

The posterior probabilities P GjDð Þ are estimated using a DAG-
based MCMC simulation. We applied the Metropolis-coupled Markov
Chain sampler with a burn-in period of 2 × 106 steps and then collected
107 samples (i.e., network structures). We restricted the space of the
possible structures by limiting the number of parents per node to 8.
Convergence diagnostic testing using Geweke52 scores indicated that
the MCMC chains had converged for 618 out of 621 (99.5%) of the
posterior probabilities of the variables’ strong relevance, with their
z-scores within the acceptable range of −2 to 2, suggesting overall
convergence of the chains.

We modelled the participant trajectories using an inhomoge-
neous dynamic BN to utilize the disease onset information. More
specifically, we discretized the first onset time of the diseases to
cumulative time intervals ([0–20], [0–40], [0–60], and [0–70]) and
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transformed thediseaseonsets into binary variables that hada value of
1 if the disease was diagnosed in the given time interval and 0 other-
wise (Fig. 1B). The dynamic BN accounts for censoring of the partici-
pants by including only those participants in each cumulative time
intervalwho have complete disease onset information up to the end of
that interval. Then, we separately estimated the strong relevance of all
variables with respect to either F32 or F33 (ICD-10 disease categories
jointly defining MDD) for each time interval t. The variables from time
interval t-1were also included in the model, but variables in t − 1 could
only act as parent nodes, i.e., no edge could point to a variable in t − 1.
See Fig. 1C for a graphical illustration of this method.

Cross-cohort disease categories and relevance scores. As a pre-
liminary step, we determined the set of cross-cohort disease variables
as follows. (1) First, for each cohort (UKB, CHSS, and THL), we filtered
diseases (according to three-character ICD-10 disease categories) with
a prevalence >1% either in the whole cohort or in the subset of
depressed participants (i.e., patients diagnosedwith either F32 or F33).
The primary objective of this pre-filtering step was to exclude rare
disorders, as our goal was to identify generalmultimorbidity trajectory
clusters that are broadly applicable. Consequently, this initial filtering
led to differing numbers of diseases being considered across each
cohort, namely 266 disorders for UKB, 356 for CHSS, and 339 for THL.
(2) Next, we estimated the strong relevance of all such diseases with
respect to MDD by learning the structural features of the formerly
described inhomogeneous dynamic BN. We performed this analysis
separately for each cohort. (3) Finally, we selected diseases that had a
posterior probability of strong relevance with respect to MDD higher
than 0.5 in at least one time interval for at least one cohort, selecting
only those disease variables that were consistently available across all
cohorts, allowing for uniform analysis across all datasets. This pre-
liminary filtering procedure aimed to gather the broadest possible set
of potentially relevant diseases, resulting in 86 cross-cohort disease
categories. The prevalence rates and summary statistics of the first
onsets of these cross-cohort disease categories are shown in Supple-
mentary Data 2 for each cohort.

Finally, we performed the same analyses using only the cross-
cohort disease variables together with the sex and household income
status variables of the samples. This resulted in cohort-specific rele-
vance scores for each variable, from which we defined cross-cohort
relevance scores by computing a linear combination of the cohort-
specific relevance scores for each time interval by applying uniform
weights on the cohorts. The cross-cohort relevance scores are shown
in Supplementary Data 3. Computed in this way, the cross-cohort
relevance score of a variable corresponds to the expected probability
that the variable is strongly relevant with respect to MDD in a given
time interval.

Clustering of participants. Basedon the cross-cohort relevance scores,
we computed the weighted direct MDD-related multimorbidity scores for
each participant in each cohort and for each time interval. The score for
the ith participant in the tth time interval is computed as follows:

multimorbidity-scoreðtÞðiÞ=
X

d
Iðonsetði,dÞϵtÞ× relevance-scoreðtÞðdÞ

ð2Þ

where d represents the cross-cohort diseases, I(.) denotes an indicator
function that yields 1 if the first onset of disease d for the i–th sample
occurs in the t–th time interval and 0 otherwise; and
relevance‑score(t)(d) denotes the cross-cohort relevance score of
disease d in the tth time interval. These weighted direct MDD-related
multimorbidity scores defined the 4-dimensional space of the samples
that we used to cluster the participants.

