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Replay-triggered brain-wide activation
in humans

Qi Huang1,2,8, Zhibing Xiao 1,2,8, Qianqian Yu3,8, Yuejia Luo1,3,8, Jiahua Xu2,
Yukun Qu1,2, Raymond Dolan 1,4,5, Timothy Behrens5,6,7 & Yunzhe Liu 1,2

The consolidation of discrete experiences into a coherent narrative shapes the
cognitive map, providing structured mental representations of our experi-
ences. In this process, past memories are reactivated and replayed in
sequence, fostering hippocampal-cortical dialogue. However, brain-wide
engagement coinciding with sequential reactivation (or replay) of memories
remains largely unexplored. In this study, employing simultaneous EEG-fMRI,
we capture both the spatial and temporal dynamics ofmemory replay.We find
that duringmental simulation, pastmemories are replayed in fast sequences as
detected via EEG. These transient replay events are associatedwith heightened
fMRI activity in the hippocampus and medial prefrontal cortex. Replay
occurrence strengthens functional connectivity between the hippocampus
and the default mode network, a set of brain regions key to representing the
cognitivemap.On the other hand, when subjects are at rest following learning,
memory reactivation of task-related items is stronger than that of pre-learning
rest, and is also associated with heightened hippocampal activation and aug-
mented hippocampal connectivity to the entorhinal cortex. Together, our
findings highlight a distributed, brain-wide engagement associated with tran-
sient memory reactivation and its sequential replay.

Imagine tackling a complex puzzle, and then, during moments of rest,
your brain spontaneously begins to piece together the solution. This
processmirrors a neural phenomenon known as ‘replay’, characterized
by the fast reactivation of experiences in sequence1,2. A replay
sequence may repeat past experiences, but may also predict the
future3,4, or even reorganize experiences for flexible behavior5–7, such
as solving a complex puzzle8. Replay is also thought to promote
hippocampal-cortical dialogue in general9–12, but its exact spatial and
temporal dynamics are unclear.

Replay, first identified in the rodent hippocampus during sleep1,2,
has subsequently beenobservedduringwakeful rest andwhile on-task,
and is now considered to serve a broad spectrum of cognitive
functions13,14. Initial studies suggested that replay (during sleep) plays a

crucial role in consolidating past experiences9–12. Further research has
extended the recognized functions of replay beyond mere memory
consolidation13. Replay assists in reorganizing experiences, for
instance, by spontaneously representing rules or identifying shortcuts
in a maze5–7. It supports reminiscing about past experiences6,15,16,
understanding the present5,17, and planning for the future3,4. Conse-
quently, replay has been detected not only in the hippocampus but in
other brain regions as well18, including the visual cortex19 and entorh-
inal cortex (EC)20. These replays occur either in coordination with, or
independently from, hippocampal replay. However, the restricted
spatial coverage of invasive neural recordings means that the com-
prehensive pattern of whole-brain activation associated with replay
events remains largely uncharted.
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In humans, noninvasive neuroimaging has found evidence for
memory reactivation21–23 and more recently, sequential replay6,24,
findings that align with those observed in rodent studies25. During
planning, Kurth-Nelson, et al 26 reported fast neural sequences with a
transition speed of 40ms lag using Magnetoencephalography (MEG).
The time compression seen in these sequences resembled those
observed in rodent replay10,12. During rest, reverse replay of past
experiences, has been selectively linked to value learning. This was
identified using both MEG3,6 and Electroencephalography (EEG)27, a
finding consistent with the animal literature16. While M/EEG provides
valuable insights into the rapid dynamics of replay, it does not offer
precise information about the source of replay signals.

Human functional magnetic resonance imaging (fMRI) has been
used to localize sequential neural replay to specific brain regions24,28,29.
Wittkuhn and Schuck28, employed fMRI to index the sequence of
predictiveprobabilitieswithin a time repetition (TR), reporting on-task
sub-second activations of visual stimuli in the occipital-temporal cor-
tex. During rest, Schuck and Niv24 reported positive correlation
between the frequencies of transitions between decoded states and
the expected distances between these states in the hippocampus.
However, fMRI is limited in its ability to discern the directionality and
speed of replay28, characteristics that are likely important given that
previous human M/EEG studies3,6,30,31, as well as animal research24,28,29,
have showna correspondence todifferent functional aspects of replay.
To date, no study has been able to simultaneously record replay events
and capture high spatial resolution, whole-brain activity in humans (cf.
related work by Higgins, et al.32 on MEG source localization).

While replay is thought to be related to a variety of cognitive
functions, it is useful to consider these as broadly serving two general
aspects: the offline formation of a cognitivemap during rest and sleep,
and the on-task utilization of this map for guiding behaviour25. Here, a
‘cognitive map’ is used in its most general sense, referring to a struc-
tured mental representation of experiences, without distinguishing
between narrative or schema17,33,34. Understanding the dynamics of
replay in relation to broader brain activation is crucial, especially the
role of the default mode network (DMN). The DMN, a set of brain
regions, shows increased activity during rest35 or internal cognition
tasks, such as mental simulation or imagination36, and is hypothesized

to encode our world knowledge, or cognitive map37–39. However, the
interplay between replay dynamics and the DMNduring both task and
rest remains underexplored. This is due to the temporal transience of
hippocampal replay and the spatial distribution of the DMN, with
neither M/EEG nor fMRI alone being sufficient to capture these neural
processes simultaneously.

In the current study, we examine memory reactivation of task-
related items and their sequential replay duringmental simulation and
wakeful rest. Task-related reactivation refers to the spontaneous
reactivation of past experiences, recognized through decoding mod-
els, while sequential replay is defined as the sequential reactivation of
those experiences. The simultaneous use of EEG-fMRI recording offers
a unique opportunity to explore these phenomena in greater
depth40–42. The fine temporal resolution of EEG captures fast neural
replay and provides timestamps of replay events, enabling the probing
of brain-wide activation with fMRI. We focus on the whole-brain acti-
vation and the hippocampal functional connectivity to other brain
regions at the times of transient replay events, both during rest and
while on-task.

Results
Task and analysis pipeline
With simultaneous EEG-fMRI recordings, subjects were tasked with
mentally connecting dots that were separate in experience but could
be linked together basedon a learnt relational structure. This cognitive
map is a one-dimensional line. Previous studies have shown that a
similar task, with two sequences (comprised of six pairwise associa-
tions), elicits offline reactivations during rest, which can be detected
using either MEG6 or EEG27. The current task is modified to include a
directional cue to test if replay directionality duringmental simulation
is subject to explicit instruction. The task is also simplified to contain
only one sequence of four objects.

The task starts with a functional localizer session (Fig. 1), used to
train decoders, during which subjects were presented with one of four
images. They were encouraged to think about the image’s semantic
content and were later asked to determine whether the following text
matched the preceding image. As in previous studies, subjects were
unaware of task-related information during the functional localizer

Fig. 1 | Experimental design of a cued sequential mental simulation task with
simultaneousEEG-fMRI. Subjects, undergoing simultaneous EEG-fMRI recordings,
were required to construct a sequence by learning pairwise associations of four
discrete visual stimuli. They were then cued to mentally simulate the learned
sequence in either a forward or reverse order. As in previous replay

studies3,6,30,32,45,46, stimuli were first presented in a random order during functional
localizer phase, prior to learning.We included a resting state both before (PRERest)
and after learning (POST Rest) and this allowed us to measure changes in sponta-
neous neural activity induced by learning.
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session. This session was used to train decoders for both EEG27 and
fMRI signals28. After this, three pairwise associations were presented in
a randomized order (e.g., 1→ 2, 3→ 4, 2→ 3), and subjects were
required to mentally link the associations into a sequence (i.e.,
1→ 2→ 3→ 4), a process we term sequence learning. Only those sub-
jects who achieved at least 90% accuracy in the last learning run pro-
ceeded to the cued mental simulation task. A resting state period was
included both before (PRE Rest) and after learning (POST Rest). After
that, subjects were asked tomentally simulate the sequence in either a
forward or reverse order, based on the cue (1 →, forward; ← 4, back-
ward). Our subsequent analyses included 33 subjects who completed
all task sessions with simultaneous EEG-fMRI recording.

Utilizing the fine spatiotemporal resolution offered by simul-
taneous EEG-fMRI, our goal is to determine when and where neural
replay occurs in the brain. This involves indexing fast replay events
through EEG and imaging replay-aligned brain-wide activation in
fMRI. In brief, our analysis pipeline comprises five steps (Fig. 2).
First, we train neural decoding models for each image based on EEG
data from the functional localizer session. These models are then
applied to decode their neural reactivations during mental simula-
tion and offline resting time. After decoding, we quantify the
strength of sequential reactivations (or replay) in a sequence (e.g.,
1→ 2→ 3→ 4), separately for forward and reverse order43. If there is
significant evidence for replay, we can calculate when such replay
occurs and the strength of this evidence. To model this replay
probability in fMRI, we convolve it with a canonical hemodynamic
response function (HRF), and down-sample it tomatch the temporal
resolution of the fMRI signal. Replay probability can then be enco-
ded as an additional psychological condition using a general linear
model (GLM) in fMRI. In addition to localizing replay, we can model
its psychophysiological interaction (PPI)44 to explore how functional
connectivity between a region of interest (ROI, e.g., the hippo-
campus) and other brain regions changes as a function of replay
probability. Notably, this analysis pipeline is not restricted to replay;

we can investigate the spatiotemporal dynamics of any task reacti-
vations in the same way.

