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Unified framework for open quantum
dynamics with memory

Felix Ivander1, Lachlan P. Lindoy2 & Joonho Lee 3,4

Thedynamics of quantum systems coupled tobaths are typically studied using
the Nakajima-Zwanzig memory kernel (K) or the influence functions (I), par-
ticularly when memory effects are present. Despite their significance, formal
connections between the two have not been explicitly known. We establish
their connections by examining the system propagator for a N-level system
linearly coupled to Gaussian baths with various types of system-bath coupling.
For a certain class of problems, we devised a non-perturbative, diagrammatic
approach to constructK from I for (driven) systems interacting with Gaussian
baths, bypassing conventional projection-free dynamics inputs. Our work
provides a way to interpret approximate path integral methods in terms of
approximate memory kernels. Moreover, it offers a Hamiltonian learning
procedure to extract the bath spectral density from reduced system trajec-
tories, opening newavenues in quantum sensing and engineering. The insights
we provide advance our understanding of non-Markovian dynamics and will
serve as a stepping stone for future theoretical and experimental develop-
ments in this area.

Most existing quantum systems inevitably interact with the sur-
rounding environment, often making a straightforward application of
Schrödinger’s equation impractical1. The main challenge in modeling
these “open” quantum systems is the large Hilbert space dimension
because the environment is much larger than the system of interest.
Addressing this challenge is important in many disciplines, including
solid state and condensed matter physics2–4, chemical physics and
quantum biology5–8, quantum optics9–12, and quantum information
science13–15. In this work, we provide a unified framework for studying
non-Markovian open quantum systems, which will help to facilitate a
better understanding of open quantum dynamics and the develop-
ment of numerical methods.

Various numerically exact methods have been developed to
describe non-Markovian open quantum dynamics. Two of the most
commonly used approaches are (1) the Feynman–Vernon influence
functional path integral (INFPI)16 based techniques, including the
quasiadiabatic path-integral method of Makri and Makarov and its
variants17–26, hierarchical equations of motion (HEOM) methods7,27,28,

and time-evolvingmatrix productoperator and relatedprocess tensor-
based approaches29–34 and (2) the Nakajima–Zwanzig generalized
quantum master equation (GQME) techniques1,35–37. The INFPI for-
mulation employs the influence functional (I) that encodes the time-
nonlocal influence of the baths on the system. In the GQME formalism,
the analogous object to I is the memory kernel (K), which describes
the entire complexity of the bath influence on the reduced system
dynamics. It is natural to intuit that I andK are closely connected and
are presumably identical in their information content. Despite this, to
the best of our knowledge, analytic and explicit relationships between
the two have yet to be shown.

There have been several works that loosely connect these two fra-
meworks. For instance, there is a body of work on numerically com-
putingKwithprojection-free inputs using short-time system trajectories
based on INFPI or other exact quantum dynamics methods38–42. The
obtainedK is then used to propagate systemdynamics for longer times.
Another line of work worth noting is the real-time path integral Monte
Carlo algorithms for evaluating memory kernels exactly43. These works
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took advantage of the real-time path integral approaches used to eval-
uate I44 to evaluate necessary matrix elements in computing the exact
memory kernel. Nonetheless, they did not present any direct analytical
relationship between the memory kernel and I .

In this work, we present a unifying description of these non-
Markovian quantum dynamics frameworks. In particular, we establish
explicit analytic correspondence between I andK. We present a visual
schematic describing the main idea of our work in Fig. 1a. Readers
interested in the relationshipbetweenourwork and existing numerical
tools are referred to Supplementary Note 3C.

