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An economic demand-based framework for
prioritization strategies in response to
transient amino acid limitations

Ritu Gupta1,3,4, Swagata Adhikary1,2,4, Nidhi Dalpatraj 1 & Sunil Laxman 1

Cells contain disparate amounts of distinct amino acids, each of which has
different metabolic and chemical origins, but the supply cost vs demand
requirements of each is unclear. Here, using yeast we quantify the restoration-
responses after disrupting amino acid supply, and uncover a hierarchically
prioritized restoration strategy for distinct amino acids. We comprehensively
calculate individual amino acid biosynthetic supply costs, quantify total
demand for an amino acid, and estimate cumulative supply/demand require-
ments for each amino acid. Through this, we discover that the restoration
priority is drivenby thegross demand for an amino acid,which is itself coupled
to low supply costs for that amino acid. Demand frommetabolic requirements
dominate the demand-pulls for an amino acid, as exemplified by the largest
restoration response upon disrupting arginine supply. Collectively, this
demand-driven framework that drives the amino acid economy can identify
novel amino acid responses, and help design metabolic engineering
applications.

Cells respond to changes in nutrients, by rewiring global processes
towards restoring homeostasis. Cell metabolism has therefore been
viewed as an economy, with the ability tomanagemetabolite supply in
proportion to their requirements towards different allocations1–3. In
any economy, such a ‘metabolic factory’ would not merely synthesize
different metabolites to satisfy its activities, but also ensure that
each of these is supplied in the right quantities at the right time4.
Cells therefore must match this required supply with demand
through coordinated responses. Indeed, several global metabolic
programs regulate cell growth in the context of different nutrient
environments5–9. While such programs are well known, we have a
minimal understanding of how cells prioritize the restoration of dis-
tinct metabolic resources when there are transient disruptions in
their supply.

Amino acids are the core of a cellular economy, by being essential
for protein synthesis as well as metabolism. The relative scale of the
latter is particularly underappreciated. Therefore, all cells have

multiple mechanisms to sense amino acid sufficiency and/or restore
amino acids. A cell incapable of considering supply parameters as well
as thedemand for amoleculewould struggle to survive1,2. For example,
in eukaryotic cells, the activity of the target of rapamycin complex 1
(TORC1) is high during amino acid sufficiency, and functions as a
demand sensor10,11. Contrastingly, the Gcn4/ATF4 transcription factor
(a master regulator of amino acid biosynthesis) functions during
starvation or growth, to restore amino acid supply to match
demand12–14. When the supply of amino acids is disrupted (causing
supply-demand mismatches), we do not understand the prioritization
strategies to restore distinct amino acid pools. Commonly, studies
utilize complete amino acid starvation, which will treat all amino acids
uniformly6,9,15. However, amino acids each have distinct metabolic
origins and synthesis routes16,17, chemical properties, uses, and intra-
cellular concentrations18, and cells might therefore differently prior-
itize restoring the supply for distinct amino acids after disruptions
in supply.
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In this study, using prototrophic yeast cells in a defined glucose
and nitrogen replete environment, and by disrupting exogenous
amino acid supply, we asked how cells prioritize restorations for dis-
tinct amino acids. We organized amino acids into groups based on
both their metabolic origins and chemical properties, transiently dis-
rupted the supply of each group, and used reporters to assess amino
acid supply-demand mismatches. Through this, we uncover hier-
archically prioritized restoration responses to disruptions in the sup-
ply of distinct amino acid groups. We estimated the unit costs of
biosynthesis to supply each amino acid, separately calculated the
relative demand for each amino acid (coming fromallocations towards
metabolism as well as the proteome), and contextually assessed
priorities of amino acid restorations. Our results reveal an amino acid
economy where restorations are prioritized based on demand-driven
pulls. These findings suggest that demand-dependent economic con-
straints shape amino acid allocations in cells and suggest the need for
distinct amino acid sensing/restoring machinery. This knowledge
could be leveraged for efficient metabolic engineering of cells.

Results
A metabolic origin and chemical structure based grouping of
amino acids
Cells receive their supply of amino acids from various extrinsic sources,
as well as via de novo synthesis from carbon and nitrogen precursors.
The demands for amino acids come primarily from protein synthesis, as
well as their various uses in metabolism19,20, as illustrated in Fig. 1A.
Transient disruptions in aminoacid supply canbeachievedby restricting
extrinsic sources. If this occurs, wewondered if cells might prioritize the
restoration of distinct amino acids (based ondemand or supply criteria),
or whether they would treat the disruption of all amino acids uniformly
(Fig. 1A). Currently, this has not been systematically assessed.

In order to investigate such putative prioritization responses, we
had to first pool amino acids into reasonable groups. Conventional
amino acid groupings are based on physicochemical properties (Fig
S1A), and therefore do not include considerations of their (metabolic)
supply or origins. We initially hypothesized that having groups that
included supply criteria might help to systematically address this
question. We therefore organized amino acids into groups that con-
sidered their metabolic origins (as obtained from KEGG17), as well as
retained information on their chemical structures. This reorganization,
consistent with existing metabolic groupings21, also acknowledges
conventional chemical structure based criteria. With such a grouping,
it was immediately apparent that the ability to supply precursors for a
given amino acid is not uniform, and depends on available precursors
given the metabolic state of the cell. Through this, we categorize the
different amino acids into seven groups, as shown in Fig. 1B. For
completeness the predominant metabolic pathway for each amino
acid (in a glucose and nitrogen replete environment), where all pre-
cursors used in each pathway are listed, are provided in the composite
supplementary Fig. S2. Additional points were considered for specific
amino acid groupings. Isoleucine is derived from OAA (oxaloacetate),
which comes from either/or pyruvate and TCA cycle/glyoxylate shunt,
depending on the metabolic state. In a glucose replete environment,
this will predominantly be from pyruvate. The biosynthesis of
branched-chain amino acids (BCAAs) are interconnected, with shared
enzymes. Therefore, the BCAA group is listed as glycolytic/ TCA, BCAA
group. Ser, Gly and Ala are all derived from the lower armof glycolysis,
and are therefore called glycolytic, uncharged (although ser is polar).
We separated the PPP-dependent amino acids. Phe, Tyr, and Trp are
aromatic and share a common precursor–chorismate–via erythrose 4-
phosphate- and can be grouped as PPP, aromatic. These however are
not fully PPPderived, since theydonot require theoxidative armof the
PPP, as long as erythrose 4-phosphate is available22, however in a glu-
cose replete environment this will predominantly come from the PPP
(Supplementary Fig S2). The exclusively PPP derived amino acid is