EEG-based and fMRI-based neural decoding
During the functional localizer, subjectswere instructed to press key ‘1’
when a text matched the semantic content of its preceding image
(congruent condition), and ‘2’ otherwise (incongruent condition). The
mean behavioural accuracy was 94.57 ± 0.70%, where chance level is
50%. Following the analysis step outlined above, we trained four
separate one-vs-rest logistic regression classifiers based upon EEGdata
from correct trials, one for each image. As in previous M/EEG-based
replay studies3,6,26,27,30,32,43,45,46, we trained EEG decoding models using
all available channels as features at a single time bin (10ms) and tested
performance at all timepoints from200msprior to the stimulus onset
to 800ms post onset (Fig. 3a). The peak cross-validated decoding
accuracy was observed at 210ms post stimulus onset (46.25 ± 0.95%,
comparedwith a chance level of 25%, t(32) = 22.41, P <0.001). To further
examine the sensitivity of the classifiers to each image,we analyzed the
time course of predicted probability separately for each image
(Fig. 3b). All image classifiers showed above-chance probability in
predicting the images they were trained on (dark grey lines) and not
for other images (lighter grey lines). Based on these results, the image
classifiers were trained at 210ms post stimulus onset for our sub-
sequent EEG-based replay analysis. Note, similar decoding accuracy
and temporal dynamics were observed in a pilot subject who per-
formed under both standalone EEG and simultaneous EEG-fMRI set-
tings, indicating consistent neural dynamics across both settings
(Supplementary Fig. 1a).

Contrary to the fine temporal resolution offered by EEG, fMRI is
better suited for localizing where in the brain a specific cognitive
process unfolds. In fMRI, we found significant activation in the visual
cortexwhen an imagewas on-screen, with also class-specific activation
patterns observed (Supplementary Fig. 2a). Moreover, heightened
activation was detected in the temporal cortex and anterior cingulate

Fig. 2 | Simultaneous EEG-fMRI analysis framework for studying sequential
replay. a EEG-based stimuli classifiers were trained using whole-brain channel
features during the functional localizer and later used to decode stimuli reactiva-
tions during specific task phases, such as rest or during mental simulation.
b Temporal Delayed Linear Modelling (TDLM) was applied to the decoded time
series to measure the sequential reactivation of states (e.g., visual stimuli) sepa-
rately for forward and reverse order43. cAfter identifying a time lag of interest (e.g.,
the peakof sequenceness),wederivedan EEG-based replayprobability timecourse.
This was then convolved with the hemodynamic response function (HRF) and

down-sampled to match the fMRI time resolution, serving as an additional
regressor in an fMRI-based GLM analysis. d Based on the new GLM, we determined
when (via EEG) and where (via fMRI) replay occurs. e Using an fMRI-derived ROI
(green trace, hippocampus), this EEG-based replay probability can be used (by
multiplying with ROI neural activity) to detect changes in functional connectivity
with other brain regions as a function of replay probability (i.e., psychophysiolo-
gical interaction, PPI). Data shown here (decoding, EEG replay and coupled fMRI
pattern) are from representative subjects. Results are presentedwith Punc. < 0.01 for
illustrative purpose and reported using the MNI coordinate system.
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cortex (ACC) when semantic text was presented (Supplementary
Fig. 2b). We decoded images from the fMRI signal as in Wittkuhn and
Schuck28. We first performed feature selection based on anatomical
mask and functional t map (Fig. 3c), and found a peak cross-validated
decoding accuracy of 83.39 ± 1.77% (compared with a chance level of
25%, t(32) = 38.00, P <0.001), at the 4th TR post stimulus onset (Fig. 3d),
consistent with Wittkuhn and Schuck28.

In both EEG and fMRI-based decoding, the predicted probability
for the true stimulus significantly exceeded the chance level (25%, EEG:
all t(32) ≥ 8.47, P <0.001; fMRI: all t(32) ≥ 20.63, P < 0.001, Fig. 3b & d). A
key advantage of simultaneous EEG-fMRI recording is its capability to
examine activations in response to the same event. We observed a
significant positive correlation across subjects between the decoding
accuracies of EEG and fMRI classifiers (robust correlation, r = 0.49,
P =0.004, see Supplementary Fig. 1c), consistent with them capturing
the same cognitive processes.

Spatiotemporal dynamics of neural replay during mental
simulation
Human replays have been found to spontaneously reorganize experi-
ence in a manner that corresponds to a learnt relational

structure3,6,26,27,30,32,45,46. In a sequence learning session, subjects learnt
to form a linear sequence consisting of four images based on three
pairwise associations experienced in randomized order. During
learning, images from pairwise associations were presented serially
with heightened activation in visual cortex, dorsal lateral prefrontal
cortex (DLPFC) and hippocampus was evident at the onset of the 1st

compared to the 2nd image (Supplementary Fig. 3a). Over the course of
learning, hippocampal engagement by the 2nd image increased
(β =0.015 ± 0.005, P <0.001, Supplementary Fig. 3b), consistent with
its role in associative learning38,47. Behavioral performance significantly
increased with learning experience (F(32) = 19.04, P < 0.001), aligning
with heightened hippocampal activity observed in the second item
over trials. During the probe phase, a target image was first presented
on the screen, then subjects were asked to think of which image comes
next. A probe image was then shown, and subjects were required to
determine if itwas corrector not.We found significant activation in the
ACC, DLPFC and insular cortex at the onset of the target image (Sup-
plementary Fig. 3c), and higher ACC activation to the probe image for
correct vs. error response trials (Supplementary Fig. 3d). Across all
subjects, the mean accuracy of the probe test was 93.86 ± 1.20%,
indicating successful learning of the sequence. The mean accuracy of
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Fig. 3 | EEG-based and fMRI-based decoding during functional localizer. a The
mean cross validated decoding accuracy of EEG-based classifiers. As in previous
studies3,6,27,30,32,45,46, classifiers were trained independently at each time point and
tested on all time points, starting from 200ms before stimulus onset to 800ms
post onset (10ms time bin) during the functional localizer task (left panel).
Decoding accuracy peaked at 210mspost-stimulus onset.n = 33.bThe time course
(−200 – 800ms) ofmean EEG-based decoding probability trained and tested at the
same post-stimulus onset (black line), separately for each stimulus. The dark grey
lines represent the decoding probability of a particular classifier for a given image
(black line represent themeanprobability across subjects),while the light grey lines
represent the mean decoding probability of the same classifier for other images.

n = 33. c Feature selection procedure in fMRI-based decoding. Following Wittkuhn
and Schuck28, we selected the subject-specific anatomical masks combined with
thresholding t-maps (t > 3) to identify voxels that selectively response to functional
localizer. Note that the result presented here was selected from a representative
subject for illustrative purpose only. d The time course (in TR, starting from sti-
mulus onset) of mean fMRI-based decoding probability trained and tested at the
same post-stimulus time, separately for each stimulus. The dark grey lines repre-
sent the decoding probability of a particular classifier for a given image (black line
represent themean probability across subjects), while light grey lines represent the
mean decoding probability of the same classifier for other images. n = 33. Source
data are provided as a Source Data file.
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the last run was 99.49 ± 0.35% across subjects; no subjects were
excluded from the analysis based on the criterion of > 90% accuracy.

After sequence learning, subjects were instructed to mentally
simulate the sequence in either forward or reverse order based on a
given cue. Subsequently, they were required to identify whether a
probe image was part of the sequence. The average behavioral accu-
racy was 93.59 ± 0.82%. Subjects were also asked to rate the vividness
of their subjective experience on a scale from 1 to 4. All participants
reported a high level of vividness with a mean rating of 3.35 ± 0.07. No
significant difference was found between forward and backward
mental simulation in terms of behavioral accuracy (t(32) = -0.98,
P =0.335) or vividness rating (t(32) = 1.50, P =0.143).

At the beginning of each simulation trial, a directional cue, “1→ ”

or “←4” appeared. If replay can be modulated by explicit instruction,
we would predict a shift in the direction of replay (if it exists) that
aligns with the cued instruction. By contrast, if replay corresponds to a
more unconscious and spontaneous process, then we would expect
the direction of replay to be independent of the cue.

In the human neuroimaging literature to date, there are two ways
to quantify task-related sequential reactivations or replay during task.
One is Temporal Delayed Linear Modelling (TDLM)43, which calculates
the mean sequenceness over all time bins, independently at different
speeds (time lags), separately for forward and reverse direction. This
method is mainly used in M/EEG studies3,6,27,30,32,45,46 but can, in princi-
ple, be applied to fMRI data43. The second method uses fMRI data28,
and calculates the regression slope that predicts the position of a state
based on the rank of the state probability at each time bin (or TR in
fMRI terminology). Figure 4a, provides an illustration separately for
the TDLM method and fMRI-based regression method. In addition,
another method for detecting fMRI-based off-task replay is from
Schuck and Niv24, calculates the similarity between an hypothesized
transition matrix (state distances) and an empirical transition matrix
(transition frequency between states) within a brain region of interest
(ROI) during rest. In principle, this method can also be applied to the
cued mental simulation session.

Using TDLM on the EEG-based decoding, we indeed found selec-
tive significant forward replay from 30 to 50ms time lag in cue “1→ ”

trials (peak at 30ms lag, β =0.021 ± 0.012, Fig. 4b upper panel), as well
as forward replay from 20 to 40ms time lag in cue “←4” trials (peak at
30ms lag, β = 0.023 ± 0.012, Fig. 4b bottom panel). As the subjects’
task experience increased, their replay strength during mental simu-
lation increased (t(32) = 4.18, P <0.001). However, vividness ratings of
this simulation, elicited as a subjective measure, were found uncorre-
lated with replay strength (t(31) = -0.55, P = 0.585). Extending the time
lag scale to 2000 ms, to identify replay events at longer timescales,
failed to reveal additional replay events (either forward or backward)
beyond those detected at a peak of 30ms (see Supplementary Fig. 4).

