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Clonal evolution of the 3D chromatin
landscape in patients with relapsed pediatric
B-cell acute lymphoblastic leukemia

Sonali Narang 1,8, Yohana Ghebrechristos1,2,8, Nikki A. Evensen1, Nina Murrell1,2,
Sylwia Jasinski1,3, Talia H. Ostrow1, David T. Teachey 4, Elizabeth A. Raetz1,3,
Timothee Lionnet 5,6, Matthew Witkowski 7, Iannis Aifantis1,2,9 ,
Aristotelis Tsirigos 1,2,9 & William L. Carroll 1,3,9

Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains one of
the leading causes of cancer mortality in children. We performed Hi-C, ATAC-
seq, and RNA-seq on 12 matched diagnosis/relapse pediatric leukemia speci-
mens to uncover dynamic structural variants (SVs) and 3D chromatin rewiring
that may contribute to relapse. While translocations are assumed to occur
early in leukemogenesis and be maintained throughout progression, we dis-
covered novel, dynamic translocations and confirmed several fusion tran-
scripts, suggesting functional and therapeutic relevance. Genome-wide
chromatin remodeling was observed at all organizational levels: A/B com-
partments, TAD interactivity, and chromatin loops, including some loci shared
by 25% of patients. Shared changes were found to drive the expression of
genes/pathways previously implicated in resistance as well as novel ther-
apeutic candidates, two of which (ATXN1 and MN1) we functionally validated.
Overall, these results demonstrate chromatin reorganization under the
selective pressure of therapy and offer the potential for discovery of novel
therapeutic interventions.

Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains
oneof the leading causesof cancermortality in children1,2.Whilefive-year
survival rates for newly diagnosed pediatric B-ALL have improved and
now approach 90%, up to 20% of patients will suffer relapse and face a
dismal prognosis3. Although recent therapeutic approaches to treating
relapsed B-ALL seem encouraging, leukemia sub-clones continue to
emerge through the selective pressures of therapy4. Therefore, investi-
gating the mechanisms responsible for cancer recurrence and therapy
resistance is crucial for preventing and treating B-ALL relapse.

Previous studies have focused on the discovery of relapse-
enriched somatic mutations and copy number changes, which
proved to be fruitful in the identification of mutations involved in
resistance to one or more drugs used in treatment5–8. Our recent work
characterized the evolution of the epigenetic landscape of B-ALL from
diagnosis to relapse. While changes in the epigenome varied widely
across patients, we were able to identify shared relapse-specific
superenhancers along with concordant gene expression changes. We
also found convergent evolution of histonemodifications on pathways
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known to be associated with resistance, such as p53, JAK/STAT, and
Ras, thus highlighting the importance of chromatin changes in disease
progression9. Although studies of the linear genome have been enor-
mously productive in yielding fundamental insights into B-ALL biology
and therapeutic options, recent studies suggest that an additional
critical level of control of the epigenome is connected to the 3D
structure of chromosomes.

Thus far, noonehas exploredB-ALLprogression through the lens of
3D chromatin organization. The advent of chromosome conformation
capture (3C) techniques, such as Hi-C, revealed that the folding of large
complex chromosomes is nonrandom and involves a hierarchy of bio-
logically relevant structures including chromosome territories, A and B
compartments, topologically associating domains (TADs), and enhancer-
promoter chromatin loops10–14. These organizational layers have been
shown to be tightly linked to epigenetic and transcriptional regulation.
Additionally, a growing number of cancers have been shown to harbor
disruptions in various layers of chromosome topology includinggliomas,
non-Hodgkin lymphoma, and T-cell ALL15–17.

In B-cell lymphomas, a recurrent histone H1 ((HIST1H1B-E) linker
protein mutation was shown to cause large scale chromatin decom-
paction coupled with a gain of H3K36me2 and/or loss of H3K27me3,
which created a permissive landscape for the expression of stem cell
genes normally silenced during development18. Loss of H1c and H1e in
mice enhanced fitness and self-renewal properties of GC B-cells,
causing aggressive lymphomas. Similarly, recurrent alterations in TAD
boundaries and TADs in T-ALL were shown to be linked to changes in
gene expression and affect downstreamoncogenic effectors including
NOTCH1 signaling17. In B-ALL, we showed that the relapse-specific
NSD2 E1099K mutation drives relapse by disrupting 3D chromatin
organization at the compartment level19. More recently, recurrent and
subtype-specific alterations in A/B compartments, TAD activity, and
chromatin loops were identified in AML20. Additionally, inhibition of
DNA methylation with a hypomethylating agent restored 3D genome
organization and gene regulation in AML cells. We now aim to capi-
talize on chromatin conformation capture techniques to discover how
each layer of 3D chromatin organization evolves over the course of
B-ALL progression and contributes to therapy resistance and relapse.

To uncover 3D chromatin architecture-related mechanisms
underlying disease progression, we performed Hi-C, ATAC-seq, and
RNA-seq on 12 matched primary pediatric leukemia specimens at
diagnosis and relapse.Mapping of structural variations usingHi-C data
revealed previously unidentified stable, diagnosis-specific, and
relapse-specific SVs as well as relapse-specific fusion transcripts indi-
cating a possible role in clonal evolution (e.g. MBTD1::WDR89).
Moreover, Hi-C analysis revealed genome wide chromatin remodeling
specifically in terms of A/B compartments, TAD interactivity, and
chromatin loops. We showed that 12.17% of changes were shared by at
least 25% of the patients, including at the JAK2 locus. Integration with
ATAC-seq and RNA-seq datasets revealed strong correlation with both
gene expression and chromatin accessibility. Importantly, integration
of looping data with ATAC-seq andHi-ChIP for H3K27ac demonstrated
rewiring events can occur at stable chromatin accessibility sites.
Additionally, we identified recurrent A/B compartments and TAD
interactivity changes across the patient cohort supporting a crucial
role in the clonal evolution of B-ALL. Recurrent TAD interactivity
changes were identified in genes previously found dysregulated in
cancer, such as PCDH9, as well as pathways previously implicated in
drug resistance such as Wnt-beta catenin signaling, highlighting the
activation of these vital pathways through 3D chromatin architecture
alterations. Lastly, we discovered novel genes dysregulated by recur-
rent 3D changes, such as MN1 and ATXN1, which were found to play a
role in drug response validating the functional significance of our
findings. These results significantly extend our knowledge of shifts in
the genetic and epigenetic landscape that drive therapy resistance in
childhood B-ALL and identify novel therapeutic targets.

Results
Mapping structural variations in pediatric ALL using Hi-C
To broadly assess global chromatin architecture throughout the pro-
gression of pediatric B-ALL, we performed Hi-C, RNA-seq, and ATAC-
seq on sorted blasts (CD45dim, CD19 + ) from 12 matched primary
bone marrow B-ALL samples at diagnosis and at relapse from patients
enrolled in Children’s Oncology Group (COG) protocols or St. Jude
Children’s Research Hospital Total XV protocol21 (Supplementary
Fig. 1a; Supplementary Table 1). Recurrent cytogenetic abnormalities
in pediatric B-ALL serve to identify subgroups important for risk stra-
tification of therapy22,23, therefore we first examined the Hi-C data for
structural variants. Patient Hi-C data was processed by our in-house
HiC-bench platform24. Alignment rates showed a high percentage of
usable long-range read-pairs across our patient cohort ( ~ 100 million;
Supplementary Fig. 1b, c).

