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Abnormal low-magnitude seismicity
preceding large-magnitude earthquakes

Társilo Girona 1 & Kyriaki Drymoni 2

Unraveling the precursory signals of potentially destructive earthquakes is
crucial to understand the Earth’s crust dynamics and to provide reliable seis-
mic warnings. Earthquake precursors are ambiguous, but recent experimental
studies suggest that robust warning signs may precede large seismic events in
the short (day-to-months) term. Here, we show that the M6.4-M7.1 2019 Rid-
gecrest sequence (California) and the M7.1 2018 Anchorage earthquake
(Alaska) were preceded by up to ~3 months of tectonic unrest on regional
scales, as evidenced by abnormal low-magnitude seismicity spreading over the
~15-25%of SouthernCalifornia and Southcentral Alaska. This precursory unrest
has been discovered with an algorithm that integrates an innovative random
forest machine learning approach and statistical features built from earth-
quake catalogs. Supported by a novel suite of finite element solid mechanics
models, we propose that precursory, abnormal, low-magnitude seismicity
arises if the pore fluid pressure within large fault segments escalates sig-
nificantly as they approach failure, which leads tomajor uneven changes in the
regional stress field. Our findings and method may open up new perspectives
for surveillance agencies to anticipate when a region approaches an earth-
quake of great magnitude weeks to months before it occurs.

Enhancing our ability to forecast the spatial and temporal distribution
of large magnitude, and thus potentially destructive earthquakes, is a
formidable challenge inmodern seismology1–3. Earthquake forecasting
has been explored since the last century via a plethora of different
methods aiming to detect geophysical, geochemical, and even
biological precursors4–8. Some of these possible precursors include
thermal anomalies on the Earth’s surface9–11; emissions of acoustic12

and acoustic-gravity13 waves; changes in groundwater level and
composition14,15; release of radon and other gases16,17; electric, mag-
netic, and ionospheric perturbations18,19; crustal deformation20; the
emergence of slow slip events21,22; and even anomalous behavior of
farm animals23. Earthquake precursors are still unreliable despite
recent advances in data acquisition and analysis, and some of those
precursors have been categorically questioned24,25. Hence, the devel-
opment of alert level systems for seismic activity, similar to those
successfully implemented by surveillance agencies to track volcanic
unrest26, remain a chimera.

Precursory activity to large-magnitude earthquakes has also
been investigated by tracking variations in the slope of the
Gutenberg–Richter relationship (or b-value27–29) and by exploring
other anomalous statistical changes in the low-magnitude
seismicity30–32. In particular, low-magnitude seismicity has been
proposed to experience changes over wide areas prior to large
earthquakes33, although previous analyses are inconclusive because
the spatiotemporal distribution of seismic events is generally complex
and specific precursory patterns are challenging to recognize and
generalize1,24. This might be alleviated thanks to the advent of openly
available, high-quality, earthquake catalogs; and to new supervised
and/or unsupervised machine learning-based frameworks34, which
may be able to identify subtle and nonlinear hidden precursory pat-
terns from previous experience35,36. Supervised machine learning-
based frameworks have already been successfully applied to accu-
rately anticipate laboratory earthquakes from pre-failure acoustic
signals37 and from the spatiotemporal deformation of analog tectonic

Received: 3 October 2023

Accepted: 13 August 2024

Check for updates

1Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA. 2Earth and Environmental Sciences, Ludwig-Maximilians-Universität in Munich,
Munich, Germany. e-mail: tarsilo.girona@alaska.edu

Nature Communications |         (2024) 15:7429 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-7262-8719
http://orcid.org/0000-0001-7262-8719
http://orcid.org/0000-0001-7262-8719
http://orcid.org/0000-0001-7262-8719
http://orcid.org/0000-0001-7262-8719
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51596-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51596-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51596-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51596-z&domain=pdf
mailto:tarsilo.girona@alaska.edu
www.nature.com/naturecommunications


plates38, thus suggesting that similar approaches might eventually be
able to anticipate real earthquakes from seismic, acoustic, and space
geodesy data.

In this manuscript, we demonstrate through a new multivariate,
supervised, machine learning-based algorithm that low-magnitude
seismicity can alert about impending large-magnitude earthquakes in
Southern California and Southcentral Alaska. Unlike previous studies
focused on providing specific forecasts of the timing, magnitude, and/
or epicentral location of large earthquakes and aftershocks35,39,40, we
exploit machine learning to explore the emergence of robust, non-
linear, precursory patterns that may be hidden in low-magnitude
seismicity. This concept is applied to two target events: The 2019
Ridgecrest earthquake sequence and the 2018 Anchorage earthquake
(Fig. 1). The former was the strongest seismic sequence occurring in
Southern California in two decades41 and included anM6.4 earthquake
occurring on July 4 and an M7.1 earthquakes occurring on July 5. The
latter, the most societally significant seismic event occurring in
Southcentral Alaska in half a century42, was an M7.1 earthquake
occurring on November 30. In particular, our machine learning-based
algorithm is trained to determine whether the aforementioned events
were preceded by anomalies in the low-magnitude seismicity (defined
here as earthquakes with magnitude between MMin = 1 and MMax = 6),
akin to the activity preceding other large-magnitude earthquakes
(defined here as earthquakeswithmagnitude ≥6:4, i.e., themagnitude
of the first event of the Ridgecrest sequence) of Southern California
and Southcentral Alaska. A detailed description of our algorithm is
provided in “Methods”.

Results
Below we show the results obtained when running our machine
learning-based algorithm at the epicentral location of the first event of
the 2019 Ridgecrest sequence and at the epicentral location of the
2018 Anchorage earthquake (Fig. 2). These results are expressed in
terms of the degree or probability of unrest (Pun), which is defined as
the ratio of decision trees classifying as anomalous a set of statistical
features obtained from the earthquake catalog. Note that Pun can also
be interpreted as the probability of a large-magnitude earthquake
(M≥6:4) occurring within the following 30 days (see “Methods”). Our
model reveals that the epicenter of the target earthquakes showed
signs of unrest for several weeks before the occurrence of the events.
In particular, the degree of unrest is very low, with small spikes never
exceeding ~5%, until just ~40 days before the Ridgecrest earthquakes

(Fig. 2a). Then, mean and maximum values of Pun increased quickly to
~20–25% and ~75%, respectively, and remained that high up to the first
sequence shock. After the M6.4 event, the maximum probability of
unrest increased to ~90%, probably controlled by aftershocks, before it

Fig. 1 | Areas explored in this project. aWestCoast of theUnited States, with focus
on Southern California. bAlaska, with focus on the Southcentral Alaska region. The
red stars represent the two target seismic events (2019 Ridgecrest sequence and
2018 Anchorage earthquake) used to test ourmachine learning algorithm, whereas

the green circles show the large-magnitude earthquakes (M≥6:4) used in the
training step. The low-magnitude events used for training (not shown in the panels)
are those occurring within the red-shaded rectangles. Geographical maps were
created using MATLAB R2020b (Mapping Toolbox).