In fMRI-based decoding, we also applied TDLM method to the
fMRI-based data. While there was a suggestion of replay in some
individuals, no significant fMRI-based replays were found across sub-
jects (Supplementary Fig. 5). Likewise, using the regression method28,
wedidnot observe any significant regression slope in either timebinor
condition (all Pcorr. ≥0.06, two-sided one-sample t-test against zero,
Fig. 4c), nor was there any significant difference between the 1st and 2nd

periods (forward: t(32) = 1.14, P = 0.260; backward: t(32) = -0.175,
P =0.862, two-sided paired t-test, Fig. 4c). Similarly, applying the
method from Schuck and Niv24 obtained non-significant fMRI-based
replay (Supplementary Fig. 6a-b).

To determine where in the brain on-task neural replay occurs, we
identified putative replay events at 30ms time lag andmodelled these
in aGLM topredict the fMRI signal. After convolving replay eventswith
the HRF and down-sampling, the replay probability time series was
modelled as a parametric modulator of the 10 s mental simulation
regressor. We found that the occurrence of replay was associated with
activations in both the hippocampus and medial prefrontal cortex

(mPFC, Fig. 4d, see also Supplementary Fig. 7a for activations of the
mental simulation regressor). This result is consistent with previous
findings on MEG replay source localization3,6,30,31,45, suggesting that
human replay, as is the case in rodents11,48,49, originates from hippo-
campus. We also explored brain-wide activation related to single-item
reactivation and found increased activity inboth the hippocampus and
mPFC (see Supplementary Fig. 7b), the same regions that exhibited
higher activation in relation to sequence replay events.

We next investigated how functional connectivity between the
hippocampus and other brain regions (e.g., DMN) changes in relation
to variations in replay probability44. As replay probability increased,
there was a significant increase in hippocampal-seed connectivity with
DMN, including the mPFC50–54, and the posterior cingulate cortex
(PCC)53,55, as well as the visual cortex56,57 (see Fig. 4e). We also explored
changes in mPFC-based functional connectivity as a function of replay
probability. This revealed significant increases in connectivity between
themPFC-seed and other DMN regions, including the PCC and angular
gyrus, as well as with the visual cortex, but not with the hippocampus
(see Supplementary Fig. 7c-d). These results are consistent with a flow
of replay information from the hippocampus to the mPFC, and sub-
sequently to other DMN regions and the visual cortex. However, we
acknowledge that PPI analyses do not allow for causal or directional
inference.

Spatiotemporal dynamics of learning-induced task reactivation
during rest
The findings detailed above indicate that simultaneous EEG-fMRI can
index when and where of on-task replay. We next applied this analysis
pipeline to rest periods, where, unlike task data, there are no obvious
timestamps for specific cognitive processes. Nevertheless, identifying
spontaneous reactivation or replay during rest canprovide naturalistic
timing information for modelling resting-state activity25. We assumed
the absence of significant task-related replay during the PRE Rest
period, given subjects had not yet experienced the visual stimuli or
acquired any structural knowledge. In contrast, during the POST Rest
period, after sequence learning, we predicted the presense of replay6.
However, our TDLM analysis did not find evidence of replay in either
EEG or fMRI-based decoding during the PRE or POST Rest period
(Supplementary Fig. 8). Similarly, using Schuck and Niv24 method to
detect replay using fMRI, we found no significant evidence of replay in
either the PRE or POST Rest period (see Supplementary Fig. 6c).

The relatively simple sequence setup in the current study, which
only involved one sequence as opposed to two sequences used in Liu,
et al.6, might entail less of a need for sequential replay during rest3,58,59.
Next, we analyzed the mean reactivation strength of task-related sti-
muli, without requiring them to be in sequence. Mean reactivation
probabilitieswere calculated by averaging across all timepoints and all
task stimuli during each rest period. We found that the mean reacti-
vation strength of stimuli, regardless of their sequential order, was
significantly higher in the POST Rest compared to the PRE Rest period
(t(31) = 2.75, P = 0.010, two-sided paired t-test; Fig. 5a), suggesting
enhanced task reactivations following learning.

We did not find significant correlations between single-item
reactivation strength during POST rest and any behavioural perfor-
mance measures. This includes sequence learning task performance
(r = -0.09, P =0.619), cued mental simulation task performance (r = -
0.09, P =0.607), and vividness ratings (r = -0.13, P =0.456). The same
was true for PRE rest (all r < 0.15, P > 0.5). These null resultsmaybe due
to a ceiling effect and limited variability in behavioural performance.
Participants consistently demonstrated high accuracy in the last run of
the sequence learning task (99.49 ± 0.35%), overall sequence learning
(93.86 ± 1.20%), cued mental simulation (93.59 ±0.82%), and vividness
ratings (3.35 ± 0.07).

To explore offline reactivation-triggered whole-brain activity
patterns, we applied our analysis pipeline to task-related reactivation
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during rest by summarizing the EEG-based reactivation across stimuli.
These reactivation events were then convolved with the HRF, and the
ensuing reactivation time series was used as a regressor to explain
resting-state fMRI signals. We found that higher reactivation strength

correlated with increased hippocampal activation during POST Rest
(Fig. 5b; hippocampal ROI analysis, t(32) = 3.83, Pcorr. < 0.001, two-sided
one-sample t-test), while no activation was identified during PRE Rest,
at either the whole-brain or the hippocampal ROI level (t(32) = 1.08,

Fig. 4 | EEG-based and fMRI-based replay during cuedmental simulation. a The
illustration of two analysis methods for detecting replays. TDLM43 is used primarily
with MEG3,6,30,32,45,46, and more recently also with EEG27. The other is a regression
method, as per Wittkuhn and Schuck28 and primarily used with fMRI29. Please note
that this panel is solely for illustrative purposes. For results based on actual data,
refer to Supplementary Fig. 5 and Panel c. b EEG-based replay with TDLM, sepa-
rately for forward (cued “1!”, top row) and backward (cued “ 4”, bottom row)
mental simulation conditions. There were significant forward (but not reverse)
replays during both forward and backward mental simulation. Sequence strength
on the peak time lag (30ms) is shown on the right, separately for forward and
backwardmental simulation conditions (two-sidedpaired t-test, forward condition:
t(32) = 2.80, P =0.009; backward condition: t(32) = 3.09, P =0.004). The grey dash
line represents the permutation threshold, defined as the 95th percentile of the
permutated transitions of interest controlling for multiple comparisons. n = 33.
c fMRI-based neural sequencewith regressionmethod28, separately for forward and
backward mental simulation conditions. There was no significant evidence for
sequential activation in the correct order (all Pcorr. ≥0.06, two-sided one-sample t-
test against zero, FDR corrected). The bar plot in the upper right corner shows

mean slope coefficients for each period (two-sidedpaired t-test, forward condition:
t(32) = 1.14, P =0.260; backward condition: t(32) = −0.175, P =0.862). None of these
coefficientswere significantlydifferent compared to zero. SeeSupplementary Fig. 5
for assessing fMRI replay using TDLM, as well as results from single subject for
illustration purpose. n = 33. d The parametric modulation of EEG-based replay
probability in the whole-brain fMRI during mental simulation showed significant
activations in hippocampus and mPFC. We use whole-brain FWE correction at the
cluster level (P <0.05)with a cluster-inducing voxel thresholdof Punc. < 0.001. eThe
psychophysiological interaction (PPI) between hippocampal activity (anatomically
defined) and EEG-based replay probability revealed significant functional con-
nectivity change in mPFC, PCC and visual cortex. See Supplementary Fig. 7c-d for
mPFC-based PPI results. We use whole-brain FWE correction at the cluster level
(P <0.05) with a cluster-inducing voxel threshold of Punc. < 0.01. Each dot is one
subject. The grey lines connect results from the samesubject. Shaded areas inb and
c show SEM across subjects. Error bars in b and c show SEM across subjects. *
P <0.05, ** P <0.01, ns., not significant. Abbreviation: HPC - hippocampus. Source
data are provided as a Source Data file.
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Pcorr. = 0.287). Moreover, hippocampal activation was significantly
stronger during POST Rest compared to PRE Rest (t(32) = 2.44,
Pcorr. = 0.030, two-sided paired t-test, Fig. 5c). As a control analysis, we
found that no EEG-based reactivation explained activity in the primary
motor cortex (M1), during either PRE or POST Rest or their differences
(all t(32) ≤ 1.20, P ≥0.24).

When we applied the same analysis pipeline to fMRI-based task
reactivation, we found no significant increase in reactivation for POST
Rest compared to PRE Rest (t(32) = 0.92, Pcorr. = 0.363; Supplementary
Fig. 9a). However, consistent with EEG-based findings, the strength of
fMRI-based reactivation correlated with increased hippocampal acti-
vation during POST Rest (see Supplementary Fig. 9b-c; hippocampus
ROI analysis: t(32) = 2.87, Pcorr. = 0.021), but not during PRE Rest
(t(32) = 1.25, Pcorr. = 0.329). Interestingly, by aligning to the onset of EEG-
based reactivation, a significant increase in hippocampal BOLD activity
was observed, peaking at the 2nd TR post-reactivation (t(32) = 3.02,
P =0.005), indicating a higher sensitivity than that of fMRI-based
reactivation (Fig. 5d). This finding suggests that EEG provide an
effective means for localizing the timing of spontaneous task reacti-
vation during rest.

We have also examined functional connectivity between the hip-
pocampus and other brain regions as a function of task reactivation
during rest (Fig. 5e). The PPI analysis revealed a significant increase in
hippocampal-seed connectivity with EC during POST Rest when EEG-
based reactivation increased (ROI analysis, t(32) = 2.75, P =0.010,

Fig. 5f), but not during PRE Rest (t(32) = 1.48, P = 0.148). No significant
results were found when the analysis is done based on fMRI-based
reactivation (all t(32)≤ 1.41, P ≥0.17).