Visual inspection of entire patient Hi-C contact matrices revealed
inter-chromosomal contacts (Fig. 1a). Closer inspection of the Hi-C
contact matrices of patient PATIKJ demonstrated a canonical ALL
rearrangement, the BCR-ABL1 translocation between chromosomes 9
and 22 at both diagnosis and relapse (Fig. 1b). Reconstruction of Hi-C
contactmatrices revealed thepresence of inter-chromosomal contacts
across the breakpoint and the formation of a new topologically asso-
ciating domain, referred to as a neoTAD25 (Fig. 1c). Fusion transcript
analysis26 with RNA-seq data confirmed the presence of the BCR::ABL1
fusion transcript in this patient (Supplementary Data 1). This example
of a well-known B-ALL translocation screened for at diagnosis by
conventional methods provided evidence that our methods in
detecting these chromosomal abnormalities usingHi-Cwas successful.

To further our investigation, we utilized Hi-C-Breakfinder27 and
HiNT28 to call inter-chromosomal translocations from each Hi-C data-
set in our cohort. We overlapped translocations predicted by the
methods with cytogenetics provided for each patient, and found Hi-C-
Breakfinder performed better and revealed previously identified as
well as novel translocations (Supplementary Fig. 2a, b; Supplementary
Data 2). Additionally, EagleC was used to call all SVs and was found to
produce approximately 50% overlapping translocation calls with
Breakfinder. While 50 stable translocations were called, for the first
time, we report diagnosis-specific (5) and relapse-specific (21) trans-
locations providing further evidence for clonal evolution as a
mechanism for drug resistance (Fig. 1d). To further investigate these26
dynamic translocations, we visually inspected each of them using Jui-
cebox web application29 and confirmed one of the diagnosis-specific
and 11 of the relapse-specific translocations (Supplementary Data 3).
Interestingly, two of the relapse-specific translocations had faint signal
at diagnosis upon visual inspection but were below the level of
detection for Breakfinder, supporting clonal selection of a minor
subclone at diagnosis. For example, while a translocation was called
between chromosomes 16 and 22 in SJETV043 at relapse but not at
diagnosis, upon visual inspection we were able to detect faint signal at
the breakpoint at diagnosis (Fig. 2a). Another example in the same
patient revealed a faint signal at diagnosis at the breakpoint of the
t(chr1,12) called at relapse (Supplementary Fig. 2c).

While the presence of inter-chromosomal contacts across break-
points were evidenced by the reconstruction of Hi-C contact
matrices25, we wanted to determine whether these contacts resulted in
any fusions at theRNA level. Overall the fusion transcript analysis using
STAR-fusion called a variable number of fusion transcripts across
patients (Supplementary Fig. 2d; Supplementary Data 1). Of the 50
translocations shared from diagnosis to relapse, nine were found to
have fusion transcripts. The one diagnosis-specific and three of
the 11 relapse-specific translocations also had fusion transcripts
detected, none of which were shared across patients. An example of
a diagnosis-specific translocation in patient PATJJX showed the pre-
sence of a fusion between chromosomes 5 and 9 at diagnosis only
(Fig. 2b). Fusion transcript analysis revealed the existence of a
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previously unreported fusion transcript in the diagnosis sample,
ZCCHC7::PDGFRB (Supplementary Data 1 and 3). PDGFRB alterations
are commonly found in Ph-like B-ALL cases, which has clinical impli-
cations as these patients can be responsive to tyrosine kinase
inhibition30,31. Lastly, an example of a relapse-specific translocation in
patient SJETV043 showed the presence of inter-chromosomal contacts
between chromosomes 14 and 17 only in the relapse sample (Fig. 2c).
Fusion transcript analysis confirmed the presence of the known
ETV6::RUNX1 at both diagnosis and relapse, and demonstrated the

existence of a previously unreported fusion transcriptMBTD1::WDR89
in the relapse sample (Supplementary Data 1 and 3).MBTD1 is found as
a recurrent translocation partner with ZMYND11 in acute myeloid leu-
kemia and has been demonstrated to play a role in transcriptional
activation of oncogenic genes such as myc32.

For the remaining relapse-specific, visually validated transloca-
tions that did not have fusion transcripts detectable by STAR-fusion,
we sought to determine if there were examples of dysregulated gene
expression surrounding breakpoints. One example was found for the

Fig. 1 | Mapping of structural variations at Diagnosis and Relapse using Hi-C.
a Entire genome Hi-C contact matrix for patient PATIKJ. b Zoomed in Hi-C contact
matrix demonstrating BCR-ABL1 translocation between chromosome 9 and chro-
mosome 22 in patient PATIKJ at diagnosis and at relapse (left and right respec-
tively). c Reconstructed Hi-C contact matrix presenting an example of a shared

BCR-ABL1 translocation in patient PATIKJ between chromosomes 9 and 22 at
diagnosis and relapse (left and right respectively). Green dashed triangle highlights
a NeoTAD. d Translocations and their log-odds score identified in diagnosis and
relapse per patient. Those also found by cytogenetics or fusion transcripts are
marked.
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Fig. 2 | Mapping of structural variations using Hi-C reveals Diagnosis and
Relapse-specific translocations. a Hi-C contact matrix demonstrating relapse-
specific translocation between chromosomes 16 and 22 in patient SJETV043 with
faint signal visually detected at diagnosis (arrow). b Reconstructed Hi-C contact
matrix presenting a diagnosis-specific translocation in patient PATJJX between
chromosomes 5 and 9 at diagnosis and relapse (left and right respectively).
c Reconstructed Hi-C contact matrix presenting a relapse-specific translocation in

patient SJETV043 between chromosomes 14 and 17 at diagnosis and relapse (left
and right respectively). Green dashed triangle highlights a NeoTAD.
d Reconstructed Hi-C contact matrix demonstrating a relapse-specific NeoTAD
(dashedgreen triangle). New contacts overlap regionofATACpeaks (purple tracks)
and increased transcription at relapse (red tracks) overlapping the E2F4 locus
(dashed blue triangle). e Bar plot showing upregulation of E2F4 transcripts at
relapse in PASFIF.
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relapse-specific translocation between chromosomes 5 and 16 in
patient PASFIF (Fig. 2d; Supplementary Fig. 2e). Upon reconstruction
around the breakpoint, new contacts were observed across the two
chromosomes in the relapse sample compared to the diagnosis sam-
ple. Interestingly, several genes within the neoTAD show differential
gene expression. Two ATAC peaks near a transcriptionally active
region are evident on chromosome 5 brought into contact with genes
near the breakpoint on chromosome 16 (Fig. 2d), suggestive of
potential promoter/enhancer hijacking as Xu et al. previously
demonstrated20. One of the genes, E2F transcription factor 4 (E2F4),
that is upregulated at relapse (Fig. 2e) has been implicated in acute
myeloid leukemia (AML). AML patients with high expression of E2F4
had significantly lower overall survival and in in vitro models its
overexpression lead to increased proliferation and differentiation
blockage33. These results extend the landscape of cytogenetic
abnormalities in pediatric B-ALL that could play a significant role in the
identification of subgroups that have significant clinical implications
for risk stratification and therapeutic strategy.