Fig. 2 | Temporal evolutionof the probability of unrest (Pun; or probability that
a large-magnitude earthquake happens in 30 days or less), from 1000 days
before to 400 days after the events. a Results obtained when running our algo-
rithm at the epicentral location of the first earthquake (M6.4) of the 2019 Ridgecrest
sequence (California). b Results obtained when running our algorithm at the epi-
central location of theM7.1 2018 Anchorage earthquake (Alaska). Blue lines show the
mean value of the predictions obtained through an ensemble of 200 random forest
models. Blue-shaded areas show the range of variation of the predictions, with the
lower andupperbounds representingminimumandmaximum, respectively. Vertical
black lines show the occurrence of the earthquakes. See more details in “Methods”.
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decreased again tobackground levels (≲5%) around threemonths after
the sequence. On the epicenter of the 2018 Anchorage earthquake, the
maximum probability of unrest increased abruptly to ~80% around
three months before the event, with mean andmaximum Pun reaching
up to ~35% and ~85%, respectively, just a few days before the earth-
quake (Fig. 2b). Our model also reveals an anomalous phase from
~700 days to ~300 days before the Anchorage earthquake, although
mean andmaximumvalues of the probability of unrest aremuch lower
(<15% and <55%, respectively) than those observed before the Ancho-
rage shock. Similar to the Ridgecrest sequence, our model reveals an
increase of Pun after large-magnitude events in Alaska, reaching up to
~99% over the three months following the Anchorage earthquake.
Around 170 and 250 days after the 2018 Anchorage event, the prob-
ability of unrest decreased below ~20% and ~5%, respectively.

Epicentral locations are not known before an earthquake, so a
more realistic and useful analysis consists of running our machine
learning-based algorithm on the geographical coordinates of grids
covering all of Southern California and Southcentral Alaska (we used
grids with 0.1° latitude ×0.1° longitude spacing). This approach allows
us to build probability maps and thus explore the spatiotemporal
evolution of abnormal low-magnitude seismicity in the run-up to large-
magnitude earthquakes. Our analysis reveals that anomalous low-
magnitude seismicity is not constrained to the epicentral area of large-
magnitude events, but spreads overmultiple fault zones of the regions
explored (Figs. 3 and 4 and Supplementary Movies 1 and 2). In parti-
cular, around 90 days before the 2019 Ridgecrest sequence, unrest
first emerged in the southern tip of San Joaquin Valley (e.g., Mt. Poso
fault, andWheeler Ridge and Pleito fault zones). Then, ~60 days before
the sequence, abnormal low-magnitude seismicity spread over the
California–Nevada-Arizonaborder region, including the IndianSprings
Valley faults and Las Vegas area (e.g., Eglington and Frenchman
Mountains faults) (Fig. 3a, b). Later, ~30 days before the sequence,
unrest kept spreading in the California–Nevada-Arizona border region
and emerged in the epicentral area of the Ridgecrest events (e.g., Little
Lake and Panamint Valley—southern section—fault zones); southwest
flank of Sierra Nevada mountains (e.g., Ken Canyon fault); Antelope
Valley (e.g., Lenwood–Lockhart and Helendale–South Lockhart fault
zones; San Andreas fault –Mojave section-); San Gabriel Mountains
(e.g., San Gabriel, San Jacinto, Sierra Madre fault zones); Los Angeles
county (e.g., Raymond, Santa Monica, and Elsinore fault zones); and
the Southern Channel Islands (up to San Clemente Island; e.g., Palos
Verdes, San Pedro Basin, Catalina fault zones). All these areas con-
tinued showing anomalous seismic behavior until the occurrence of
the Ridgecrest events (Fig. 3c). In the run-up to the 2018 Anchorage
earthquake, unrest emerged in twomain areas of Southcentral Alaska:
Center-northeast (e.g., Cook Inlet Folds, Castle Mountain faults,
northern Kenai Peninsula, Copper River Basin, Denali fault –west
Muldrow–Alsek section–, Billy Creek faults; Fig. 4a, b) and south-
southeast (e.g., Alaska–Aleutians subduction zone –Aleutian Mega-
thrust–; Kodiak shelf fault zone; Fig. 4c) around 80 and 10 days before
the earthquake, respectively. More information on the main fault
zones present in the areaswhere unrest is detected canbe found in the
US Geological Survey’s interactive Quaternary faults database (https://
doi.org/10.5066/F7S75FJM).

The analysis of the total area experiencing tectonic unrest (i.e.,
area with the maximum probability of unrest ≥ 50%) reveals three
major outcomes (Fig. 5). First, small-scale, isolated patches of tectonic
unrest emerged sporadically in the target regions (Figs. 3a and 4a).
These patches constitute a background noise level that do not warn of
large-magnitude earthquakes, and thatmight be associated with failed
large-magnitude events or with local anomalous patterns produced by
the swarms of low-to-mid size earthquakes. For example, we find that
~1.5–7% of Southern California’s total area experimented unrest from
~1000 days to ~100 days before the 2019 Ridgecrest sequence (Fig. 5).
This analysis also reveals that the anomalous phase detected on the

epicenter of the Anchorage earthquake from ~700 to ~300 days before
its occurrence (Fig. 2b) is just a spurious signal associated with
spatial background noise. Second and most important, the area
experiencing unrest spread significantly in the run-up to large