histidine, which is polar and basic, and is grouped separately as PPP,
polar, basic. The other group is derived from TCA cycle, mainly from
OAA and α-ketoglutarate. Glu and Gln are directly derived from α-
ketoglutarate. The remaining (Asp, Asn, Thr) also require OAA and are
grouped under TCA, polar group. The last group (Arg, Pro, Lys) has
arginine, proline derived from glutamate, while lysine comes from the
glutamate precursor α-ketoglutarate and is grouped alongside argi-
nine due to similar chemical properties. Therefore, we group these
together as glutamate derived (also see Supplementary Fig. S2).
Cysteine and methionine group are sulfur containing, and originate
from a common precursor—homocysteine. Additionally, glutamate
(and glutamine) function through a transamination reaction as an
amine donor for other amino acids (Fig. 1C). They thus themselves
become a metabolic source for other amino acids. We utilize this
grouping shown in Fig. 1B henceforth, to represent the biosynthesis
network in our experimental system—a glucose and nitrogen-replete
environment. At this stage, wemade no further assumptions about any
significance of such a grouping.

Cells exhibit hierarchical prioritization responses to supply-
disruptions of distinct amino acid groups
With this grouping, we wanted to experimentally assess responses to
transient supply disruptions of distinct amino acids. For this, we
required a reporter of mismatches in amino acid supply vs demand.
Prototrophic yeast cells synthesize all amino acids when providedwith
nitrogen and carbon precursors, when external amino acid supply is
broken. In order to restore amino acid supply, eukaryotic cells utilize
the Gcn4/ATF4 transcription factor as a supply-hub to match
demand8,13,15 (Fig. 1D). If cells differentially respond to disruptions in
the supply of distinct amino acids, we hypothesized that the Gcn4
activity could correspondingly reflect this response. To investigate
this, we shifted yeast cells growing in amino acid-replete medium
(+AA), to a defined medium with no free amino acids (-AA), but with
ammonium sulfate and glucose. This would disrupt the extrinsic sup-
ply, requiring cells to restore supply via de novo amino acid bio-
synthesis. We monitored the kinetics of Gcn4-activation using an
established Gcn4-luciferase reporter23,24, as shown in Fig. 1D. Notably,
the reporter activity increases within ~15minutes of shifting cells to
-AA, and peaks at 60–90min, after which it decreases (Fig. 1E). This
60–90min window of maximal activity (Fig. 1E) established a precise
time-frame for subsequent analyzes and is used henceforth. The
kinetics of this observed responsewouldalsobeconsistentwith that of
a supply-demand coupler, which should increase in activity when
supply is below demand, and then decrease as supply matches
demand.

We next interrogated how this reporter activity changes when the
supply of each amino acid group is disrupted. Cells were grown in +AA
medium and shifted to a synthetic medium where each amino acid
group was dropped-out, and the other amino acids were supple-
mented (otherwise performed identically to experiments related to
Fig. 1E). Cells were collected at 75minutes post-shift, and reporter
activity estimated. The dropout of any amino acid group induced
reporter activity to levels higher than amino acid replete medium
(+AA) (Fig. 1F), establishing that Gcn4 reports on supply-demand
mismatches for all amino acid groups. However, the extent of reporter
induction varied substantially for different amino acid groups (Fig. 1F).
Notably, the dropouts of sulfur (Met and Cys), glycolytic/TCA, BCAA
(Leu, Ile and Val), glutamate-derived amino acids (Arg, Pro and Lys),
and PPP, polar, basic (His) all showed robust reporter activity, com-
parable to complete amino acid drop out medium (-AA) (Fig. 1F). The
dropouts of PPP, aromatic amino acids (Tyr, Trp and Phe), TCA, polar
amino acids (Asp, Asn, Glu, Gln and Thr), and glycolytic, uncharged
amino acids (Ala, Ser and Gly) showed significantly lower reporter
activity (Fig. 1F). This suggests possible prioritizations of restoration
responses for distinct amino acid groups.
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However, as a robust supply-regulator, Gcn4 itself has sophisti-
cated post-transcriptional regulation13,25,26. The final Gcn4 output
comes from a combination of the translation of upstream regulatory
elements of the Gcn4 transcript (as observed with the reporter), and
the stability of the Gcn4 protein. For completeness, we further dis-
sected the extent of Gcn4 regulation after limiting the supply of dif-
ferent amino acid groups, by first assessing protein amounts of a

stabilized Gcn4 protein (sGcn4-T105A, T165A)23, and next the native
Gcn4 protein. We observed higher sGcn4 protein in dropouts of sulfur
containing-, glycolytic/TCA, BCAA - and glutamate-derived amino
acids (Supplementary Fig. S1B; lanes 5, 6, 9 and Fig. 1G). The dropout of
PPP, aromatic amino acids also showed higher sGcn4 protein levels
(Supplementary Fig. S1B; lane 4), and a minimal increase was noted in
sGcn4 for the PPP, polar, basic (histidine) dropout (Supplementary Fig.

A
Supply
(input)

Demand
(output)

Amino acid
pool

B

E 

-AA

steady-state
‘growth state’bi

om
as

s

time

R
el

at
iv

e 
re

po
rte

r a
ct

iv
ity

  
(R

LU
/s

ec
)

Time (min)

*

*

****

**

**

**

**

Maximum
induction

41 LuciferaseGcn42 3Gcn4 reporter 
Gcn4-regulatory elements

C 
α-KG

Glutamate

α-amino acids

α-keto acid

NADPH+H++NH4
+

NADP+ + H2O

glutamate 
dehydrogenase

(all 19 amino acids)

transaminase

(nitrogen donor)

T105A T165A

Gcn4

High Low

sGcn4 response
to dropout

G

All A
A

 gl
yc

oly
tic

/TCA, B
CAA,

Glut
am

ate
 de

riv
ed

Sulf
ur 

co
nta

ini
ng

PPP, 
aro

mati
c

PPP, 
po

lar
, b

as
ic

TCA, p
ola

r

Glyc
oly

tic
, u

nc
ha

rge
d

No A
A

Stabilised Gcn4  (sGcn4)

D

bi
om

as
s

time

steady-state
‘growth state’