Results
General setup
We consider a broad range of system-bath Hamiltonians in which the
bath is Gaussian, and the system-bathHamiltonian is bilinear. The total
Hamiltonian is Ĥ = ĤS +

P
jðĤB,j +

P
αĤI,j,αÞ, with subscripts j and α

specifying the jth bath and the αth interaction, respectively. While we
do not limit the form of ĤS in our discussion, we consider a quadratic
(i.e., Gaussian) Hamiltonian for the baths, ĤB,j =

P
kωk,j â

y
k,j âk,j , where

âk,j can be fermionic or bosonic (it is also possible to treat baths
consistingof noninteracting spins in a certain limit, see Supplementary
Notes 3), and the bilinear interaction Hamiltonian, ĤI,j,α = Ŝj,α � B̂j,α

with Ŝj,α and B̂j,α being the systemandbath operators, respectively.We
also assume that the initial density matrix is separable between the
system and each bath. There are four classes of problems that onemay
commonly encounter under the setup described:
1. Class 1:With only single α for all baths j (such cases are henceforth

indicated by dropping the subscript α), fŜjg are all diagonalizable,
and furthermore, that fŜjg are all simultaneously diagonalizable.
That is, all terms in fĤI,jg commute. The spin-boson model, other
models in the same universality class, and Frenkel excitonmodels
for photosynthetic systems belong to this class.

2. Class 2: No terms in fŜjg commute but each term in fŜjg is diag-
onalizable. Generalizing the models in Class 1 to multiple non-
additive baths typically leads to this case. Such systems may arise
when considering non-adiabatic dynamics of systems involving
strong coupling of electronic degrees of freedom coupled to
quantized photonic modes32.

3. Class 3: There are common baths for some ĤI,j,α and fŜj,αgmay or
may not commute. Examples of such baths arise when consider-
ing decoherence in models of coupled qubits45.

4. Class 4: No terms in fŜjg commute and each term in fŜjg is not
diagonalizable. The Anderson impurity model46 is representative
of this category.

We show in all three classes that one can relate I and K analyti-
cally. Furthermore, we show that one can obtain the bath spectral
density from the reduced dynamics. Lastly, for Class 1, we show that a
simple diagrammatic structure in the relationship between I andK can
be found, which allows for efficient construction of K without
approximations. We provide more details of Class 1 in the main text,
and additional details for other classes are available in the Supple-
mentary Notes. Further, for Class 1 models, we extend this analysis to
consider driven systems, extending the analysis beyond the time-
translationally invariant memory kernels observed for time-
independent Hamiltonians.

Path integral formulation
The time evolution of the full system is given by,
ρtotðtÞ= e�iĤtρtotð0ÞeiĤt . We discretize time and employ a Trotterized
propagator,

e�iĤΔt = e�iĤSΔt=2e�iĤenvΔte�iĤSΔt=2 +OðΔt3Þ, ð1Þ

where Ĥenv = Ĥ � ĤS. The initial total density matrix is assumed to be
factorized into ρtotð0Þ= ρð0Þ � ðZ�1

j exp½�βj ĤB,j �Þ
�j

at inverse tempera-
ture βjwhere Zj =Tr exp½�βĤB,j �. Then, one can show that the dynamics
of the reduced system density matrix, ρðNΔtÞ=ρN =TrB ρtotðNΔtÞ

� �
(partial trace over all baths’ degree of freedom), follows

hx +
2N jρN jx�

2Ni=
X

x ±
0 ���x ±

2N�1

Gx ±
0 x ±

1
Gx ±

1 x ±
2
. . .Gx ±

2N�1x
±
2N

× hx +
0 jρ0jx�0 i

Y
α

I jðx ±
1 , x

±
3 , � � � , x ±

2N�1Þ,
ð2Þ

where Gx ±
mx ±

m+ 1
= hx +

m je�
iĤsΔt

2 jx +
m+ 1ihx�m+ 1je

iĤsΔt
2 jx�

mi.

Fig. 1 | Unification of open quantumdynamics framework for Class 1. a An open
quantum system, where the environment is characterized by the spectral density
J(ω), can be described with the generalized quantummaster equation (GQME) and
the influence functional path integral (INFPI). The former distills environmental
correlations through the memory kernels K while the latter through the influence
functionals I . In this work, we show both are related through Dyck Paths, and that,
furthermore, we can use the Dyck construction for extracting J(ω) by simply

knowing how the quantum system evolves. b Cumulant expansion of memory
kernel. Examples through Eq. (6) forN = 2 and N = 3. Solid arcs of diameter k filled
with all possible arcsof diameters smaller than kdenote propagatorUk. cDyckpath
diagrams. Examples forN = 2 andN = 3 and their corresponding influence function
diagrams, which composes K2 and K3, respectively. Solid lines denote influence
functions I and dashed lines denote ~I.
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Restricting ourselves to problems in Class 1 (details for other
Classes are available in the SupplementaryNotes),we consider ĤI = Ŝ�
B̂ where Ŝ is a system operator that is diagonal in the computational
basis and B̂=

