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Immune landscape of oncohistone-mutant
gliomas reveals diverse myeloid populations
and tumor-promoting function

Augusto Faria Andrade 1,2, Alva Annett 1, Elham Karimi3,
Danai Georgia Topouza 1, Morteza Rezanejad4, Yitong Liu 3,
MichaelMcNicholas5,6, EduardoG.Gonzalez Santiago7, Dhana Llivichuzhca-Loja7,
Arne Gehlhaar 8, Selin Jessa 9,10, Antonella De Cola 5,6,
Bhavyaa Chandarana 1, Caterina Russo2,11, Damien Faury2,11,
Geoffroy Danieau 12,13, Evan Puligandla 1, Yuhong Wei3, Michele Zeinieh1,
Qing Wu2,11, Steven Hebert 1,10, Nikoleta Juretic 2,11, Emily M. Nakada2,11,
Brian Krug1, Valerie Larouche 14, Alexander G. Weil15,16,17, Roy W. R. Dudley18,
Jason Karamchandani19, Sameer Agnihotri20, Daniela F. Quail 3,21,22,
Benjamin Ellezam23, Liza Konnikova 7,24,25 , Logan A. Walsh 1,3,
Manav Pathania 5,6 , Claudia L. Kleinman 1,10 & Nada Jabado 1,2,11,22

Histone H3-mutant gliomas are deadly brain tumors characterized by a dysre-
gulated epigenome and stalled differentiation. In contrast to the extensive
datasets available on tumor cells, limited information exists on their tumor
microenvironment (TME), particularly the immune infiltrate. Here, we char-
acterize the immune TME of H3.3K27M and G34R/V-mutant gliomas, and mul-
tiple H3.3K27M mouse models, using transcriptomic, proteomic and spatial
single-cell approaches. Resolutionof immune lineages indicates high infiltration
of H3-mutant gliomas with diverse myeloid populations, high-level expression
of immune checkpoint markers, and scarce lymphoid cells, findings uniformly
reproduced in all H3.3K27M mouse models tested. We show these myeloid
populations communicate with H3-mutant cells, mediating immunosuppres-
sion and sustaining tumor formation and maintenance. Dual inhibition of
myeloid cells and immune checkpoint pathways show significant therapeutic
benefits inpre-clinical syngeneicmousemodels.Ourfindingsprovide a valuable
characterization of the TME of oncohistone-mutant gliomas, and insight into
the means for modulating the myeloid infiltrate for the benefit of patients.

Despitemultimodal therapy regimens, high-grade gliomas (HGG) have
poor outcomes and remain one of the leading causes of cancer-related
deaths in children1. A remarkable feature of pediatric HGG (pHGG) is
the presence of two hotspot, gain-of-function, somatic mutations in
coding histone 3 (H3) genes, which drive tumor formation and

progression2,3. Indeed, in diffuse midline gliomas (DMG), lysine to
methionine amino acid substitutions in H3 variants (H3K27M) are
identified in ~80% of tumors, and inhibit themethyltransferase activity
of the Polycomb Repressor Complex 2 (PRC2), inducing global loss
and containment of the repressive H3K27me3 mark at the complex
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nucleation sites4,5. In hemispheric HGGs, glycine 34 to arginine or to
valine substitutions (G34R/V) in H3F3A are found in ~20% of tumors
and impair the modification and/or recognition of the adjacent
H3.3K36 residue in cis6–8.

The TME, including the tumor-infiltrating immune cells, plays a
major role in modulating tumorigenesis as it directly or indirectly
regulates the growth and support of tumor cells and, consequently,
impacts cancer treatment and outcomes9. For several aggressive can-
cers such as melanoma and non-small-cell lung cancers, modulating
the immune system using immune checkpoint inhibitors (ICI) has
shown profound benefits10,11. The same success has not been achieved
for childhood cancer, presumably based on their lower tumor muta-
tional burden compared to adult neoplasms12. However, recent studies
on subsets of “immune cold” Atypical Teratoid Rhabdoid Tumors
(ATRT), which are deadly high-grade brain tumors in children, have
shown paradoxical lymphoid infiltrates and sustained responses to
ICI13, further indicating that a better characterization of the TME,
especially the immune infiltrate, is needed in pediatric cancers. This
includes H3-mutant HGGs, where limited information on the TME
exists to orient optimal adjuvant therapies, particularly those char-
acterizing and modulating the immune system. The rare available
studies that haveused one or few immunemarkers,mainly inH3K27M-
mutant DMGs, indicate these brain neoplasms have poor non-
inflammatory immune infiltration, mainly enriched in tumor-
associated macrophages with scarce T-cells14–17. No studies exist on
the TME of H3.3G34R/V pHGGs.

To explore the nature of the TME, mainly the immune cell infil-
tration and their interactions with H3-mutant cells, we profile
H3.3K27M and G34R tumors using single-cell transcriptomic and spa-
tial proteomic by imaging mass cytometry (IMC) technologies. We
validate our findings on several mouse models of H3.3-mutant HGGs
ranging from patient-derived xenografts in humanized immune-
deficient mouse models to several syngeneic mouse models, includ-
ing our recently described highly penetrant mouse H3.3K27M and
G34R glioma models18. In this work, we uncover the universal infiltra-
tion by heterogeneous populations of myeloid cells from resident
microglia and newly recruited infiltrating macrophages, limited T cell
infiltration, and high expression of immune checkpoint markers on
immune and tumor cells in pHGG samples. This is specific to pHGG
across age and tumor location in the brain as more mixed immune
populations are identified in lower grade tumors and other brain
tumor entities. These findings are recapitulated in all mouse models
studied, demonstrating them as reliable pre-clinical tools to explore
tumor immune modulation. We further show that the crosstalk
between the infiltrating immune cells and tumor cells contributes to
tumorigenesis and immune evasion in H3.3K27M and can be ther-
apeutically targeted. Our data indicate that joint inhibition of myeloid
cells and immune checkpoints (IC) is therapeutically beneficial, pro-
viding important findings for the development and design of future
immunotherapies in deadly pHGG.