Fig. 3 | Spatiotemporal evolutionof themaximumprobability ofunrest (Pun; or
probability that a large-magnitude earthquake happens in 30 days or less) in
Southern California. Results obtained for a 6 months, b 2 months, and c 10 days
before thefirst event of the 2019Ridgecrest sequence (red star). Uncolored areas are
unexplored locations, or locations with no earthquakes in the region and time
interval of interest (see “Methods”). Black lines show themajor fault lines of Southern
California, Southwest Nevada, and Northwest Arizona (US Geological Survey’s
interactive Quaternary faults database; https://doi.org/10.5066/F7S75FJM); and
warm colors and red numbers highlight areas with anomalous low-magnitude seis-
micity. (1) Southern tip of San Joaquin Valley (e.g., unnamed fault zone, Mt. Poso
fault). (2) Southern tip of San Joaquin Valley (Wheeler Ridge and Pleito fault zones).
(3) California–Nevada–Arizona border region (Spotted Range, Mercury Ridge, West
Pintwater Range, and Indian Springs Valley faults). (4) California–Nevada–Arizona
border region (Las Vegas faults, e.g., Eglington and Frenchman Mountains faults).
(5) California–Nevada–Arizona border region (small unnamed faults). (6) Southwest
flank of Sierra Nevada mountains (e.g., Ken Canyon fault). (7) Epicentral area of
Ridgecrest events (Southern Sierra Nevada, Little Lake, and Panamint Valley—
southern section—fault zones). (8) Southern tip of San Joaquin Valley (Poso Creek,
Edison, and other unnamed faults). (9) Antelope Valley (Lenwood–Lockhart, Mirage
Valley, and Kramer Hills fault zones; Blake Ranch fault). (10) Antelope Valley (San
Andreas fault—Mojave Section). (11) San Gabriel Mountains and Los Angeles
County (San Gabriel and Sierra Madre fault zone, Los Angeles faults, Compton
thrust fault, Palos Verdes fault zone). (12) Southern Channel Islands (San Pedro
Basin fault, junction between San Diego Through fault and Catalina Fault zone).
(13) California–Nevada–Arizona border region (Maynard Lake, Sheep Basin, Sheep-
East Desert Ranges, Sheep Range, Kane Spring Wash, Wildcat Wash, Arrow Canyon
Range, Carp Road, and California Wash faults). Geographical maps were created
using MATLAB R2020b (Mapping Toolbox).
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earthquakes (Figs. 3b, c and 4b, c). In particular, we find that the area
with abnormal low-magnitude seismicity in Southern California and
Southcentral Alaska increased by up to one order of magnitude (from
~2% to ~17%, and from ~2% to ~22%, respectively) during the three
months preceding the 2019 Ridgecrest sequence and the 2018
Anchorage earthquake (Fig. 5). Third, the area and probability of
unrest around the epicenters suddenly increased after large earth-
quakes, but the regions returned back to background levels shortly
after (Fig. 5; Supplementary Movie 1 and 2). Our model also shows a
gradual long-term (years) decreasing trend of the unrest area from
~1000 days to ~500 days before the 2018 Anchorage earthquake
(Fig. 5), which may reflect the return to background levels after the
occurrence of two other large earthquakes in the region (M6.4 earth-
quake occurring 70 km SSW of Redoubt volcano on July 20, 2015; and

M7.1 earthquake occurring 86 km east of Old Iliamna on January 24,
2016; see Supplementary Movie 2). It is worth noting that we used the
same algorithm both for Southern California and Southcentral Alaska.

The sensitivity of our results to the key hyperparameters and
statistical features of our machine learning-based algorithm is also
explored through a parametric analysis. In particular, we run our
algorithm for a total of 20 different scenarios varying the definition
of low-magnitude seismicity (i.e., using different values forMMin and
MMax), the unrest period assumed for training (fromTunrest = 10 days
to Tunrest = 100 days), and the radius of the region of interest where
the statistical features are calculated (from R=20 km to R= 150 km)
(Supplementary Table 1). In addition, we run five other scenarios in
which our algorithm is trained with each of the statistical features
separately (Supplementary Table 1). For simplicity, the rest of
parameters of our model are kept the same for all the runs (time
series length T=2 years, 1-year backward sliding windows, 1-day
time steps, and N = 50 random nodes used for training); more
details on the different hyperparameters and statistical features
used in themodel can be found inMethods. The parametric analysis
reveals that: (i) Our results are little sensitive to the hyperpara-
meters, thus demonstrating the robustness of the method; (ii)
precursory patterns emerge more significantly when low-
magnitude seismicity is broadly defined (i.e., when using MMin = 1
and MMax = 6), when a short unrest period is assumed for training
(Tunrest ≲ 30 days), and for large regions of interest (R≳120 km); (iii)
precursory patterns vanish if using MMin ≳ 1:5, thus suggesting that
regional unrest preceding large-magnitude earthquakes is mostly
reflected in the very low-magnitude seismicity; and (iv) precursory
patterns mostly reflect anomalous variations in the depth of the
low-magnitude earthquakes, while the statistical feature reflecting
anomalous variations in magnitude is the least relevant. A detailed
description of the parametric exploration and results can be found
in Supplementary Tables 1 and 2.

Discussion
Interpretation of our results: dissimilar accumulationof stresses
The fact that the observed anomalies mostly reflect abnormal, very
low-magnitude (1≲M≲ 1:5) seismicity suggests that the probability of
unrest may elevate due to temporal variations of the magnitude of
completeness in the catalog, which might be produced by mid-
magnitude foreshocks preceding the main shocks43. To test this
hypothesis, we adopted the approach outlined by Zhuang et al.43 and

Fig. 5 | Temporal evolution of the area (in percentage) of Southern California
(red) and Southcentral Alaska (blue) that is subject to unrest. The time series
show the results obtained from 1000days before to 400days after the first event of
the 2019 Ridgecrest sequence and the 2018 Anchorage earthquake. Unrest means
that the maximum degree or probability of unrest (Pun; as obtained from an
ensembleof 200 random forestmodels) is greater than50%. The vertical line shows
the occurrence of the earthquakes. See more details in “Methods”.

Fig. 4 | Spatiotemporal evolutionof themaximumprobabilityofunrest (Pun; or
probability that a large-magnitude earthquake happens in 30 days or less) in
Southcentral Alaska. Results obtained for a 6 months, b 2 months, and c 10 days
before the 2018 Anchorage earthquake (red star). Uncolored areas are unexplored
locations, or locations with no earthquakes in the region and time interval of
interest (see “Methods”). Black lines show major fault lines identified in South-
central Alaska (US Geological Survey’s interactive Quaternary faults database;
https://doi.org/10.5066/F7S75FJM), and warm colors and red numbers highlight
areas with anomalous low-magnitude seismicity. (1) Cook Inlet Folds (Big Lake
North, Pittman, Wasilla St. No. 1-Needham Anticlines); Castle Mountain, Caribou,
and East Boulder Creek faults. (2) Northern Kenai Peninsula. (3) Chugach Moun-
tains, PrinceWilliam Sound. (4) Copper River Basin, WrangellMountains. (5) Denali
fault (west Muldrow–Alsek section), Northern Foothills fold and thrust belt
(Macomb Plateau, Cathedral Rapids, Dot “T” Johnson, Granite Mountain, and Billy
Creek faults), McCallum Creek fault. (6) Chugach-St. Elias fold and thrust belt
(Bagley fault). (7) Alaska–Aleutians subduction zone (Aleutian Megathrust).
(8) Kodiak Shelf fault zone. Geographical maps were created using MATLAB
R2020b (Mapping Toolbox).
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plotted event magnitudes against the seismic event order across
multiple sectors in SouthernCalifornia and Southcentral Alaska, which
coincide with areas with and without precursory anomalies (Supple-
mentary Figs. 1–3). None of these plots reveal any obvious variation in
catalog completeness in the weeks to months before the Ridgecrest
and Anchorage earthquakes, whereas incompleteness clearly man-
ifests after the occurrence of the main shocks (Supplementary
Figs. 2a and 3a).