P
kλkðây

k + âkÞ is a bath operator that is linear in the bath
creation and annihilation operators (with the subscript α and j drop-
ped for clarity.) The discussion below can be applied to cases with
multiple commuting Ŝ� B̂ since I take simple product form, see
Supplementary Note 1. We can show that the influence functional, I , is
pairwise separable,

I ðx ±
1 , x

±
3 , � � � , x ±

2N�1Þ=
YN
n= 1

I0, x ±
2n�1

YN�1

n= 1

I1, x ±
2n�1x

±
2n+ 1

×
YN�1

n = 2

I2, x ±
2n�3x

±
2n + 1

� � � × IN�1, x ±
1 x ±

2N�1

ð3Þ

where the influence functions Ik are defined in Supplementary Note 1,
and are related to the bath spectral density, JðωÞ=πPkλ

2
kδðω� ωkÞ.

For later use, we note that Eq. (2) can be simplified into

hx +
2N jρN jx�2Ni=

X
x ±
0

ðUNÞx ±
2Nx

±
0
hx +

0 jρ0jx�
0 i, ð4Þ

where UN is the system propagator from t = 0 to t = NΔt. It is then
straightforward to express UN in terms of {Ik}19–21,42,47.

The Nakajima–Zwanzig equation
The Nakajima–Zwanzig equation is a time-non-local formulation of the
formally exact GQME. Assuming the time-independence of ĤS, the
discretized homogeneous Nakajima–Zwanzig equation takes the form

ρN =LρN�1 +Δt
2
XN
m= 1

KN�mρm�1, ð5Þ

where L � ð1� i
_LSΔtÞ with LS� � ½ĤS,�� being the bare system Liou-

villian and Kn is the discrete-time memory kernel at time step n. To
relate KN to {Ik}, we inspect the reduced dynamics evolution operator
UN as defined in Eq. (4),

UN =LUN�1 +Δt
2
XN
m= 1

KN�mUm�1: ð6Þ

With this relation, one can obtain KN from the reduced propagators
{Uk}. We observe setting N = 1 yields K0 =

1
Δt2

ðU1 � LÞ, since U0 is the
identity. The memory kernel, K0, accounts for the deviation of the
system dynamics from its pure dynamics (decoupled from the bath)
within a time step. From settingN = 2, wegetK1 =

1
Δt2

ðU2 � U1U1Þ. This
intuitively shows thatK1 captures the effect of the bath that cannot be
captured within K0. Similarly, for N = 3, K2 =

1
Δt2

ðU3 � U2U1 �
U1U2 +U1U1U1Þ: This set of equations is similar to cumulant expan-
sions, widely used in many-body physics and electronic structure
theory48,49. Instead of dealing with higher-order N-body expectation
values, we deal with higher-order N-time memory kernel in this
context. The N-time memory kernel KN is the N-th order cumulant in
the cumulant expansion of the system operator. Unsurprisingly, these
recursive relations lead to diagrammatic expansions commonly found
in cumulant expansions48, as shown in Fig. 1b.

Relationship between K and I
Using this cumulant generation of KN and by expressing {Uk} in terms
of {Ik}, we obtain a direct relationship between KN and fIkgk =Nk =0 .