Results
Immune profiling reveals a common abundant myeloid popu-
lation in the TME of pediatric gliomas
To characterize the immune landscape at single-cell resolution of H3-
mutant and compare it to other pediatric gliomas, we profiled 66
pediatric glioma samples from all grades and from different subtypes
using Chromium 10X technologies (27 samples from freshly dis-
sociated single cells (sc) and 39 from single nuclei (sn), of which 17 are
newly generated datasets) (Fig. 1A, Supplementary Data 1A, B). These
included H3.3K27M (N = 19) and H3.3G34R/V (N = 16) mutant samples,
low-grade gliomas (LGG, N = 9), and ependymomas (EP, N = 22, 20
posterior fossa group A and 2 hemispheric) (Fig. 1A). Cell filtering,
normalization, integration and clustering were performed as pre-
viously described19. To annotate cells, we first identified clusters of

non-immune cells using a consensus-based automated annotation
pipeline based on 10 machine learning classifiers trained on a single-
cell reference of the normal developing brain19. As expected, we
identified various populations including OPC-like, astrocyte-like, and
ependymal-like cells in each tumor subtype. Next, to annotate immune
cells, we trained the classifiers on a reference of immune cells from the
adult HGG microenvironment20 containing a large diversity of cell
types, including a range of brain resident and infiltrating myeloid and
lymphoid populations. After annotating individual cells, we validated
these annotations by verifying high detection rate of PTPRC (CD45,
pan-leukocyte marker) and the presence of appropriate canonical cell
type-specific markers in each cell population (Supplementary Fig. 2A).
Finally, we assessed batch effects by interrogating cells types expected
to show low variation across samples: as expected, T cells and vascular
cells clustered together independent of tumor entity (Supplementary
Fig. 1E–G, see “Methods”). We identified 54431 immune cells in the
single-cell dataset and only 8563 immune cells in the single-nuclei
dataset split across the 4 tumor entities (Fig. 1B, Supplementary
Fig. 1A–D). Indeed, as previously reported for human microglia21, data
from tumor samples processed using snRNA-seq systematically
underestimated the proportion and diversity of immune cells com-
pared to samples processed using scRNA-seq in both human (Sup-
plementary Fig. 1A–D) and mouse datasets, even when the two
technologieswere applied to the same tumor samples (Supplementary
Fig. 1H–1). We thus focused our analysis on samples processed by
scRNA-seq and mainly used snRNA-seq datasets as a validation set of
trends when appropriate (Supplementary Fig. 1C, D).

With the limitation of the small sample size for H3.3G34R tumors
and the use of enzymatic dissociation which may dampen immune
content22, all glioma samples were largely infiltrated by a different and
abundant population of myeloid cells, comprised of macrophages,
microglia and proliferating myeloid cells (Fig. 1E, Supplementary
Fig. 1B, Supplementary Fig. 2B, Supplementary Fig. 2D). Notably, in
contrast to LGGand EP sampleswhich harbored amixed lymphoid and
myeloid infiltration (Fig. 1C–F, Supplementary Fig. 1B), H3.3K27M
gliomas exhibited a lower proportion of lymphoid cells (Fig. 1D), with
few T cells, regulatory T cells and NK cells (Fig. 1F, Supplementary
Fig. 2D). As similar predominant myeloid infiltrates have been pre-
viously observed in adult IDH-mutant and H3-wild type HGGs23,24, the
reduced lymphocyte infiltrates in theseH3-mutant tumorsmay thus be
a feature of the TME of most HGG regardless of grade, age, H3 muta-
tions, brain location, or the glial cell-of-origin.

Since the immune infiltrate from H3.3K27M tumors showed
striking differences compared to LGGs (Fig. 1D–F), we examined if
gene signatures associated with different aspects of immune activa-
tion/evasion, inflammation, and cell recruitment23,24 were enriched in
immune compartments in tumors (SupplementaryData 2A–C).Among
the immune cell states identified, the majority of K27M-derived
microglia showed an absence of activation signatures, highlighted by
classical marker genes CSF1R and CX3CR1, and were depleted of
disease-associated microglia signatures (Fig. 2A, B, Supplementary
Fig. 2C). The H3.3K27M TME also contained rare populations of
microglia and macrophages enriched for immunomodulatory genes.
These included interferon-activated microglia (expressing IFIT1 and
IFIT3) and phago lipid (expressing LPL) microglia and hypoxic macro-
phages (expressing BNIP3), which were observed to a lesser exctent in
LGG or Ependymomas (Fig. 1E, Fig. 2A, B, Supplementary Fig. 2C, G).
Pathwayanalysis usingHallmark gene sets revealed that in these tumor
samples,microglia significantly downregulatedTNF signaling, immune
response, and complement pathways, indicating a more immunosup-
pressive state (Fig. 2C–E). Additionally, macrophages significantly
upregulated metabolism pathways, including hypoxia and glycolysis
(Supplementary Fig. 2E).