Finally, we clustered all participants &&using the k-means clus-
tering algorithm in the 4-dimensional space defined by the weighted

direct MDD-related multimorbidity scores. More specifically, the
clusters were determined based on the participants with complete
observed multimorbidity scores, i.e., participants older than 70 years.
In younger participants, one or more multimorbidity scores were not
available because there were no observations of their future disease
onset. However, based on their partial scores, they were assigned to
clusters by allocating them to the cluster with the nearest cluster
centre. The number of clusters was determined by manual investiga-
tions based on expert knowledge with the help of various cluster
metrics (such as the silhouette score of the resulting clusters). See
Fig. 1 for a graphical overview of the method and Supplementary
Methods for further details on the investigated cluster configurations.

The likelihood of cluster membership for the i–th sample and for
the j–th cluster is defined as:

likelihoodjðiÞ= exp �jjpi � cjjj
� �

ð3Þ

where pi and cj represent the point that correspond to the ith sample
and the j–th cluster’s cluster centre, respectively, in the space defined
by themultimorbidity scores, and jjpi � cjjj is their Euclidean distance.

The posterior probability of cluster membership for the ith sam-
ple and the jth cluster was the normalized likelihood shown below:

Pj ið Þ=
exp �jjpi � cjjj

� �
P

k exp �jjpi � ck jj
� � ð4Þ

To control for uncertain participant trajectories in the following
analyses, we excluded participants for whom the clustering algorithm
demonstrated low confidence across all clusters. Specifically, we
excluded participants whowere both under 60 years of age andwhose
maximum posterior membership probability did not exceed 0.25 for
any cluster. This thresholdwas chosen to remove individuals forwhom
the algorithm could not confidently assign a predominant cluster,
thereby focusing our analysis on participants with more definitive
cluster memberships. This exclusion criterion resulted in a subset of
N = 364,008 participants. This subset was used for comparing clusters
and deriving age-specific differences and was also the base set for
genetic analysis.

In the case of GWAS and non-genetic risk-factor profiling analysis,
the posterior log-odds of the cluster memberships were used as target
variables as follows:

Posterior log oddsj ið Þ= ln
Pj ið Þ

1� Pj ið Þ
ð5Þ

The posterior probability of cluster membership was used to
calculate the disease profile of the clusters.

Our methodology employs a privacy-preserving federated
approach to derive the MDD-related clusters across multiple cohorts
without sharing individual-level data, making it suitable for colla-
borative studies where data sharing is restricted. Each participating
site independently computes relevance scores for diseases, which are
then aggregated to create cross-cohort relevance scores, ensuring that
only non-identifiable, summarized information is exchanged between
sites. Multimorbidity scores for each participant are calculated by
aggregating cross-cohort relevance scores for the diseases they have
experienced (see Eq. (2)). These scores are then compiled into counts
of occurrences at each site. The final clustering is performed using
these aggregated counts, thereby ensuring the confidentiality of
individual data throughout the process.

Software. Inference over Bayesian network structures was performed
with an in-house developed software called BN-BMLA53. All other
computations were performed in R statistical software (version 4.1.1)54

or Python (version 3.8). Clusters can be computed with a command
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line R script that is available online: https://github.com/gezsi/mdd-
clustering.