+AA

cells shifted

10 240 

-AA

min 

Gcn4
activity

Demand

Proteome
allocation

Metabolic
allocation

Amino acid
pool depleted

BiosynthesiskkeUptXtaktak

Supply

+AA
-AA

-PPP, a
rom

ati
c

-Sulf
ur 

co
nta

inin
g

- g
lyc

oly
tic/

TCA, B
CAA

-TCA,po
lar

-G
lyc

oly
tic,

 un
ch

arg
ed

-G
lut

am
ate

 de
riv

ed

-PPP, p
ola

r, b
as

ic

F

H

I

C
on

so
lid

at
ed

 G
cn

4 
re

sp
on

se

Limitation/dropout

PPP ,aromatic

Sulfur containing

Glycolytic/TCA, BCAA

TCA, polar

Glycolytic, uncharged

Glutamate derived

PPP, polar, basic

Reporter sGcn4 Native
 Gcn4

Gcn4
transcripts

All AA °°° °°° °°° °°°
°°° °° °° °°
°°° °°° ° °
°°° °° ° °
°° °° ° °
°°° ° ° °
°° ° ° °
°° ° ° °

J

Leu

Val

Gly
Ala

Ser

Phe
Tyr
Trp

His

Ile

Glu
Gln

Asp
Asn

Thr

Pro

Arg
Lys

Met
Cys

Glucose-6-P

G-3-P

Pyruvate

OAAOAA

R-5-P PRPP

E-4-PE-4-P

Sulfur

spAsp

Glucose

OAA

α-KG

Citrate

AA

A

e

P

PP
P

G
LY

C
O

LY
SI

S
TC

A 
C

yc
le

sulfur containing

PPP, polar and basic

PPP, aromatic,

Glycolytic, uncharged

Glycolytic/TCA, BCAA

TCA, polar

Glutamate derived

NAD

sNucleotidesN

sNucleotidesss

A

PolyaminesPo

Polyamines
GSH, SAMGSH, SAM

ss

A

s

Uptake

Proteome
allocation

Metabolic
allocation

biosynthesis

comparisons to -AA

0.0

0.5

1.0

G
cn

4
re

p
o

rt
er

re
sp

o
n

se
re

la
ti

ve
ac

ti
vi

ty
(R

L
U

/s
ec

)

ns
ns

ns
ns

0 30 60 90 120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0

1.2
****

*

Native Gcn4
  (Gcn4-HA)

+AA
-AA

-PPP,aromatic 

-Sulfur co
ntaining

-Glyc
olyti

c/T
CA, B

CAA

-Glyc
olyti

c, u
ncharged

-Glutamate derive
d

-PPP, polar, b
asic

Loading Control 

-TCA, polar

54KDa

71KDa

29KDa

Relative growth difference after 6 hours

p=0.0025

+A
A -A

A

PPP, 
aro

mati
c

Sulf
ur 

co
nta

ini
ng

Glyc
oly

tic
/TCA, B

CAA

TCA, p
ola

r

Glyc
oly

tic
, u

nc
ha

rge
d

PPP, 
po

lar
, b

as
ic

Glut
am

ate
 de

riv
ed

WT

gcn4∆ 4

6

8

10

Article https://doi.org/10.1038/s41467-024-51769-w

Nature Communications |         (2024) 15:7254 3

www.nature.com/naturecommunications


S1B; lane 10). These results refined our earlier observations from the
reporter, and sGcn4 strongly responds to the disruptions in sulfur
containing, glycolytic/TCA, BCAA, glutamate derived, and PPP, aro-
matic- derived amino acids (Fig. 1G). We also examined native Gcn4
protein after each amino acid group limitations. Native Gcn4 protein
was highest after the limitation of the glutamate-derived amino acids
(Fig. 1H; lane 8 and Supplementary Fig. S1C). Finally, we estimated
direct Gcn4- transcriptional outputs, as an end-point readout for this
response. The transcripts of direct Gcn4 targets (obtained from14)
increased the most in dropout medium for (respectively) sulfur con-
taining-, glycolytic/TCA, BCAA and glutamate-derived amino acids, as
well as PPP, aromatic amino acids (Supplementary Fig. S1D, with con-
trols for Gcn4 RNA levels shown in Fig S1E). Through these multiple
readouts we construct a consolidated, hierarchically-graded Gcn4
response to supply-disruptions of distinct amino acid groups (Fig. 1I).
Cumulatively, the strongest response is to supply-disruptions of
glutamate-derived amino acids, followed by strong responses to the
drop-out of sulfur containing-, glycolytic/TCA, and BCAA amino acids,
a moderate response to PPP, aromatic amino acids, and a minimal
response to the glycolytic, uncharged and TCA, polar amino acids in
this condition (Fig. 1I).

In complementary experiments, we examined the effect on short-
term growth in cells lacking GCN4 (gcn4Δ), when each amino acid
group was dropped-out. For this, the growth of wild-type and gcn4Δ
cells in different amino acid group dropout conditions were mon-
itored. In these cells, the largest relative reduction in growth was
observed in the dropout of the glutamate-derived amino acids (Fig. 1J
and S1F). Together, these data reveal that upon transient amino acid
supply disruption, cells are most constrained by the supply of
glutamate-derived amino acids.

Degree of response correlates with low biosynthetic cost and
high total demand
We therefore wondered how much the observed responses reflected
economicprinciples of supply anddemand. Tobegin assessing this,we
require estimates of individual amino acid supply costs, as well as how
much total demand exists for distinct amino acids. Currently, there are
no comprehensive costing-scale for amino acids, which accounts for
all precursors in a given environment. We therefore devised a scoring-
scale to calculate the relative cost to supply an individual molecule of
each amino acid. Such a relative scale is more useful and accurate than
any absolute scale, and is easy to implement for any nutrient envir-
onment. For this scale, we included as many components of cost as
possible, accounting for the predominant chemical reactions in each
amino acid biosynthetic pathway (in a glucose, ammonium environ-
ment). We next computed the total high-energy phosphate bonds
associatedwith each amino acid group. For this we included the amino
acid precursors, metabolic precursors and reducing equivalents

(NAD(P)H) required (as is indicated in Supplementary Fig. S2). Note:
the extended metabolic cost calculation details can be found in
Appendix 1 (Supplementary information), where every component
considered is indicated. The consolidated cost of all amino acidgroups
therefore collectively comes from the net total number of high energy
phosphate (ATP) produced (with NADH utilization), concurrent with
total NADPH consumed (Supplementary Information Appendix 1,
Supplementary Table S4 and Table S5). This is because NADH is uti-
lized in ATP production, while NADPH is concurrently consumed in
other steps of amino acid biosynthesis (through reductive
biosynthesis)8. The results of these comprehensive cost estimations
are shown in Fig. 2A, as a relative-cost heat-map scale. Note: in this
scoring scale, a lower number indicates a higher cost (Fig. 2A).

