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Identifying the multiple drivers of cactus
diversification

Jamie B. Thompson 1,2 , Tania Hernández-Hernández3, Georgia Keeling2,
Marilyn Vásquez-Cruz 4 & Nicholas K. Priest2

Our understanding of the complexity of forces at play in the rise of major
angiosperm lineages remains incomplete. The diversity and heterogeneous
distribution ofmost angiosperm lineages is so extraordinary that it confounds
our ability to identify simple drivers of diversification. Usingmachine learning
in combination with phylogenetic modelling, we show that five separate
abiotic and biotic variables significantly contribute to the diversification of
Cactaceae. We reconstruct a comprehensive phylogeny, build a dataset of 39
abiotic and biotic variables, and predict the variables of central importance,
while accounting for potential interactions between those variables. We use
state-dependent diversification models to confirm that five abiotic and biotic
variables shape diversification in the cactus family. Of highest importance are
diurnal air temperature range, soil sand content and plant size, with lesser
importance identified in isothermality and geographic range size. Interest-
ingly, each of the estimated optimal conditions for abiotic variables were
intermediate, indicating that cactus diversification is promoted by moderate,
not extreme, climates. Our results reveal the potential primary drivers of
cactus diversification, and the need to account for the complexity underlying
the evolution of angiosperm lineages.

The angiosperm family Cactaceae is an iconic component of ecosys-
tems spanning theAmericas1–3. Nearly all cacti exhibit the succulent life
form which enables survival in the face of water scarcity, through
adaptations including succulent stems, reduction, modification or loss
of leaves, and crassulacean acid metabolism (CAM) photosynthesis4–6.
Although cacti are found across diverse ecosystems including wet
tropical forests and colder regions7, their richness is highest in arid and
semi-arid regions2,4. This has implicated aridification as a central driver
of diversification in cacti, whichhave someof the fastestdiversification
rates across plants despite long generation times1,3,8, and succulents
generally4,5. However, aridification struggles to explain dramatic
within-family phylogenetic imbalances. Major cactus radiations
occurred muchmore recently than the onset of aridity at their locales
and are primarily associated with the evolution of novel growth forms
and reproductive strategies2,3. Further forces shape diversification

rates of specific cactus groups including temperature9. Furthermore,
recent research suggests that speciation rates in cacti are fastest in
semi-arid to humid regions10. Thus, drivers other than increased ari-
dification must play a key role in shaping rate heterogeneity within
cacti2. We need to develop our understanding of the forces shaping
cactus diversity, one of the most endangered of any major taxonomic
lineage11.

The extraordinary ecomorphological diversity of cacti implicates
biotic drivers of diversification, with several identified. Growth forms
range from small button-like species in genera including Epithelantha,
tomassive columnars such as Pachycereus12, and pollination syndrome
varies across bees, moths, birds, and bats2,13. Diversification rates are
fastest in species with larger growth forms and derived pollination
syndromes (bat, bird and moth pollination)2,14. However, a range of
other variables are linked to cactus biodiversity patterns, including
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distribution2,7,9, elevation15, temperature16, chromosome number17,
edaphic properties18 and climatic variables19. Due to the complex
ecological interplay among these variables, important drivers can be
obscured, and we do not fully understand which are crucial for cactus
diversification. Furthermore, we do not fully understand the impacts
of drivers known to shape other succulent lineages (e.g., topographic
complexity20), or angiosperms as a whole (e.g., spatial distribution21).

Macroevolutionary research typically investigates a small number
of drivers, neglecting the complexity underlying diversification. This is
exemplified in cacti by the dependent evolution of growth form and
derived pollination syndromes2. Establishing whether diversification
rate is truly dependent on one, or both, is difficult. This problem is
amplified when considering dozens of potential drivers. Although
recent advances in hidden-state models provide a more sophisticated
framework for confirming drivers22, these models are computationally
expensive and cannot integrate dozens of variables. Additionally, these
cannot handle continuous variables such as aridity index, ormodel non-
linear relationships. A complete understanding of the complexity
underpinning cactus diversification requires thorough investigation of
widely sampled drivers, whilst accounting for their interactions. One
method of doing so is implementing machine learning methods to
efficiently filter important variables from a pool while considering
interactions23. This has revealed key drivers of reef fish diversification24

andhas the potential to explain the complexity of cactus diversification.
Here, we apply machine learning and phylogenetic methods to

help explain the mystery of cactus diversification. We reconstruct a
phylogeny containing over a thousand cactus species and assemble a
dataset of 39 potential predictors. Many of these are hypothesised to
shape diversification or diversity patterns of cacti, while several have
impacts across succulents and angiosperms generally. We ranked the
relative importance of drivers of diversification with XGBoost23, while
assessing the impact of potential interactions between drivers by

comparing interaction models with an equivalent “stump” model
(maximum interaction depth of one). We then used state-dependent
speciation and extinction (SSE) models to confirm the impact of sig-
nificant drivers. Our results indicate that cactus diversification is
shaped primarily by diurnal air temperature range, soil sand content
and plant size (height or length). Minor impacts are also conferred by
isothermality and geographic range size. Significantly, hypotheses of
growth form variation, pollinator divergence and aridity are recovered
as not primarily important, when accounting for complex interactions,
and sampling drivers broadly. Our results reinforce the complexity of
biological diversification, as well as the difficulty of identifying key
factors shaping the rise of cacti.