Cells presenting high expression of ICs cannot exert proper
anti-tumor effects as they are considered non-functional or
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Fig. 1 | Pediatric gliomas are infiltrated with a rich diverse myeloid cell popu-
lation. A Oncoprint summarizing single-cell tumor samples, including clinical
information, immune cell proportions and genetic alterations. B UMAP of immune
cells from 27 pediatric brain tumor samples (H3.3 K27M (N = 4) and G34R (N = 2)
mutant gliomas, low-grade gliomas (LGG, N = 8) and ependymomas (EP, N = 13)) by
scRNA-seq, with cells colored by projected tumor type. C UMAP of immune cells
split by tumorentity.DProportionofmyeloid and lymphoidcellsH3.3K27M (N = 4)
vs LGG (N = 8) and H3.3 K27M (N = 4) vs Ependymoma (N = 13) (* denotes adjusted

p value < 0.05 and log fold change >1, permutation test; n = 10,000). E Proportions
of myeloid cell types and activation states in H3.3 K27M (N = 4) vs LGG (N = 8) and
H3.3 K27M (N = 4) vs Ependymoma (N = 13) (* denotes FDR adjusted p value < 0.05
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Article https://doi.org/10.1038/s41467-024-52096-w

Nature Communications |         (2024) 15:7769 3

www.nature.com/naturecommunications


exhausted subsets, and likely contribute to the immunosuppressive
TME. Therefore, we investigated in our single-cell dataset the
expression of genes encoding ICs and immunomodulatory chemo-
kines and cytokines that can also modulate this TME. Microglia in
H3.3K27M tumors significantly upregulated immunosuppressive
genes such as CX3CR1, KLF2, TGFB1 compared to LGG and had
higher levels of HAVCR2 (TIM3), LGALS9 (Galectin-9) and CD86
(Fig. 2C, D; Supplementary Fig. 2F, G). LGG tumors exhibited high
expression of CLL3/4 and IL1B, which is consistent with a higher
proportion of tumor-infiltrating lymphocytes and an increased

tumor-fighting capacity compared to H3K27M-derived microglia
(Fig. 2C, D; Supplementary Fig. 2F). Additionally, in LGG samples,
both myeloid and lymphoid subtypes showed higher scores for
immune signatures related to cytokines, myeloid recruitment, and
antigen presentation (Fig. 2F). Interestingly, key immune-
modulating factors were primarily expressed by the myeloid cells,
especially in LGG and K27M HGG tumors (Supplementary Fig. 2F).
These results highlight the distinct features of myeloid cells in
pediatric glioma subtypes and how they contribute to promoting an
immunosuppressive microenvironment, particularly in HGG.
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and immune checkpoints in H3.3K27M, Ependymoma and LGG. E Pathway analysis
(MSigDB Hallmarks) for H3.3K27M microglia compared to LGG microglia. Sig-
nificant pathways (adjusted p value < 0.05, GSEA Kolmogorov-Smirnov test) shown
in red/blue. F Enrichment (ssGSEA score) for immune gene sets in H3.3K27M HGG
and LGG microglia, macrophage and T-cell populations (*** denotes adjusted p
value < 0.0001, two-sided t test).
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Spatial analyses reveal significant communication between
cancer and myeloid subsets
To characterize the immune architecture of H3-mutant gliomas, at the
protein level and in a spatially resolved manner, we next applied
Imaging Mass Cytometry (IMC) to profile the interaction between
H3.3K27M and H3.3G34R tumor cells and their respective immune
infiltrates, and validate our findings (Fig. 3A). We used a customized
panel of 19 antibodies targeting tumor, immune, and stromal cells
(Supplementary Data 3), on primary tissue samples from 12 H3-mutant
patients (H3.3K27M,N = 7 andH3.3G34R,N = 5; SupplementaryData 1).
IMC images were collected using a tissue microarray composed of
these 12 tumors and a control human tonsil sample (Supplementary
Fig. 3A). In total, 35,190 cells were annotated into 15 different cell
subtypes, including lymphoid, myeloid and tumor cell populations
(Fig. 3B). IMC in silico cell segmentation analysis was performed as
previously described23 (Fig. 3C). Cancer cells were identified as
H3.3K27M (marker for the mutation and additional loss of K27me3) or
H3.3G34R positive cells (Fig. 3D, E; Supplementary Fig. 3B). Myeloid-
derived monocytes were identified by CD14 and CD16 expression and
classified into three categories: classic (CD14+CD16-), intermediary
(CD14+CD16+) and non-classic (CD14-CD16+). Dendritic cells (DC) were
annotated as CD11c+ and MHC Class II molecule (HLA-DR+) cells,
endothelial cells as CD31+ and astrocytes as GFAP+ cells (Supplemen-
tary Fig. 3C). The lymphoid subsets were divided into four different
subtypes, namely CD4 T cells (CD3+CD4+), CD8 T cells (CD3+CD8+),
double-negative T cells (DN T cells; CD3+CD4-CD8-), and B cells
(CD20+), identified by their canonical cell markers (Fig. 3B; Supple-
mentary Fig. 3C).

Cells negative for normal brain, endothelial, and cancer cell
markers were annotated as immune cells. H3.3G34R tumors presented
about 34% of immune cells compared to 14% in H3.3K27M tumors,
accounting for an average of 24% of all the annotated cells. All major
cell subtypeswereobserved inmost patients, with variations in the cell
number and absence of lymphoid subsets in someH3-mutant samples
(Fig. 3F, G; Supplementary Fig. 3D), consistent with data obtained in
our single-cell analysis. Strikingly, both H3.3 K27M and G34R human
tumors were enriched in different subsets of myeloid cells (95% of the
immune cells). These included resident classical microglia
(CD68+CD163-P2Y12+), bone marrow-derived macrophages (BMDM,
CD68+CD163-P2Y12-) and two different populations of monocytes
(CD3-CD14+CD16- and CD3-CD14-CD16+) (Fig. 3G, I; Supplementary
Fig. 3D). B cell (CD20+) and T cell populations were very rare in tumor
samples, representing barely ~4% of tumor-infiltrating cells (Supple-
mentary Fig. 3E).