Disease profile of MDD-related clusters
We used weighted Cox regression to determine the disease outcomes
in the various clusters (i.e., the hazard ratio of cluster membership
regarding disease occurrence) independently for each cohort. Speci-
fically, for each cluster, we constructed Cox proportional hazard
models, where the independent variable for a specific individual was a
dummy variable created in the following way. We counted each par-
ticipant twice, summing to a weight of 1. First, we set the value of the
dummy variable to 1 and weighted this sample by the posterior
probability of cluster membership. Next, we set the value of the
dummy variable to 0 and used weight for this sample equal to 1 minus
the probability of cluster membership. The covariates were sex,
household income (if available), and the normalized birth year (in the
case of the UKB cohort). The dependent variable was disease onset.
Participants were right censored for a given target disease at their age
if the disease was not diagnosed. We calculated separate models for
each cross-cohort disease. P-values of the cluster membership vari-
ables were adjusted separately for each cohort using the Benjamini‒
Hochberg method.

In addition, we calculated weighted Kaplan‒Meier estimates of
MDD-free survival in the various clusters in each cohort. We weighted
each participant in each cluster with the corresponding posterior
probability of cluster membership.

Genetic analyses
Genome-wideassociation study. Following site-specificQCmeasures
(see cohort descriptions), Plink 2.055 (https://www.cog-genomics.org/
plink/2.0/) was used to perform linear regression models to assess the
direct effect of each remaining genetic variant on the seven MDD-
related clusters that reflected the posterior log-odds of cluster mem-
bership. All analyses were adjusted for age, sex, the first ten genetic
principal components and site-specific variables (genotyping array in
the UKB cohort, geographical region in the THL cohorts). Age was
included in the model as a nonlinear variable using cubic splines with
knots at ages of 40 and 60 years (R package splines v4.1.1, function bs).
In particular, because of the age span of participants, only the knot at
60years couldbeapplied in theUKBcohort. Continuouspredictor and
outcome variables were standardized in the analyses. We employed
additive genetic models to assess the contribution of individual gen-
otypes to the dependent variable. We excluded individuals for whom
the clustering algorithm lacked sufficient confidence in assigning a
predominant cluster, thus concentrating our analysis on those with
more clearly defined cluster memberships. More specifically, partici-
pants under 60 years of age with a maximum posterior membership
probability of no more than 0.25 for any cluster were excluded.
Genetic data were available in the UKB (N = 249,167) and THL
(N = 23,786) cohorts, which were both used to generate the MDD-
related clusters. Additionally, genetic data were available in two
completely independent cohorts (FinnGen, N = 277,252 and SHIP,
N = 1126). We therefore treated the UKB sample as the discovery
sample and the latter samples as replication samples. For replication of
GWAS loci, a nominal significance level (p <0.05) was assumed.

The FinnGen GWAS analyses were performed with Regenie56

(version 2.2.4) instead of PLINK 2.0 due to computational constraints
in the FinnGen Sandbox pipeline. The parameters for the Regenie
analyses were as follows: step 1, bsize 1000; step 2, --bsize 200, --bt
false, --apply-rint false, --firth, --approx, --pThresh 0.01, --test additive
and --firth-se.

Additional GWAS analysis of the UKB cohort using logistic
regression analysis of the binarized presence/absence of disease onset
was performed to compare the results of MDD-relatedmultimorbidity
clusters to the genetic results of all 86 cross-cohort disease categories

used to inform the clusters. All filters and settings were the same as for
the cluster membership analysis in the UKB cohort detailed above.

Post-GWASanalysis. To assess the impact of SNP results on biological
processes, several post-GWAS tools were applied that extract infor-
mation regarding significant loci, genes, and pathways and report
genetic correlations with other phenotypes of interest based on their
GWAS summary statistics.