B-ALL relapse is associated with recurrent changes in A/B
compartments
Next, we sought to determine changes in the various layers of 3D
chromatin architecture throughout the progression of pediatric B-ALL.
We first assessed compartmentalization of the genomebetween B-ALL
samples at diagnosis and relapse. A/B compartment status was ana-
lyzed in individual patient pairs using Cscore34. Principal Component
Analysis (PCA) of Cscore compartment scores revealed two distinct
groups of patient samples in which thematched diagnosis and relapse
pairs cluster together and the patient with a KMT2A rearrangement,
SJETV043, clusters separately (Fig. 3a). Overall, the number of A and B
compartment calls was comparable between diagnosis and relapse
samples (Fig. 3b). We next assessed A/B compartment switching in
individual diagnosis-relapse patient pairs. We observed 4.88% com-
partment switching between diagnosis and relapse samples across the
12 patient pairs (Fig. 3c; Supplementary Fig. 3a). In order to confirm
that 3Dchangeswerenotdriven by copy number variations (CNVs), we
called CNVs using EagleC. Less than 1.3% of compartment bins that
underwent a switch were found to overlap with a CNV (Supplementary
Data 4). B-ALL is a heterogeneous disease classified by various chro-
mosomal abnormalities, such as hyperdiploidy, hypodiploidy, trans-
locations, and intra-chromosomal amplification. Given this
heterogeneity, B-ALL relapse expectedly has various mechanisms of
clonal selection. While the small size of our cohort is limiting, we were
particularly interested in identifying recurrent compartment switches
across the patient cohort and/or switches that were concordant with
gene expression and chromatin accessibility as they could be indictive
of a role in clonal evolution. Overall, we identified 12.17% recurrent
switches shared by at least 3 out of 12 patients (25% of patients). Spe-
cifically, 5.73% (420/7335) of A to B switches and 5.99% (483/8059) of B
to A switches were shared by at least 3 patient samples (Fig. 3d).

We then integrated theHi-CdatawithRNA-seq andATAC-seqdata
to investigate whether compartment switches are associated with
changes in gene expression and chromatin accessibility (Supplemen-
tary Fig. 3b–e). We performed differential expression analysis of all
expressed genes (FPKM> 1) and differential chromatin accessibility
analysis of all ATAC-seq peaks (abs(log2 (fold change))>1.0, false-
discovery rate (FDR) < 0.01) within compartment switches at the
individual patient pair level and found that B to A compartment
switches upon relapse correlated with an increase in gene expression,
whereas A to B compartment switches upon relapse were associated
with a decrease in gene expression relative to expression changes
within stable compartments (Fig. 3e, left panel).Wewitnessed a similar
trend with chromatin accessibility changes (Fig. 3e, right panel).
Interestingly, we found a recurrent B to A compartment switch at the
JAK2 locus in 3 of the 12 patient pairs. This B to A compartment switch

was also concordant with increased gene expression (Fig. 3f). The JAK2
gene is a member of the non-receptor tyrosine kinase family and
mediates intracellular signaling upon activation of cytokine
receptors35. Several studies have identified gain of function mutations
and translocations affecting JAK2 in pediatric B-ALL36,37.

B-ALL relapse drives recurrent changes in TAD interactivity
Following compartment analysis, we investigated TAD interactivity
changes (i.e. changes in intra-TAD chromatin interactions) between
B-ALL diagnosis and relapse patient pairs. We first called TADs at
diagnosis and relapse and identified ~3000 TADs in each patient
(Supplementary Fig. 4a). Comparison of TAD interactivity between
B-ALL samples at diagnosis and relapse identified a range of sig-
nificantly differential TADs across patients, with 8 out of 12 patients
havingmore gains in TAD activity at relapse (Fig. 4a, b; (FDR) < 0.1 and
abs(log2(fold change))>0.25; Supplementary Fig. 4b). Less than2.4%of
differential TADs overlappedwith CNVs (Supplementary Data 5). Next,
to investigate whether TAD interactivity associated with changes in
gene expression and chromatin accessibility, we performed differ-
ential expression analysis of all expressed genes (FPKM> 1) and dif-
ferential chromatin accessibility analysis of all ATAC-seq peaks
(abs(log2 (fold change))>1.0, FDR <0.01) within differentially active
TADs at the individual patient pair level. Increased TAD interactivity at
relapse significantly associated with positive fold changes in gene
expression, whereas decreased TAD interactivity at relapse associated
with negative fold changes in gene expression relative to expression
changes within stable TADs (Fig. 4c, left). We saw a similar trend with
chromatin accessibility changes (Fig. 4c, right).

Of note, patient SJPHALL005 hadmore than 800 changes in TAD
interactivity, when applying the same thresholds, with the majority
being loss in activity (Supplementary Fig. 4c). We observed a similar
trend with patient SJPHALL005 when integrating the TAD interactivity
data with either gene expression or chromatin accessibility data
(Supplementary Fig. 4d). This patient also showed the greatest amount
of compartment changes at 10.85%, with the majority being A to B
(Supplementary Fig. 3a). Interestingly, we saw increased CEBPA
expression and decreased PAX5 at relapse (Supplementary Fig. 4e),
suggesting a more myeloid-like profile upon relapse. These observa-
tions are consistent with patient SJPHALL005 having a therapy related
or lineage switch secondary malignancy as previously described38.
Furthermore, we also observedmyeloid lineage architectural changes,
including a gain of TAD activity, a switch to A compartment, and
increased expression of DACH1 at relapse (Supplementary Fig. 4f, g).
DACH1 has been shown to regulate cell cycle progression in myeloid
cells39.

As with the compartment analysis, we next aimed to identify TAD
interactivity changes that were shared amongst our patient cohort
possibly indicating major modes of tumor escape from therapy.
Notably, we found a recurrent decrease in TAD interactivity at the
PCDH9 locus in 4 of the 12 patient pairs (Fig. 4d). All 4 patients
demonstrated decreased mean TAD interactivity, gene expression,
Cscore, and accessibility (Fig. 4e). Closer examination of the patient
with the most dramatic change in TAD interactivity, patient PASPNY,
revealed concordant changes in compartments, chromatin accessi-
bility, andgene expression (Fig. 4f). ThePCDH9 (Protocadherin 9) gene
encodes a transmembrane protein involved in cell adhesion and cal-
cium ion binding and has been identified as one of the top down-
regulated genes in pediatric B-ALL40–44.

Lastly, we performed pathway enrichment analysis45–47 to identify
pathways associated with changes in 3D architecture. Pathway
enrichment analysis on genes that were concordant in expression with
3D changes such as A/B compartment switches or TAD interactivity
changes revealed enrichment of previously identified key pathways
including, mTORC1, Wnt-beta catenin, and p53 signaling (Supple-
mentary Fig. 4h)9,48. These data demonstrate that the activation of
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these important pathways goes beyond genetic alterations and vali-
date these pathways as novel targets to prevent and treat relapse.

Chromatin loop data reveals enriched factors at relapse
We next wanted to investigate the rewiring of chromatin loops and
the factors responsible for mediating such changes during selection

from therapy. We performed a looping analysis with FitHiC249,50.
Looping calls varied based on sequencing depth across the
patient cohort (Fig. 5a). We performed differential looping analysis
to identify loops that increased, decreased, or remained the
same upon relapse (Fig. 5b) and visually confirmed them using
Aggregate Peak Analysis (APA) (Supplementary Fig. 5a). We observed