The differences between EEG- and fMRI-based task reactivation
raise an intriguing question as to their relationship. While EEG and
fMRI-based reactivation time series themselves were not correlated,
nor there was a systematic temporal relationship between them either
during task or rest (Supplementary Fig. 10), we found a significant
positive correlation of predicted hippocampal activity with EEG-based
reactivation and that of fMRI during POST Rest (Fig. 5g, robust cor-
relation, r = 0.38, P = 0.029), not PRE Rest (r = 0.09, P = 0.602). This
suggests offline task reactivation may align EEG and fMRI-based
representation in hippocampus.

Discussion
The simultaneous EEG-fMRI analysis framework offers a powerful
method to probe the brain-wide patterns associated with temporally
transient events, such as memory reactivation and its sequential
replay. During task, we show that this combined pipeline can detect
fast replay events, as reflected in EEG signals (with a 30ms time lag),
and localize these to the hippocampus, as revealed by simultaneous
fMRI. We found that replay during mental simulation is a spontaneous
process, one that operates independent of explicit task instruction. An
increase in EEG indexed replay strength was associated not only with
significant fMRI activations in hippocampus andmPFC, but also with a
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Fig. 5 | EEG-based reactivation during PRE and POST Rest. a In EEG-based task
reactivations, therewas a significant higher reactivation strength during POST than
PRE Rest (two-sided paired t-test: t(31) = 2.75, P =0.010). n = 32, excluding an outlier
(beyond three deviation of the mean). b Parametric modulation of EEG-based
reactivation probability in whole-brain fMRI during POST Rest showed significant
activations in bilateral anterior hippocampus (whole-brain FWE correction at the
cluster level (P <0.05)with a cluster-forming voxel threshold of Punc. < 0.001). cROI
analysis. The EEG-based reactivation explained hippocampal activation (anatomi-
cally defined) during POST Rest, and it was stronger from PRE to POST Rest in
hippocampus (two-sided one-sample t-test: PRE: t(32) = 1.08, Pcorr. = 0.287; POST:
t(32) = 3.83, Pcorr. < 0.001; two-sided paired t-test: POST vs. PRE: t(32) = 2.44,
Pcorr. = 0.030; FDRcorrected).n = 33.d, The task reactivation-alignedBOLD signal in
hippocampus during POST Rest. Upon alignment to the onsets of task-related
reactivation, we observed a significant increase in hippocampal BOLD activity,
peaking at the 2nd TR post-EEG-based reactivation (two-sided one-sample t-test:
TR= 1: t(32) = 2.57, P =0.015; TR= 2: t(32) = 3.02,P =0.005), and also found atonset of

fMRI-based reactivation (TR =0: two-sidedone-sample t-test: t(32) = 2.45, P =0.020).
n = 33. e The PPI between hippocampal activity (anatomically defined) and EEG-
based reactivation probability showed increased functional connectivity with EC
(anatomical mask depicted in blue) during POST Rest. We thresholded at
Punc. < 0.01, K > 10 for visualization. f ROI analysis. The PPI revealed a significant
increase in hippocampal-seed connectivity with the EC (anatomically defined)
during POSTRest when EEG-based reactivation increased. (two-sided one-sample t-
test: PRE: t(32) = 1.48, P =0.148; POST: t(32) = 2.75, P =0.010). n = 33. g There was a
positive correlation between EEG-based and fMRI-based reactivation in explaining
hippocampal activity during POST Rest, but not PRE Rest (robust correlation,
PRE: r =0.09, P =0.602; POST: r =0.38, P =0.029). n = 33. The solid lines reflect
the robust linear fit. Each dot is one subject. The grey lines connect results from
the same subject. Shaded areas in d show SEM across subjects. Error bars in a, c
and f show SEM across subjects. * P <0.05, ** P <0.01, *** P <0.001, ns., not
significant. Abbreviation: HPC - hippocampus. Source data are provided as a
Source Data file.
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significant increase in hippocampal-seed connectivity with the DMN
and visual cortex. During rest, we observed a marked increase in EEG-
based task-related reactivation from pre- to post-learning periods.
Here, an increase in reactivation strength was associated with a sig-
nificant increase in hippocampal activation and increased
hippocampal-seed connectivity with the EC.

These results align with previous work in humans. The decoding
accuracy and dynamics of simultaneous EEGmirrored those observed
in the standalone EEG condition (Supplementary Fig. 1a), as well as
previous M/EEG decoding findings6,27. In fMRI-based decoding, we
followed the methods described by Wittkuhn and Schuck28 and
achieved similar decoding performance, albeit not detecting replay
events in fMRI. Duringmental simulation, we found 30-ms-time-lag on-
task replay in EEG, a finding in keeping with previously reported
human replay speed3,6,26,27,46. We further showed the EEG-based replay
was associated with activation of hippocampus andmPFC, revealed by
fMRI, a finding consistent with previous fMRI replay findings24 and
MEG source localization3,6,30,31,46.

A key advance in our analysis pipeline is its ability to detect brain-
wide activation in coordination with replay. During mental simulation,
we found hippocampal and DMN activation associated with sequence
replay, aswell as reactivation in general. The hippocampal connectivity
with the DMN also increased as a function of replay strength. TheDMN
is proposed to encode an internal model of the world25,34. When initi-
alizing replay, this increase suggests a query from the hippocampus to
a putative cognitive map, possibly serving to align experiences into an
ordered structure. Here, it is intriguing to note that our results are
consistent with findings from Kaplan, et al.60, who combined electro-
physiological recordings of the hippocampus with whole-brain fMRI in
anesthetized monkeys. They also align with rodent studies where
widespread activation of cortical regions in the DMN is associatedwith
the onset of hippocampal SWRs, a biomarker of replay61,62. These
findings collectively suggest possible cross-species relationships
between hippocampal replay and the DMN.

The direction of replay is found to be independent of explicit
instruction. Likewise, there was no significant evidence for replay with
time lags exceeding 100ms, even when extending the analysis to an
upper time lag limit of 2000 ms. In previous studies, replay direction
was found to change with task demands, such as value learning3,6,
probe questions31, and decision-making versus memory
preservation30. A common feature of these prior studies is that a shift
in replay direction served a specific computational goal. For instance,
replay shifted from forward to backward only for a sequence paired
with a reward outcome, but not for a neutral sequence6, where reverse
replay is hypothesized to support credit assignment3,63. In the current
study, verbal instruction alone does not entail any computational
demand and the instruction-independent replay pattern suggests that
on-task replay may in fact be spontaneous, independent of volition,
and conscious mental effort. Consistent with this, we also found no
correlation between the subjective rating of vividness of mental
simulation and replay strength. While it could be a ceiling effect of
vividness rating, it is also possible that the content of replay ismore at
a semantic level where imagery vividness is likely to exert little impact
on replay quality64.

During rest, we found that task reactivation associated with
increased hippocampal activity in the POST compared to the PRE Rest
period, with enhanced hippocampal connectivity to the EC (Fig. 5d-f).
The EC is thought to encode task relational structures65, a concept
supported by the presence of grid cells in animal research66 and grid-
like coding in human fMRI studies37,38. It is noteworthy that compared
to themental simulation period, cross-regional communication during
rest was predominantly confined to functional connectivity between
the hippocampus and EC, rather thanwith theDMN. This suggests that
on-task replay and off-task reactivation, manifest different brain
dynamics that is suggestive of serving distinct cognitive functions14. In

the rodent literature, on-task replay is associated with memory
retrieval and planning49, whereas rest replay or reactivation is more
linked to memory consolidation9. Although the exact mechanism is
unclear, the increased connectivity between the hippocampus and EC
during rest reactivation may relate to their coordinated activity. For
instance, Ólafsdóttir, et al.67 found evidence that coordinated grid and
place cell replay during rest in rodents supports memory consolida-
tion. The differing functions of replay and reactivation pose an intri-
guing question, where recent theoretical work has attempted to
provide a unified account63. We anticipate that simultaneous EEG-fMRI
will provide a promising tool for testing these theoretical predictions,
especially in the context of human studies.

Despite a marked increase in task-related reactivation from the
PRE to the POST Rest period, significant sequential reactivation—or
replay—during rest remained elusive. A key challenge in detecting
replay during rest might be the relatively diminished quality of EEG
signals obtained during simultaneous EEG-fMRI recordings. Rest
replay tends to manifest as a temporally dispersed signal, occurring in
bursts32, in contrast to the temporally localized and robust signals
induced by cue-based simulations. Nevertheless, EEG alone has suc-
cessfully detected rest replay using a task similar to Liu, et al.6, where
significant reverse replay during rest was linked to value learning,
underscoring the capacity of EEG to detect rest replay signals27.
Another plausible explanation for the absence of rest-replay is the
relatively simple sequence set-up, where subjects had less need to
replay a sequence that is already well learnt. This contrast with the
more demanding task features in Liu, et al.6 and Yu, et al.27. This con-
jecture is supported by the near-perfect behavioral performance in the
final run of sequence learning and is also consistent with Wimmer,
et al.31, who reported enhanced mean reactivation, but not sequential
replay, for well-encoded memories. However, it is also the case that
stronger replay has been observed for sequences that have beenmore
robustly encoded. For instance, themore time an animal spendswithin
two place fields, the more frequently a corresponding place cell pair is
reactivated during sleep68. Conversely, other findings in the animal
literature indicate that replay is more readily observed in novel com-
pared to familiar tracks10, with a higher reactivation probability in
novel environments69. This raises an intriguing question regarding the
relationship between learning performance and replay strength, par-
ticularly considering previous human studies report replay tends to
prioritize weakly encoded memories58. It is conceivable that the
learning experience and replay strength follow an inverted U-shaped
curve, where the strongest replay occurring for intermediate learning
experience31,70, a possibility that warrants more detailed investigation.