Results
Heterogeneous diversification of Cactaceae
We reconstructed a Maximum Likelihood phylogeny of 1063 cacti and
six Caryophyllales outgroups, using a supermatrix which sampled 15
plastid and three nuclear loci (16.47 kb, 6,020 parsimony-informative
sites and 77.5% missing data). Our phylogeny is moderately well-sup-
ported, with 32.3% of nodes supported by >70% BS and 11.9% by >90%
BS. Many of the shallower nodes are relatively weakly supported,
which is a common finding in phylogenetic analyses of cacti13,25–27.
Furthermore, topology and estimated divergences are broadly con-
gruent with previous hypotheses1,2. We estimate the stem age of Cac-
taceae as ~48.51 Mya, and the crown age as ~37.24 Mya (splitting of
Leuenbergeria from the remainder). Stem ages of major lineages are
similar, with Pereskia at 36.99 Mya, Maihuenioideae and Opuntioideae
at a near-simultaneous 36.86Mya and Cactoideae at 35.76Mya. Crown
ages of Leuenbergeria, Pereskia, Maihuenioideae, Opuntioideae and
Cactoideae are 19.65, 34.94, 4.03, 17.13 and 35.76 Mya, respectively.

We find diversification rate is remarkably varied (Fig. 1), recover-
ing strong support for heterogeneity using BAMM28 (Bayes Factor

Fig. 1 | Remarkable diversification rate heterogeneity across Cactaceae. Bran-
ches are coloured by speciation rates estimatedwith BAMM28 and vary 32-fold. Arc
segments of median speciation rate for thirteen morphologically varied cactus
genera are indicated. Cactus images are used under Creative Commons with
modifications allowed. From left to right: images 1, 3, 8, 11, 12, and 13 used photos
taken by Amante Darmanin, Forest & Kim Starr, John Tann, Renee Grayson, and
Wendy Cutler, which are licensed under a Creative Commons Attribution 2.0
License (https://creativecommons.org/licenses/by/2.0/). Image 2 used a photo
marked as being in the Public Domain (https://creativecommons.org/

publicdomain/mark/1.0/). Images 4 and 10 used photos taken by Leonora Enking
and Lyubo Gadzhev, which are licensed under a Creative Commons Attribution-
ShareAlike 2.0 License (https://creativecommons.org/licenses/by-sa/2.0/). Images
5, 7 and 9 used photos marked as being in the Public Domain using the CC0 1.0
Universal Public Domain Dedication (https://creativecommons.org/publicdomain/
zero/1.0/). Image 6 used a photo taken by Christer Johansson, which is licensed
under a Creative Commons Attribution 3.0 Unported License (https://
creativecommons.org/licenses/by/3.0/deed.en).
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4,096). The best-supported rate shift configuration has 20 shifts
(Supplementary Fig. 1), and tip-speciation varies 32-fold, from <0.04 in
someMammillaria to >1.2 in Gymnocalycium and Pilosocereus. Despite
the richness of Opuntioideae, only a single rate shift is recovered in the
basal branch. Multiple shifts were recovered across Cactoideae,
including severalwithin theMammillaria complex, and shifts in groups
Cereeae, Trichocereeae, Cacteae, Hylocereeae, and Browningieae.
Although not relevant to the focus of the current study, we also find
that species richness and tip-speciation rates vary across the Americas,
confirming that cacti are a good system for identifying drivers of
diversification across diverse ecological contexts (Supplemen-
tary Fig. 2).

Multiple drivers of cactus diversification
Our dataset of potential drivers consists of 39 explanatory variables for
up to 1063 ingroup species, with 21.59% missing data and a mean of
~834 entries per variable, ranging from 374 (chromosome count) to
1063 (growth form). Thirty-five variables were estimated from global
models of climatic, topographic and edaphic variables, usingGBIF data
which, after curation, comprised 9485 coordinates for 850 species.
The full dataset is available in Supplementary Data (https://github.
com/jamie-thompson/cactaceae).