Fig. 3 | Compartments undergo discrete changes upon B-ALL relapse. a PCA of
A/B compartment calls with Cscore. b Violin plot showing A and B compartment
calls for diagnosis and relapse samples. Significant differences were calculatedwith
a paired one-sided t test comparing number of A or B eigenvector-1 bins between
diagnosis and relapse. c Bar plot showing number of compartment switches for
each patient pair upon relapse. Bar plot shows mean, bars represent standard
deviation, and eachpoint represents a patient (n = 12).dHeatmap representation of
compartment switches shared by at least 3 patients upon relapse. e Correlation
boxplots between gene expression and compartment changes (left) and chromatin

accessibility and compartment changes (right) from relapse to diagnosis of 12
individual patient pairs. Significant differences were calculated by unpaired one-
sided t test comparing genes or peaks from compartment changes AB or BA to
genes or peaks from stable compartments (*****p < .00001). Boxplots show med-
ians (horizontal line in each box), interquartile ranges (boxes), 1.5 interquartile
(whiskers) and each point represents a gene or peak. f IGV tracks demonstrating
concordant B to A compartment switches and increased gene expression in 3
patient pairs at the JAK2 gene locus.
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a strong correlation of loop changes with both gene expression
changes and chromatin accessibility changes (Fig. 5c). Additionally,
we identified a positive association between looping changes and
both compartment and TAD interactivity changes (Supplemen-
tary Fig. 5b)

To identify key regulators of transcription attributed to loop
changes, we performed motif enrichment analysis with Locus Overlap
Analysis (LOLA)51 with ATAC-seq peaks overlapping concordant chro-
matin loops. We identified several chromatin binding factors enriched
in regions with decreased chromatin accessibility and decreased
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chromatin looping including RXR and EZH2 (Fig. 5d, left panel). We
also identified several enriched factors in regions with increased
chromatin accessibility and increased chromatin looping including
FOS and NF-E2 (Fig. 5d, right panel).

H3K27ac HiChIP data reveals exclusive looping at stable
chromatin accessibility sites
We were also interested in the behavior of enhancer anchored loops
upon B-ALL relapse based on our previous work demonstrating the
importance of enhancers and superenhancers in relapse9. We per-
formed H3K27ac HiChIP with one patient pair, PASFIF, to evaluate
H3K27ac anchored loops. Looping analysis was performed with
FitHiC249,50. To examine the relationship between alterations in the
H3K27ac chromatin loops and chromatin accessibility, we categorized
the H3K27ac chromatin loops into those that were exclusively
increased (exclusive to relapse), exclusively decreased (exclusive to

diagnosis), dynamically increased (increased), dynamically decreased
(decreased), or stable and assessed chromatin accessibility changes.
Interestingly, integration of H3K27ac HiChIP with ATAC-seq data
revealed significantly increased and decreased exclusive loops at
regions with stable chromatin accessibility sites (Fig. 6a). This data
suggests that significant 3D rewiring events can occur at stable chro-
matin accessibility sites that would otherwise be entirely ignored if
analysis is focusedonly on siteswith changes in chromatin accessibility
using ATAC-seq.

To expand on this finding, we performed enrichment analysis
using LOLA51 with specifically stable ATAC-seq peaks overlapping
concordant and exclusive H2K27ac anchored loops. We identified
several interesting chromatin binding factors enriched in regions with
stable chromatin accessibility and decreased enhancer-promoter
looping including NCOR1, CREBBP, and MEIS (Fig. 6b, left panel). We
also identified several factors enriched in regions with stable

Fig. 4 | B-ALL patients share concordant changes in TAD activity. a Bar plot
presenting number of intra-TAD activity changes per patient pair upon relapse
(abs(L2FC) > 0.25, FDR <0.01). Bar plot shows means, bars represent standard
deviation, and each point represents a patient (n = 12). b Volcano plot presenting
increased, decreased, and stableTADsbetweendiagnosis and relapse samples (red,
blue, and gray respectively). c Correlation boxplots showing gene expression and
chromatin accessibility changes within differential TADs (paired t test, p <0.05)
from relapse to diagnosis of 12 individual patient pairs. Significant differenceswere
calculated by unpaired one-sided t test comparing gene expression or ATAC peaks
withinTADswith interactivity changes, losses, or gains, to gene expression orATAC
peaks within stable TADs(*****p < .00001). Boxplots show medians (horizontal line
in each box), interquartile ranges (boxes), 1.5 interquartile (whiskers) and each
point represents a gene or peak. d Hi-C contact matrices presenting a TAD

decreased in activity at relapse in 4 of 12 patient pairs at the PCDH9 locus (Diag-
nosis, Relapse, and L2FC (Relapse/Diagnosis) from top to bottom). e Box plots
demonstrating decreased PCDH9 mean TAD activity in cpm (top left), decreased
gene expression in tpm (top right), decreased PCDH9 compartment Cscore (bot-
tom left), and decreased chromatin accessibility in cpm (bottom right) in the 4
patient pairs at diagnosis and relapse. Significant differences were calculatedwith a
paired one-sided t test comparing mean TAD activity, TPM, Cscore, and cpm
between diagnosis and relapse. Boxplots show medians (horizontal line in each
box), interquartile ranges (boxes), 1.5 interquartile (whiskers) and each point
represents a patient with pairs connected by lines. f IGV genome browser tracks
demonstrating A to B compartment switch, decreased chromatin accessibility, and
decreased gene expression in the 4 patients with decreased TAD interactivity at the
PCDH9 gene locus.

Fig. 5 | Chromatin loop data reveals enriched factors at relapse. a Bar plot
presenting number of loops calledwith Fit-Hi-C2 atdiagnosis and relapse (q <0.01).
b Bar plot presenting number of loops increased, decreased or stable upon relapse
(blue, red, gray respectively). c Fit-Hi-C loop correlation with gene expression and
chromatin accessibility (left and right respectively). Significant differences were
calculated by unpaired one-sided t test comparing genes or peaks from loops that

increased or decreased to genes/peaks from stable loops (*****p <0.00001) from
relapse to diagnosis of 12 individual patient pairs. Boxplots show medians (hor-
izontal line in each box), interquartile ranges (boxes), 1.5 interquartile (whiskers)
and each point represents a gene or peak. d Enrichment analysis with LOLA of
decreased and increased ATAC-seq peaks (left and right) concordant with Fit-Hi-C
loops and gene expression.
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chromatin accessibility and increased enhancer-promoter looping
including PLU1, THAP1, and PHF8 (Fig. 6b, right panel).

Lastly, we present an example of stable chromatin accessibility
and exclusively increased H3K27ac chromatin looping at the vascular
endothelial growth factor receptor 1 (FLT1) gene locus52 in patient
PASFIF (Fig. 6c). Genome browser tracks show stable chromatin
accessibility and increased gene expression. H3K27ac HiChIP and Hi-C
virtual 4 C tracks show differential contact frequencies between diag-
nosis and relapse samples. FLT1 activation in ALL has been shown to
increase survival of blasts by influencing their localization into the
bone marrow and exit back into circulation52.

Functional validation of candidate genes suggests a role in drug
resistance
In an effort to discover potential gene targets involved in drug resis-
tance or relapse that are downstream of 3D chromatin changes, we
identified genes that demonstrated 3D change from diagnosis to
relapse (A/B compartment, TAD interactivity, or chromatin loop), that
were concordant with gene expression, and were shared by at least 3
patients, indicating a possible major role in clonal evolution. This
resulted in a list of 361 upregulated and 387 downregulated genes. To
validate the expression changes, we first overlapped our 3D gene-
based lists with a list of the most significantly differentially expressed
genes from a meta-analysis of a large cohort of three microarray
datasets generated from pediatric B-ALL diagnosis/relapse pairs53.

Thirty-two percent (116 of 387) of the 3Dmediated downregulated and
17% (61 of 361) of the upregulated genes were also differentially
regulated in this much larger cohort of samples (Fig. 7a; Supplemen-
tary Table 2) indicating a prominent role of 3D reorganization in clonal
evolution. Furthermore, using published data from a genome wide
CRISPR screen performed with the B-ALL cell line REH and various
chemotherapies used in pediatric B-ALL treatment performed by
Oshima et al.54, we found that 42% (153 of 361) of the upregulated and
24% (93 of 387) of the downregulated genes werewithin the top 10%of
guides negatively (for up) or positively (for down) selected from at
least one of the drugs tested, suggesting a cell intrinsic role in drug
resistance (Supplementary Data 6).