Comparing EEG and fMRI-based decoding, we found higher
decoding accuracy for fMRI-based classifiers compared to EEG, pos-
sibly due to the much larger feature size. However, the reactivation/
replay analysis on the fMRI signal alone was less effective. During
mental simulation, following Wittkuhn and Schuck28, we found a qua-
litatively similar pattern to EEG-based replay, but this was non-
significant in the fMRI signal (Fig. 4c). During rest, we found a chance
level of decoding accuracy in hippocampus, and non-significant replay
in hippocampus and mPFC, when applying the Schuck and Niv24

method (Supplementary Fig. 6). Thismight reflect thatmental imagery
is a degraded, fuzzy experience, difficult to detect (Pearson, 2019), and
these fMRI-based replay methods24,28,43 are not optimized for discern-
ing replay events in the current study.

A question arising is whether EEG-based and fMRI-based analyses
capture overlapping or independent cognitive processes. We found a
significant positive correlation between decoding accuracy of EEG and
fMRI classifiers during the functional localizer session, suggesting they
capture a common process. However, at the level of reactivation
dynamics, we found no temporal correlations between EEG and fMRI,
neither during mental simulation nor during rest (Supplementary
Fig. 10). When we probed the relationship between EEG and fMRI-
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based reactivation in explaining hippocampal activation, we found a
positive correlation during POST but not PRE Rest (Fig. 5g). This sug-
gests that despite the different temporal dynamics between EEG and
fMRI activity, spontaneous task-related reactivations align in the hip-
pocampus. Furthermore, a stronger hippocampal BOLD activity when
aligning to the onsets of EEG-based, as opposed to fMRI-based, reac-
tivations (Fig. 5d), suggests that EEG may be more sensitive for loca-
lizing the timing of spontaneous task reactivations. Together, these
findings imply that simultaneous EEG-fMRI can capture spontaneous
cognitive processes, even when these are temporally transient or
spatially distributed.

Lastly, research on reactivation and its sequential replay in
humans is relatively nascent and has been significantly influenced by
studies in rodents25. While our human findings largely align with the
rodent literature, it is also important to note the differences, as dis-
cussed above. The definition of replay or reactivation in humans pre-
dominantly refers to a representational frame of reference (e.g., ‘brain
representation of a face’) as opposed to a neuronal level framework
(e.g., place cells) in rodent studies. This distinction has implications for
interpreting replay results, particularly regarding their brain-wide
propagation. It is conceivable that representation results may not
directly correspond to findings at the neuronal level, and vice versa.
Future investigations, recording simultaneous neuronal activity in
specific regions of the human brain, will be valuable in addressing this
issue. For example, Staresina, et al.71 used intracranial electro-
encephalography combined with multiunit activity recordings from
the humanhippocampus and surroundingmedial temporal lobe areas.
They report a triple coupling between slow oscillations, spindles, and
ripples, orchestrating neuronal processing for systemic consolidation
during sleep, thereby validating results from rodent studies72.

In conclusion, using simultaneous EEG-fMRI, our study provides
empirical validation of an analysis pipeline for studying replay and
reactivation alongside whole-brain activation. Identifying the putative
replay/reactivation events in EEG provides a unique timestamp for
imaging brain-wide activation in fMRI. This same analysis pipeline
helps bridge between disparate research areas and provides for a
comprehensive understanding of the functions of replay in relation to
human cognition. This opens exciting new possibilities for future
studies, such as investigating hippocampal replay and grid-like coding
during cognitive-map-based computation6,37, as well as a richer
examinationofmemory consolidationduring sleep25. It enables amore
sophisticated understanding of the entorhinal-hippocampal-
prefrontal systems underlying inference and generalization.

Methods
Participants
A total of 40 healthy adults were recruited for the study. All partici-
pants had normal or corrected-to-normal vision and no history of
psychiatric or neurological disorders. They were screened for mag-
netic resonance imaging (MRI) eligibility prior to participation. The
experiment was approved by the Medical Ethics Committee of
Shenzhen University Medical School (reference number: PN-
202300012), and all subjects providedwritten informed consent. After
excluding subjects with excessive head motion (FD >0.2) or incom-
plete participation, 33 subjects were included in the full analysis (age:
22.91 ± 0.33 years, 17 females, 16males). None of the subjects reported
any prior experience with the stimuli or the behavioral task.

Task
Overview of the task design. After completing preparatory work,
subjects were taken into the MRI scanner. We began with a short brain
localizer, followed by an 8-min anatomical scan and a 5-min resting-
state scan, during which subjects were asked to stay awake and focus
on awhitefixation crosspresentedon a grey screen. Then, the subjects
underwent a series of task sessions: functional localizer, sequence

learning, and cued mental simulation. We acquired four functional
localizer runs of approximately 12min each, three sequence learning
runs of 6min each. After sequence learning, we acquired a further
5-min resting-state, again with subjects’ eye open. Finally, we acquired
three cued mental simulation runs of about 10min. The entire
experiment lasted, on average, between 2 and 3 h.

Functional localizer. The functional localizer session was designed to
train neural decoders on task states. The experiment utilized four
visual stimuli (face, scissor, zebra, and banana), which were previously
shown to elicit object-specific neural patterns in human brain3,45.
Subjects were presented with one of four images for 1 sec and
encouraged to consider its semantic content. Following this, a word
was displayed for 1 sec, after a blank interval of 1-2 secs. Subjects then
determined whether the wordmatched the preceding image, pressing
‘1’ for matches and ‘2’ for non-matches. Key positions were counter-
balanced across subjects. Trials were separated with intervals of 1-3
secs to ensure adequate time delay between them. For incorrect
responses, subjects received visual feedback for 1 sec. Each visual sti-
mulus was shown 72 times, followed by both matching and non-
matching semantic stimuli, totaling 288 trials evenly split between
corresponding and non-corresponding pairs. Stimuli were presented
in a pseudo-random order, avoiding more than two consecutive pre-
sentations of the same stimulus. We provided visual feedback on the
accuracy and timeliness of responses. Incorrect responses prompted
feedback for 1 sec with instructions to press the correct button. If no
response was made within the allotted time, a “Response timeout.
Please answer promptly.” message was displayed. For correct
responses, no additional feedback was given, and the task moved to
the next trial. Subjects achieving over 90% accuracy received a ¥20
bonus. The task comprised four blocks, each lasting about 12min,
totalling approximately 48min for the entire task phase.

Sequence learning. In sequence learning session, subjects were
required to build a 4-item sequence (e.g., A→B→C→D) by mentally
connecting three pairwise experiences (i.e., A!B, B!C, C!D). The
task comprised three runs, each including an associative learning (with
three learning pairs) and a probe test. During learning, each trial
started with a 300ms fixation, then stimuli within the learning pair
were presented sequentially, one for 1.5 s, with a 1-3 s interval between
stimuli. The interval between learning pairs was 5 s. Each learning pair
was repeated three times in a run. Subjects were asked to learn asso-
ciations between stimuli, and their memory performances were pro-
bed in the following test. During test, a target stimulus with ‘->…->…?’
cue was presented for 4 s, and subjects were asked to imagine all
images that followed the target image. Then after a 1-3 s interval with a
blank screen, subjects were presented with a probe stimulus for 2 s.
Subjects pressed key ‘1’ if the probe stimulus followed the target sti-
mulus in the sequence, and ‘2’ otherwise. Key positions were coun-
terbalanced between subjects, and no feedback was given during
probe trials. There were 12 probe trials per learning run. The mapping
between stimuli (face, scissor, zebra, andbanana) and states (A, B, C,D)
was fixed within subject but randomized across subjects. Subjects
were allowed to proceed if they achieved at least 90% accuracy on the
last learning run. Each block, consisting of one learning session and
one test session, lasts about 6min. With three blocks per subject, the
total duration for this phase is approximately 18min.

Cuedmental simulation. Subjects were directed to mentally simulate
the image sequence for 10 s, in either a forward (1 →) or a reverse
direction (← 4) based upon a directional cue. Then, following a 1-3 s
inter-stimulus interval, a probe image was displayed for 2 s. Subjects
were required to determine whether the probe image was within the
learnt sequence or not. To promote attentive processing, we created
four lure probe images of the same content with the original ones, but
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with subtle difference (e.g., orientation of the zebrahead, colour of the
banana, etc), as well as four new images with different content. The
probe imageswere randomlydisplayed, with half necessitating a key ‘1’
response if theywere in the sequence, and the remaining half requiring
a key ‘2’ response if they were not. Key positions ‘1’ and ‘2’ were
counterbalanced between subjects. No feedback was provided during
probe trials to prevent additional learning. We found no difference of
performance in differentiating original and lure images (t(32) = 0.62,
P =0.541), suggesting the subjects were attentive. After probe test,
participants were asked to assess the vividness of their recently per-
formed mental simulation. The task comprised of 96 trials, equally
split between forwardandbackward conditions. Eachblock, consisting
of 32 trials, lasted about 10min.With three blocks per subject, the total
duration for an individual amounted to approximately 30min.

EEG data acquisition
EEG was recorded simultaneously with fMRI data using an MR-
compatible EEG amplifier system (BrainAmps MR-Plus, Brain Pro-
ducts, Germany), along with a specialized electrode cap (BrainCap).
The recording was done using 64 channels using the international 10/
20 system, with the reference channel positioned at FCz. A drop-down
rear electrode was utilized to record electrocardiographic (ECG)
activity. EEG data was recorded at a sample rate of 1000Hz, with the
impedance of all channels was kept below 10 kΩ throughout the
experiment. To synchronize the EEG and fMRI recordings, the Brain-
Vision recording software (BrainProducts, Germany) was utilized to
capture triggers from both the MRI scanner and a stimulus presenta-
tion software developed using PsychoPy73.