We find that five variables are significant predictors of tip-
speciation rates when accounting for complex interactions with
XGBoost, ofwhich four are abiotic andonebiotic (Fig. 2a). The primary
driver is mean diurnal air temperature range (bio2), and weaker pre-
dictive power is found for soil sand content, plant size (height or
length), isothermality (bio3), and geographic range size. The full
XGBoostmodel had very high prediction accuracy (mean bias = 0.034)

and moderate precision (mean R2 = 0.21). No significant correlations
are found among the significant variables, indicating successful
selection of important features (Supplementary Fig. 5). In the XGBoost
model not accounting for complex interactions (the “stump” model),
predictive power was reduced (mean R2 = 0.15; Fig. 2b), and the rank
order of variables shifted. Three variables (biome, precipitation sea-
sonality and chromosome count) were identified as significant pre-
dictors in the simple model, but are non-significant in the complex
model. Isothermality and geographic range size were not significant in
the simple model but are significant in the complex model (Fig. 2).
Though some changes are small, the rise in importance of iso-
thermality and geographic range size is notable and shows that com-
plexity can obscure our ability to detect the central drivers of
diversification (Fig. 2).

XGBoost accounts for outliers; nevertheless, we ran additional
analyses to test how the findings are affected by unusually high esti-
mated speciation rates. In analyses excluding species with tip-speciation
rates above 0.65, we find that strong predictive power is maintained for
soil sand content and plant size, but is reduced in the most powerful
predictive parameter, diurnal air temperature range, while there is
minor variation in the weakest significant variables (Supplementary
Data, https://github.com/jamie-thompson/cactaceae).

Relationships between drivers and diversification
Each of the five significant predictors of tip-speciation rates are con-
firmed to relate to cactus diversification, with QuaSSE29 models
(Table 1, Fig. 3). The best-fitting relationship with speciation rates is
modal with drift, for all five variables (Table 1, Fig. 3). Interestingly,
each of the computed parameter estimates for the abiotic variables

R2 R12.0 = 2 = 0.15

ba

Fig. 2 | Importance of explanatory variables identified through machine
learning models. The relative importance of the top 15 (of 39) explanatory vari-
ables in predicting speciation rate in 1000 XGBoost bootstrap replicates is plotted
for complex models with maximum tree-depth of three a, versus simple models
with maximum tree-depth of one b, with model precision indicated by R2. The

vertical dashed line indicates the threshold of predicting speciation rate by chance
expectation alone. Upper and lower importance quantiles (25% and 75%) estimated
from 1000 model bootstraps are indicated with black horizontal bars. When
interactions are accounted for, the relative importance of several variables shifts,
and the R2 is improved.

Table 1 |Model comparisons ofQuaSSE analyses of continuousdriverswith significant predictive ability in theXGBoostmodel,
with AIC scores of the best-fitting and null models

Variable and sample size Best-
fitting model

ΔAIC of best fitting model versus con-
stant model (null)

Midpoint value (back-transformed to the original scale if
they were log-transformed), and drift parameter

Mean diurnal air temperature
range (n = 850)

Modal with drift 233.98 10.20 °C, 0.024

Soil sand content (n = 850) Modal with drift 65.53 48.38%, 0.00045

Plant size (height or length) (n = 750) Modal with drift 76.72 45.74 cm, −0.060

Isothermality (n = 850) Modal with drift 237.10 0.55, 0.0012

Geographic range size (n = 850) Modal with drift 307.86 0.23 AOO, −0.45

Delta AIC is >4 for all best-fitting models versus second best-fitting models with p < 0.0001 for each of the best-fitting models.
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were intermediate, indicating that the speciation rates in cacti are
generally accelerated by moderate, not extreme, climatic variability.
The modal models were strongly supported over the second best-
fitting models for every variable (ΔAIC > 4).

Some estimates of variances inmodalmodels are small andwe do
not report them (Fig. 3). Though not pertaining to the focus of our
study, for completeness, we report estimates of drift, the directional
tendency of the variable across evolutionary time. It is important to
note that QuaSSE is limited to estimating general trends, and not the
true relationship between variables and diversification29. Predicted
speciation rates byXGBoost can showhigher resolution, but they show
different patterns to QuaSSE, because they do not account for the
effects of shared ancestry (Supplementary Fig. 6).

Discussion
Multiple forces have been proposed to shape diversification of the
Cactaceae, but it is difficult to extricate key drivers. With a large
phylogeny and extensive dataset of abiotic and biotic variables, we
characterise the complexity of cactus diversification with machine

learning and explore their relationships with phylogenetic SSE
models. Our analyses support the role of five primary drivers of
diversification, including previously under-investigated variables,
such as geographic range size. We provide further support for pre-
viously hypothesised forces including plant size, but find little sup-
port for others including growth form, pollination syndrome and
aridity. Our results reinforce the complexity of macroevolution, but
also the difficulty of predicting diversification rates. The XGBoost
model identifies significant unexplained variance in cactus diversifi-
cation. Furthermore, these results have bearing on the long-term
impacts of global climate change on the biodiversity of cacti, an area
of active research7.