Interestingly, at the MN1 locus we identified a recurrent A to B
compartment switch in 4 of the 12 patient pairs that was concordant
with decreased gene expression, chromatin accessibility, and virtual
4 C signal (Fig. 7b–d). Linear regression model revealed a positive
relationship between changes in compartment Cscore and gene
expression (R2 = 0.7, p < 0.019, Fig. 7d).MN1 encodes a transcriptional
co-regulator involved in the co-activation of various transcription
factors55,56. Notably, we also found a recurrent increase in TAD inter-
activity with a concomitant increase in gene expression at the ATXN1
locus in 5 of the 12 patient pairs (Fig. 7e, f). Closer examination of the
patient with the most dramatic change in TAD interactivity, PASPNY,
revealed concordant changes in TAD interactivity, compartments,
gene expression, chromatin accessibility, and virtual 4 C signal

Fig. 6 | PASFIF H3K27ac HiChIP data reveals exclusive loops at stable ATAC-
seqpeaks. aATAC-seqandFit-Hi-C loop association barplot.bEnrichment analysis
with LOLA of increased, decreased, or stable ATAC-seq peaks with exclusively
decreased, dynamic decreased, stable, exclusively increased, or dynamic increased

loops. c IGV snapshot of the Fms Related Receptor Tyrosine Kinase 1 (FLT1) gene
locus presenting ATAC-seq, RNA-seq, and H3K27ac Hi-ChIP and Hi-C virtual 4C
tracks at the TSS as a viewpoint. Grayboxes highlight regions of differential contact
frequency.
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Fig. 7 | Functional validation ofMN1 and ATXN1 suggests a role in drug resis-
tance. a Venn diagrams presenting overlap of 3D gene-based lists with a list of the
most significantly differential genes from a meta-analysis of three microarray
datasets. b Example shown for PASYFN of an A to B compartment switch shared by
4 patient pairs at the MN1 gene locus including TAD activity, V4C signal, A/B
compartments, RNA-seq, and ATAC-seq tracks. c Box plot demonstrating a
decrease inMN1geneexpression in tpm(left) anddecrease inCscore (right) in the 4
patient pairs with the A to B compartment switch. Significant differences were
calculated using paired t test (*p <0.05). Boxplots showmedians (horizontal line in
each box), interquartile ranges (boxes), 1.5 interquartile (whiskers) and each point
represents a patient with pairs connected by lines. d Linear regression model
demonstrating positive correlation between compartment and gene expression
changes at theMN1 locus for patients with differential expression absL2FC> 1.0
(n = 7). e Hi-C contact matrices presenting a TAD increased at relapse in 5 of 12
patient pairs at the ATXN1 locus (Diagnosis, Relapse, and L2FC (Relapse/Diagnosis)
from top to bottom). f Box plots demonstrating increased ATXN1 gene expression

(top) and increased intra-TAD activity (bottom) in the 5 patient pairs upon relapse.
Significant differences were calculated using paired t test (*p <0.05). Boxplots
show medians (horizontal line in each box), interquartile ranges (boxes), 1.5
interquartile (whiskers) and eachpoint represents a patientwithpairs connectedby
lines. g Cell viability (left) and apoptosis assays (right) demonstrating increased
sensitivity to treatment with Prednisolone in SEM cells overexpressing MN1 com-
pared to empty vector control (EV). h Cell viability (left) and apoptosis assays
(right) demonstrating increased resistance to treatment with Prednisolone in 697
cells overexpressing ATXN1 compared to EV. Cell viability graphs shown (g, h) are
one experiment representative of three independent experiments, each with
technical triplicates. The dots represent the mean of technical triplicates for that
experiment with standard deviation shown. Curve represents the nonlinear fit of
transformed X. The null hypothesis of one curve fits all datasets was rejected with
p <0.001 (g, h). Apoptosis graphs shown represents the mean and standard
deviation of 4 (g) and 3 (h) individual experiments. Statistical significance shown
based on unpaired t test with Welch correction with p value indicated.
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(Supplementary Fig. 6a). This was further validated by increased
H3K27ac peak changes inmany patients fromour previous study9. The
Ataxin-1 (ATXN1) gene is a chromatin binding factor that represses
Notch signaling57,58.

We validated a functional role for both MN1 and ATXN1 in B-ALL
cell lines. The B-ALL cell line SEM was engineered to overexpress MN1
or EV as control and verified via western blot (Supplementary Fig. 6b).
We observed a significant increase in sensitivity to prednisolone upon
overexpression of MN1 (Fig. 7g) but no difference was observed with
thiopurines, suggesting that loss of MN1 would provide an advantage
to cells undergoing steroid treatment. The B-ALL cell line 697 was
engineered to overexpress ATXN1 or EV as control and verified via
western blot (Supplementary Fig. 6c). Overexpression of ATXN1
resulted in increased resistance to prednisolone compared to EV
(Fig. 7h), suggesting upregulation of ATXN1 leads to drug resistance.
There was no difference in IC50s for other chemotherapies, including
thiopurines ordoxorubicin (Supplementary Fig. 6d). NotewhenATXN1
or MN1 expression was modified in other cell lines (REH, RS4;11, SEM,
697), we did not observe changes in chemosensitivity indicating cell
context plays an important role, a finding consistent with the fact that
these changes were shared in a subset of patients.

Discussion
Relapsed pediatric B-ALL remains one of the leading causes of cancer
mortality in children. Previous studies have characterized the genetic,
epigenetic, and transcriptional landscapes of B-ALL. However, no one
has investigated B-ALL progression through the lens of 3D chromatin
organization. In this work, we investigate the dynamics of 3D chro-
matin architecture in B-ALL progression by assessing 12 matched pri-
mary pediatric leukemia specimens at diagnosis and relapse. We
demonstrate that 3D genome organization plays an additional critical
level of control in B-ALL progression.

The current clinical standard for the detection of genetic
abnormalities in B-ALL is fluorescence in-situ hybridization (FISH).
Despite its sensitivity, FISH can only detect known genetic aberrations
with the provision of specific probes.Hi-C in contrast is a powerful tool
that gives insight into previously unknown structural variants. We
sought to leverage Hi-C and investigate the stability of structural var-
iants between diagnosis and relapsed B-ALL. Robust SV analysis with
Hi-C data from diagnosis and relapse samples confirmed transloca-
tions provided by conventional cytogenetics but also some previously
unidentified stable, diagnosis-specific, and relapse-specific transloca-
tions. This data suggests that Hi-C data can be used as a computa-
tionally less rigorous alternative to WGS methods to discover
cytogenetic abnormalities in ALL and other disease models. We con-
firmed the presence of fusion transcripts such as BCR::ABL1 and
ETV6::RUNX1 as well as identified novel translocation-driven fusion
transcripts offering possible new avenues for therapeutic intervention
especially those that appear to be enriched at relapse.