To characterize proximity and communication between tumor
and immune cells, we performed permutation analysis on our IMC
dataset to investigate the spatial co-occurrence patterns of different
cells and identify interactions or avoidance behaviors between two
populations in both of the H3-mutant tumor types. Different myeloid
subsets were found to interact with H3-mutant cells. Classical BMDMs
showed strong interactions with both H3.3K27M- and G34R-mutant
cells whilemonocyte subsets tended to interactmainly with H3.3G34R
cells (Fig. 4A; Supplementary Fig. 4A). Except for astrocytes, H3.3K27M
cancer cells weremore likely to avoidmost non-cancer lineages within
the TME, whereas H3.3G34R cells had strong likelihood of interacting
with other cancer cells, monocytes subsets and astrocytes (Fig. 4A).
With the limitation of their low number in samples, no differences in
the interaction of lymphoid cells with cancer cells were observed.
Interestingly, in H3.3K27M-mutant tumors, endothelial cells interact
significantly with cancer and myeloid cells (microglia, BMDMs and
classical monocytes), and astrocytes (Fig. 4A; Supplementary Fig. 3B),
indicating the important role of vascular structures in the tumor
microenvironment.

Both scRNA-seq and IMC results consistently revealed that H3-
mutant gliomas are enriched and interacting with a large

heterogeneous myeloid population (Figs. 1D–F, 3G, 4A; Supplemen-
tary Fig. 1A, B, 4A). Given their heterogeneity and complex unknown
roles, we further analyzed ligand-receptor expression in immune-
infiltrating cells in the H3.3K27M scRNA-seq data using CellPhoneDB25.
We identified several ligand-receptor pairs predicted to mediate
communications between immune and neural-like cell types in these
samples. This included theOSM/LIFR pair, whichwas previously shown
in adult HGG tomodulate behavior of myeloid and tumor cells16, while
theCD47 receptor and its ligand galectin-9 (LGALS9) were also strongly
expressed by the immune/myeloid cells, further indicating active
immune suppression in H3.3K27M DMGs and H3.3G34R tumors
(Fig. 4C, D; Supplementary Fig. 4C, D).

In summary, we help resolve the immune landscape of H3-mutant
gliomas using single cell transcriptomics and spatial IMC. Our data
indicate that these tumors have a diverse myeloid population,
including resident macrophages and BMDMs, which predominates in
the TME. We further identify their complex interactions with tumor
cells, and show thesemyeloid cells closely interact with glioma cancer
cells, and their cell-to-cell interactions promote an immune evasive
environment.

H3.3K27M mouse models have a rich immunosuppressive
myeloid-infiltrating tumor microenvironment
The main challenge of therapeutically modulating the immune
microenvironment of these tumors is the lack of validated pre-clinical
models. To this effect, we investigated the immune composition of the
TME in several H3.3K27M mouse models. We explored the TME in a
range of existing mouse models using cytometry by time-of-flight
(CyTOF) and/or immunohistochemistry (IHC). These included two
previously published H3.3K27M mouse models, where concurrent
expression of H3.3K27M and loss of Tp53 led to HGG formation26,27,
and a patient-derived orthotopic xenograft model (PDOX) in a CD34+

humanized NOD scid gamma (NSG) mouse, which contains a recon-
stituted human immune system (including T, B and NK cells) from
CD34+ stem cells. In both syngeneic models, we observed high infil-
tration of myeloid cells and scarce infiltration of T/B cells (Fig. 5A).
Likewise, high myeloid infiltration was observed in the humanized
PDOX mouse model engrafted with SU-DIPG-XIII, a representative
H3.3K27M DMG line4,28. Similar to what we observed in human sam-
ples, limited T cell infiltration was found in the humanized NSG mice,
further confirming that the majority of H3.3K27M tumor immune-
infiltrated cells are of myeloid origin (Fig. 5B).

Even though they reliablymimic humanDMGs, themodels tested
above have long tumor latency and variable penetrance, making them
less amenable for pre-clinical testing. We therefore used our recently
described syngeneic mouse models18, which have several advantages:
shorter tumor latency, full tumor penetrance, and expression of GFP
and the luciferin analog AkaLumine-HCl sequences, enabling in vivo
and in vitro tumor tracking. In this syngeneic model, in utero electro-
poration (IUE) of piggyBac transposon-based and CRISPR vectors tar-
geting neural stem cells and their progeny in the lower rhombic lip of
the developing hindbrain (at E12.5) led systematically to DMG forma-
tion. We used here two models: a 2-hit model, with H3.3 K27M
expression andTp53 loss, and a 4-hitmodel,withH3.3K27Mand Pdgfra
expression with Atrx/Trp53 loss (Fig. 5C, Supplementary Fig. 5A, B)18.
We characterized the tumor immune infiltrate by flow CyTOF and IHC
and confirmed that de novo H3.3K27M mouse tumors also contained
abundant myeloid infiltration (Fig. 5D, Supplementary Fig. 5D–F),
comprised mainly of P2 and P3/P4 macrophages, DCs, and myeloid-
deveried suppressor cells (MDSC).

Next, we used the de novo 2-hit and 4-hit model tumors to
establish cell lines that could be expanded and used for further in vivo
experiments. For this, we collected tumor GFP+ regions of our syn-
geneic models, dissociated the cells, sorted GFP+ cells, and expanded
them in vitro (Fig. 5C). Using C57BL/6 immunocompetent syngeneic
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mice (BL6), we validated that dissociated cells were able to generate
highly penetrant tumors when injected either in the pons or the tha-
lamus, the primary brain regions where DMGs normally occur (Fig. 5E;
Supplementary Fig. 5C). Tumorswere observed with similar kinetics in
all mice injected, regardless of the cell dose and tumor location
(Fig. 5E), indicating that the cells generated from the first tumor
obtained inmice retained tumor-forming capacity. Interestingly, when

we additionally engrafted these tumor cells in immunocompromised
NSG mice, tumors arose at a faster rate (22 days) compared to BL6
(37 days) (Supplementary Fig. 5G), indicating that the immune pres-
sure in the immunocompetent BL6 hosts delays initial tumor estab-
lishment, even if it is not able to fully prevent tumor formation.