Though complexity in cactus diversification was previously
explored by associating radiations with two coevolving traits2, a
comprehensive understanding of forces is unknown. Our XGBoost
models emphasise the need to unravel these interactions, with lower
predictive power for the simple model than the complex model. Fail-
ure to account for interactions resulted in incorrect inference of rela-
tive importances, exemplified by the reduction of importance of
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Fig. 3 | Best-fitting relationships between continuous variables inferred as
significant by XGBoost and speciation rate, as estimated by QuaSSE. Variables
are in order of ranked importance according to the full XGBoost model. It is
important to consider that QuaSSE does not provide the exact relationship
between variables and speciation rates, only the general trend29. The reported

model fits are those best-supported by the data. The cases with narrow modes are
likely shaped by the inability of QuaSSE to account for hidden states and con-
founding correlations betweenvariables.Wepresent these ashypotheses to inform
future research.
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diurnal air temperature range, and the elevation of biome. Our results
contribute to recent research exploring complexity in
macroevolution22,24 and call for a more thorough examination across
the Tree of Life. Given the low explanatory power of individual drivers
explained XGBoost, and the discrepancy between XGBoost predic-
tions and phylogenetically controlled QuaSSE results (Supplementary
Fig. 6), which provide only a general trend, further research is needed
to clarify exact relationships between drivers and cactus diversifica-
tion. With this in mind, we wish to present discussion on the five dri-
vers simply as hypotheses to shape future research.

Adaptations to temperature variation may help explain our iden-
tification of a modal relationship between cactus speciation and
diurnal air temperature range, with a relatively low optimum of
10.20 °C, as estimated by QuaSSE. Cacti are commonly thought of as
the hardiest plants, however, they are finely-tuned to their
environments30. Although extreme deviations in diurnal temperature
are negatively associated with population survival7, the model fits
show that speciation rate is highest at 10.2 °C, an intermediate value of
diurnal temperature range. Cacti have adapted to withstand diurnal
temperature ranges by minimising water loss. Such adaptations
include species of Mammillaria and Carnegeia, which alter their stem
diameter to mitigate the impact of daily temperature fluctuations31.
Notwithstanding, temperature extremes pose distributional limits in
cacti32, and across all plants. Many plants, including cacti, struggle to
withstand high temperatures33–35, with photosynthetic performance of
cacti reducing upon 2 °C of heating36. Increased temperatures affect
germination37, and population or range sizes7,38. Conversely, most
succulents struggle to avoid freezing damage at low temperatures6,
strongly constraining some species distributions, which may act as a
selective pressure shaping species diversity39,40. Therefore, physiolo-
gical limits encountered in environments with high diurnal air tem-
perature variation likely explain the finding of optimal speciation rates
in environments with relatively low diurnal temperature variations,
through survivorship variation. It is unclear how this variation expli-
citly links to differential rates of reproductive isolation though. Further
studies are necessary to establish the relationship between morpho-
logical adaptations, speciation, and diurnal temperature variation.

Soil is an important determinant of plant biodiversity41,42, includ-
ing cacti19, and has been related to diversification43. We found that soil
sand content is the third best predictor of cactus speciation rates
(Fig. 3), with fastest speciation in medium-sandy soils, as estimated by
QuaSSE. Edaphic variation determines which species can grow and
survive in particular regions, and different species have different
requirements44. Particular conditions may promote survival, repro-
duction and population growth inwell-adapted species, which leads to
reproductive isolation through ecological specialisation, with non-
optimal conditions being detrimental to macroevolutionary success45.
Sand content shapes diversity patterns of the cactus genus
Neobuxbaumia18, and species inhabiting theCaatinga46. Sand content is
a relevant property for cacti, associated with poor water retention and
fertility47,48, which provides selective pressure for shallow roots in
many cacti. Soils with high levels of sand may be too poor at retaining
water even for arid-adapted cacti, which reduces the opportunity for
population growth and reproductive isolation. Furthermore, soils with
high sand content create edaphically dry areas, which may have
extreme precipitation and temperature patterns, predicted to be
detrimental for cactus populations7. In contrast, where soils are less
sandy, plants without adaptations to sandy soil are more likely to
thrive, providing competition to cacti.

Plant size is the third most powerful predictor of speciation
(Fig. 2). Plant size has many physiological and ecological
consequences49, allometrically scaling with numerous life history
traits50, including those with powerful impacts on speciation rates
across angiosperms51. An inverted modal relationship between cactus
size and speciation rate is best supported by QuaSSE. QuaSSE cannot

provide the exact relationship between plant size and diversification
rate, though it can provide the general trend and test significance of a
variable29, and here we limit description to broad-scale patterns.
QuaSSE estimated fastest rates in the smallest and largest cacti, and
reduced rates in intermediate sizes (Fig. 3). Here, the smallest cacti
tend to be species scored as 0 (globose caespitose, globose solitary
and barrel), while the largest tend to be species scored as 1 (arbor-
escent, shrubby and treelike). Although this growth form binarisation
provides limited fine-scale resolution, it has been shown to be useful
given the difficulty in scoring growth forms in cacti2,13. Furthermore,
growth form strongly shapes cactus size variation (Supplemen-
tary Fig. 3).