In general, such translocations are thought to be an early event in
tumorigenesis and aremaintained at diagnosis and relapse. We show a
striking number of additional translocations indicating a fundamental
role in tumorigenesis. The loss of translocations at relapse indicates a
dispensable role in clonal evolution while relapse-specific transloca-
tions may provide additional fitness to the leukemic clone. Interest-
ingly, both PDGFRB and ZCCHC7 have been previously observed in
rearrangements with different loci in B-ALL. The detection of
ZCCHC7::PDGFRB at diagnosis would support the use of a tyrosine
kinase inhibitor, although in this case the clone appeared to be
extinguished with chemotherapy. MBTD1, malignant brain tumor
domain containing 1, has been identified as a part of a chimeric protein
with ZMYND11 (zinc finger MYND-type containing 11) that leads to
active chromatin states at stemness related genes in AML59. Herein, we
show a novel fusion transcript with MBTD1 and WDR89, a member of
theWD40-repeat proteins whose function is largely unknown butmay

play a role in immunotherapy response60,61. While the functional rele-
vance is beyond the scope of the present study, the fact that this novel
transcript was relapse-specific suggests a role in disease progression.
Performing Hi-C on a larger cohort of samples could enable the rapid
benchmarking of cytogenetic abnormalities associated with B-ALL
progression and would allow for an unbiased view of the genome to
identify unknown fusions that would otherwise be missed using cur-
rent methods. Lastly, while our studies show a number of diagnosis or
relapse specific translocations, all pairs had shared translocations
indicating that the origin of the relapsed clone was from a common
ancestral precursor including case SJPHALL005 where the initial
diagnostic clone was lymphoid and the patient relapsed with AML.
Thus, the subsequent relapse likely originated from a common
ancestral stem-like clone, a feature known to be associated with Ph+
ALL62. Furthermore, there were several relapse-specific translocations
thatwere visually detected (but not called byBreakfinder) at diagnosis,
supporting the idea of clonal selection of a minor subclone at
diagnosis5,7.

In addition to structural changes, we demonstrate significant A/B
compartment, TAD interactivity, and looping changes between diag-
nosis and relapse that strongly correlated with expression and acces-
sibility. These findings support a prominent role of 3D architecture in
modulating transcription. We saw that the magnitude of these archi-
tectural changes varied among pairs. This is consistent with our pre-
vious findings showing variable degrees of epigenetic changes from
diagnosis to relapse, highlighting the plasticity of the chromatin
landscape under the selective pressures of therapy9. Analysis of 3D-
regulated genes revealed previously discovered pathways associated
with drivers of clonal evolution. For example, activation of JAK/STAT
signaling has been implicated in leukemia progression and we
observed a recurrent B to A compartment switch at the JAK2 locus.
Previous studies have shown mutations as well as translocations lead
to activated JAK2 in pediatric B-ALL, which could be targeted through
JAK inhibitors53,54. Our Hi-C analysis demonstrates an additional
mechanism by which blasts may increase JAK2 thus extending the use
of JAK inhibitors at relapse.

Importantly our work identified additional novel pathways
involved in drug resistance specifically to prednisolone, a cardinal
feature of ALL at relapse. A meta-analysis of gene expression in B-ALL
diagnosis and relapse pairs confirms that MN1 expression is down-
regulated while ATXN1 is upregulated at relapse consistent with our
findings53. MN1 is a transcriptional co-activator and indirectly activates
retinoic acid receptor and vitamin D receptor (VDR) target genes63.
Many studies have confirmed an association between polymorphisms
of VDR with osteonecrosis, a side effect of glucocorticoids in ALL
therapy64,65. Furthermore, retinoids have been found to promote
glucocorticoid-induced apoptosis of various T-cell lines. Thus, down-
regulation ofMN1may impair apoptosis induced by retinoid signaling
under steroid treatment66. Conversely, overexpression of ATXN1
resulted in increased resistance to prednisolone. ATXN1, thought to
function in extracellular matrix remodeling, has been shown to reg-
ulate Notch and Capicua (CIC) controlled developmental processes67.
We were unable to replicate phenotypic changes in multiple cell lines;
however, we have previously demonstrated cell context specific
changes in drug response, which can be explained in part due to 3D
chromatin differences56.

By integrating looping changes with gene expression and chro-
matin accessibility, we were able to identify potential regulators of
these changes. We found enrichment of sites for chromatin binding
factors shown to be key players in cancer. One such example is EZH2,
which ispart of thepolycomb repressive complex (PRC2) that is crucial
for proliferation and differentiation and plays a complex role in
cancer68. We previously demonstrated DNA hypermethylation at PRC2
target genes at relapse9, which would be consistent with decreased
expression, accessibility, and 3D looping interactions where there are
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EZH2 motifs. Studies related to EZH2 and NSD2mutations in leukemia
and myeloma have also revealed a complex interplay between these
two epigenetic modifiers69,70 and perhaps understanding the 3D
chromatin changes associated with EZH2 could provide more insight
for the best method to target epigenetic modifiers. The importance of
epigenetic modifiers is strengthened further by the enrichment of
H3K27me3 and the role this mark has been demonstrated to play in
repressor hijacking events20. The highest-ranked factor for decreased
looping and expression was retinoid X receptor (RXR), which is a
nuclear receptor that interacts with retinoic acid receptor alpha and
recruits corepressors to chromatin to regulate target genes, including
genes involved in differentiation and apoptosis71. Targeting these
receptors in IKZF1 mutated BCR-ABL1 ALL has also been shown to
reverse stem cell like phenotype72. The highest-ranking factormotif for
activated regions was nuclear factor erythroid-2 (NF-E2). Over-
expression inmousemodels has been shown to lead to increased stem
and progenitor cells and spontaneous development of AML73.

Interestingly, theH3K27acHiChIPwithpatientPASFIFdemonstrated
a significant amount of de novo loops appearing and disappearing at
regions of stable chromatin upon relapse. This finding indicates that sites
of stable chromatin accessibility provide invaluable information on a
significant numberof 3D rewiring events thatwouldotherwisebeentirely
ignored if analyzes are directed to changes in chromatin accessibility
exclusively (e.g., ATAC-seq). For example, CREBBP motifs were enriched
in regions of decreased looping at relapse. CREBBP loss of function
mutations have previously been observed at relapse in a significant
number of patients and is associated with resistance to glucorticoids74.
Likewise, PHF8motifs were enriched in regions of increased looping and
PHF8expression is associatedwithALLprogression throughactivationof
the MEK/ERK pathway75.

Overall, this study demonstrates 3D genome organization as a
critical factor in reshaping the transcriptional output of leukemia cells
under the selective pressures of therapy. These processes appear to
drive pathways shown to be involved in drug resistance but also pre-
viously undiscovered genes/pathways that may play a role in clonal
evolution. Our findings extend indications for inhibition of kinase and
cytokine receptor signaling in B-ALL using available agents, as well as,
highlight the potential of novel approaches to modulate MN1, ATXN1
and FLT1 at relapse. The identification of commondownstream targets
among patients indicates the convergence of drug resistance
mechanismsandhas important clinical implications for possible future
therapeutic interventions.

Methods
Cell culture, drug preparation, viral preparation, immunoblotting, and
phenotypic assays were performed according to methods published
previously5–7.

Cells and reagents
The B-lineage leukemia cell lines Reh (ATCC), RS4;11 (ATCC), RCH-ACV
(DSMZ), and SEM (kindly gifted by Jun Yang, St. Jude Children’s Hos-
pital) were grown in RPMI1640medium. Allmedia were supplemented
with 10%FBS, 1%penicillin/streptomycinunder 5%CO2at37 °C.No cell
lines were used beyond passage 20. Each leukemia line was validated
by short tandem repeat analysis through IDEXX cellcheck9+ service.
Cell lines were routinely monitored formycoplasma contamination by
PCR using ATCC Universal Mycoplasma Detection Kit (20-1012 K).