From this composite costing scale, we observe that per single
molecule cost, the group of glutamate-derived amino acids have the
lowest supply costs. From these cost estimations, we also observe that
the strongest Gcn4 response (observed for the glutamate-derived
group drop-outs) correlates with low amino acid supply costs. To
dissect this observation further, we assessed the individual costs of
each of the glutamate-derived group members - Arg, Lys and Pro,
wondering how different they were. Based on individual cost estima-
tions, we found that there were considerable disparities in their indi-
vidual costs - Arg has the lowest supply costs, Lys has intermediate
costs, and Pro has very high costs (Fig. 2B, Appendix I, Supplementary
Table S4 and S5). What also becomes clear with this costing-scale is
that a composite calculation of supply costs requires scores for all
precursors required to make that amino acid. This will change, based
on the available nutrient and metabolic state of the cell.

In order to now account for the demand component, we next asked
what the composite demand requirement for distinct amino acids were.
Currently, there areno relative, order-of-magnitudeestimates of demand
for amino acids. If we were to break demand down into its components,
protein synthesis is one major demand component for amino acids. For
estimating the demand coming fromonly protein synthesis, we analyzed
two high-quality ribosome-profiling datasets27,28 (GEO accession:
GSE91068 and GSE122039) from cells grown in comparable, defined-
medium conditions. The top 500 most highly translated genes from
these datasets were grouped using gene ontology (GO). Expectedly, the
most enrichedGOcategorywas the ribosomal constituents, consistingof
~25%of the query genes (Supplementary Fig. S3A). This is consistentwith
our understanding that a majority of proteins in proliferating cells are
ribosomal29. Next, we calculated the percentages of lysine, arginine and
proline residues in these enriched proteins. Lysine, arginine and proline
were ~11%, 8.5% and 3.7% respectively in both the datasets (Fig. 2C), and
(as described earlier), arginine and lysine are substantially over-
represented in the ribosomal proteins that form the translation
machinery14. We separately analyzed a whole-proteome dataset30, selec-
ted the top 500most abundantproteins andperformeda similar analysis

Fig. 1 | Cells exhibit hierarchical responses to supply-disruptions of amino acid
groups notably the glutamate-derived group. A Amino acid supply sources, and
demand requirements. Supply comes from de novo biosynthesis and uptake from
the environment. Demand includes the use of amino acids for translation and
metabolism.BAmetabolic source and chemical-structurebasedgroupingof amino
acids: (i) PPP, aromatic (ii) sulfur containing (iii) Glycolytic/TCA, branched chain
amino acids (BCAA) (iv) TCA, polar (v) Glycolytic, uncharged (vi) glutamate derived
and (vii) PPP, polar, basic. The locations in the carbon network from which each
amino acid is derived are highlighted. See Supplementary Fig. S2 for complete
pathways. C Single-step transamination of α-ketoglutarate to glutamate (which
forms glutamine). Glutamate and glutamine function as a nitrogen source for all
amino acids. D How amino acid supply-demand mismatches in a batch culture
experiment are sensed, managed and restored by Gcn4. E Temporal changes in
Gcn4-luciferase reporter activity, estimating the restoration response to transient
amino acid supply disruption. Upper panel: Gcn4-luciferase reporter. Data from
n = 3 (biological replicates) displayed as mean± SEM. Left to right p =0.0324,

0.0322, 0.0015, 0.0043, <0.0001, 0.0072, 0.0087, 0.0284. F Relative Gcn4-
luciferase reporter activity in the indicated dropout medium (at 75min), compared
to all amino acid dropout (-AA). Data displayed as means ± SEM, n ≥ 4 biological
replicates. For E and F ****p <0.0001, ns denotes non-significant difference, two-
tailed student’s t-test. G Summary of relative levels of stabilized Gcn4 (sGcn4), in
dropout medium (as in panel F) at 75min (also see Supplementary Fig. S1B).
H Native Gcn4 levels (detected using anti-HA antibody) in the indicated dropout
medium, in conditions identical to panels (F and G). Image represents n = 3 biolo-
gical replicates. I Summarized consolidated Gcn4 responses to the supply disrup-
tion of each amino acid group. This integrates results from the Gcn4-luciferase
reporter, sGcn4, native Gcn4 protein, and Gcn4 dependant transcripts (see Sup-
plementary Fig. S1D). The circles correspond to the intensity of the response. JHeat
map showing relative cell growth for wild-type and gcn4Δ cells in the indicated
dropout, after 6 h.Mean forn = 2, biological replicates. Data are provided in Source
Data file.
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as 2C. Again, the most enriched GO category was the ribosomal con-
stituents, consisting of > 15% of the query genes (Supplementary Fig.
S3B). In this abundant protein set, lysine, arginine and proline were
~10.4%, 8.1% and 3.8% respectively (Fig. 2D), consistent with the ribo-seq
analysis in Fig. 2C. Together, these results show that the overall (high)
demands from protein synthesis for lysine and arginine are comparable,
and are ~2–3 times greater than proline requirements.

However, this analysis excludes the metabolic demand compo-
nent for amino acids. Since there is no current estimate for metabolic
demand, we next built a qualitative but composite estimate for the
demand for each amino acid, by quantifying the primary metabolic
outputs of every amino acid (Fig. 2E, Appendix I, Table S6) (see31 for a
basis of this calculation). Given available data31, estimates are order of
magnitude based. We ranked amino acids from highest to lowest
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metabolic demand (Fig. 2E), and amino acids fall into clear groups of
high, moderate and low demand. This analysis revealed a high meta-
bolic demand for arginine, and low metabolic demands for lysine and
proline (Fig. 2E).Arginine is the largest assimilatorof nitrogen in cells32,
and much of the demand for arginine comes from its requirement in
making polyamines (Figs. 2E, F). Polyamines are abundant cellular
metabolites, often present in ~millimolar amounts33,34. In contrast,
while the demand from protein synthesis for lysine is high, the meta-
bolic demand for lysine is low except in atypical contexts35. Finally, the
demand for proline in protein synthesis is low, and there is no major
metabolic demand for proline under these growth conditions
(Figs. 2C–E). Therefore, for the group of glutamate-derived amino
acids, the cumulative demand has a major contribution from the high
arginine demand, a smaller contribution from the total lysine demand
and the smallest contribution from the low demand for proline
(Fig. 2G). Summarizing our observations, of the glutamate-derived
amino acids, arginine had the lowest biosynthetic costs but the highest
demand.