The GWAS summary statistics for all seven MDD-related clusters
for each cohort were first processed with FUMA57 to identify lead SNPs
and significant loci. The maximum p-value of lead SNPs was set to
5 × 10-8, r2 ≥0.6 was set as the threshold for independent significant
SNPs, and the maximum distance between LD blocks of independent
significant SNPs was set to 250 kb. Furthermore, MAGMA (v1.10)58

gene-level analysis was performed to identify putative significant
genes using a SNPwise-multi model. We defined the SNP set of each
gene including ±10 kb downstream or upstream of the gene, respec-
tively.Weused the 1000Genomes Europeanpanel data to evaluate the
LD between SNPs. We employed Holm’s correction method to adjust
the p-values of the genes. We assessed the significance of the over-
enrichment of MDD-associated genes (identified by Howard et al. 5)
within the genes associated with each cluster by conducting one-sided
hypergeometric tests to evaluate whether the association between the
cluster genes and MDD genes was stronger than expected by chance.
Additionally, we employed Gene Set Enrichment Analysis (GSEA) using
the fgsea R package (v1.18)59 to assess the significanceof enrichment of
these MDD-associated genes across the clusters. To account for mul-
tiple comparisons, we applied Holm’s correctionmethod to adjust the
p-values derived from these tests. In addition, we used the g:Profiler R
package (v0.2.3, database version: e110_eg57_p18_4b54a898)60 for
functional enrichment analysis of each cluster’s sets of significant
genes. We used Gene Ontology (excluding IEA evidence codes) and
KEGG biological pathway data sources. We applied the g:SCS method
for p-value adjustment, and the p <0.01 threshold was used to indicate
statistical significance. Using the variety of analysis tools included in
theComplex-Traits Genetics Virtual Lab61 (CTG-VL; https://genoma.io),
we additionally assessed the genetic heritability of the clusters, genetic
correlations among clusters and genetic correlations with other phe-
notypes using the LD score regression method (LDSC v1.01)62. Genetic
correlation is a quantitative statistical parameter reflecting the genetic
relationship between two traits. This measure can reflect the pleio-
tropic action of genes or the correlation between causal loci in two
traits, which is especially important for polygenic traits.

Polygenic risk scores. A polygenic risk score (PRS) is a genetic mea-
surement that sums an individual’s risk-conferring alleles weighted by
their estimated effect size for a specific phenotype or disease. The PRS
employed in this study was calculated using PRS-CS (v1.0.0), a method
that utilizes a high-dimensional Bayesian regression framework and
places a continuous shrinkage (CS) prior on SNP effect sizes using
GWAS summary statistics and an external linkage disequilibrium (LD)
reference panel63. Here, the original effect sizes were taken from the
UKB GWAS on cluster membership for all seven clusters. The LD
reference panel was constructed using a European subsample of the
UK Biobank44. For the remaining parameters, the default options
implemented in PRS-CS were adopted. The PRSs for membership in
Clusters 1–7 were calculated in the GWAS samples of the THL and SHIP
cohorts. PRSs in the SHIP cohort were correlated with the cluster
probabilities, whereas in the THL cohorts, due to the larger sample
size, regression analyses between two factors could be performed
adjusted for age, sex, batch, region and cohort (SupplementaryData 1).

Network-based analysis of pleiotropy. We assessed pleiotropy
among the clusters and MDD at the level of functional modules by the
following procedure. First, we defined an initial evidence score for the
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top genes in each cluster as their negative log-transformed adjusted p-
value. Next, we applied the Personalized PageRank (also known as
Random Walk with Restart, RWR) network propagation algorithm
using the interactome network based on STRING (https://string-db.
org/; v11.5, filtered to high confidence edges with a combined score
cut-off >0.7) to score all protein-coding genes initialized from the top
genes of each cluster. Then, we selected the highest-scoring genes in
the resulting score rankings by the Kneedle algorithm64 and identified
their nonoverlapping modules using spectral clustering. Next, we
similarly initiated network propagation from seed genes significantly
associated with MDD based on the gene-level MAGMA analysis results
of Howard et al. 5. Finally, we determined those cluster-specific mod-
ules where the propagated MDD scores’ sum was statistically sig-
nificantly higher thanaccording to anullmodel basedondegree-aware
permutations of the seed genes in the network. In all RWR experi-
ments, we used a random restart probability of 0.5; however, in
accordance with other studies65, the results were not sensitive to the
parameter change.