In all engraftments using the 2-hit and 4-hit models, and in both
tumor locations, we observed a preponderance of myeloid cells
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(F4/80+ cells) and limitedB- andT-cell infiltration in theTME (Fig. 5F, G;
Supplementary Fig. 5H, I). Immune profiling by flow CyTOF showed
that regardless of the brain location in the pons or the thalamus,CCR2+

P3/P4 macrophages were the most abundant cell subtype (Fig. 5F).
Given the high consistency across models and locations, we further
assessed whether this immune infiltrate was also seen in the H3.3G34R
mouse models, using our previously described G34R-PAD mouse
model (H3.3G34R and PdgfraD842V expression with Atrx/Trp53 loss18),
obtaining similar results (Supplementary Fig. 5J).

These results show the syngeneic models are reliable pre-clinical
tools based on their ability to expand in vitro and to form highly
penetrant tumors in immunocompetent mice, reproducing DMG and
HGG pathology, including the TME. They reinforce the importance of
myeloid infiltration in theseHGGs and demonstrate that this is an early
event in tumor development, as it is identified in the de novo tumors
and in the 2-hit as well as the 4-hit models.

Myeloid-infiltrating cells are central to H3.3K27M tumorigenesis
and can be therapeutically modulated
Newly injected tumor cells need to adapt and recruit specific cell types
that would allow them to establish and support their growth in new
environments. To understand this phenomenon, we performed in vivo
serial engraftments to assess the evolution of the TME. Using the cell
line established from the initial tumor formed from the 4-hit de novo
model, we orthotopically engrafted BL6 mice. Once mice showed
tumor burden symptoms, we dissociated tumors and directly engraf-
ted dissociated cells into new host BL6 mice (Engraftment 2) and
repeated this process in new BL6 mice (Engraftment 3) (Fig. 5C).
Tumor engraftment was faster, and survival was lower with each con-
secutive engraftment (Fig. 6A). Once tumors formed, we collected
GFP+ areas from each engraftment cohort and profiled their tumor
immunepopulations by CyTOF, as antibodies for IMCare less available
and poorly validated for mouse immune cells. We used a panel of 37
markers to identify immune cell lineages and their activation/inhibi-
tory markers, 29 of which were used for phenotyping (Supplementary
Data 4; Supplementary Fig. 6A). After automated clustering with
FlowSOM, using bona fide markers for immunophenotyping 19 dif-
ferent immune clusters, we visualized the immune populations in two
dimensions using t-distributed stochastic neighbor embedding
(Fig. 6B; Supplementary Fig. 6A, B). The total number of CD45+ cells
was not different between tumor engraftments (Fig. 6C). Tumors from
Engraftment 1 were rich in myeloid cells, with a large number of
granulocytic MDSC cells, and microglia, while their lymphocytic
population was mainly composed of Tregs (Fig. 6B; Supplementary
Fig. 6B). With each engraftment, we observed an increase in the pro-
portion of myeloid cells, leading to much less diverse immune infil-
tration at Engraftment 3 (Fig. 6B–D), which best mirrored the TME of
human H3.3K27M HGGs. In all serial transplants, myeloid cells were
comprised of resident macrophages but also of newly recruited
BMDMs (macrophages CCR2+ populations) (Fig. 6B), showing active
recruitment of myeloid cells to the tumors. These results suggest that
the more aggressive and faster growing tumors in serial engraftments
are associated with an expansion of myeloid cells, including newly
recruited BMDM, at the expense of other immune populations.

Myeloid cells play multiple roles in the immune response in brain
tumors, which include impairment of T-cell recruitment/activation,
tumor recognition and lysis. Furthermore, IC-expressing cells are not
able to exert a proper anti-tumor effect29–31. PD1 inhibition has been
successful in multiple tumor types, however, similar results have not
been reproduced in pediatric gliomas outside of patients with con-
stitutivemismatch repair defectswhohavehypermutation syndromes.
Notably, immune populations including the rare lymphoid popula-
tions from our 4-hit model expressed different immune regulator
markers, such as PD1 (Supplementary Fig. 6C, D), further highlighting
the immune suppressive TME in H3.3K27M tumors. As a proof of
concept, we evaluated if tumor growth would be impacted if the
myeloid infiltration was targeted on its own, as previously described in
proneural adult HGG models31–33, and whether joint targeting of its
immunosuppressive network would prove synergistic. For this, we
targeted CSF1R, a receptor kinase critical for survival and proliferation
of CNSmicroglia, peripheral tissuemacrophages and infiltrating blood
myeloid cells (Fig. 6D), and PD1 which is expressed by the rare lym-
phocytes within the TME. Tumor-bearing mice were treated with anti-
CSF1R (3x during one week) or anti-PD1 antibodies alone (4H2, 2x/
week for four weeks), or in combination (Fig. 6E). No effect on tumor
formation was observed when we used each inhibitor on its own.
Strikingly, combined targeting of myeloid cells through CSF1R inhibi-
tion and the immune checkpoint PD1 significantly extended mouse
survival and increased CD3+ infiltration (Fig. 6E, Supplementary
Fig. 6E). As we still observed newly recruited BMDMs in tumors after
anti-CSF1R treatment (alone or combined), we further investigated
whether a more prolonged treatment (3x/week for four weeks) would
prove more beneficial to improve survival rates (Fig. 6F). Here as well,
CSF1R inhibitor alone failed to impact tumor formation, while anti-
CSF1R combined with PD1 extended mouse survival, with 4/7 mice
surviving for more than four months without visible clinical signs of
disease. We performed IHC and flow CyTOF on tumors from mice
treated with anti-CSF1R alone or combined with PD1 harvested at
endpoint to assess the tumor immune infiltrate, compared to tumors
treated with vehicle alone (Fig. 6G, H, Supplementary Fig. 6F, G). We
observed increasedCD3+ T cell infiltration in tumors frommice treated
with the combination, and, despite CSF1R inhibition, residual F4/80+

myeloid cells, including microglial cells and macrophages, albeit at a
lower level (Fig. 6G, H, Supplementary Fig. 6G). Myeloid modulation
may thus have resulted in improved T cell-recruitment and mediated
cytotoxic killing unhampered by the PD1 checkpoint, accounting for
the increased survival we observe in mice.