Relationships between organismal size and speciation rate are
frequently documented in lineages across the Tree of Life52,53, but the
nature of trends can vary54. It is typically thought that smaller species
speciate more rapidly due to faster mutation rates and generation
times, reduced gene flow, and higher selection on more niche axes,
leading to reproductive isolation50. While we do recover this classic
pattern, we also find that speciation rates of larger cacti are elevated,
with lowest rates found in intermediate sizes (Fig. 3). This pattern has
been documented previously in subfamily Cactoideae and is explained
through a coevolution with pollination syndrome2. Pollinator diver-
gence can compensate for reproductive difficulties conferred by arid
biomes, in which mate-finding Allee effects are amplified due to low
population densities55. Derived pollination syndromes can provide
barriers to gene flow56, facilitating reproductive isolation57. Further-
more, bat and bird pollinators deposit a larger amount of pollen, and
disperse over longer distances than ants or bees (the ancestral state)58.
Variation in dispersal distance can influence reproductive isolation
because it determines gene flow within and between populations59,60.
Why intermediately sized cacti speciate more slowly could result from
growth form variation, which strongly shapes size variation (Supple-
mentary Fig. 2), and is associated with different evolutionary strate-
gies, and reproductive isolation mechanisms.

Previous research in climate-driven diversification has focused on
impacts of historic climatic change27,61–63 and broad-scale spatial
variation10,64,65, but less is understood about the impacts of localised
temperature variability. We find that isothermality, the ratio of diurnal
and annual temperature variation, is a significant predictor of cactus
speciation rate. As with diurnal air temperature range, speciation is
fastest at intermediate isothermality values (~0.55), as estimated by
QuaSSE. This optimum represents environmental conditions where
diurnal air temperature fluctuations are ~55% the magnitude of annual
fluctuations. In these conditions, seasonality is more powerful than
daily variation, but daily temperature does fluctuate. These conditions
could plausibly accelerate speciation through seasonal variation in
temperature driving niche evolution, but with relatively unexceptional
daily fluctuations reducing immediate stressors to cacti. However,
isothermality as a driver of evolution is understudied compared to
other climatic variables such as precipitation and temperature.

High isothermality values indicate environments of powerful
diurnal temperature variability relative to annual. One region of Earth
characterised by high isothermality is the Tropics, which have little
seasonal variation but strong diurnal fluctuations66. Outside of the
Tropics, where annual variation is pronounced, species richness of
cacti is highest4,7 (Supplementary Fig. 2). Our results, which indicate
that cactus speciation is fastest when climatic conditions are unex-
ceptional, support recent research which found that cacti are more
vulnerable to climatic variation than commonly thought7. It is
becoming clear that cacti, typically thought of as among thehardiest of
all plants, are not especially robust to extremes of climate, which has
significant consequences for the conservation of succulent floras.

Geographic range size is a complex biotic variable influenced by
numerous ecological and evolutionary factors67. Though range size
determines family-level richness across angiosperms, with widespread
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families diversifying more quickly68, the impact at lower taxonomic
levels is poorly understood. We find that range size has a weak but
significant impact on cactus speciation.Wewish to promote caution in
interpretation of these results, since geographic range size is the
weakest of the significant predictors by XGBoost (Fig. 2), is the most
sensitive variable to sampling issues pervading GBIF, and is difficult to
estimate for cacti especially, as detailed in the methods. Furthermore,
the QuaSSE fit has the tightest variance of all, which suggests it is
shaped primarily by a few rapidly-speciating species instead of a gen-
eral trend. We discuss this speculatively, to inform future research,
which we urge is critical, as others have before7,11. We find, using
QuaSSE that speciation is fastest in specieswith ~0.23AOO (Fig. 3). This
is at the low tomedium end of range sizes in cacti. It is characteristic of
species including in Opuntia tehuacana, Stenocereus montanus and
Facheiroa squamosa, which are found across individual regions within
countries: Southern Mexico, Northern Mexico, and Northeast Brazil,
respectively (distributions described in Plants of the World Online).
This contrasts with the largest range sizes, such as in Opuntia engel-
mannii and Epiphyllum phyllanthus, which spread across multiple
countries, and the smallest range sizes of extremely endemic and rare
species, which can be miniscule. Cacti have smaller range sizes than
most angiosperms7,11, which are likely to further shrink due to climate
change, leading to increased extinction threat7. Smaller ranges con-
fer less resilience to environmental changes and habitat loss69,70, and
larger ranges are thought to elevate speciation rate via population
fragmentation as the opportunity to encounter barriers and new
habitats is magnified71. This pattern is supported by mammals and
birds72,73. It is hard to reconcile why a pattern of faster speciation in
species with larger distributions was not recovered in cacti. However,
an association between faster speciation rates and smaller range
sizes shapes the Brazilian Atlantic forest flora, attributed to budding
speciation74. It is plausible that analysing geographic range size at
species level in a rapidly diversifying and young lineage cannot reveal
causality. Young species in radiating lineages will necessarily occupy
smaller ranges than their ancestors, thus it is hard to estimate the
range size at which speciation is most rapid. Nevertheless, under-
standing the relationship between range size and speciation should
be a focus of cactus research, given the threat of climate change on
range sizes7. We thoroughly recommend future research is under-
taken with more sensitive methods than QuaSSE, especially hidden-
rates models22.