MRI data acquisition
All MRI data were acquired using a 64-channel head coil on a research-
dedicated 3-Tesla Siemens Magnetom Prisma MRI scanner. For the
functional scans, whole-brain imageswere acquired using a segmented
k-space and steady-state T2*-weighted multi-band (MB) echo-planar
imaging (EPI) single-echo gradient sequence that is sensitive to the
BOLD contrast. This measures local magnetic changes caused by
changes in blood oxygenation that accompany neural activity
(sequence specification: 46 slices in interleaved ascending order;
anterior-to-posterior (A–P) phase-encoding direction; TR = 1300ms;
echo time (TE) = 24ms; voxel size = 3 × 3 × 3mm;matrix = 64 ×64; field
of view (FOV) = 192 × 192 mm2; flip angle (FA) = 67°; distance factor =
0%;MB acceleration factor 2). Slices were tilted for each subject by 30°
forwards relative to the rostro-caudal axis to improve the quality of
fMRI signal from the hippocampus. For each functional run, the task
began after acquisition of the first four volumes (i.e., after 5.2 s) to
avoid partial saturation effects and allow for scanner equilibrium. We
also recorded two functional runs of resting-state fMRI data, one
before and one after the functional localizer and sequence learning
task runs. Each resting-state run was about 5min in length, during
which 237 functional volumes were acquired. High-resolution T1-
weighted (T1w) anatomical Magnetization Prepared Rapid Gradient
Echo (MPRAGE) sequences were obtained from each subject to allow
registration and brain-surface reconstruction (sequence specification:
192 slices; TR = 2300ms; TE = 2.26ms; FA = 8°; inversion time (TI) =
1000ms; matrix size = 192 × 256; FOV = 192 × 256mm2; voxel size = 1 ×
1 × 1mm).

EEG data preparation and preprocessing
EEG data collected inside MRI scanner was contaminated by imaging,
ballistocardiographic and ocular artifacts. We utilized an Average
Artefact Subtraction (AAS)74 algorithm provide by the BrainVision
Analyzer software (BrainProducts, Germany) to remove imaging arti-
facts. Following this, several preprocessing steps were undertaken,
which involved removing residual physiological artifacts through the
use of EEGLAB75 and customMATLAB scripts. We follow the same pre-

processing pipeline for previous MEG/EEG based replay analysis6,27,43.
Specifically, we downsampled the EEG data to a frequency of 100Hz
and applied 1Hz high pass and 40Hz low pass finite impulse response
(FIR) filters. Due to poor signal quality, channel AF3was excluded from
further analysis, and the ECG channel was also excluded. To reduce
dependence on the reference electrode position, the average of all
electrodes was subtracted from each electrode. The data was then
segmented into epochs extending from −200 ms before to 800ms
after the onset of functional localizer stimulus, and from -0.2 s before
to 10 s after the onset of themental simulation cue. To promote better
decoding performance, baseline correction was omitted (see Supple-
mentary Fig. 1b). Epochs showing residual MR artifacts were detected
and removed from the dataset, with an average of 8.88± 0.39
(mean± SEM) trials excluded for the functional localizer task and
9.12 ± 0.17 trials for the mental simulation task. Subsequently, Inde-
pendent Component Analysis (ICA) was applied to the EEG data to
isolate physiological artifacts from eye movements, muscle activity,
and ballistocardiogram. These artifact-related ICs were carefully
labeled and manually removed. EEG data during rest underwent the
same preprocessing steps.

MRI data preparation and preprocessing
Results in this manuscript come from preprocessing performed using
fMRIPrep 21.0.2 (Esteban, et al.76; RRID:SCR_016216), which is based on
Nipype 1.6.1 (Gorgolewski, et al.77; RRID:SCR_002502). Many internal
operations of fMRIPrep use Nilearn 0.8.1 (Abraham, et al.78,
RRID:SCR_001362), mostly within the functional processing workflow.
For more details of the pipeline, see https://fmriprep.readthedocs.io/
en/latest/workflows.html.

Conversion of data to the brain imaging data structure standard. To
facilitate further analysis and sharing of data, all study data were
arranged according to the Brain Imaging Data Structure (BIDS) speci-
fication using dcm2bids tool, which is freely available from https://
unfmontreal.github.io/Dcm2Bids/.

Anatomical data preprocessing. One T1-weighted (T1w) image
was found within the input BIDS dataset. The T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection79, distributed with ANTs 2.3.3
(RRID:SCR_004757)80, and used as T1w-reference throughout the
workflow. The T1w-reference was then skull-stripped with a Nipype
implementation of the antsBrainExtraction.sh workflow (from ANTs),
using OASIS30ANTs as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using fast (FSL
6.0.5.1:57b01774, RRID:SCR_002823)81. Brain surfaces were recon-
structed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847)82,
and the brain mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle
(RRID:SCR_002438)83. Volume-based spatial normalization to one
standard space (MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both T1w reference and the T1w template. The
following template was selected for spatial normalization: ICBM 152
Nonlinear Asymmetrical template version 2009c [RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym]84.

Functional data preprocessing. For each of the 12 BOLD runs found
per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Head-
motion parameters with respect to the BOLD reference (transforma-
tion matrices, and six corresponding rotation and translation
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parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 6.0.5.1:57b01774)85. BOLD runs were slice-time corrected
to 0.612 s (0.5 of slice acquisition range 0 s - 1.23 s) using 3dTshift from
AFNI (RRID:SCR_005927)86. The BOLD time-series (including slice-
timing correction when applied) were resampled onto their original,
native space by applying the transforms to correct for head-motion.
These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or justpreprocessed BOLD. The BOLD reference
was then co-registered to the T1w reference using bbregister (Free-
Surfer) which implements boundary-based registration87. Co-
registration was configured with six degrees of freedom. Several
confounding time-series were calculated based on the preprocessed
BOLD: framewise displacement (FD), DVARS and three region-wise
global signals. FD was computed using two formulations following
Power (absolute sumof relativemotions)88 and Jenkinson (relative root
mean square displacement between affines)85. FD and DVARS are cal-
culated for each functional run, both using their implementations in
Nipype (following the definitions by Power, et al.)88. The three global
signals are extracted within the CSF, the WM, and the whole-brain
masks. Additionally, a set of physiological regressorswere extracted to
allow for component-based noise correction (CompCor)89. Principal
components are estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128 s cut-off) for
the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top
2% variable voxels within the brain mask. For aCompCor, three prob-
abilistic masks (CSF, WM and combined CSF +WM) are generated in
anatomical space. The implementation differs from that of Behzadi
et al. in that instead of eroding the masks by 2 pixels on BOLD space,
the aCompCor masks are subtracted a mask of pixels that likely con-
tain a volume fraction of GM. This mask is obtained by dilating a GM
mask extracted from the FreeSurfer’s aseg segmentation, and it
ensures components are not extracted from voxels containing a
minimal fraction of GM. Finally, these masks are resampled into BOLD
space and binarized by thresholding at 0.99 (as in the original imple-
mentation). Components are also calculated separately within theWM
and CSFmasks. For each CompCor decomposition, the k components
with the largest singular values are retained, such that the retained
components’ time series are sufficient to explain 50 percent of var-
iance across the nuisance mask (CSF, WM, combined, or temporal).
The remaining components are dropped from consideration. The
head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file. The confound time
series derived from head motion estimates and global signals were
expanded with the inclusion of temporal derivatives and quadratic
terms for each90. Frames that exceeded a threshold of 0.5mm FD or
1.5 standardised DVARS were annotated as motion outliers.

The BOLD time-series were resampled into standard space, gen-
erating a preprocessed BOLD run inMNI152NLin2009cAsym space. First,
a reference volume and its skull-stripped versionwere generated using
a custom methodology of fMRIPrep. The BOLD time-series were
resampled onto the following surfaces (FreeSurfer reconstruction
nomenclature): fsnative, fsaverage. All resamplings can be performed
with a single interpolation step by composing all the pertinent trans-
formations (i.e., head-motion transform matrices, susceptibility dis-
tortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were per-
formed using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels91.
Non-gridded (surface) resamplingswereperformedusingmri_vol2surf
(FreeSurfer).

Multivariate EEG pattern analysis
Lasso-regularized logistic regressionmodels were trained on EEG data
elicited by direct presentations of the images. The preprocessed data

from62 channelswere used as input features for themodel, whichwas
implemented using the lassoglm function in MATLAB. Each model k
had a vector of n + 1 coefficients: one slope for each channel and one
intercept. To prevent overfitting, we applied L1 regularization with a
lambda coefficient of 0.001. To evaluate the performance of the
model, 5-fold cross-validation was employed. The data were randomly
divided into five equal-sized subsets, and the model was trained on
four subsets and tested on the remaining subset. This process was
repeated five times, with each subset serving as the test set once.
Decoding accuracywas calculated as the number of correctly classified
images divided by the total number of images. We performed decod-
ing at one subject and one time point at a time, repeating the process
several times to obtain decoding accuracy for all subjects throughout
the entire epoch. We calculated the mean decoding accuracy across
subjects to identify the peak decoding accuracy time point at the
group level. This accuracy was then compared to a chance baseline of
25% using a two-sided one-sample t-test. We then selected the models
corresponding to the time point with the highest accuracy to decode
replay or mental simulation.

Multivariate fMRI pattern analysis
All fMRI pattern classification analyses were conducted using open-
source packages from the Python (v.3.9.13) modules Nilearn
(v.0.10.0)78 and scikit-learn (version 1.1.2)92. All multiple comparison
correction in fMRI analysis were performed using FMRIB Software
Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)93.