Specifically, we have

K0,ik =
1

Δt2
X
j

Gij I0,jGjk � Lik

" #
ð7Þ

K1,im =
1

Δt2
X
jk

Gij I0,jF jk
~I1,jk I0,kGkm ð8Þ

K2,ip =
1

Δt2
X
jkn

GijFjkFkn
~I2,jnI1,jk I1,kn

�

+~I1,jk~I1,kn
�
I0,j I0,k I0,nGnp

ð9Þ

K3,il =
1

Δt2
X
jknp

GijFjkFknFnpI0,j I0,k I0,nI0,pGpl

~I3,jpI2,jnI2,kpI1,jk I1,knI1,np
n
+ I1,kn ~I2,jn~I2,kpI1,jk I1,np +~I2,kp~I1,jk I1,np

�
+~I2,jn~I1,npI1,jk

�
+~I1,jk~I1,kn~I1,np

o
..
.

ð10Þ

where we define F = GG (bold-face for denoting matrices) and
~Ik,ij = Ik,ij � 1. We emphasize that Eqs. (7) to (10) are exact up to the
Trotter discretization error and valid for any coupling strengths in the
models considered in this work. By definition, earlier KN contains
shorter memory effects and will thus appear simpler.

This series of equations is a part of the main result of this work,
showing explicitly howKN is diagrammatically constructed in terms of
influence functions from I0 to IN. This construction can easily show the
computational effort of computing KN . We sum over an additional
time index for each time step. This gives a computational cost that
scales exponentially in time, OðN2N

dimÞ where Ndim is the dimension of
the system Hilbert space. In Supplementary Note 3E, we present fur-
ther details on the general algorithm for calculating higher-order
memory kernels, exploiting a non-trivial diagrammatic structure to
express them in terms of I and ~I.

It can be inferred from Eqs. (8) to (10) that each term in KN is
represented uniquely by eachDyck path50–52 of orderN. Hence, one can
construct KN by generating the respective set of Dyck paths and
associating each path with a tensor contraction of influence functions.
This is illustrated in Fig. 1c and further detailed in Supplementary
Note 3E. This observation reveals somenewproperties ofKN . First, the
number of terms in KN is given by the N-th Catalan’s number51,52

CN = 1
N + 1

2N
N

� �
(i.e., K4 has 14 such terms, K5 has 42, then 132, 429,

1430, 4862, 16796, 58786, …). We note that Catalan’s number
appeared in ref. 47 when analyzing an approximate numerical INFPI
method. See Supplementary Note 3E for more information.

Scrutinizing the relationship of K and I, presented in Supple-
mentary Note 3E, further, we can observe how K decays asymptoti-
cally. As is well-known, for typical condensed phase systems Ik,ij → 1 for
k → ∞17,53. Similarly, because~Ik,ij ≪ 1 for large k, those terms with larger
multiplicities contribute less to KN and decay exponentially to zero as
multiplicity grows. In fact, for condensed phase systems, the decay of
IN and KN is often rapid, which motivated the development of
approximate INFPI methods17–20,53 and other approximate GQME
methods37,54–56.

With our new insight, approximate INFPI methods can be viewed
through the lens of the corresponding memory kernel content (and
vice versa). As an example, we shall discuss the iterative quasiadiabatic
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path-integral methods17,18,53. In these methods, Ik,ij is set to unity
beyond a preset truncation length kmax. For simplicity, let us consider
kmax = 1, and hence Ik,ij = 1 and ~Ik,ij =0 for k > kmax. We now inspect
what this approximation entails for KN . First, no approximation is
applied to K0 and K1. Then, in K2 (Eq. (9)),

ð~I2,jnI1,jk I1,kn +~I1,jk~I1,knÞ ! ~I1,jk~I1,kn: ð11Þ

Similarly, in K3 (Eq. (10)), the only surviving contribution is from
~I1,jk~I1,kn~I1,np. We hope such a direct connection between approximate
methods will inspire the development of more efficient and accurate
methods.

The time-translational structure of the INFPI formulation and its
Dyck-diagrammatic structure allow for a recursive deduction of IN
from KN , which is the inverse map of Eqs. (8) to (10). We first observe
that

I0 =G
�1ðδt2K0 +LÞG�1 ð12Þ

where we obtained I0 from K0. One can then show that

I1,jk = 1 +Δt
2 ðG

�1K1G
�1Þjk

Fjk I0,j I0,k
: ð13Þ

using K1 and I0. Similarly, inspecting the expression for K2 gives us

I2,jn = 1 +
Δt2ðG�1K2G

�1Þjn �
P

kFjkFkn
~I1,jk~I1,knI0,j I0,k I0,n

h i
P

kFjkFknI1,jk I1,knI0,j I0,k I0,n
, ð14Þ

where ~I1,jk = I1,jk � 1 as well as I0,i are obtained from the previous two
relations.