Disrupting arginine supply invokes the strongest response
consistent with the law of demand
The magnitude of the restoration response correlated with high
demand coupled with low supply costs. In any given nutrient envir-
onment, supply parameters are inherent to the physico-chemical
properties of that molecule, while demand has added components
coming from selection and inherent growth rates for that cell. If these
are primary criteria involved, how might cells prioritize an order in
which to make amino acids when there are shortfalls? From classical
economics, when supply parameters are inherent, the law of demand
would drive the economy36. According to this law, the demand for an
entity and its supply price are inversely correlated, and demand is
highest for molecules with low supply costs36. In a growing cell, since
amino acid amounts are far fromequilibrium1,4,fluxwouldbedrivenby
the law of demand. If so, a hypothetical supply price vs demand curve
for the glutamate-derived amino acids could be drawn as in Fig. 3A.

To experimentally test this possibility, we estimated the Gcn4
response to individual dropouts of Arg, Lys or Pro (Fig. 3B). Gcn4
protein was highest in the Arg dropout, as compared to Lys or Pro
dropouts (Fig. 3B). Additionally, we estimated transcripts of direct
Gcn4 targets. The arginine dropout had the highest response, com-
pared to lysine and proline dropouts (Supplementary Fig. S4A, with
controls for Gcn4 mRNA levels shown in Supplementary Fig. S4B).
Indeed, this response in the arginine dropout was comparable to
complete dropout (-AA) (Fig. 3B). In complementary experiments, we
examined 6 h growth in wild-type and gcn4Δ cells in individual amino
acid dropouts (for Arg, Lys and Pro). gcn4Δ cells showed the strongest
growth reduction in the arginine dropout (Fig. 3C and Supplementary
Fig. S4C). Together, these results indicate that cells are most sensitive
to Arg limitation, amongst the glutamate-derived amino acids.

How much of the observed response upon arginine limitation
might come frommetabolic vs other demands? Is there indeed a large

component of arginine demand that comes from metabolism? To
estimate this, we established an experiment to address the extent of
demand coming from metabolic requirements for polyamines. We
used cells which do not have the ARG1 gene (arg1Δ), and which cannot
synthesize arginine, and therefore should display a constitutively high
Gcn4 response to arginine limitation. Carefully designed add-back
experiments, alongwith the corresponding estimation of Gcn4protein
responses, would allow us to address the contribution of arginine
demand from polyamines (Fig. 3D). Using arg1Δ cells we first estab-
lished a time-course to define the arginine addback response in–Arg
dropout medium (Supplementary Fig. S4D). The add-back of arginine
for ~30minutes reduced Gcn4 protein to ~basal levels (Supplementary
Fig. S4D). Next, we grew arg1Δ cells in -Arg medium for 75min, sup-
plied arginine for 30 and60minutes, andharvested cells (using60min
arginine dropout (-Arg) as a control) (Fig. 3E). Both the 30 and 60min
arginine addback reduced Gcn4 protein levels, with the 60min add-
back resulting in the greatest reduction as compared to the -Arg
control (Fig. 3E). With this system established, in order to test the
polyamine contribution to the arginine dependent response, we grew
arg1Δ cells in -Arg medium as earlier (Fig. 3E and Supplementary Fig.
S4D) and shifted cells to either arginine supplemented, or to medium
supplemented with a major polyamine-spermidine (Fig. 3F). Supple-
menting spermidine resulted in a ~ 40% reduction in Gcn4 compared
to the -Arg control (Fig. 3F, lanes 5 and 6). Expectedly, the arginine
addback resulted in a ~complete reduction in the level of Gcn4 (Fig. 3F,
lanes 4 and 6). These data suggest that ~half the arginine demand in
cells comes from its metabolic requirements. Collectively, these data
indicate that restoration-prioritization responses in cells for arginine
function in accordance with the law of demand.

Responses of TORC1 activity to supply-disruptions correlate
with the law of demand
The activity of the growth-controlling TORC1 pathway reflects the
growth-based demand for amino acids, and is highest during rapid cell
proliferation (Fig. 4A). If this demand-driven response were universal,
whenever the cell needs to readjust demand after a supply disruption,
TORC1 activity should reciprocally and proportionally reduce. We
therefore assessed the TORC1 response upon transient arginine lim-
itation, using the same experimental set-up as earlier. For this, we
examined the phosphorylation status of the classical TORC1 target,
Sch937, after disrupting the supply of the glutamate-derived amino
acids. TORC1 inhibition by rapamycin (which results in depho-
sphorylated Sch9) was used as a control for lowest TORC1 activity
(Fig. 4B). Notably, the largest reduction of TORC1 activity was
observed post arginine limitation, as compared to the dropouts of the
other glutamate-derived amino acids (Lys or Pro) (Fig. 4B). We also
independently assessed another major TORC1 output, which is the
induction of ribosomal transcripts38,39. Correspondingly, themaximum
decrease in ribosomal transcripts (reflecting reduced TORC1 activity)
was to arginine dropout (Fig. 4C). Collectively, TORC1 activity shows
the greatest reduction upon arginine disruption, and the Gcn4 and

Fig. 2 | The amino acid restoration response intensity correlates with low
biosynthetic cost and high demand. A A consolidated biosynthetic cost analysis
for each amino acid group. The consolidated biosynthetic cost of each amino acid
group was calculated based on the cumulative number of ATP molecules gained
during the biosynthesis of the respective amino acid. The higher score indicates a
lower supply cost. See Supplementary Information Appendix 1 for details. B Bio-
synthetic costs for each glutamate-derived amino acid (arginine, lysine and pro-
line), using the cost estimation as in Fig. 2A. The numerical scores indicated within
the heat map are as in Fig. 2B. C Notched box-plots showing the percentages of
lysine, arginine and proline residues in the enriched ribosomal constituents GO
category from the highly translated mRNAs (n = 500), as assessed from two ribo-
seq analyzes datasets. Left panel: data for 134 proteins from Zou et al.28, where SD
footprint reads were analyzed. Right panel: data for 126 proteins from theMakeeva

et al.27, where wt_sd_ribo reads were analyzed. D Proteome demand for lysine,
arginine and proline. Notched box-plot of the percentages of lysine, arginine, and
proline in the enriched ribosomal GO category (75 proteins) from Ho et al.30.
E Quantitative estimates of relative demand for each amino acid in descending
order based on their cellular demands, coming from metabolic requirements. The
scale bar (in shades of blue) indicates the intracellular concentration ranges of each
metabolic output. FA summary of the (scaled) demand components for arginine in
the cell - coming from protein synthesis requirements, as well as from polyamines
synthesis.GA proportionally scaled bar summarizing the consolidated demand for
each of the glutamate derived amino acids (Arg, Lys, Pro) coming from proteome/
translation (greyscale) andmetabolic demands (blue and purple, same as (2E). The
box plots details for (2C and 2D) are explained inmethods. In 2E, 2G, the size of the
bar is in variable units. Data are provided in the Source Data file.
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TORC1 responses to arginine are complementary, per the law of
demand.