With the most comprehensive dataset for eco-evolutionary ana-
lysis yet assembled for Cactaceae, our investigations represent the
state of the art for identifying the multiple drivers of cactus diversifi-
cation. Although we reconstructed the most taxonomically compre-
hensive phylogeny yet, a fraction of nodes are relatively-weakly
supported, a pattern often observed in cacti due to their recency and
limited genetic diversity13,25–27. Future research should aim tomaximise
both taxonomic and molecular sampling, possibly by using the
Angiosperms35375 or Cactaceae591 probes76.

The general trends identified here are unlikely to change sig-
nificantly with increased resolution or with alternative diversification
estimation methods. Incomplete taxonomic sampling and phyloge-
netic uncertainty could have biassed diversification rate estimates, as
well as the methodological choice of using BAMM to estimate spe-
ciation rates. Critics have highlighted potential sensitivities to prior
distributions, which can influence the detection of speciation and
extinction rate shifts77. Alternative tip-rate estimators include the
highly accurate ClaDS78 and the DR statistic79. However, analysis with
ClaDS is too computationally expensive for larger lineages, and the DR
statistic cannot account for incomplete and uneven taxonomic sam-
pling. We accounted for incomplete sampling in every analysis, and
our topologywas congruent with previous estimates1,2,13. Furthermore,
we implemented a highly conservative rate shift prior of one in BAMM,
and limited BAMManalyses to tip-rate variation. Tip-variation is highly

robust and accurate80 and is less sensitive to the influenceof deep-time
rate heterogeneity, a sourceof concern for BAMM28 and diversification
methods generally81.

Recent research has begun to use machine learning to identify
forces shaping macroevolution24 and disentangle complex macro-
ecological datasets19. We used it here to quantify the complexity
underlying macroevolution and identify drivers of cactus diversifica-
tion, finding that accounting for interactions substantially improves
explanatory power, and influences the rank order of drivers. But it has
also revealed how much we do not know about cactus diversification.
The top three drivers identified are characters relating to climate, soil
characteristics, and plant physiology, each of which have low indivi-
dual predictive power. Furthermore, the complex XGBoost model
reveals that ~79% of variation is yet to be explained. Interestingly, the
outputs of the XGBoost models, which do not account for shared
ancestry, show different relationships to QuaSSE. This indicates that
our ability to test for complexity underlying the ecological factors
shaping diversification need to be phylogenetically controlled, which
is difficult with currentmethods on the scale required. Future research
should aim to close these gaps, through more substantial data col-
lection and development of statistical methods.

The cactus radiation remains one of the most iconic lineages of
plants3,8,82, especially in arid and semi-arid regions1,2. Cacti are the
subject of intense macroevolutionary research1,2,9,10,83–87, which has
suggested a multitude of factors shaping diversification rate, some of
which are correlated2. This has made it challenging to identify the
important drivers of radiations, a problem found across the Tree of
Life22,24,68,88,89. To address this challenge, we applied amachine learning
method to account and test for complexity23, and efficiently rank the
importance of variables in an extensive dataset, revealing five key
drivers. This method offers a promising direction for macroevolu-
tionary research, by holistically and efficiently analysing dozens of
interacting variables simultaneously, thus directly addressing the
complexity underlying diversification. However, important drivers still
require confirmation with phylogeny-controlled methods, and this
framework requires significantly more intense data acquisition com-
pared to traditional single-trait analyses. Our results suggest that
cactus speciation is shaped by climate, edaphic characteristics and
morphology. Further minor contributions are made by isothermality
and geographic range size.

Methods
Supermatrix assembly and phylogenetic reconstruction
We reconstructed a phylogenetic hypothesis of Cactaceae from a
supermatrix built with published genetic sequences. Orthologous loci
were identified and clustered with the OneTwoTree pipeline90. The
resulting taxonomy was checked against CITES91 and more recent lit-
erature. We merged clusters of partial sequences with their full
sequences, keeping the longest sequence when a species was present
in both partial and full-sequence clusters. We added outgroup
sequences from Anacampserotaceae, Portulacaceae and Talinaceae
with Mafft –add92 and visually inspected alignments for quality using
SeaView93. Finally, we trimmed poorly aligned positions with trimAl
using the command “gappyout”94 before concatenation into a super-
matrix with AMAS95.