Spectral density learning
In Supplementary Note 3F, we present a general recursive procedure
using the Dyck paths and how to obtain the bath spectral density from
Ik. As a result, we achieve the following mapping from left to right,

ρ ! U ! K ! I ! JðωÞ: ð15Þ

A remarkable outcome of this analysis is that one can completely
characterize the environment (i.e., J(ω)), by inspecting the reduced
system dynamics. Such a tool is powerful in engineering quantum
systems in experiments where we have access to only the reduced
system Hamiltonian and reduced system dynamics, but lack informa-
tion about the environment. Furthermore, this approach provides an
alternative to quantum noise spectroscopy57,58. This type of Hamilto-
nian learning with access only to subsystem observables has been
achieved for other simpler Hamiltonians59,60. To our knowledge, our
work is the first to show this inverse map for the Hamiltonian
considered here.

Note that the expression Eq. (13) can become ill-defined when F is
diagonal. This occurs when ĤS is diagonal and commutes with Ĥenv,
constituting a purely dephasing dynamics. In that case, the reduced
system dynamics is governed only by the diagonal elements of I.
Similarly, K is diagonal, as clearly seen in our Dyck path construction.
As a result, the map K $ I is no longer bijective in that we cannot
obtain off-diagonal elements of I. Regardless, one can still extract J(ω)
using only the diagonal elements of I via inverse cosine transform.One
may worry Eq. (14) could also become ill-conditioned when its
denominator vanishes, but ĤS is not diagonal. If thatwere the case, the
propagator U2 would become zero. Therefore, this condition cannot
be satisfied in general. Finally, we remark that generalization to extract
the Iα ofmultiple baths through a single central system is possible and
straightforward. See Supplementary Note 3F for more details.

Generalization to driven systems
While analysis up to this point considered general time-independent
systems, in many scenarios, e.g., of biological or engineering rele-
vance, particularly for quantum control applications61, a time-
dependent description of the system is necessary. In such cases, K
loses its time-translational properties and should depend on two
times. Consequently, Eq. (6) cannot be applied. To overcome this, we
factorizeKN + s,s into time-dependent and time-independent parts. This
can be achieved straightforwardly, as follows: one observes upon the
inclusion of time-dependence in ĤS, the terms that are affected inKN ,
Eqs. (7) to (10), are only the bare system propagators G and F. We
define the remainder as tensors with N number of indices,
TN;xs + 2,xs +4,:::,xs + 2N

, which includes all the influence of the bath between
N-time steps. These tensors only need to be computed once and
reused for a later time. Then, one builds the kernels via tensor con-
traction over two tensors,

KN + s,s;xs + 2N + 2, xs
=

1

Δt2
X
�

PN + 1 + s,s
xs ,�, xs + 2N +2

TN;�, ð16Þ

where • denotes indices, xs+2, . . . , xs+2N, and the tensor PN + 1 + s,s
xs ,�,x2N + s

encapsulates the time-dependence of the system Hamiltonian and is
constructedonly out of bare systempropagators. The tensor,TN;•, then
consists only of influence functions, up to IN. The construction of these
tensors is straightforward with TN;• following the Dyck path construc-
tion presented for time-independent system dynamics. On the
surface, the TN;• tensor appears to be related to the process tensor33,34:
T represents K upon the contraction with P, but the process tensor is
used to construct U when contracted with P. Subsequently, there is a
non-trivial rearrangement of the terms to write K in terms of the
process tensor. The simple relationship between T and K in Eq. (16) is
our unique contribution. More detailed analysis and relevant numer-
ical results for open, driven system dynamics are presented in
Supplementary Note 3H.