To further test the catalog completeness hypothesis, we plotted
the Gutenberg–Richter (GR) relationship using the low-magnitude
seismicity occurring around the epicenters of the target events (within
a 120 km radius, as used in our method) and for each moving window
used to calculate the statistical features feeding our machine learning-
based algorithm (Supplementary Figs. 4 and 5). In addition, we calcu-
lated the temporal evolution of the absolute value of the slope of the
GR relationship (mGR) for magnitudes between M= 1 and M= 3 (Sup-
plementary Fig. 6); note that mGR is the so-called b-value27 only if the
magnitude of completeness is belowM= 1, and thatmGR is expected to
decrease if the magnitude of completeness is above M= 1 and if it
increases in the run-up to the target events.Our analysis reveals that, in
the run-up to the Ridgecrest sequence and the Anchorage earthquake,
theGR lawholds for lowmagnitudes aswell (i.e, in the range fromM= 1
to M= 3–4, and thus the magnitude of completeness is below M= 1);
and that mGR does not show any precursory decreasing trend or
anomaly. All this together confirms that the precursory abnormal
seismicity reported in thiswork is not an artifact produced by a decline
in catalog quality and, consequently, suggests that our method does
indirectly identify regional stress alterations takingplace in the shallow
crust during the preparatory phase of major earthquakes44.

Interestingly, there was a noteworthy swarm of low-magnitude
earthquakes approximately 30 days prior to the Ridgecrest events
around the epicentral area of the sequence (Sector 1; see Supple-
mentary Fig. 1a) and in the area spanning from Antelope Valley to
Southern Chanel Islands (Sector 2; Supplementary Fig. 1a) (Fig. 6). This
swarm coincides with a big spread of anomalous seismicity, as

detected by our algorithm; however, the first anomalous behavior in
the aforementioned areas arises ~90 days before the sequence, i.e.,
around twomonths before the occurrence of the swarm (Fig. 6a, b). In
addition, the probability of unrest increases in the California–Nevada-
Arizona border region (Sector 3; see Supplementary Fig. 1a) around
60 days before the Ridgecrest sequence, yet this surge does not align
with any swarmof small-scale seismic events in that area (Fig. 6c), same
as in other areas where no anomaly is detected (Fig. 6d, e). Moreover,
the area subject to unrest in Southern California starts to increase
~70 days before the occurrence of the swarm (Fig. 5), and precursory
unrest without noticeable swarms of small-scale seismic events is also
observed for Alaska (Fig. 7). Collectively, these observations suggest
thatwhile precursory unrestmay be influenced to someextent by local
swarms of low-magnitude earthquakes, it is not unequivocally linked
to such swarms. Instead, precursory unrest seems to be associated
with nonlinear, multivariate, subtle statistical fluctuations in the spa-
tiotemporal distribution of low-magnitude seismicity; this phenom-
enon demands further investigation and analysis, and a potential
explanation is provided in the following.

Several studies have hypothesized that low-magnitude seismicity
should undergo changes over vast areas prior to large-magnitude
earthquakes if the regional stress field varies when large, locked fault
segments get closer to failure. This hypothesis has been explored by
analyzing the energy release and accelerating seismicity patterns
before large earthquakes, and by coupling Coulomb stress analyses
with fault modeling33,45. Faults are usually modeled in seismology as
dislocations and cracks without internal structures46; whereas in other
disciplines, such as volcano tectonics, faults are commonlymodeled as
elastic inclusions with an internal mechanical structure that allows
accounting for the shear stress accumulation inside and around them,
their slip potential, or permeability47. The latter approach allows con-
sidering faults as shear fractures composed of two hydromechanical
units47,48: The damage zone, primarily composed of fractures and veins
(fractured media); and the fault core, which consists of breccia and
gouge (porous media).

Fig. 6 | Exploration of the possible link between abnormal low-magnitude
seismicity and the occurrence of seismic swarms in Southern California.
a–eMagnitudeof the events versus time forSector 1 (latitude range 35N–36.5 Nand
longitude range 120W–117W), Sector 2 (latitude range 33N–35.2 N and longitude
range 119W–117W), Sector 3 (latitude range 34.5N–37N and longitude range
116W–113.5W), Sector 4 (latitude range 33N–34N and longitude range 117W–114W),

and Sector 5 (latitude range 34.5N–37N and longitude range 121W–119.5W). The
vertical red line shows the occurrence of the first event of the Ridgecrest sequence.
The lighter red-shaded rectangle shows the emergence of the first anomalous area
in the sector, and the darker red-shaded rectangle shows a second spread of the
anomaly in the sector. See Supplementary Fig. 1 for more details on the location of
the sectors.
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Studies on fault architecture in earthquakemechanics have shown
that active faults concentrate stresses around them before failure49–51.
Stress concentration, in turn, generates interconnected fractures in the
damage zone, which increase fault permeability and porosity47. The
latter induces the circulation of crustal fluids, which in turn increases
the fluid pressure and enhances the aperture of other fractures in the
damage zone47. This positive feedback also enhances a reduced cohe-
sion and a friction decrease, which lead to a decreasing fault stiffness
before failure52,53. For that reason, active faults can be characterized by
higher fluid circulation and lower stiffness in the run-up to failure.

Below, we use the elastic inclusion fault modeling approach to
explore the regional stress changes that may occur in the run-up to
large-magnitude earthquakes, depending on fault stiffness and regio-
nal loading conditions. This exploration is performed by running a
suite of finite element method (FEM) solid mechanics 2D models built
with the COMSOL Multiphysics (v6.2) software (a detailed description
of our FEM models’ buildup is provided in Methods). In particular,

we investigated how the existence of a large (850 km), locked fault
(mimicking a fault segment responsible for large-magnitude seismi-
city; LF from now on) can affect the von Mises stress accumulation in
an adjacent (~250km away) network of small (40–97 km), randomly
distributed, locked fault lines (mimicking fault segments responsible
for low-magnitude seismicity) upon two geometrical settings and two
end-member conditions that are expected to precede large-magnitude
earthquakes (Fig. 8): (1) Progressive loadingof the regionwith constant
LF stiffness (0.01 GPa), for whichwe applied horizontal compression in
the numerical domain from 10MPa to 20MPa, consistent with bore-
hole data and field and geodetic analysis in California54–56; and
(2) constant loading (20MPa) in the regionwith a progressive decrease
of the LF stiffness of up to four orders of magnitude, ranging from
10GPa to 0.01 GPa. For this analysis, we assume constant stiffness for
the small faults of the network for simplicity.

Under Scenario 1, the von Mises stress (further details in “Meth-
ods”) linearly increases by a factor of two throughout the domain

Fig. 8 | 2D FEM models of a faulted domain that gradually reaches the condi-
tions for failure. a–d Progressive horizontal compression (from 10 to 20MPa),
assuming constant stiffness for the large fault segment (ELF = 1 GPa) and for the
small faults (ESF = 0.03–0.92GPa). e–h Constant horizontal compression (20MPa)

with variable large fault stiffness (ELF = 0.01–10GPa) and constant small faults
stiffness (ESF = 0.03–0.92GPa). Models are developed with COMSOL Multi-
physics (v6.2).