We reconstructed a Maximum Likelihood (ML) phylogeny using
RAxML v896, applying a GTR model of nucleotide substitution to each
locus partition, and assessing topological support by allowing boot-
strapping to end automatically. In this analysis, we constrained the
monophyly of several lineages to improve the likelihood calculation,
after initial ML searches. These were the subfamilies (Cactoideae,
Maihuenioideae, Opuntioideae), the individual genera once placed in
Pereskioideae (Leuenbergeria and Pereskia, now considered para-
phyletic), and the tribe Echinocereeae. We time-calibrated the final
phylogeny under Penalized Likelihood (PL) using treePL97, with stem
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and crown ages given upper and lower bounds from the highest pos-
terior probabilities estimated by98 in a relaxed clock phylogenetic
reconstruction of angiosperms. To identify the most common cross-
validation optimal parameters we performed 100 priming steps in
treePL. Finally, we performed cross-validation to find the smallest
score, and estimated divergence times using the corresponding
smooth value. More sophisticatedmethods of time calibration such as
BEAST99 were not possible given the size and complexity of this
dataset, and we used secondary calibrations due to limited fossil
availability1.

Data assembly
We compiled a large dataset of abiotic and biotic variables potentially
contributing to variation in cactus diversification rate.Many havebeen
previously hypothesised to drive cactus diversification (e.g., growth
form, pollination syndrome and aridity), while some play a role in
succulent or angiosperm diversification generally (e.g., elevation,
bioclimate, plant size, topographic complexity and geographic range
size). For spatial variables, we downloaded georeferenced distribution
data from the Global Biodiversity Information Facility (GBIF, https://
www.gbif.org/), retaining only those present in our phylogeny, and
cleaned coordinates manually. We eliminated records with identical
latitude and longitude, and those fromcultivated specimens, botanical
gardens, and purchased from greenhouses and markets. The records
were visualised in QGIS to eliminate records falling outside of the
coastal boundaries100. Finally, the distribution was corroborated
manually according to the known distribution of cacti, according to
botanical databases (Tropicos, APGandPlants of theWorldOnline). All
data cleaning steps were performed in Python 3.1 with the modules
Pandas, Numpy and Seaborn101–103. GBIF data often exhibits unequal
sampling across species and regions, with certain areas being
underrepresented104, potentially skewing the climatic values derived
from these records. Additionally, the presence of multiple data points
within a small area can lead to spatial autocorrelation, where obser-
vations are not truly independent, thus introducing bias. To minimize
these spatial biases, we implemented a sampling strategy that selected
only one occurrence per species within each 1 km² grid cell.

With these curated coordinates, we extracted the 19 bioclimatic
variables, as well as aridity index, potential evapotranspiration and net
primary productivity from CHELSA105. From other sources we extrac-
ted elevation and six measures of topographic complexity (slope,
roughness, standard deviation of slope, standard deviation of eleva-
tion, profile curvature and tang curvature)106, three relevant measures
of soil (sand content, water and texture)107, and biome108. We used
median values for each species in all further analyses, except biome
which is categorical, for which we used the most common biome for
each species. We calculated geographic range sizes as Area of Occu-
pancy (AOO) using the R package conR109, using the data prior to
sampling one per 1 km² grid cell, and using a cell size of 0.1×0.1 km,
because of the small range sizes found in many cacti7,11. We are aware
that this is smaller than the 2x2km cells recommended by IUCN,
however, many cacti have very small geographic ranges7,11. By using a
smaller cell size, we can better capture the variation at the smaller end,
but this does reduce the estimated absolute range sizes in the small
number of widespread species. To support this choice, we also cal-
culated range size with a cell size of 2x2km and confirmed they are
nearly perfectly correlated (r = 0.997, p < 2.2e-16) (Supplementary
Fig. 7). We downloaded chromosome counts from the Chromosome
Counts Database, using the median for each species in our analyses110.
Webuilt upon size (height or length), growth formandpollination data
collected by refs. 2,13. Most of these data were from12, but a small
amount were from publications, or descriptions of specimens from
online databases. Plant size datawasmostly only available asminimum
and maximum, and we recorded maximum to avoid issues with
observations of incomplete, juvenile or diseased specimens. We

scored species described as “barely above ground level” or similar as
zero. Following2, we binarised growth form as globose solitary, glo-
bose caespitose or barrel form, versus arborescent, shrubby or
columnar, recognising the complexity of assigning growth forms to
cacti13. Similarly, following2 we binarised pollination syndrome as
ancestral (mellitophily, or bee-pollination) versus derived syndromes
(ornithophily (birds), chiropterophily (bats) and sphingophily
(moths)). We also recorded whether a species is epiphytic from12 or
species descriptions in online floras. For a full list of the 39 variables
and their hypothesised role in shaping diversification rates, see Sup-
plementary Table 2. We confirmed there are few correlations among
continuous variables by plotting with corrplot111 (Supplemen-
tary Fig. 4).