Numerical verification
While the discussion above applies to a generic system linearly cou-
pled to a Gaussian bath (or multiple such baths if they couple addi-
tively), we discuss the spin-boson model for further illustration. The
spin-boson model is an archetypal model for studying open quantum
systems62. Themodel comprises a two-level system coupled linearly to
a bath of harmonic oscillators. Hence, it and its generalizations have
been used to understand various quantum phenomena: transport,
chemical reactions, diode effect, and phase transitions63.

We use ĤS = ϵσz +Δσx , coupled via σz to a harmonic bath with
spectral density (ω ≥ 0)62

JðωÞ=π
X
k

λ2kδðω� ωkÞ=
ξπ
2

ωs

ωs�1
c

e�ω=ωc , ð17Þ

where J(−ω) = −J(ω), ξ is the Kondo parameter, and s is the Ohmicity.
All reference calculations were performed using the HEOM
method28,64,65. Details of the HEOM implementation used here are
provided in Supplementary Note 7.

In Fig. 2, we investigate a series of spin-boson models corre-
sponding to weak and intermediate coupling to an Ohmic environ-
ment (s = 1) as well as strong coupling to a subohmic environment
(s = 0.5). In panels (a, b), we observe that the decay of ~IN is rapid for
the Ohmic cases. This translates to a similarly rapid decay for the
respective KN , although one can see that both ~IN and KN are overall
scaled larger in the strong coupling regime. This is to be contrasted
with the results for the strongly coupled subohmic environment
shown in panel (c). The decay of the ~IN is slow, accompanied by a
similarly slowdecay ofKN . Interestingly, the rates bywhichboth~IN and
KN decay are similar, which we observe to be exponential. We also see
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perfect agreement between KN constructed from our Dyck diagram-
matic method and those obtained by numerically post-processing
exact trajectories via the transfer tensormethod40. Lastly, we construct
~IN fromKN up toN = 16 as exemplified in Eqs. (13) and (14) and observe
perfect agreement between our ~IN and those computed from its
known analytic formula.

We note that the term with ~IN (multiplicity of 1) contributes the
most to the memory kernel, KN for all parameters considered in our
work. We refer to this term as the “crest” term, which corresponds to
the Dyck path that goes straight to the top and down straight to the
bottom, having the tallest height. We see a small difference between
the crest term norm and the full memory kernel norm in Fig. 2, indi-
cating that the memory kernel is dominated by the crest term. Since
the decay of ~IN is directly related to the decay of the bath correlation
function, one can also make connections between the memory kernel
decay and the bath correlation function decay. Nonetheless, for a

stronger system-bath coupling (e.g., Fig. 2b) and for cases with a long-
livedmemory (e.g., Fig. 2c), terms other than the crest termcontribute
non-negligibly, making general analysis of the memory kernel decay
challenging.

The cost to numerically compute KN scales exponentially with N.
Nevertheless, it is possible to exploit the decay of~IN , which is rapid for
some environments, e.g., ohmic baths, in turn signifying the decay
behavior of KN . This allows truncating the summation in Eq. (5),
enabling dynamical propagation to long times (with linear costs in
time) as usually done in small matrix path integral methods19,20 and
GQME40 methods. We show in panels (a1) and (b1) of Fig. 3 that this
procedure applied to a problem with a rapidly decaying KN quickly
converges to the exact valuewith a reasonably low-order. On the other
hand, for environments with slowly decaying ~IN , the truncation
scheme struggles towork effectively. For a strongly coupled subohmic
environment, as shown in Fig. 3c1, one would need truncation orders

Fig. 3 | Dynamics of spin-boson model with truncated Dyck paths. a1, b1, c1
Magnetization (〈σz(t)〉) dynamics predicted usingK constructed via Dyck diagrams
with increasing truncation orders (from light to darker colors) compared to exact
results (see Supplementary Note 6). a2, b2, c2 Bath spectral densities extracted
through the Dyck diagrammatic method with increasing truncation order (from
white to black colors) compared to exact spectral densities (dashed), see

Supplementary Note 3F for more details. These results come from numerically
exact trajectories, initiated from linearly independent initial states
ρ1ð0Þ= 1

2 ð1+ σz Þ,ρ2ð0Þ= 1
2 ð1� σz Þ,ρ3ð0Þ= 1

2 ð1+ σxÞ,ρ4ð0Þ= 1
2 ð1+ σx + σy + σz Þ. Para-

meters used are: Δ = 1 (other parameters are expressed relative to Δ), ϵ = 0, β = 5,
Δt = 0.1 (a1, b1, c1) or Δt =0.05 (a2, b2, c2), ωc = 7.5, and ξ = 0.1 and s = 1 (a1 and
a2), ξ = 0.5 and s = 1 (b1 and b2), or ξ =0.5 and s = 0.5 (c1 and c2).