Discussion
In this study, we uncover hierarchical prioritization strategies to
restore the supply of distinct amino acid groups, when supply is
transiently disrupted. If this were organized based on supply costs

along with cumulative demand, these data would be consistent with a
model illustrated in Fig. 4D. Amino acids with low supply costs, but
overall low demand in a given condition will elicit a minimal response
because any supply disruption will be quickly restored. In a glucose
and nitrogen-replete environment, the glycolysis-derived amino acids
have continuous and non-limiting precursor supplies and fit these
criteria. Although demand remains high for glutamate/glutamine, in
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the context of this study, the precursor supply is continuous and non-
limiting (and they are essentially metabolic sources, as explained in
Fig. 1), resulting in a modest response. If per-unit molecule supply
costs are high, but demand is low (such as for proline), the limitation of
such an amino acid will evoke aminor response regardless of absolute
costs to supply each unit, since their supply restorations are easily
managed. The strongest responses will therefore be for amino acids
withmodest individual supply costs, but high demand. This is because
while demand is high, supply can still be restored. Such a scenario is
exemplified by the response observed for arginine limitation. Based on
this framework, there areno amino acids that havehigh supply costs as
well as high demand (Fig. 4D). The prioritization strategies to restore
the supply of amino acids therefore correspond to the law of demand,
and amino acids form a demand driven economy (Fig. 4D).

It becomes clear that amino acids can be grouped in any way,
including the conventional, chemical-structure based grouping, or
coarsely by metabolic origin. None of these intuitively indicate supply
costs, and for this it is necessary to consider all precursors in a given
nutrient environment that go into making the specific amino acid.
Additionally, estimating supply costs for individual molecules is rela-
tively straightforward, when the nutrient environment and the active
metabolic pathways are mapped out in detail. The costing scale we
devise in this study is a useful and easily used example. In contrast, it
remains challenging to fully estimate demand costs. In this study, several
assumptions were required in order to estimate ‘order of magnitude’
allocations towards total demand (from a combination of metabolism
andprotein synthesis). Recent progress nowallowexcellent assessments
of amino acid allocations towards the proteome6,40,41. These however
miss allocations of amino acids towards metabolism. Contrastingly,
systems-level metabolic output predictions do not require quantitative
inputdata for allmetabolites42, andmetabolic estimatesarederived from
‘order of magnitude’ calculations31. By now including considerations of
individual supply-costs and composite demand requirements, we can
construct frameworks that suggest prioritization strategies towards
distinct amino acids. We hypothesize the following, consistent with the
law of demand. First, there are strict chemical constraints imposed in
metabolism (based on available substrates, and thermodynamics of
reactions), resulting in finite outputs for amino acids21. Therefore, this
component of amino acid allocations likely has stringent constraints and
limited scope for large changes across organisms. Second, the alloca-
tions towards the proteome have greater scope for changes, based on
the organism and the nature of its environment, growth and other
selection. Consequently, across organisms, there can be large variations
in proteome allocation strategies, and the cost estimates of supply and
demand have to be made accordingly. This implicitly means that the
model in Fig. 4D will contextually change primarily in the lower two
quadrants (of low costs, and high demand).

Our findings inform two directions of future inquiry. The first
predicts what kinds of amino acid reserves might be needed. Intra-
cellular concentrations of different amino acids vary extensively18, and
growing cells maintain excess nitrogen reserves6. Including individual
supply costs, as well as total demand could help (i) predict

prioritization responses as the nutrient environment changes, and (ii)
how much amino acid reserves different types of cells might need. An
independent line of inquiry askswhichamino acidsmight a cell need to
sense? Amino acids are distinct based on metabolic origins, and
amounts required. By treating them as distinct entities and not
homogenous goods based on these criteria, new and contextual roles
for different amino acids can be identified, coming from the demand
side, or the supply side. On the demand side, while there are known in
vivo TORC1 responses for specific amino acids43–49, many more
responses are observed in vitro, suggesting undiscovered sensing
systems. On the supply side, the Gcn2/Gcn4 axis itself can distinguish
between individual amino acid groups and is also activated indepen-
dent of amino acid starvation50.We acknowledge that an assessment of
such a demand-driven economy can be made more easily for auton-
omous cells (such as most microbes). However, this becomes very
challenging to unravel in complex tissue/organ systems, because of
multiple sources of supply, with more complex challenges in esti-
mating elasticity of either demand or supply3.

Living organisms inMiller’s “Living Systems” have been compared
to factories, with cells described as open systems, dealing with multi-
ple inputs and outputs of matter, energy and information51. In this
context, how much can prioritizations of resource restorations be
understood based on demand-dependent criteria (or in other words,
when would demand dominate)? For cells, a main resource constraint
is the input price, which is governed byprecursor availability, and rules
of chemistry, thermodynamics and evolutionary history. For amino
acids, the individual supply prices are fairly constant. Therefore,
demand-based criteria would dominate in cells when concentrations
of metabolites are saturating (above the enzyme km values), and this is
typically the case for amino acids, resulting in a demand-elasticity of
zero1–3,52. In contrasting contexts, where metabolite consumptions are
regulated as a function of available supply, supply-based criteria will
become increasingly important3. Additionally, in a demand-driven
context cells must manage the total supply costs because if an input
cost is high, the supply is limited since there are boundaries to how
much energy can be obtained within cells. An inference from this is
that cells would optimize their outputs in tune with these energetic
constraints53,54. From classical economics, other factors that determine
supply prices are: (i) processes used for supply, (ii) anticipation of
future prices, (iii) the number of suppliers, and (iv) the presence of
monopolies or cartels that restrict supply or increase perceived value
of goods36. In cells the first (enzymes, transporters) are optimized by
selection, evidence for the second is limited to systems exhibiting
hysteresis or oscillatory behavior, the third is finite and quantifiable,
and the fourth rarely exists. Cells do not consider ‘Veblen goods’55,
which have artificially high prices because of perceptions (eg. as status
symbols) that manufacture demand. These considerations could
thereforehelp identify resource bottlenecks, aswell as likely responses
to disruptions in specific resources, and distinguish supply-driven vs
demand-driven economies. Work in these areas holds promise to
advance a broader understanding of resource allocation strategies in
cells, and to improve the metabolic engineering of cell factories.