These results confirm the diverse and complex roles of myeloid
cells in the H3.3K27M TME, which may actively prevent recruitment
and function of T cells in tumors. Notably, they suggest that the
myeloid infiltrate may facilitate tumor establishment and progression
and may represent a potential factor in immunotherapy resistance
and/or failure that can bemanipulated jointlywith immune checkpoint
inhibition for the benefit of patients.

Discussion
We profiled the immune populations in H3-mutant pediatric gliomas
using a combination of single-cell transcriptomics and spatial single-

Fig. 3 | IMC reveals microglia and bone-marrow derived macrophage popula-
tions as themain infiltrated-immune cells in pediatric histonemutant tumors.
A Schematic representation of the approaches used to profile the immune infil-
tration of human H3.3K27M and H3.3G34R mutant tumors by IMC. B Cell lineage
assignment tree. Cancer cells were identified using K27M and G34R markers. Cell
surface markers were used to identify and classify the immune cells. Glial fibrillary
acidic protein (GFAP) positive cells were annotated as astrocytes and cells negative
for the markers mentioned were annotated as undefined (not represented in the
image). Cl Classic, Alt Alternative. Panels (A, B) created with BioRender.com,
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0

International license. C Representative image of in silico cell annotation. All sam-
ples were annotated using the same approach. D–E Representative multichannel
IMC images. Histone H3 mutation status was confirmed for all samples. K27M
(green) and G34R (red) markers were used to identify cancer cells. K27me3
(red inD) is reduced inK27Mpositive cells. DNA in blue.FCell composition and (G).
Percentage of immune populations per tumor type identified by IMC, H3.3K27M
(N = 7) and H3.3G34R (N = 5). H–I Representative multichannel IMC images of
microglia (CD68+ P2Y12+ ), BMDM (CD68+ P2Y12-), monocytes (CD14+ CD16+ ) and
T cells (CD3+ ) identified in H3.3K27M and H3.3G34R patient samples.
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cell proteomic on primary tumor samples. Our data show universal
infiltration of tumor samples by a complex myeloid infiltrate and lim-
ited lymphoid cells in all pHGG.We further show thatH3.3K27Mmouse
models recapitulate this immune infiltrate, which seems to sustain
tumor formation and maintenance in H3.3K27M syngeneic mouse
models. Last, we show that targeting these immune cells can be of
therapeutic benefit.

The TME is a key regulator of cancer establishment and progres-
sion. We show that a striking feature of gliomas is the preponderance
of heterogeneous myeloid cells from resident microglia to BMDM,
regardless of grade, age, brain location, andH3mutations. Indeed, our
data indicate that the immune infiltrate is dominated by a diverse
population ofmicroglia/bone-marrowmacrophages and a lownumber
of infiltrating lymphocytes in H3.3K27M and G34R-mutant pediatric

Fig. 4 | Mutant H3.3K27M and G34R cell interactions in the TME. A Heat map
indicates IMC spatial analysis among cell phenotypes and their patterns of cell-cell
interactions (red) or avoidance (blue) for H3.3K27M (top) and H3.3G34R (bottom)
tumors, determined by pairwise scores. Only interaction/avoidance >50% (random
chance) are shown. Associations shouldbe read row-to-column.Rows represent the
relationship of a cell type of interest. Columns represent the relationship of other
surrounding cell types. Panel illustrating cell interactions created with BioRender.

com, released under a Creative Commons Attribution-NonCommercial-NoDerivs
4.0 International license. B Representative multichannel IMC images of myeloid
cells (CD68+ ) interacting with K27M and G34R cells. C UMAP plots colored by
expression of ligand or receptor pairs in H3.3K27M tumors (N = 4). Both immune
and non-immune cells were used to predict ligand-receptor interactions.
D Expression of ligand-receptor pairs in H3.3K27M immune cell populations.
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gliomas. Similar results were obtained in a recent study which profiled
five H3.3K27M DMG using single-cell transcriptomics34 and in adult
HGG including IDH-mutant gliomas, which are wild type for H3
genes23,24, indicating that this large preponderance of myeloid cells
may be a feature of pHGG. Indeed, even if LGGs also have a diverse
myeloid immune infiltrate, they also harbor a large number of lym-
phoid cells as we show here, while the TME of ATRTs, an aggressive
embryonal brain tumor, can include a high immune T cell infiltrate13.