Fig. 7 | Exploration of the possible link between abnormal low-magnitude
seismicity and the occurrence of seismic swarms in Southcentral Alaska.
a–cMagnitude of the events versus time for Sector 1 (latitude range 60N–63N and
longitude range 150W–144W), Sector 2 (latitude range 57.5N–60N and longitude
range 150W–144W), and Sector 3 (latitude range 58N-64N and longitude range

158W–153W). The vertical red line shows the occurrence of the Anchorage earth-
quake. The shaded rectangles show the emergence of anomalous low-magnitude
seismicity in the sector. See Supplementary Fig. 1 formoredetails on the location of
the sectors.
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(Fig. 8a–d). For instance, around Faults 1 to 4 of the network, the
maximum von Mises stress rises from ~2.7 to ~5.5MPa, from ~3.3 to
~6.7MPa, from ~4.7 to ~9.4MPa, and from ~7.8 to ~15.6MPa, respec-
tively (Fig. 9a). This indicates that as a large-magnitude earthquake
approaches, compression propels all the small faults within the region
toward failure. While this may elucidate a heightened rate of low-
magnitude seismicity in the region, as reported prior to some large-
magnitude earthquakes33, it remains unclear how this mechanism
could induce the precursory, nonlinear, statistical anomaly found in
this study.

Conversely, when we impose a constant compression (20MPa)
but progressively decrease the LF stiffness (Scenario 2), a dissimilar
and nonlinear concentration of stresses emerges in the region
(Fig. 8e–h). Specifically, the reduction in LF stiffness leads to varying
increases and decreases in the accumulated von Mises stress at dif-
ferent small faults of the network (Fig. 9b). For instance, themaximum
vonMises stress around Fault 3 declines non-linearly from ~12.7MPa to
~9.4MPa as the LF stiffness drops by four orders of magnitude, from
10GPa to 0.01GPa. In contrast, the vonMises stress around Faults 1, 2,
and 4 increases non-linearly by ~2.8 Mpa, ~2.1MPa, and ~2.4 Mpa,
respectively. The magnitude and sign of this variation are subject to:
(i) The stiffness of the LF, with more significant stress changes occur-
ring when the LF becomes very soft (≲0.1GPa); (ii) the arrangement of
small faults within the network, as interactions between closely situ-
ated soft faults lead to more pronounced stress distribution changes;
and (iii) the distance from the network to the LF, since greater stress
accumulation occurs closer to the LF. In short, the run-up to large-
magnitude earthquakes can lead certain small faults in the region
closer to failure, while simultaneously pushing others further away
from failure. This uneven behavior is a consequence of the softening of
large regional faults, characterized by a reduction in stiffness due to
heightened fluid circulation.

As part of our parametric analysis, our numerical study was
extended to additional 2D and 3D geometrical settings to provide
further insights on how the strike and dip of faults may affect the
distribution of vonMises stresses (Supplementary Fig. 7). Our findings
indicate that varying strike and dip angles influence fault interactions
and the accumulation of vonMises stresses in the region; nevertheless,
the models confirm the main conclusions drawn from the simpler 2D
scenario outlined above (Supplementary Fig. 8): A decrease in LF
stiffness leads to a regional, dissimilar concentration of stresses. It is

worth noting that the different 2D and 3D scenarios analyzed, which
incorporate various strike and dip configurations, simulate conditions
expected for earthquakes with varied focal mechanisms (e.g., normal
or thrust faults with dip <90° and strike-slip faults with dip = 90°).

In essence, our FEM-based numerical models show from a
mechanical standpoint that irregular accumulation of stresses can
appear in small fault networks when the stiffness of large faults
declines—a circumstance expected as failure approaches52,53. Based on
these findings, we conjecture that the emergence of anomalous low-
magnitude seismicity before major earthquakes, as observed prior to
the 2019 Ridgecrest sequence and the 2018 Anchorage earthquake,
could be ultimately driven by the reduction in stiffness of major faults
rather than by gradual regional loading. The parametric analysis of our
numerical simulations also reveals that the differential buildup of
stresses in nearby minor faults becomes more significant when very
low stiffness is applied to the major fault (≲0.1 GPa), implying that
abnormal, precursory low-magnitude seismicity can only arise when
fault segments prone tomajor earthquakes are highly fractured and/or
contain permeable cores (such as breccias and cataclastic rocks) sus-
ceptible to elevatedporefluidpressure57,58. It isworthnoting that other
mechanisms might also cause uneven stress accumulations in a fault
network, such as dissimilar fluid transport in faults of the network;
transitions from distributed deformation to progressive shear locali-
zation; stress transfer between faults; and fault friction, cohesion,
strength, andweaknesses32. However, these reflect local processes and
properties, and do not allow establishing an obvious cause-effect
relationship between abnormal low-magnitude seismicity and the
conditions leading up to the failure of a large fault segment. In other
words, it remains uncertain that the aforementioned local processes
and properties would translate into a regional phenomenon driven by
the precursory conditions of a large fault segment that is close to
failure and produce a major earthquake. In the future, geodetic data
might provide further insights into the regional, dissimilar accumula-
tion of stresses driven by decreasing stiffness in large faults, poten-
tially enhancing our ability to anticipate large-magnitude earthquakes
weeks to months in advance38.

Forecasting potential of our machine learning-based approach
Earthquake forecasting involves anticipating the timing, magnitude,
and/or epicenter of major earthquakes and/or aftershocks35,39,40,59.
Here, we have delved into this topic by devising a method capable of

Fig. 9 | Results of our 2D FEM numerical models. a Maximum von Mises stress
accumulated in four random small faults upon compressional loading. bMaximum
vonMises stress accumulated in four random small faults for different values of the

stiffness of the large fault segment. Black arrows show the expected direction of
variation of the compressional loading and stiffness in the run-up to a large-
magnitude earthquake. Models are performed with COMSOL Multiphysics v6.2.
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uncovering potential, hidden precursory patterns concealed within
earthquake catalogs, with our primary focus being on the timing
aspect. However, it is worth highlighting that our methodology also
provides valuable insights into refining the size and location of major
earthquakes; this contrasts with prior studies, which often con-
centrated on providing forecasts of one of the aforementioned
observables only35,39,40.