Non-genetic risk-factor profiles of MDD-related clusters
Lifestyle and physiological risk factors play a fundamental role in the
probability of lifetime MDD. Therefore, it was essential to determine
whether one or more of the clusters had a defining risk-factor profile
that allowed it to be identified. Apart from basic descriptors such as
age, sex, income, and qualifications (Table 1), lifestyle-related factors
such as present and past smoking habits and alcohol intake and phy-
siological descriptors such as body mass index, systolic and diastolic
blood pressure, pulse rate, C-reactive protein level, and presence of
insomnia were investigated. Additionally, neuroticism (as a common
personality trait with depression), life stress (as a representation of
major negative life events), and current depression score were used as
psychological factors to characterize clusters (for availability and
descriptive statistics of these descriptors in the individual cohorts, see
Supplementary Data 1A).

Linear regression models were constructed for each cluster
with Python 3.8 using the statsmodels package (v0.13.1). The cor-
responding posterior probability log-odds for a given cluster was
used as the dependent variable. Two types of regression models
were generated: (1) “simple regression models” including one risk
factor at a time with age and sex as covariates and (2) “complex
regression models” including all available risk factors simulta-
neously in a single model. Simple regression models allow us to
explore the individual effect of each factor, whereas the complex
model enables the analysis of joint effects and other multivariate
aspects. In the case of complex regression models, a k-nearest
neighbour-based imputation method66 was applied to compute
missing values, whereas in the case of simple regression models,
only complete samples were used.

Clustering with a subset of diseases
A natural question that arises is how accurate the clusteringwill be if
not all cross-cohort diseases are available. To assess cluster analysis
performance in various limited disease subsets, we recalculated the
cluster membership based on various disease subsets of a given
size, increasing from only one disease to all cross-cohort diseases:
(1) randomly selected diseases; (2) greedily selected, increasingly
expanded sets of diseases; (3) a null model based on random cluster
membership probabilities; and (4) another null model defined by
uniform cluster membership probabilities. We calculated four per-
formancemeasures, namely, the accuracy and balanced accuracy of
the hard clustering (i.e., assigning each individual to the cluster in
which its membership probability is highest) and themean absolute
error and mean squared error of the posterior probabilities of
cluster membership, averaged over 10,000 random individuals
from the UKB cohort selected a hundred times. The greedy variable

selection method was performed as follows. First, we selected a
single disease for which the accuracy of cluster analysis (compared
to the original clustering of the samples using all cross-cohort dis-
eases) was the highest. Next, we selected the disease from the
remaining set of diseases that had the highest accuracy along with
the first disease. We began to expand this set, always adding the
disease for which the increase in accuracy was the highest. Note that
this procedure may result in a suboptimal choice of the best-
performing disease subset of a given size. The results for this clus-
tering procedure are provided in Supplementary Fig. S22.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The following cohorts and biobank data were used for analysis which
are available for further research upon application to the data owners:
UK Biobank (https://www.ukbiobank.ac.uk/, application num-
ber:1602), Catalan Health Surveillance System (CHSS) registry data
from all citizens living in the integrated health district of Barcelona-
Esquerra (“AISBE”) (https://doi.org/10.1186/s12913-019-4174-2), Finnish
population surveys (THL, https://thl.fi/en/web/thlfi-en/research-and-
development/research-and-projects/previous-research-and-projects),
FinnGen project (https://www.finngen.fi/en), and Study of Health in
Pomerania (SHIP, https://doi.org/10.1093/ije/dyac034).

Code availability
The software tools and scripts used in this study are publically avail-
able at the following GitHub repository67: https://github.com/gezsi/
mdd-clustering. While the original data used in our analyses cannot be
shared publicly, users can apply these tools to their own datasets to
perform MDD-related clustering or execute the full pipeline for clus-
tering individuals with respect to any target disease. For those who
have access to the original data, replication of our analyses is possible
following the provided instructions in the repository.
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