This further suggests that the limited lymphoid infiltration is not due
solely to the brain locationor a glial or neuronal subtype, but rather is a
characteristic of all pHGG. Several studies have shown that HGG across
the lifespan are sustained by cancer neural stem cells, which mimic to
some level the behavior of normal neural stem cells. Neural stem cells
andmyeloid cells emerge in the brain at the same developmental time
points and physically co-exist within the brain parenchyma. In con-
trast, lymphoid cells emerge much later in development and rarely

Fig. 5 | H3.3K27M syngeneic mouse model results in a highly penetrant model
that recapitulates human tumors. A IHC immune markers from previous estab-
lished H3K27M models (Pathania et al. and Golbourn et al). KD knockdown, oe
overexpression. B IHC immunemarkers of tumors arose in humanized CD34+ mice
(N = 2) engraftedwith humanSU-DIPGXIII cells (700,000 cells injected in the pons).
C Schematic representation of the generation of H3.3K27M syngeneic mouse
model. In utero electroporation (IUE) was used to deliver piggyBac transposable
elements and gRNA/Cas9 into lower rhombic lip NPCs, using E12.5 embryos of
C57Bl6/J (BL6) mice. IUE de novo tumors were used to establish cell line models.
GFP+ cells were isolated and sorted. Cells were expanded in vitro and able to be
engrafted and grown in immunocompetent C57Bl6/J mice. 4-hit established cell

line was used for serial transplantations experiments in C57Bl6/J. GFP+ tumor
regions were dissociated and single cells re-engrafted into secondary hosts. Panel
created with BioRender.com, released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license. D IHC immune markers using
de novo 4-hit engraftedmodel. EOverall survival curve of engrafted C57Bl6/Jmice.
4-hit cells (150 or 350k, N = 5 each) were injected in the pons or thalamus (thal) of
mice. F Cell frequencies by flow CyTOF analysis (percentage of CD45+ live cells)
from4-hit tumors injected in thepons or thalamusofmice (N = 3).GRepresentative
IHC images of lymphocytic (CD3), and myeloid (F4/80) markers using H3.3K27M
4-hit model, engrafted in the pons and thalamus of C57Bl6/J mice.
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migrate to the brain parenchyma, remaining at the brain periphery,
possibly because they could be damaging to non-renewable brain
progenitors and neurons (reviewed in35). This avoidance of lymphoid
cells orchestrated by neural stem cells and their myeloid entourage
may be co-opted by the cancer stem cells in HGG, accounting for the
low lymphoid infiltrates in pHGG. This warrants further investigations
especially as more studies on the spatial proteome of the immune
infiltrate in the developing brain become available.

IMC analyses allowed us to accurately categorize cellular iden-
tity and functional modalities at the single-cell resolution, with a
clear separation between resident and infiltrating immune cells. It

showed that both H3.3K27M and G34R pHGG are composed of
resident microglia, bone-marrow derived macrophages, and mono-
cytes, and revealed a strong interaction between tumor cancer cells
and the myeloid population, while single-cell sequencing analysis
indicated a heterogeneous and immunosuppressive profile for
myeloid cells. Ligand-receptor analyses highlighted several candi-
date signaling pairs that are associated with antitumor immunity,
tumor cell recognition, suppression of immune response and
expansion of the immunosuppressive myeloid population16,36–38.
Thus, our data suggest that tumor-myeloid cell interactions, includ-
ing expression of several immune checkpoint markers, and resulting
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Fig. 6 | Myeloid recruitment is a major event in K27M tumor formation and is
associated with anti-PD1 response in mouse tumors. A Overall survival of
C57Bl6/J mice from serial transplantation experiments using the 4-hit established
cell line model. Log-rank test ***p =0.001. Engraftment 1 (N = 12) cohort was gen-
erated using in vitro cultured cells. Engraftment 2 (N = 10) cohort was generated
from Engraftment 1 dissociated tumors. Lastly, Engraftment 2 tumors were dis-
sociated and injected into new hosts, generating the Engraftment 3 (N = 5) cohort.
B t-SNEs from CyTOF immune infiltration profiles. t-SNEs map representing entire
cell populations identified (N = 3). C Percentage of CD45+ live cells in 4-hit serial
engraftment by flow CyTOF analysis (Engraftment 1N = 3, Engraftment 2N = 5,
Engraftment 3N = 3). Data are presented as mean values ± SEM. D Cell frequencies
from Engraftment 1, 2 and 3 tumors. E Schema of drug treatment and overall
survival of C57Bl6/J mice treated with anti-CSF1R and/or anti-PD1. Mice were

treated with isotypes (Vehicle, N = 16), anti-CSF1R antibody (N = 13) (three doses of
300 µg, during one week), anti-PD1 antibody (4H2, N = 6) (two doses of 200 µg per
week, during four weeks), and the combination of anti-CSF1R+anti-PD1 (N = 14).
F Mice were also treated for four weeks with anti-CSF1R antibody alone (N = 8)
(three doses of 300 µg), anti-CSF1R+anti-PD1 (N = 7) or the Vehicles (N = 7). Two
mice treated with the combination developed tumors and were used to assess the
tumor immune infiltrate. Panels (E, F) created with BioRender.com, released under
a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license. G IHC representative images for CD3+ lymphocytic and F4/80+ myeloid
markers and (H). Immune clusters identified by flow CyTOF analysis from tumors
found at endpoint inmice treatedwith anti-CSF1R alone or combinedwith anti-PD1,
during four weeks (cohort from panel F). Vehicle: N = 4, anti-CSF1R: N = 3, anti-
CSF1R + PD1: N = 2. Data are presented as mean values ± SEM.
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cytokine profiles promote an immunosuppressive milieu that acts to
limit recruitment and survival of T and B cells. The spatial organi-
zation of tumors has shown to be imperative for understanding
tumorigenic and immunological mechanisms ruling cancer16,23 and
our study reveals predominant features of tumor evolution that
involve direct cell–cell contact, including the induction of multiple
immunosuppression programs, accounting for the limited recruit-
ment of lymphoid cells within tumors.