Specifically, our machine learning-based analysis reveals that the
preparatory phase of the Ridgecrest and Anchorage earthquakes
shared temporal similarities with previous seismic events in Southern
California and Southcentral Alaska, allowing for the identification of
precursory activity manifesting over timescales spanning from weeks
to months. This timescale aligns with the preparatory phase reported
for five large strike-slip earthquakes in Southern California since 1960,
inferred from the combination of renormalized patterns related to
increasing low-magnitude seismic activity and earthquake correlation
range30. Our results, however, contrast to longer and shorter lead
times reported in other studies on Southern California and elsewhere.
For instance, Keilis-Borok et al.60 documented low-magnitude seismi-
city changes occurring 2–3 years before strong earthquakes across
various tectonic settings, suggesting a more protracted preparatory
phase. Interestingly, Ben-Zion and Zaliapin32 examined localization
processes of low-magnitude seismicity and found evidence of rock
damage accumulation around rupture zones for the 2019 Ridgecrest
sequence and other large earthquakes in Southern and Baja California
during the precedingdecade. Thiswas followedby seismic localization
and event clustering around 2–3 years and 1–2 years, respectively,
before the main shock. Huang et al.61 found a foreshock sequence
around 30min before the initiation of the 2019 Ridgecrest sequence.
These previous studies, combined with our findings, highlight a mul-
tifaceted process involving the accumulation and release of tectonic
stresses over different timescales.

In addition, while our methodology considers magnitude as an
input parameter, the inherent structure of our algorithm yields the
probability of earthquakes surpassing a predefined magnitude
threshold, which can be adjusted to suit specific requirements. This
serves as the foundation for calculating probabilities of earthquakes of
specific magnitude or greater. Moreover, although the precursory
anomalies identified by our method hinder precise pinpointing of
exact earthquake locations, we have noted that the epicenters of the
two case studies fall within well-defined unrest areas spanning spatial
scales ranging from tens to hundreds of kilometers. Indeed, this
adheres to the well-established approach of examining seismic pre-
cursors within large regions, encompassing several hundred kilo-
meters, to account for potential long-range correlations62; and aligns
with prior research suggesting that the preparatory phase of major
earthquakes involves broad-scale processes affecting fault networks,
resulting in non-local seismic indicators30,62,63. In any case, while unrest
areas are broad, our results suggest that they notably restrict the
potential location of major events in the target regions. For instance,
before the Ridgecrest sequence, there were no signs of potential large-
magnitude earthquakes in other highly seismic zones, such as the San
Francisco Bay Area, but the precursory anomaly was confined to
locations surrounding the sequence’s epicenters. Similarly, our
method did not reveal any hints of potential large-magnitude earth-
quakes in the western fault zones of Southcentral Alaska before the
occurrence of the Anchorage event. All these findings together indi-
cate that our approach shows potential for improving seismic mon-
itoring and surveillance by constraining the timing (over temporal
spans from days to months), magnitude (surpassing predefined
thresholds), and location (across spatial scales from tens to hundreds
of kilometers) of forthcoming major earthquakes.

A major significance of our method lies in its potential to be
integrated into operational earthquake monitoring systems and fore-
casting schemes64, enabling the swift detection of tectonic unrest.

This, in turn, could facilitate the rapid deployment of additional
instruments to advance our understanding of the short-term pre-
paratory phase of major earthquakes65. The early identification of
tectonic unrest also holds the promise of bolstering societal pre-
paredness for the potential occurrence of a major earthquake in a
specific region, aiding in the assessment of alert levels. This aligns with
decision-making strategies that focus on acquiring reliable signals
indicating an increasing probability of an impending disaster, rather
than assigning specific probability values66. Similar alert level systems
are employed in volcano observatories to communicate volcanic
activity26,67.

While our algorithm has been tested on two specific regions, it
has the potential for broader applicability. It can be readily applied
to other regions globally, provided robust, highly complete, and
long-lasting (~decades) earthquake catalogs become available.
However, it is essential to emphasize that our algorithm should not
be employed in new regions without training the random forest
models with the historical seismicity of that specific area. Moreover,
to maintain consistency and robustness, our algorithm should be
periodically updated, involving re-training each time a major
earthquake occurs in the region where it is being implemented. For
instance, we recommend incorporating the 2019 Ridgecrest
sequence and the 2018 Anchorage earthquake in the training pro-
cess moving forward.

As any other method, the algorithm presented in this paper also
has limitations. In particular, it cannot assess the level of unrest in
regions with minimal low-magnitude earthquake activity because the
model statistical features cannot be reliably computed. In addition, our
choice of Southern California and Southcentral Alaska for analysis was
based on the availability of a sufficient number of earthquakes with
magnitude M ≥6.4 over the past ~30 years (Supplementary Table 3).
Finally, the success of our approach relies on the assumption that
future seismicity will produce anomalies similar to those produced by
the historical seismicity used for training. These limitations under-
score the importance of ongoing research and earthquake forecasting
adaptation as machine learning and monitoring techniques continue
to evolve.

In summary, gaining insights into the multivariate temporal pat-
terns of seismic activity leading up tomajor earthquakes is a vital stride
in enhancing our capacity to anticipate devastating events. Our find-
ings concerning the 2019 Ridgecrest sequence and the 2018 Ancho-
rage earthquake highlights the significance of identifying subtle,
nonlinear anomaly trends in near-real time, and might serve as a
foundation for crafting efficient operational forecasting algorithms64.
This, in turn, plays a pivotal role in strengthening earthquake pre-
paredness and thus in reducing the risks in communities susceptible to
major seismic threats.

Closing remarks
Althoughmachine learning has been successfully applied to anticipate
laboratory earthquakes37,38, the application of these methods to real
earthquakes is more challenging, and their predictive power has been
proposed not to be necessarily better than simpler and more tradi-
tional approaches34. However, this work shows that machine learning
offers a lot of potential to classify low-magnitude seismicity, better
identify precursory activity, and detect hidden patterns in the run-up
to large-magnitude events. In this regard, we found that abnormal low-
magnitude seismicity, or regional tectonic unrest, emerged in South-
ern California and Southcentral Alaska for weeks to months prior to
the 2019 Ridgecrest sequence and the 2018 Anchorage earthquake.
This is identified with a new multivariate, random forest-based classi-
fication algorithm that detects when the statistical properties of low-
magnitude earthquakes deviate from regular patterns. These devia-
tions are challenging to identify by visual inspection of single variables,
but they can be recognized with a nonlinear approach (random forest)
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that considers the complex interplay between the different model
variables. Nonlinear classification algorithms trained from previous
experience are more efficient and versatile in detecting anomalous
patterns of low-magnitude seismicity than classical methods consist-
ing of tracking single variables (e.g., acceleration of seismicity rates45),
whose temporal evolution may differ a lot from one case to another
and thus results are difficult to generalize.

Our analysis provides observational evidence of the regional
interaction between different fault zones during stress-loading to
failure68,69; supports that different large-magnitude earthquakes have
similar preparatory phases, at least for the two regions explored; and is
consistent with previous laboratory experiments showing abnormal,
large-scale signals that emerge over vast areas before failure37,38. Fur-
thermore, our analysis andmechanistic finite element solid mechanics
models support the long-held hypothesis that abnormal low-
magnitude seismicity should appear over vast areas before large-
magnitude earthquakes because largely locked fault sections cause
alterations in the regional stress field33,45. In particular, our finite ele-
ment solidmechanicsmodels suggest that precursory variations in the
regional stress field may occur because fault segments behave as
elastic inclusions with dissimilar mechanical properties from those of
the surrounding host crust, thus triggering an uneven response to the
processes leading to major earthquakes and the accumulation of
stresses both at local and regional scales58.