Fig. 3 | The law of demand drives amino acid restoration-prioritization
responses as observed for arginine. A A hypothetical supply price vs required
demand graph for the glutamate derived amino acids, as based on the law of
demand. B Gcn4 response after complete amino acid withdrawal (-AA), or for
individual amino acid (Arg, Pro, Lys) dropouts. Relative protein amounts are shown
below the representative blot, and comparisons are to +AA. n = 3, biological repli-
cates. C Relative difference in the growth of wild-type and gcn4Δ cells in the indi-
cated amino acid group dropout or complete medium, as estimated after 6 hours.
n = 3, biological replicates, comparisons are to +AA for WT and gcn4Δ sets. D A
summary of predicted Gcn4 responses in arg1Δ (arginine auxotrophic) cells, based
on the estimated metabolic and proteome demand for arginine. Since the

polyamine contribution towards the arginine demand is high, upon restoring
polyamines a reduction in Gcn4 would be predicted. E The extent of the Gcn4
response upon arginine deprivation, in arginine auxotrophic cells. The experi-
mental setup is illustrated. The image shows a representative blot for Gcn4
amounts in arginine replete, drop-out, and restored conditions. n = 4, biological
replicates. F The contribution of polyamine synthesis towards the demand for
arginine. A representative blot indicating the Gcn4 amounts inminimalmedium, or
after spermidine (polyamine) supplementation. The experimental set-up is illu-
strated. n = 3, biological replicates. All panels show quantifications displayed as
mean ± SEM. Two-tailed student’s t-test, ****p <0.0001, ns denotes non-significant
difference. Data are provided in Source Data file.
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Methods
Yeast strains, media and growth conditions
The prototrophic CEN.PK strain of Saccharomyces cerevisiae was used
as the wild type in all the experiments. All the strains used in this study
are listed in Supplementary Information in Table S1. For cell growth, an
overnight preculture was grown at 30 °C (OD600 ~ 2) in YPD medium
(1% yeast extract, 2% peptone, 2% dextrose), and subsequently sub-

cultured in the same medium (starting OD600 ~ 0.2) and grown to an
OD600 ~ 0.55–0.6. Rapamycin treatment: cells were treated with
200nM rapamycin for 75min and then harvested. For amino acid
limitation experiments, the cells grown as above were washed once
with defined minimal medium (0.67% yeast nitrogen base with
ammonium sulfate, without amino acids, 2% dextrose) and shifted to
this medium supplemented with specified amino acids. Cells were
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grown in this medium for 75min and then collected. For strains with
plasmids, appropriate selection was used during growth. The strains
and plasmids used in this study are listed in Supplementary Informa-
tion Table S1 and S2.

Defined and amino acid dropout medium
For each amino acid dropout medium, all amino acids except the
specified dropout were added to a final concentration of 2mM each
except cysteine (final concentration 0.5mM), and tyrosine was exclu-
ded due to its poor solubility. The amino acid dropout media used are
listed in Supplementary Information Table S3. For the addback
experiments, 10mM arginine and spermidine were used.

Luciferase reporter assay for Gcn4 activity
The Gcn4 luciferase reporter, and the luciferase reporter assay are as
describedpreviously23,24. Briefly,wild-type cells transformedwith aGcn4-
luciferase reporter (Supplementary Information Table S2) were grown
overnight in YPDwithG418. Cells were sub-cultured in the samemedium
without selection and grown till OD600 ~0.6. 20ml of this culture was
collected (“0min”) and pellets frozen at −80 0C. The remaining culture
was collected, washed and shifted to the specified medium and incu-
bated at 30 0C for indicated time-points. For the kinetics experiments,
cells were harvested after 10, 30, 45, 60, 90, 120, 180 and 240minutes.
Cell pellets were stored at −80 0C. Pellets were resuspended and lysed in
lysis buffer, cleared by centrifugation, and protein concentrations esti-
mated. Luciferase assays were performed using luciferase assay system
(E1500, Promega) and activity measured using a Sirius luminometer
(Tiertek Berthold). Data was obtained as Relative Light Units per sec
(RLU/s). Statistical significance was determined using a Student T-test
(GraphPad Prism 10). For single-time point experiments, cells were shif-
ted to the indicated minimal medium, harvested after 75min and luci-
ferase assays were performed as described.

Addback experiments with arginine and spermidine
Cells were grown overnight and sub-cultured in YPD as described
earlier. Cells were washed once with minimal medium and shifted to
minimal medium/minimal medium with arginine dropout for 75mins.
At 75minutes, 20 OD600 from the cultures were harvested. The
remaining cells were divided for the dropout/addback experiments.
For addback experiments 10mMarginine or spermidinewere added at
the indicated times, and cells collected for further analysis.

Western blot analysis
Cells were collected, proteins extracted and protein amounts were
estimated using Western blotting with specific antibodies, as descri-
bed earlier23. For stabilized Gcn4 protein levels, the SL161 plasmidwith
stabilized Gcn4-HA (Supplementary Information Table S2) was
expressed in gcn4Δ strain, and analyzed as described earlier23. For
steady-state Gcn4 protein levels, Gcn4 tagged at its chromosomally
locus with a C-terminal HA epitope was used. See, extended methods
(Supplementary Information) for details. Western blots for the Sch9
activity assay are described below.

Sch9 activity assay by NTCB cleavage
For Sch9 detection, Sch9 was tagged at its chromosomal locus with a
HA epitope. 10–12 OD600 of these cells (grown appropriately) were
collected with 6% final concentration of TCA, kept on ice for 15min,
harvested, washed twice with ice cold acetone by centrifugation at
3500 rpm/2000g, 3min, 4 °C. The cell pelletsweredried in a speed-vac
for 45–60min and stored at −80 °C. Cell pellets were resuspended in
300 µl of urea lysis buffer and processed for NTCB (2-Nitro-5-thiocya-
natobenzoic acid) cleavage (to assess its phosphorylation status and
TORC1 activity) as described previously37. Cleaved Sch9 was detected
using anti-HA (H6908-.2ML Sigma-Aldrich) primary antibody and anti-
rabbit horseradish peroxidase-conjugated (7074S, Cell Signaling
technologies) secondary antibody. See extended methods (supple-
mentary information) for details.