Ranking major drivers of diversification
We estimated diversification dynamics after pruning outgroups using
Bayesian Analysis of Macroevolutionary Mixtures (BAMM)28, sampling
four Metropolis coupled Markov-chains (MCMC) of 50 million gen-
erations every 5000 and discarding the first 10% as burn-in. We set
priors with the R package BAMMtools112 and implemented a con-
servative prior of a single rate shift. To account for imbalanced sam-
pling, we provided sampling fractions for every genus according to
CITES91.We assessed convergencewith the R package coda113, ensuring
effective sample sizes were >200. Mean tip speciation rates were
extractedwith BAMMtools112.Withmean tip speciation rates estimated
by BAMM as the response variable, we assessed the relative impor-
tance of variables using the tree-based machine learning classification
method XGBoost23. XGBoost assesses the importance of hypotheses
explaining diversification by applying an adaptive learning algorithm
to a set of models that are progressively better fit to the data by
reweighting extreme residuals of the previous model. XGBoost pro-
vides benefits over traditional methods for this type of problem, such
as phylogenetic generalised least squares which has been used to
analyse family-level dynamics in plants68. Importantly, these benefits
include relaxing the assumption of linear relationships between vari-
ables and the response, capturing complex interactions in high-
dimensional datasets, and better handling ofmissing data and outliers.
By adapting R code from24, our XGBoost models were tuned in two
steps to identify the parameters that minimise the root mean square
error (rmse), for the predictive stage. First, an initial tuning step with
predefined parameter combinations was performed. Following this,
we refit 1000models by randomly sampling parameters from uniform
distributions bounded by the identified optimal values from stage one
+/− 10%. For the final predictivemodel, the combination of parameters
that minimised rmse was used, which resulted in a decision tree base-
learner model with depth varying from 2-7. A cross-validation proce-
dure assessed the accuracy of the XGBoost in predicting tip-rates, by
randomly subsetting 80% and 20% of the data into training and testing
parts, respectively. We refit the final model using the training dataset
and then used the coefficients of prediction to predict tip-rates in the
testing dataset. We identified significant variables with upper and
lower quartiles of relative importance that did not overlap with the
model threshold (1/total number of variables) and confirmed there
were no correlations among these by plotting with corrplot111 (Sup-
plementary Fig. 5). We plotted predicted speciation rates at a range of
250 values for the significant variables, keeping other variables as their
median (if continuous) ormode (if discrete). To explicitly test whether
complexity better explains cactus diversification than simple models,
we specified a “stump” model, the decision tree base-learner model
with interaction depth =1 which does not parameterise interactions
(interaction depth =1) and compared mean R2.

Sensitivity analysis
After visually inspecting BAMM-estimates tip-rates and the explana-
tory variables, we performed a sensitivity test. Although XGBoost is
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robust to outliers, we wanted to ensure our results were robust and
that we uncovered macroevolutionary trends rather than spurious
relationships driven by rapidly diversifying lineages. Four genera had
fast tip-rates above 0.65 (Copiapoa, Gymnocalycium, Harrisia and
Pilosocereus), which could be unlinked to any overarching macro-
evolutionary trend across the family. These rates could lead to reco-
vering spurious relationships with drivers.We re-ranXGBoost allowing
tree-depth excluding all taxa for which tip-speciation rate exceeded
0.65, leaving 996 taxa for analysis, to verify that these rapidly spe-
ciating lineages had minimal impacts on results.

State-dependent diversification models
We used QuaSSE29 to analyse the impact of continuous variables
identified as significant by XGBoost, after transformation to improve
normality (Table 1, Figs. 2 and 3). For each variable, we fit seven
models of trait-dependent diversification, in which the relationship
between diversification and the variable is constant, linear, sigmoidal
and hump (all with-and-without drift, except constant). Models were
estimated under Maximum Likelihood in the R package diversitree114,
and we accounted for incomplete sampling by specifying the sam-
pled fraction of described species richness. We identified the best-
fitting model based on AIC, which we plotted. We produced a table
comparing the best-fitting model against the null model of
constant rates.

Data availability
All Supplementary Data underlying our results are available at https://
github.com/jamie-thompson/cactaceae, which includes GenBank
accession numbers (in the file named “AccessionsMatrix.csv”) and the
entire dataset of 39 variables. Data used to make Fig. 1 is in folders
“Alignment, accessions and tree” and “XGBoost and GBIF Data
Assembly”. Data used tomake Fig. 2 is available in the folder “XGBoost
relative importance tables”. Data used to make Fig. 3 is available in the
folder “QuaSSE model fits”.

Code availability
Sources of code used in analyses with XGBoost and QuaSSE are indi-
cated in themethods section, andoriginal code used for data assembly
can be found at https://github.com/jamie-thompson/cactaceae. Code
used to make Fig. 1 is available in ref. 64. Code used to make Fig. 2 is
available in ref. 24. Code used to make Fig. 3 is in the folder “QuaSSE
model fits”.
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