Experimental Procedures
Primary B-ALL patient samples. Cryopreserved paired diagnosis/
relapse primary patient bonemarrow samples from individual patients
were obtained from the Children’s Oncology group (COG) ALL bior-
epository or St. Jude Children’s Research Hospital21. All subjects pro-
vided consent for banking and future research use of these specimens
in accordancewith the regulations of the institutional reviewboards of

all participating institutions. Samples were thawed and stained for
CD45 (PerCP-Cy™5.5 Mouse Anti-Human CD45 clone HI30, BD
Bioscience Cat# 564105) and CD19 (APC Mouse Anti-Human CD19
Clone HIB19, BD Bioscience Cat# 555415). Leukemic blasts
(CD45dimCD19 + ) were sorted using SY3200 cell sorter (Sony Tech-
nologies) in the NYU Cytometry and Cell Sorting Laboratory and then
immediately processed for downstream steps.

RNA-seq
Following FACS, 50,000-200,000 leukemic cells were immediately
resuspended in Buffer RLT plus BME and frozen on dry ice. RNA was
extracted using the QIAGEN RNeasy Micro Kit and quality was verified
by an Agilent Bioanalyzer 2100 (PICO chip). RNA-seq libraries were
generatedby theNYUGenomeTechnologyCenter using the Low input
Clontech SMART-Seq kit and sequenced on the Illumina
NovaSeq 6000.

ATAC-seq
Following FACS, 50,000 leukemic cells were immediately processed
for ATAC-seq by the NYU Genome Technology Center. ATAC libraries
were generated based on the protocol by Buenrostro et al.76 Briefly,
cells are resuspended in cold lysis buffer (10mM Tris Cl, 10mM NaCl,
3mM MgCl2, 0.1% (v/v) Igepal CA-630, pH 7.4) and centrifuged for
1min at 500 × g. Nuclei were tagmented using Nextera (Illumina)
Tagmentation DNA buffer and enzyme. PCR amplification was per-
formed as described by Buenrostro et al.76 Libraries were sequenced
on the Illumina NovaSeq 6000.

Hi-C
Following FACS, leukemic cells were immediately fixed and cross-
linked with 2% formaldehyde at room temperature for 10min. Glycine
was added to stop the reaction. Crosslinked cells were washed with
PBS and then frozen on dry ice. Crosslinked cell pellets were stored at
−80 until ready for processing. Hi-C libraries were generated using the
Arima-HiC kit (A410110) with Swift Biosciences® Accel-NGS® 2 S Plus
DNA Library Kit (Cat # 21024) and Indexing kit (Cat #) according to
manufacturer’s protocol. Libraries were amplified and quantified using
KAPA Library Amplification kit (Cat # KK2620). Final libraries were
sequenced at the NYU Genome Technology Center on the Illumina
NovaSeq 6000.

H3K27ac HiChIP
HiChIP libraries were generated using the Arima-HiC+ kit (A410232)
with Swift Biosciences® Accel-NGS® 2 S Plus DNA Library Kit (Cat #
21024) and Indexing kit (Cat # 26148) according to manufacturer’s
protocol with minor modifications. After in-situ proximity ligation,
samples were sonicated on Covaris LE 220 at 4C, 300W, 15% duty
factor, 200 cycles per burst, for 300 s. Samples are then precleared
with protein G beads for an hour, and subsequently incubated with
5μg of H3K27AC antibody (ab4729, Lot:GR3231988) at 4 C overnight.
After IP, libraries were amplified and quantified using KAPA Library
Amplification kit (Cat # KK2620). Final libraries were sequenced at the
NYU Genome Technology Center on the Illumina NovaSeq 6000.

Drug preparation
Stock solutions of Doxorubicin (Dox) (Sigma-Aldrich, St. Louis, MO)
wereprepared indouble-distilledwater, Prednisolone (Pred) (Pharmacia,
St. Paul, MN) in 0.9% NaCl (Saline), 6-thioguanine (6-TG) and
6-mercaptopurine (6-MP) in 0.1M NaOH. Drugs were diluted and added
to cell culture media at indicated concentrations. Vehicle toxicity was
tested at highest drug dose used to ensure no impact on viability.

Generation of overexpression cell lines
The open reading frames of MN1 or ATXN1 were PCR amplified from
the pcDNA3.1 plasmids purchased from Genscript (OHu18815D and
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OHu26181D, respectively) and cloned into pLenti-R1R2-DEST (kindly
gifted byKenneth Scott, Baylor College ofMedicine) using Invitrogen’s
Gateway(R) Technology. HEK293T cells were then transfected with
these constructs (empty vector or gene of interest) along with
packaging plasmids coding for VSV-G, Gag-pol, and Rev using lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA). Viral supernatant was
used to spin infect B-ALL cell lines with 8 µg/ml Polybrene (Millipore).
After 72 h, infected cell lines were selected with 0.75–3 µg/ml of
Puromoycin.

Cytotoxicity assays
Cells were plated at a density of 60,000–80,000 cells/well and
exposed to chemotherapy agents commonly used in the treatment of
pediatric B-ALL for 4 days. Cell viability was measured using CellTi-
ter-Glo® Luminescent Cell viability Assay (Promega) according to the
manufacturer’s protocol. The luminescence was read using a Perki-
nElmer EnSpire multimode plate reader. Luminescent readings were
normalized to the untreated control for each cell line to account for
any differences in baseline growth kinetics or survival. Cytotoxicity
percentages were plotted using nonlinear regression with a four
parametric variable slopewith log transformed x concentrations with
a bottom constraint equal to zero on GraphPad Prism 7.2 (GraphPad
Prism Software Inc., La Jolla, CA). For apoptosis, following treatment,
cells were stained with Annexin V and DAPI and analyzed via flow
cytometry using the BD LSR II cytometer within the NYU Cytometry
and Cell Sorting core. The percent Annexin V+ cells were determined
for percent apoptotic using FlowJo Software. The percentage of
apoptotic cells was compared between empty vector control and
MN1 or ATXN1 overexpressing cells using an unpaired t test.
Each experiment was plated in triplicate and repeated at least
three times.

Computational analysis
RNA-seq analysis. Patient RNA-seq fastq files were processed in single
replicates using the route “rna-star” and “rna-star-groups-dge” from
the Slide-n-Seq (sns) pipeline: https://igordot.github.io/sns/. Proces-
sing steps include alignment of paired-end reads to the human refer-
ence genome (hg19) using the STAR aligner with default parameters77.
Counts were obtained using featureCounts78. Bigwig tracks were
obtained for visualization on individual samples using deeptools
(v3.1.0)79. Downstream analysis including normalization and differ-
ential expression analysis was performed using DESeq280. Genes were
categorized as differentially expressed if abs(L2FC > 0.58, p value <
.05). Pathway analysis was performed using enrichR46.

ATAC-seq analysis. Patient ATAC-seq fastq files were processed in
two replicates using the route “atac” from the Slide-n-Seq (sns)
pipeline: https://igordot.github.io/sns/. Processing steps included
aligning paired-end reads to the human reference genome(hg19)
with Bowtie2(v2.3.4.1)81. Reads with a mapping quality <30 were
removed. Duplicated reads were removed using Sambamba
(v0.6.8)82. Remaining reads were analyzed by applying the peak-
calling algorithm MACS2(v2.1.1)83. Bigwig tracks were obtained for
visualization on individual samples using deeptools (v3.1.0)79. Dif-
ferential ATAC-seq peak analysis was performed using DiffBind84.
Nearest genes were annotated using ChIPseeker85. Enrichment ana-
lysis of genomic regions sets was performed using Bioconductor
package LOLA (Locus overlap analysis or enrichment of genomic
ranges; R package version 1.24.0) with RStudio (v3.6.1) with the hg19
LOLA core database51. LOLA core is curated from many sources
including TF binding sites from Encode and epigenome databases
from Cistrome.