RNA isolation andquantitative real-timePCR (qRT-PCR) analysis
Cells were grown in the specified media, and 5–6 OD600 of cells were
harvested. RNA was isolated by a hot phenol beating method as
described earlier24, treated with DNAseI (AM2238, Thermo Fisher),
cDNA synthesized with random primers (48190011, Thermo Fisher)
and SuperScript III reverse transcriptase (18080-085, Thermo Fisher
Scientific) according to the manufacturer’s protocol. Relative tran-
script quantifications were done by real-time PCR on an ViiA 7 Real-
Time PCR System (Thermo Fisher) using Maxima SYBR Green/ROX
qPCRMasterMix (K0222, ThermoFisher).ACT1was used as an internal
normalization control. All qRT-PCRs were performed in triplicates
using three independent biological RNA samples. Statistical sig-
nificance was determined using a Student T-test (GraphPad Prism 10).

Relative growth comparisons
WT and gcn4Δ cells were grown in YPD and sub-cultured in minimal,
dropout or completemediumand cell growthmonitored usingO.D600

for a total of 11 hrs. For final comparisons, relative growth at 0 hr, 6 hr
and 11 hr were compared.

Amino acid supply cost calculations
To calculate the biosynthetic cost of each amino acid, we accounted
for all the chemical reactions in the biosynthetic pathway of amino
acids in cells growingwith glucose as the carbon source, ammoniumas
the nitrogen source. Amino acids are synthesized from the inter-
mediates of the glycolytic pathway, pentose phosphate pathway (PPP),
and tricarboxylic acid (TCA) cycle. Based on the nature of the chemical
reactions, there is either net ‘energy’ consumption or production. The
energetic cost is in the form of high energy phosphate bonds (ATP), or
reducing equivalents (NADH, NADPH). During oxidative phosphor-
ylation, 3 ATP molecules are generated from ~1 NADH molecule. The
final consolidated energetic cost for biosynthesis of each amino acid
molecule is calculated by estimating the number of net ATPmolecules
consumed/produced, and by converting the number of the NADH
molecules to ATP molecules using the conversion 1 NADH= 3 ATP
molecules. In addition to this direct energetic cost, some chemical
conversions require other metabolic precursors or cofactors, which

Fig. 4 | Changes in TORC1 activity upon amino acid supply disruption correlate
with the law of demand. A A schematic illustrating the activity outputs of the
TORC1. Increased Sch9 phosphorylation and ribosome biogenesis are key readouts
of TORC1 activation. TORC1 activity indicates the extent of amino acid demand in a
given environment. B Assessment of TORC1 activity (based on Sch9 phosphoryla-
tion) after transiently disrupting (indicated) amino acid supply. Sch9 phosphor-
ylation was assessed in the indicated amino acid dropouts (Arg, Pro, Lys), based on
the electrophoretic mobility of Sch9 in extracts treated with NTCB. A representa-
tive blot (from n = 3, biological replicates) is shown. Comparisons are to -AA.
C TORC1 activity as based on ribosomal transcript amounts, after transiently dis-
rupting (indicated) amino acid supply. Relative changes in the expression of the
indicated ribosomal subunit transcripts are shown. Comparisons are to +AA, n ≥ 4,

biological replicates. Data for (4B and 4C) are displayed asmean ± SEM, ns denotes
non-significant difference, ****p <0.0001, Two-tailed student’s t-test. Data are
provided in the Source Data file. D A four-quadrant chart to illustrate the rela-
tionship between the cost of biosynthesis/supply for an individual molecule of an
amino acid, and the total demand for that amino acid. The size of the circles
indicates (relative) intracellular concentrations of the respective amino acid. Based
on this framework, amino acids with low supply costs and low demand will elicit a
lower restoration response, and amino acids with low supply costs but high
demand elicit the highest response. Distinct amino acids populate only three of the
four quadrants, to complete the amino acid economy. There are no amino acids
which have both high supply costs, as well as high demand in the cell.
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also have associated biosynthetic costs that are included in the cal-
culations. Full details of the amino acid supply cost calculations, aswell
as the co-factors considered during the synthesis of each amino acid,
are available as an extensive document in the Supplementary Infor-
mation, under Appendix I.

Amino acid demand calculations
Total demand for each amino acid (order ofmagnitude) was estimated
by calculating the allocation of the amino acid for protein synthesis as
well as the steady-state proteome, and separately for metabolic uses.
Data from two high-quality ribosome-profiling datasets27,28,30 (GEO
accession: GSE91068 and GSE122039) were used for protein synthesis
allocations. The top 500 most highly translated genes from these
datasets were considered, from which the most enriched gene ontol-
ogy category was identified, and the percentage composition for each
amino acid was estimated. Similarly, from the whole-proteome
dataset30, the top 500 most abundant proteins were selected and
analyzed as above for the fractional composition of each amino acid.
For the metabolic demand component, we listed (Supplementary
information- under Appendix I, Table S6) and then estimated the
amounts of the primary metabolic outputs of each amino acid coming
from usage estimates from data available31, and accepted numbers for
abundance (https://bionumbers.hms.harvard.edu/search.aspx). We
then ranked amino acids from highest to lowest metabolic demand
and grouped them into high, moderate and low demand.

Data visualization and statistical analysis
Thenotchedbox-plotswereconstructedusingaweb-based tool athttp://
shiny.chemgrid.org/boxplotr/. The upper and lower boxes contain the
second and third quartiles and the band gives the median, whiskers
extend 1.5 times the interquartile range. If the notches in twoplots donot
overlap, there is roughly 95% confidence that theirmedians are different.
Gene ontology (GO) analysis was conducted using the web-based tool at
https://www.yeastgenome.org/goTermFinder. Quantification of the pro-
tein band intensities inWestern blots from different biological replicates
was done using ImageJ software and statistical significance was deter-
mined using Student T-test (GraphPad Prism 10).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors confirm that the data supporting the findings of this study
are available within the study and in the associated Supplementary
material. The datasets used in this study are from publicly available
datasets (GEO accession: GSE91068 and GSE122039). Source data are
provided with this paper.
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