O
p

e
r
a

to
r
 N

o
r
m

Fig. 2 | Numerical verification of the Dyck construction. Operator norm of ~IN
(Light) andKN (Dark) as a function ofNΔt. Lines denote~IN computed from analytic
expressions and KN from post-processing exact numerical results via the transfer
tensor method40. Circles denote KN from the Dyck diagrammatic method, and
crosses are ~IN obtained via the inverse map discussed in Eqs. (13) and (14). Dashed

lines denote the operator normof the crest termofKN (the Dyckpath diagramwith
the highest height). Parameters used are: Δ = 1 (other parameters are expressed
relative to Δ), ϵ = 0, β = 5, Δt = 0.1,ωc = 7.5, and ξ = 0.1 and s = 1 (a), ξ = 0.5 and
s = 1 (b), and ξ = 0.5 and s = 0.5 (c).
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beyond the current computational capabilities of our implementation
(about 16) to converge to the exact value. Nonetheless, this illustrates
that our direct construction of KN can recover exact dynamics if suf-
ficiently high-order is used. Furthermore, the construction is non-
perturbative and can be applied to strong coupling problems.We note
that describing quantum phase transitions at T = 0 would require
capturing the algebraic decay in IN29. Our analysis can, in principle,
capture such a slow decay as our approach is exact but will require
further optimization in the underlying numerical algorithms for prac-
tical applications.

Finally, in Fig. 3a2, b2, c2, we show the extraction of spectral
densities J(ω) for three distinct environments. The extracted J(ω)
converges to the analytical value as we obtain the influence functions
to higher orders. This shows that we can indeed invert the reduced
system dynamics to obtain J(ω) given the knowledge of the system
Hamiltonian, which ultimately characterizes the entire system-bath
Hamiltonian. Nonetheless, the accuracy of the resulting J(ω) depends
on the highest order of Ik we can numerically extract. The cost of
extracting Ik scales exponentially inkwithout approximations, so there
is naturally a limit to the precision of J(ω) in practice. Furthermore, we
show how this procedure can extract highly structured spectral den-
sities as well in Supplementary Note 8 and Supplementary Fig. 9. New
opportunities await in using approximately inverted Ik and quantifying
the error in the resulting J(ω).

Discussion
In thiswork,weprovide analytical analysis alongwith numerical results
that showcomplete equivalence between thememorykernel (K) in the
GQME formalism and the influence function (I) used in INFPI. Our
analysis applies to a broad class of general (driven) systems interacting
bilinearly with Gaussian baths. Furthermore, we showed that one can
extract the bath spectral density from the reduced system dynamics
with the knowledge of the reduced systemHamiltonian ĤS. We believe
that this unified framework for studying non-Markovian dynamics will
facilitate the development of new analytical and numerical methods
that combine the strengths of both GQME and INFPI. For example,
deep connections between the present work and recent matrix pro-
duct state (MPS)-based approaches invite ideas that would efficiently
extract the environmental spectral density from reduced system
dynamics29,31–34.

Methods
Details pertaining to analytical derivation of results in thiswork, as well
as numerical implementations, are provided in the Supplemen-
tary Notes.

Data availability
Data generated in this study is available on GitHub (https://github.
com/JoonhoLee-Group/Unified_Framework_OQ_Code_and_Data) and
Zenodo at ref. 66.

Code availability
Simulation codes used in this study are available on GitHub (https://
github.com/JoonhoLee-Group/Unified_Framework_OQ_Code_and_
Data) and Zenodo at ref. 66.
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