Feature selection. Follow Wittkuhn and Schuck28, we combined a
functional ROI approach using thresholded t-maps and anatomical
masks to identify image-responsive voxels located within a specific
brain region. We ran four first-level general linear models (GLMs) for
each subject, with one for each of the four cross-validation folds to
identify voxels that showed significant activation in response to
functional localizer by thresholding t-maps. A first-level GLMwasfitted
to the training set data (e.g., data from run 2 to 4) of each cross-
validation fold and modelled the visual stimulus onset of all corrected
trials of functional localizer (1 s for all events).We includedwrong trials
as a regressor of no interest. All the parameters of GLM analysis were
consistent with those utilized in other GLMs (see detail inGLManalysis
part). These anatomical masks were created based on automated
anatomical labelling for brain-surface reconstructions of individual
T1w-reference images using Freesurfer82,94,95, including the cuneus,
lateral occipital sulcus, superior parietal lobule, pericalcarine gyrus,
lingual gyrus, inferior parietal lobule, fusiformgyrus, inferior temporal
gyrus, the middle temporal gyrus (cf.31,96), as well as hippocampus,
entorhinal cortex, and para hippocampal gyrus. Only gray-matter
voxels were included in the masks97. Voxels with t-values above or
below a threshold of t = 3 in the anatomical mask for the left-out run
(e.g., run 1) of the classification analysis were selected and set to 1 to
create the final binarized masks.

Leave-one-run-out cross validation procedure. We performed fMRI
pattern classification using a leave-one-run-out cross-validation
approach, where three task runs (e.g., run 2 to 4) were used for train-
ing and the left-out runs (e.g., run 1) used for testing. We trained and
tested the classifiers on data obtained from the trials where subjects
responded correctly. Four independent one-vs-rest logistic regression
classifiers were trained, one for each of the four stimulus classes (face,
scissor, zebra, banana) and relabeled all other classes to a common
other category. This process was repeated four times to ensure each
task run served as the test set once. All the identical parameter settings
were the consistent with those set by Wittkuhn and Schuck28.

To identify the reactivation probability during mental simulation
and rest period, we used all the data from functional localizer runs to
train the classifiers. We created a new binarized mask for each subject
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by taking the intersection of the four binarized masks used for cross-
validation. The classifierswith the same identical parameter settings as
abovewere trainedon the fMRI data. The classifierswere applied to the
data during mental simulation (8 volumes per trial), and to data from
resting sessions (230 volumes per rest session).

Temporally delayed linear modelling
We used Temporally Delayed Linear Modelling (TDLM) to measure
spontaneous sequential reactivation of four states, either during the
mental simulation or rest43. At each time bin during the mental simu-
lation and the two resting sessions, we applied four classifiers to the
EEG data and another four classifiers to the fMRI data. Each of these
modality data sets contained three [time × state] reactivation prob-
ability matrices from the mental simulation (three runs of mental
simulation) and two reactivation probability matrices from the resting
sessions (PRE and POST Rest).

In a first step, we aimed to identify evidence of state-to-state
transitions at a given time lag Δt, by regressing a time-lagged copy of
one state, Xj, onto another, Xk . In other words, the values of all states
Xk at time t are used in a single multilinear model to predict the value
of the single state Xj at time t +Δt:

Xj t +Δtð Þ=
Xn

k = 1

Xk tð Þβkj ð1Þ

In the second step, we tested for the strength of a particular
hypothesized sequence, specified as a transition matrix, T:

β=
Xr

r = 1

Z rð Þ×Tr ð2Þ

β is the [state × state] empirical transition matrix obtained from
previous formula by ordinary least squares regression. Tr is hypothe-
sized transition matrix. In our study, the transition matrices include a
forward transition matrix, a backward transition matrix, a diagonal
matrix and a constantmatrix. Sequenceness, denoted asZ ðrÞ, reflected
the strength of hypothesized transitions in the empirical matrices,
which describe the degree to which representations were reactivated
in a task-defined sequential order3,6,30,31,45. ZF and ZB represented the
forward and backward sequenceness, respectively. By repeating this
regression at each time lag, we obtained time courses of sequenceness
as a function of time lag. In our research, EEG had a time resolution of
10ms, the smallest time lag in EEG-based TDLM (Fig. 4b, Supplemen-
tary Fig. 8), while fMRI had a time resolution of 1.3 s (1 TR), the smallest
time lag in fMRI-based TDLM (Fig. 4a, Supplementary Fig. 5 & 8).
Notably, because it is a linear modelling framework applied directly to
concatenated, rather than individual replay onsets, TDLM does not
distinguish effects of whole sequences from individual duplets.
Essentially, it evaluates the average replay strength across all duplets
during the whole period of interest.

We employed a non-parametric permutation-based method to
test for statistical significance in this study. For each permutation,
sequenceness was averaged across trials within each subject, and then
across subjects. The null distribution was generated by randomly
shuffling the rows and columns of the TF (forward predictor matrix),
with TB (backward predictor matrix) being its transpose, and recal-
culating the second-level analysis for each shuffle. The permutations
covered all possible combinations. For each permutation, the peak
absolute mean sequence strength across participants and lags was
calculated, controlling for multiple comparisons across lags. In the
original, unpermuted data, sequence strength was deemed significant
at a peak-level FWE <0.05 if its value surpassed 95%of the peakswithin
the permutations. This method has been rigorously validated by
simulation studies and empirical data in prior research3,6,31,43. As pre-
vious human studies have only found evidence for replay with

relatively short lags3,6,30,43,45, we visualized results up to a lag of 600ms
in EEG. To explore whether replay can be observed at longer time-
scales, we extended the scale of time lag to 2000 ms. Simultaneously,
we investigated the possibility of detecting replay in fMRI by com-
puting the sequenceness using TDLM with a lag of up to 8 TR.

Identifying reactivation and replay onsets
To investigate the neural mechanisms underlying replay and task-
related reactivation during the mental simulation and rest, we identi-
fied the onset of replay and task reactivation for subsequent para-
metric modulation and psychophysiological interaction analyses
(Fig. 2b)30,45. We used classifiers trained on functional localizer to
decode the reactivation probability of each visual stimulus, resulting in
a [time × state] reactivation matrix. Our analysis revealed a time lag of
30ms between stimuli that provided the strongest evidence of replay
transitions in the cuedmental simulation task, as determined by TDLM
(Fig. 4b). Next, we identified time points during mental simulation,
where strong reactivation of one stimulus (e.g., A) was followed 30ms
later by strong reactivation of a structurally-adjacent stimulus (e.g., B).
We first generated a matrix Orig as

Orig =X ×T ð3Þ

where X is the [time × state] reactivation matrix, and T is the task
transitionmatrix. The transitionmatrixTdefines themapping between
the task state corresponding to column i in X, and column i in Orig
(specifically, column i in Orig is the reactivation time course of the
state that ‘precedes’ state i in T). We then shifted each column of X by
Δt = 30ms, to generate another matrix Proj,

Proj =X Δtð Þ ð4Þ

where row i of Proj correspond to row i + 30ms of X. Multiplying Proj
andOrig elementwise, and summing over the columns of the resulting
matrix, giving a total of k states, to obtain a long [time × 1] vector, R.
Each element in the R indicates the strength of two-state replay at a
given moment in time.

Rt =
Xk

i= 1

Origti ×Projti ð5Þ

Based on this approach, we calculated forward and backward
replayprobability onsets for each timepoint duringmental simulation.
The replay probability in our study was formed by 30-ms-time-lag
forward replay in both forward and backward mental simulation con-
ditions. We convolved the replay probability onsets with the HRF, and
downsampled it to the same temporal resolution with fMRI signal. The
resulting replay probability onset was an EEG-based replay probability
onset regressor.

The same analysis pipeline was applied to EEG-based task reacti-
vation probability during both PRE Rest and POST Rest periods. To
compare reactivation strength between PRE and POST Rest, we aver-
aged reactivation probabilities across all time points and task stimuli
for each rest period, defining this as themean reactivation strength for
each period. Recognizing that spontaneous thoughts could lead to
spurious reactivation in both PRE and POST Rest periods. Thus, as a
chance level cannot be established a priori, we opt to use the reacti-
vation level during the PRE Rest period as a benchmark for assessing
reactivation during the POST Rest.

Detecting neural sequence in task-based fMRI patterns
We employed Wittkuhn and Schuck’s method28 to measure neural
sequence in fMRI data during mental simulation. In brief, this involves
identifying the relationship between image position in the sequence
and task reactivation probability based on an fMRI decoding classifier.
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Task reactivation probability during cued mental simulation was nor-
malized by dividing them by their trial-wise sum for each stimulus.
Subsequently, we conducted a linear regression between the serial
position of four images and their normalized decoding probabilities at
every TR. The slopes of linear regression were averaged at the subject
level for each task condition and each TR. The sign of the mean
regression slopes was flipped so that positive values indicate forward
ordering and negative values indicate backward ordering. We also
performed the two-sided one-sample t-tests to compare the mean
regression slope coefficients against zero for each TR and adjusted
their P values by multiple comparison correction (Fig. 4a for illustra-
tion, Fig. 4c for observed data).

It is worth noting that in our study, the [time × state] reactivation
probability matrices came from the sequential mental simulation, not
sequential visual presentation. Since we could not identify the time at
which subjects imagined each image or the speed of imagination, we
cannot predict probability differences between two time-shifted
events by sinusoidal response functions from Wittkuhn and
Schuck28. The junction of the 1st and 2nd periodwas defined as the point
at which the regression slope crossed y =0 in the forward mental
simulation in the positive to negative direction (e.g., junction = 5.2 TR),
with the 1st period preceding the junction (e.g., 1st period = [1, 2, 3, 4, 5]
TR) and the 2nd period following it (e.g., 2nd period = [6, 7, 8] TR). Slope
coefficients were averaged for each task condition and period (Fig. 4a
for illustration, the bar plots in the upper right corner of the Fig. 4c for
emperical data). We conducted the two-sided one-sample t-tests to
compare the mean regression slopes against zero for each task con-
dition and period.