Hi-C and H3K27ac HiChIP analysis. Raw Hi-C sequencing data was
processed with the hic-bench platform24. Cell line Hi-C data was

processed as single replicates. Data was aligned against the human
reference genome(GRCh37/hg19) with bowtie2(version 2.3.1)81. The
reads used for downstream analyzes were filtered for by the Geno-
micTools tools-hic filter command in the hic-bench platform using
default parameters. The GenomicTools tools-hic filter command dis-
cards reads including multi-mapped reads (“multihit”), read-pairs with
only one mappable read (“single sided”), duplicated read-pairs
(“ds.duplicate”), read-pairs with a low mapping quality of MAPQ< 20,
read-pairs resulting from self-ligated fragments (together called
“ds.filtered”), and short range interactions resulting from read-pairs
aligning within 25 kb (“ds.too.short”). Downstream analysis was per-
formed with the accepted intra-chromosomal read- pairs (“ds.ac-
cepted intra”). The number of accepted intra-chromosomal read-pairs
varied between ~40 and ~140million for all samples (Chapter 1; Fig. 2).
Hi-C interaction matrices were generated for each chromosome
separately using the hic-bench platform at 40 kb resolution. Filtered
read counts were normalized by iterative correction and eigenvector
decomposition (ICE)86. To account for variances in read counts of
more distant loci, distancenormalization for each chromosomematrix
was performed.

Translocation calling from patient Hi-C data
Hi-C breakfinder27 and HiNT28 were used to call previously identified,
as well as, novel intra-chromosomal and inter-chromosomal trans-
locations from the matched B-ALL diagnosis/relapse patient Hi-C
data. Hi-C breakfinder required 3 input files including a bam file, an
inter-chromosomal expectation file, and an intra-chromosomal
expectation file. The bam file was generated by hic-bench and the
two expectations files for hg19 were provided on the Dixon lab
GitHub page: https://github.com/dixonlab/hic_breakfinder. Hi-C
breakfinder generated lists of structural variant predictions at dif-
ferent resolutions including 1Mb, 100 kb, and 10 kb. For the pur-
poses of comparing translocations between Hi-C breakfinder and
HiNT, the 100 kb resolution was used. Translocations were called at
100 kb resolution using HiNT through the “translocations” step
within the hic-bench platform24. EagleC87 (version 0.1.9) was used to
call copy number inferences (deletions and duplications) at three
resolutions 5 kb,10 kb,50 kb. High-confidence calls were determined
by setting the probability cutoff to 0.95.

Fusion transcript analysis
Fusion transcript analysis was performed using STAR-fusion: https://
github.com/STAR-Fusion/STAR-Fusion/wiki88. STAR-fusion required
paired-end RNA-seq fastq files and a reference genome (hg19) in order
to identify candidate fusion transcripts.

Hi-C contact matrix visualization
To visualize Hi-C contact matrices, ICE normalized Hi-C contact
matrices for the corresponding chromosome were loaded and nor-
malized by the total number of intra-chromosomal interactions for
Diagnosis and Relapse samples. The log2FC Hi-C contact matrix was
produced by applying the log2 function on the division product of the
Relapse Hi-C table by the Diagnosis Hi-C table.

To visualize translocations, Hi-C contact matrices were generated
in the.hic format using the “tracks” step within the hic-bench
platform24. Hi-C contact matrices were visualized using Juicebox29.

Hi-C contact matrix reconstruction
Hi-C contact matrices were reconstructed to demonstrate
inter-chromosomal translocations at 20 kb resolution using
NeoLoopFinder25. NeoLoopFinder required.cool files which were gen-
erated using the “tracks” step within the hic-bench platform24. Neo-
LoopFinder also required files containing a list of structural variations
that were generated at 10 kb resolution using Hi-C breakfinder27 as
described above.
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A/B compartments analysis
A/B compartments analysis was performed using the “compartments”
and “compartments-stats” steps within the hic-bench platform24. The
Cscore tool algorithm was used to assign active (A) and inactive (B)
compartments34. For a bin to be considered a switch from A to B or
from B to A, the compartment score sign had to flip in sample 2
(Relapse) when compared with the reference sample (sample 1 or
Diagnosis). The absolute difference between the compartment scores
had to be higher than the cutoff (default: 1.2). The difference was
computed as a relative delta:

delta = ðY � X Þ=absðY Þ#delta value calculation

X = compartment score of bin in sample 1 (reference)
Y = compartment score of bin in sample 2

TAD interactivity analysis
TAD interactivity was assessed using the “domains” and “domains-diff”
steps within the hic-bench platform24. The “domains” step uses the hic-
ratio algorithm for TAD calling developed within hic-bench by pre-
vious Tsirigos lab member Haris Lazaris in which the average of the
normalized interaction scores is calculated for all interactions taking
place within a particular TAD. The “domains-diff” step assesses TAD
interactivity alterations and was developed by previous lab members
Sofia Nomikou and Andreas Kloetgen17,24. To identify TADs with dif-
ferential interactivity between Relapse and Diagnosis, we used the
TADs identified in the Diagnosis sample as a reference to identify
common TADs. Once mean TAD interactivity values were obtained
from theHi-C data, a wilcoxon two-sided rank sumnon-parametric test
was performed to determine the p-values for each TAD. Multiple
testing was used to correct these p-values by adjusting to the total
number of TADs. Lastly, the log2 fold change (log2FC) of intra-TAD
activity value was calculated between the samples. TAD interactivity
alterations were categorized as significant if abs(L2FC >0.25) and
FDR <0.01.

Looping analysis
Looping analysis was performed using the “loops” and “loops-diff”
steps within the hic-bench platform24. Chromatin loops from Hi-C and
H2K27ac HiChIP data were called using FitHiC249,50. Loops were clas-
sified as diagnosis-specific, relapse-specific, or common. The common
loops were also classified as increased, decreased, or stable using a
log2 fold change cutoff (abs(L2FC) > 1). A loopwas considered sample-
specific if it was found to be significant only in sample ‘x’ but not in
sample ‘y’, when using a q-value cutoff of ‘qcut1’ (default: 0.01) as well
as the loop shouldn’t be found significant in sample ‘y’ when using a
more relaxed cutoff of ‘qcut2’ (default: 0.1). This is to avoid con-
sidering a loop sample-specific when the significance was relatively
close in both samples but in one sample it was lower than the
cutoff (significant) and in the other sample it was slightly higher than
the cutoff (not significant). These cases were classified as
common loops.

Integration of patient Hi-C data with other datasets
To show the correlation between the Hi-C data and the various
sequencing datasets, the peaks obtained from ATAC-seq, and the
genes obtained from RNA-seq weremapped to the AB, BA, and stable
regions or the increased, decreased, or stable TADs using the “bed-
tools intersect” command89,90. We calculated the peak intensity fold
change or gene expression fold change for peaks or genes assigned
to a compartment region or TAD activity region between diagnosis
and relapse and showed the correlation with boxplots or bar
plots. Statistical significance was assessed using a paired two-
sample t test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw and processed data files generated through high-throughput
sequencing for this publication (Hi-C, H3K27ac HiChIP, ATAC-seq,
RNA-seq) has been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo) and are accessible through GEO Series accession number
GSE222687. Previously generated high-throughput sequencing data
(ChIP-seq) used in this publication is accessible through GEO Series
accession number GSE156563.
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