Finally, it is worth highlighting that the machine learning-based
approach presented in this paper only requires information that is
currently being archived routinely in earthquake catalogs; could help
to better understand the dynamics of fault networks and identify
variations in the regional stressfield; and canbe easily implementedby
surveillance agencies tomonitor low-magnitude seismicity in near-real
time. Eventually, our approach could help to design earthquake alert
level strategies based on the detection of regional tectonic unrest, and
to improve the forecast of large-magnitude earthquakes fromweeks to
months in advance in Southern California, Southcentral Alaska, and
potentially elsewhere.

Methods
Machine learning-based model
Ourmachine learning-based algorithm is trained todeterminewhether
the 2019 Ridgecrest seismic sequence and the 2018 Anchorage
earthquake were preceded by anomalous low-magnitude seismicity
(defined here as earthquakes with magnitude between MMin = 1 and
MMax = 6). Training is performed with the low-magnitude seismicity
that preceded other large seismic events (defined here as earthquakes
with magnitude M≥6:4, i.e., the magnitude of the first event of the
Ridgecrest sequence) that occurred in Southern California and
Southcentral Alaska between January 1, 1989, and December 31, 2012.
Our algorithm approach is based on two hypotheses: (i) The large-
magnitude earthquakes used for training were preceded by tectonic
unrest occurring for some weeks at least in the epicentral area. Hence,
if the 2019 Ridgecrest sequence and the 2018 Anchorage earthquake
were preceded by analog tectonic unrest, this should emerge spon-
taneously when running our model on unseen data (from January 1,
2013, onwards). (ii) Anomalous tectonic unrest and quiescence can be
recognizedwith a random forest classificationmodelwhenmonitoring
the scattering or variability of different features of the low-magnitude
seismicity, including the inter-event time, depth, magnitude, and lati-
tude and longitude of the epicenters. Note that we utilize the standard
deviation as a metric to represent the variability of the features, but it
has no statisticalmeaning in this context. The analysis we undertake in
this study consists of five main steps (data retrieval, algorithm setup,
calculation of statistical features, labeling and training of the algo-
rithm, and testing of the algorithm on unseen data) that are detailed in
the next subsections.

Data retrieval
We retrieveddata from thepublicly available earthquake catalog of the
United States Geological Survey (USGS) (https://earthquake.usgs.gov/
earthquakes/search/). In particular, we downloaded all the information
relative to the M≥ 1:0 earthquakes (on any magnitude scale) that
occurredbetween January 1, 1989, andDecember 31, 2020, in Southern
California (in the area delimited by [32.5°, 38°] latitude and [−124°,
−112°] longitude) and in Southcentral Alaska (in the area delimited by
[56°, 65°] latitude and [−159°, −143°] longitude). It is important to
clarify that data between January 1, 1989, and December 31, 2012, were
only used to train the algorithms. Also, we only retrieved M≥ 1 earth-
quakes tomaximize the homogeneity and completeness of the catalog
explored (e.g., by minimizing any possible bias produced by the
increasing number of earthquakes detected with time due to the
deployment of new seismic networks and better detection limits of
modern seismic instruments). Finally, we extracted from the down-
loaded catalogs the date of occurrence, depth, and assigned magni-
tude of the earthquakes, as well as the latitude and longitude of their
epicenters.

Algorithm setup
We set up our training algorithm by selecting a random distribution of
N nodes with coordinates ði,j,tÞ within the spatiotemporal windows of
analysis, where i, j, and t indicate latitude, longitude, and time,
respectively. We also selected the nodes ðiLME, jLME, tLMEÞ, where iLME

and jLME are the geographical coordinates of the epicenter of the large-
magnitude earthquakes (i.e., earthquakes with magnitude above a
given threshold; M ≥MLME), and tLME is their date of occurrence. For
each node (ði, j, tÞ and ðiLME, jLME, tLMEÞ), we designed circular regions of
radius R centered on the spatial coordinates (ði, jÞ and ðiLME, jLMEÞ) and
intervals of interest consisting of 1-year backward temporal windows
sliding from t� T and tLME � T years to t and tLME, respectively, at time
steps of 1 day (Supplementary Fig. 9). Note that a node ði, j, tÞ or
ðiLME, jLME, tLMEÞ is discarded if the circular region of interest does not
contain low-magnitude seismicity. For this study, we chose MLME =6:4
(the magnitude of the first main shock of the Ridgecrest sequence),
T = 2 years, R = 120 km, and only N= 50 nodes to maintain a reduced
computational cost, although we also performed a parametric
exploration to analyze the influence of several of the parameters
(Supplementary Tables 1 and 2). For training purposes, we used four
earthquakes of the Southern California region (M7.3 1992 Landers,
M6.7 1994 Northridge, M7.1 1999 Hector Mine, and M6.6 2003 San
Simeon earthquakes), seven earthquakes from Southcentral Alaska
(M7.0 1999, M6.4 1999, M6.5 2000, and M6.9 2001 Kodiak Island
region; M6.7 2001 Southern Alaska; and M6.6 2002 and M7.9 2002
Central Alaska earthquakes), and up to 50 random nodes distributed
over the areas of analysis in Southern California and Southcentral
Alaska (Supplementary Table 3). This algorithm stepwas repeated 200
times to generate different ensembles of up to N = 50nodes, aiming to
assess how the selection of the randomnodes affectsmachine learning
predictions.

Calculation of statistical features
Using the earthquake catalog downloaded, we calculated five statis-
tical features from the low-magnitude seismicity (defined here as
earthquakes with magnitude in the range M=MMin �MMax) that
occurred within the circular regions and temporal sliding windows of
the nodes (Supplementary Fig. 9). These statistical features are the
standard deviation of the inter-event time (σIET), or time between low-
magnitude earthquakes; and the standard deviation of their depth
(σD), latitude (σLAT), longitude (σLON), and magnitude (σMAG). This
approach yields T-year time series ofσIET,σD,σLAT,σLON, andσMAG that
are assigned to each node (ði, j, tÞ and ðiLME, jLME, tLMEÞ) of the spatio-
temporal grid (Supplementary Figs. 10 and 11). Finally, the T-year time
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series were standardized (i.e., mean-removed and divided by the
standard deviation) to enhance the performance of machine learning-
based classifications.