Detecting sequential replay in rest-based fMRI patterns
We employed Schuck andNiv’smethod24 tomeasure sequential replay
in fMRI data acquired during rest. Thismethod involves identifying the
relationship between transition frequency between states and state
distances. Similar to the aforementioned training of decoding classi-
fiers (refer toMultivariate fMRI pattern analysis section), hippocampus
and mPFC anatomical masks were created based on automated ana-
tomical labelling for brain-surface reconstructions of individual T1w-
reference images using Freesurfer82,94,95.We selected the corresponding
labels of the bilateral medial orbitofrontal, rostral anterior cingulate,
and superior frontal regions for the anatomical mask ofmPFC, and the
corresponding labels of the bilateral hippocampus regions for the
anatomical mask of hippocampus. Considering that these two masks
consist of small-quantity voxels, we didn’t employed the thresholded
t-map to select image-responsive voxels28. Based on the decoding
accuracy, the classifiers trained in mPFC mask at the 5th TR after sti-
mulus onset were chosen to predict the probabilities during mental
simulation and rest (see Supplementary Fig. 8).

For each task condition (forward and backward mental simula-
tion) and each rest session (PRE and POST Rest), we selected 230 TRs
time series of decoding probabilities. This resulted in 229 state tran-
sitions for each condition, allowing us to calculate the transition fre-
quency. Similar to Schuck and Niv24, We conducted a logistic mixed-
effects analysis to examine the effects of state distances (hypothesized
transition matrix) on transition frequency between states (empirical
transition matrix) while simultaneously excluding the different sour-
ces of between- and within-participant variability. To compare the
models, we employed a likelihood ratio test, comparing a logistic
regression model that solely included random effects to a model that
also incorporated the state distances regressor.

GLM analysis
We performed the GLMs to capture the significant event related acti-
vations in various sessions: functional localizer (GLM 1), sequence
learning (GLM 2, GLM 3), cued mental simulation (GLM 4) and rest
periods (GLM 5 for EEG-based reactivation, GLM 6 for fMRI-based

reactivation). The fMRIdatawere smoothedwith a 6mmFWHMkernel
before group-level statistics were performed in the GLMs. All images
underwent high pass filtering in the temporal domain (width 128 s),
and autocorrelation of the hemodynamic responses was modelled
using an AR (1) model. We included nuisance regressors estimated
during preprocessing with fMRIprep: the six rigid-body motion-cor-
rection parameters estimated during realignment (three translation
and rotation parameters, respectively),mean White Matter, and mean
Cerebral Spinal Fluid. The effect of the experimental conditions on
regional blood oxygenation level-dependent responses was estimated
with the GLMs. For the group-level analysis, a one-sample t-test was
conducted using the whole brain as the volume of interest, and paired
t-test was conducted to compare the difference of whole brain acti-
vation between PRE Rest and POST Rest. All whole-brain analyses, with
the exception for those mentioned otherwise, were thresholded and
displayed using a cluster-wise family-wise error (FWE) correction
P <0.05, with cluster-forming threshold Punc. < 0.001 at the voxel level,
as reported by FSL.

GLM 1: the activation of images and semantic text in the functional
localizer. GLM 1 was employed to find the activation of images and
semantic text in the functional localizer session. Each run was mod-
elled with ten regressors, including four regressors to model the
onsets of four images, four regressors to model the onsets of four
semantic text in correct response trials, one regressor to model the
onsets of semantic texts in wrong response trials, and another
regressor modelling the onsets of response. To obtain the mean acti-
vation of visual processing and semantic processing, we averaged the
effect of four images and four semantic texts, respectively (Supple-
mentary Fig. 2a, right panel for images, and Supplementary Fig. 2b, left
panel for semantic texts). Furthermore, we identified the specific
activation of stimuli by contrasting a specific image or semantic text
with the other three images and texts (Supplementary Fig. 2a, left
panel for images, and Supplementary Fig. 2b, right panel for seman-
tic texts).

GLM 2: the contrast of 1st and 2nd image during sequence learning.
GLM 2 was used to examine the differences of activation between the
first and second images during sequence learning session. Each run
wasmodelled with two regressors: (1) the onsets of the first image, (2)
the onsets of the second image. We contrasted the effect of the first
image with that of the second image in the first level GLM (Supple-
mentary Fig. 3a).

GLM3: the activation of target image and probe image in sequence
probe test. GLM 3 was designed to investigate the activation of target
image and probe image in the sequence probe test. Each run was
modelled with four regressors: (1) the onsets of target image (Sup-
plementary Fig. 3c), (2) the onsets of the response, (3) the onsets of
correct probe image in all correct response trials, (4) the onsets of
wrongprobe image in all correct response trials. To access the effect of
the wrong probe image in the probe test, we contrasted the effect of
probe images between the wrong probe image and correct probe
image in the first level GLM (Supplementary Fig. 3d).

Reactivation and replay onsets modulation analysis
GLM 4: the neural correlates of EEG-based replay during mental
simulation. To investigate the neural correlates of replay events dur-
ing mental simulation, we performed a GLM 4 with three regressors.
The first regressor represented the onsets of EEG-based replay prob-
ability events (See Identifying reactivation and replay onsets). We
added two more regressors to isolate the unique brain activations
associatedwith replay. The second regressormodelled the duration of
mental simulation in all correct-response trials, while the third
regressor modelled the duration of mental simulation in all wrong-
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response trials. These two regressors were modelled as boxcar func-
tions with a duration of 10 s for all trials. We orthogonalized the first
two regressors in GLM 4 to remove any shared variances so that the
regression coefficients reflected the unique contribution of each
regressor in explaining the variances in neural signals.

GLM 5: the neural correlates of EEG-based task reactivation in the
resting states. To investigate the neural correlates of EEG-based task
reactivation during rest, we conducted a GLM 5.We summed the [time
* state] task-related reactivation probabilities across four task stimuli
for each time point, resulting in a [time × 1] array of EEG-based reac-
tivation probability onsets. We convolved the [time × 1] reactivation
probability onsets with the HRF, and downsampled it to the same
temporal resolution with fMRI signal. We added it as a psychological
regressor to the design matrix of the GLM 5.

GLM 6: the neural correlates of fMRI-based task reactivation in the
resting states. To investigate the neural correlates of fMRI-based task
reactivation during rest, we performed a GLM6.We summed the [time
* state] task-related reactivation probabilities across four task stimuli
for each time point, resulting in a [time × 1] array of fMRI-based reac-
tivation probability onsets. As the fMRI-based reactivation itself has
HRF properties, we added it as a psychological regressor to the design
matrix of the GLM 6 without HRF convolution.

ROI analysis
The purpose of ROI analysis in our study is to identify the increased
activation during PRE and POST Rest. The beta values at the subject-
level for further statistical inference were averaged across all voxels
within each ROI. The hippocampus ROI in our study was anatomically
defined using a high-resolution probabilistic atlas of Harvard-Oxford
Atlas98. The primary motor cortex ROI in our study was anatomically
defined using a high-resolution probabilistic atlas of Juelich Histolo-
gical Atlas99. In the further ROI analysis, any voxels that have any
probability of being in the hippocampus and primary motor cortex
were included in the ROIs. Two-sided one sample t-tests were per-
formed on beta values for each ROI, rest ression and modality, while
two-sided paired t-tests were conducted between rest sessions (PRE
versus POST Rest) and modalities (EEG versus fMRI). Additionally, we
defined entorhinal cortex ROI by applying 40% threshold to the Juelich
Histological Atlas for PPI analysis between hippocampal activity and
task reactivation during rest.

PPI analysis
We performed whole-brain PPI analyses using nilearn during mental
simulation and rest periods. The first analysis aimed to study replay-
triggered brain-wide activation during mental simulation. To achieve
this, we used the same hippocampus ROI as the ROI analysis. The first
PPI model included three regressors for replay onsets: (1) BOLD
timeseries extracted from hippocampus, (2) the EEG-based replay
probability, (3) the product of the above two regressors (Fig. 4e).

The second whole-brain PPI analysis aimed to study EEG- and
fMRI-based task reactivation aligned brain-wide activation during rest
periods. This PPI model included three regressors for task reactivation
onsets: (1) BOLD timeseries extracted from hippocampus, (2) the EEG-
or fMRI-based task reactivation probability, and (3) the product of the
above two regressors (Fig. 5e).

Cross-correlation
Cross-correlation measures the similarity between two signals as a
function of the time lag applied to one of the signals. In the context
of EEG-based and fMRI-based decoding probability, during task and
rest, we employed the cross-correlation by sliding the EEG time
series across the fMRI time series at different time lags and com-
puting the correlation coefficient at each lag. To ensure

compatibility between the two signals, we downsampled the EEG
time series to the same temporal resolution with fMRI time series
before calculating the cross-correlation. We used the cross-
correlation function from Liu, et al.43 and the time lag ranging
from 1 to 8 TR in our analysis. The peak of the cross-correlation
coefficient indicated the point at which the two signals demon-
strated the highest degree of similarity. We also performed the two-
sided one-sample t-tests to compare the cross-correlation coeffi-
cients against zero for each TR and adjusted their P values by mul-
tiple comparison correction (Supplementary Fig. 10).

Statistical analysis
Sample sizes were not determined using statistical methods, but were
compared with those reported in previous research on replay3,6,28,32.
Statistical comparisons were performed using with appropriate infer-
ential methods, as indicated in the figure captions. In cases where
multiple hypothesis testing was applicable, we applied the correction
method to correct for it100,101.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioural data, first-level and second-level fMRI statistical ima-
ges, and EEG decoded time series generated in this study have been
deposited in the Zenodo database. They can be found at https://
zenodo.org/records/12547774. Source data are provided with
this paper.

Code availability
The analysis code can be found at https://gitlab.com/liu_lab/EEG-fMRI-
replay.git.
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