Labeling and training of the algorithm
We labeled the T-year time series in two classes: unrest (class 1) and
quiescence (class 0). Unrest (class 1) was assigned to every time step of
the T-year time series of the spatiotemporal nodes ðiLME, jLME, tLMEÞ
between tLME � Tunrest days and tLME, i.e., over theTunrest dayspreceding
the large-magnitude earthquakes. In contrast, quiescence (class 0) was
assigned to every time step of the time series of the nodes ði, j, tÞ
between t� T years and t, and to every time step of the time series of
the nodes ðiLME, jLME, tLMEÞ between tLME � T years and tLME � Tunrest

days (Supplementary Figs. 10 and 11). This means that unrest was
assigned to the epicenter of the large-magnitude earthquakes during
the Tunrest preceding days, and quiescence was assigned to the rest of
spatiotemporal nodes. Analogue labeling strategies have been pro-
posed for forecasting volcanic eruptions70. Then, we trained 200 ran-
dom forest (RF) models, one for each of the ensembles of the
aforementioned random nodes, to classify the time steps of the T-year
time series as unrest (class 1) or quiescence (class 0) from the statistical
features (σIET, σD, σLAT, σLON, σMAG). Each of our RF models contained
500 decision trees and was generated by randomly picking two fea-
tures for each model iteration, whereas training and evaluation were
performed through a tenfold cross-validation technique with three
repeats. For example, using an unrest period of Tunrest = 30 days and a
maximum low-magnitude seismicity of MMAX = 4, we generated RF
models for both Southern California and Southcentral Alaska that
properly classified over 99.5% of the unrest and quiescence time steps
of the training dataset. In particular, our models yield an increase from
Pun ≈0 to Pun ≈ 100% within one month of the training events (Sup-
plementary Fig. 12), where Pun is the degree or probability of tectonic
unrest (defined as the ratio of decision trees classifying the statistical
features as unrest). Note that Pun can be also interpreted as the prob-
ability of occurrence of a large-magnitude earthquake within the
next Tunrest days.

It is worth noting that, since we employ 1-year backward win-
dows to generate 2-year time series of statistical features, the first
data point of the time series in Supplementary Figs. 10 and 11
reflects seismic events occurring up to three years before the
occurrence of each of the large-magnitude earthquakes (M ≥ 6.4)
used for training. Our specific setup ensures that no events with
magnitude M ≥ 6.4 occurred within the defined regions of interest
(R = 120 km) during the three years preceding the large-magnitude
earthquakes used for training. Expanding the training period would
elevate the chances of encountering additional large-magnitude
earthquakes during the timeframe labeled as quiescence, which
might result in incorrect labeling (quiescence vs unrest) and sub-
sequent inadequate training of our machine learning model.
Labeling also requires special attention if enlarging the regions of
interest and lowering the magnitude threshold for defining large-
magnitude earthquakes.

Testing of the algorithm on unseen data
We run our machine learning models (trained using Tunrest = 30 days)
on unseen data, i.e., the low-magnitude seismicity (M=MMin �MMax,
withMMin = 1 andMMax = 6) occurred from January 1, 2013, onwards. To
do this, we first calculated the T-year time series of statistical features
(σIET, σD, σLAT, σLON, σMAG) for the spatiotemporal coordinates
ðitar, jtar, ttarÞ, where itar and jtar are the geographical coordinates of the
target location (e.g., epicenters of the first main shock of the 2019
Ridgecrest sequence and the 2018Anchorage earthquake, or any other
location) and ttar is the target prediction date (e.g., 365 days, 90 days,
or 1 day before the occurrence of the earthquakes). The statistical
features for each of the T-year time series were calculated following

the same approach described above, and we also used the
same hyperparameters utilized to train the RF models (T = 2 years,
R = 120 km, 1-year backward sliding windows, and 1-day time steps).
Finally, we run the 200 RF models ensemble over the standardized
T-year time series of statistical features and retrieved the minimum,
maximum, and mean values of Pun. To successfully mimic the appro-
priate use of our method during near-real-time monitoring, we saved
only the prediction of Pun for the last time step of the T-year time
series (i.e., one day before the target prediction date, ttar), and repe-
ated the process from ttar = 1000 days before to ttar = 400 days after
the Ridgecrest sequence and the Anchorage earthquake. This
approach also ensures that the temporal evolution of Pun (Figs. 2–5)
does not contain artifacts produced by the standardization of the
T-year time series, and corresponds to the day-to-day prediction of Pun

at the target locations.

Finite element solid mechanics model
Our 2D finite element solid mechanics models aim to explore regional
stress changes occurring in the run-up to large-magnitude earth-
quakes. We built these models with COMSOL Multiphysics (v6.2),
solving the stationary momentum equation and applying the elastic
inclusion fault modeling approach58.

In particular, we designed a 2000× 2000 km domain and
imported fifteen small fault segments with 40–97 km length and one
large fault (LF) segment with 850km length as rectangular features.
Furthermore, we designed two settings (different geometrical config-
urations) in 2D to investigate whether the orientation (strike) and
geometry of the small fault segments (crosscuts or misaligned/non-
planar faults) affect the stress distribution and accumulationproduced
by the large fault segment. That said, we modeled mainly two sce-
narios: (1) progressive loading (horizontal compression), and (2) con-
stant loading with a progressive decrease of the large fault stiffness. In
all runs the top and the bottomof the domain are free surfaces, andwe
calculated the Von Mises stress at the fault segments. Finally, these
models were further explored in 3D to investigate how the strike and
dip of the small faults influence the accumulation of stresses in the
domain (Supplementary Figs. 7 and 8).

We assigned material properties to the host rock and the faults
based on the common crustal values used in the literature, which
reflect a linear elastic behavior. The host rock was modeled as a stiff
homogenizeddomainwithYoung’smodulus of 30GPa,whereas the LF
was given values from 10GPa (stiff) to 0.01 GPa (soft) to mimic the
progression from a less active fault segment to a more active one. Soft
values represent aseismic creep or locked conditions of the fault
segment, whereas stiff values reflect the conditions of a not recently
active fault in the region67. The stiffness of the small faults is initally
defined as random values between 0.03 to 0.92GPa, and this value is
kept constant for all the simulations. The host rock and all the faults
have Poisson’s ratios equal to 0.25 and density values of 2300 kg/m3.
Regarding boundary conditions, we impose a compressional stress
regime between 10MPa and 20MPa, which mimics the realistic
regional stress conditions for Southern California and Southcentral
Alaska54,55.

Data availability
The data used in this study are available in the earthquake catalog
database of the United States Geological Survey (USGS) [https://
earthquake.usgs.gov/earthquakes/search/]. The specific dataset used
for training and testing canbedownloaded fromref. 71 https://doi.org/
10.5281/zenodo.13212238.

Code availability
The R script used for data processing and analysis; the Matlab script
used to create Figs. 3, 4, and Supplementary Movies 1 and 2; the
machine learning-based models generated; the specific dataset used
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for training and testing; and a description of the files generated can be
downloaded from ref. 71 https://doi.org/10.5281/zenodo.13212238.
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