We further show that myeloid infiltration is recapitulated by
multiple H3.3K27M mouse models, including our recently described
immunocompetent preclinical mouse models18. Our data indicate that
all H3.3K27M models recapitulate the immune infiltrate identified in
human H3.3K27M DMGs. Notably, we demonstrate that serially
engrafted tumors aremore aggressive and showprogressive reduction
in the immune infiltrate diversity which becomes largely skewed
towardsmyeloid infiltration, recapitulating what we observe in human
tumors. Similar findings have been observed in adult HGG models
where cancer stem cells acquired the capacity to escape immune
surveillance in serial transplants through epigenetic editing, which
leads to the active recruitment of immunosuppressive myeloid cells39.
Further studies are needed to identify the precise mechanisms by
which histone mutant cells may be able to regulate myeloid recruit-
ment and rely on them to grow.

Targeting myeloid cells in HGG using an anti-CSF1R regimen
seems promising to improve overall survival in several adult HGG
mouse models, especially in combination with other agents33,39,40. In
contrast to other studies on adult HGG, myeloid depletion using anti-
CSF1R antibodies produced no therapeutic benefit on its own in our
H3.3K27M models, while its joint inhibition with PD1 was beneficial.
Indeed, we observed increased survival and infiltration of tumors
with CD3 + T cells when jointly inhibiting CSF1R and PD1. Several
factors may account for the observed differences when only inhi-
biting CSF1R, including variations in the TME composition based on
the oncogenic driver, its interactions with tumor cells, brain location,
optimal scheduling, and the brain penetrance of inhibitors. Since we
used the same inhibitor, and similar dosage and scheduling as
described in ref. 39, brain penetrance alone does not explain the lack
of survival benefit from exclusive CSF1R inhibition. An epigenetic
driver mutation like H3.3K27M and the midline brain location may
elicit different immune infiltrates and tumor-TME interactions,
potentially explaining the observed lack of therapeutic effect. Fur-
ther studies are needed to improve TME targeting and understand
the lack of antitumor effects from CSF1R blockade alone in the
context of H3.3K27M. It is also important to investigate the repro-
gramming and reshaping of myeloid cells, rather than their deple-
tion, to better address their role in brain tumorigenesis and
understand how these populations evolve in tumors during therapy.

In summary, we depict the spatial architecture and describe the
contribution of the infiltrated-immune populations to H3.3K27M and
G34R tumorigenesis and immune evasion, charting the immune
populations present in H3-mutant pHGG and their interactions with
tumor cells. Our data represent a rich resource for future studies and a
guide for immunotherapeutic development for oncohistone-mutant
brain tumors and possibly other pediatric brain malignancies. Since
tumor infiltration canbemodulated ina relevantmousemodel, further
investigations are warranted on the relationship of myeloid popula-
tions, immune checkpoint blockade therapies and tumorigenesis, to
orient future development and design of immunotherapies for these
deadly tumors.

Methods
Ethics approval and informed consent
This study was conducted in accordance with the Institutional Review
Board of the respective institutions from which the samples were
collected. All patients signed awritten consent prior to any procedures

performed, approved by the Research Ethics and Review Board of
McGill University and Affiliated Hospitals Research Institutes.

All procedures on mice were performed in accordance with pro-
tocols approved by the Animal Care Committee of the RI-MUHC,
McGill University Health Center Animal Care Committee and in com-
pliance with the Canadian Council on Animal Care (CCAC) guidelines.
Housing, breeding and procedures performed were in keeping with
CCAC guidelines. Briefly, mice were housed under a cycle of 14-h light
and 10-h dark (14:10). Room temperature was continuouslymonitored
by a building automation system equipped with an alarm or notifica-
tion system, and maintained in the range of 20–26 °C. Room relative
humidity was kept at between 40 and 60%.

In utero electroporation
In utero electroporation was performed as previously described26,
with minor modifications. Timed-mated, pregnant C57BL/6 J (RRI-
D:IMSR_JAX:000664) mice were acquired from Charles River
Laboratories (Kent, United Kingdom) and maintained under
pathogen-free conditions, in individually ventilated cages, with food
and water provided ad libitum. All procedures were approved by the
UKHomeOffice (PPL PP2303899) and carried out in accordance with
the Animals (Scientific Procedures) Act 1986. Pregnant females at
E12.5 (hindbrain) or E13.5 (forebrain) were anesthetized using 2.5%
isoflurane and 1.5 L O2/min, with analgesic support provided pre-
operatively via subcutaneous delivery of Buprevet at 0.1mg/kg.
Uterine horns were exposed through a 1 cm incision and individual
embryos were digitally manipulated into the correct orientation for
intraventricular injection. Pulled borosilicate capillaries were loaded
with endotoxin-free DNA and Fast Green dye (0.05%, Sigma) for
visualization, and a microinjector (Eppendorf) was used to inject
either the lateral or fourth ventricles with the DNA-dye mixture. 3–5
plasmids were injected simultaneously, each up to a final con-
centration of 2 µg/µl and 1–2 µl of total solution was injected per
embryo. DNA was electroporated into ganglionic eminence pro-
genitors using 5mm tweezertrodes (BTX), or into lower rhombic lip
progenitors using 3mm tweezertrodes, applying 5 square pulses at
35 V and 25 V respectively, 50ms each with 950ms intervals. The
embryos were returned into the abdominal cavity, the muscle and
skin were sutured, and the animal was monitored until fully recov-
ered from the procedure.

Cell line derivation and culture
Tumor-bearing C57BL/6 J mice were euthanized by CO2 exposure.
Brains were rapidly dissected in ice-cold dissociation medium (20mM
glucose, 81.8mMNa2SO4, 30mMK2SO4, 5.8mMMgCl2, 250 µMCaCl2,
1mM HEPES, 160 µM NaOH, 0.8mM kynurenic acid, 50 µM
D-APV, 100U/mLpenicillin, 100 µg/mL streptomycin, 5 µg/ml plasmocin
and 100 µg/ml primocin). Coronal sectionswere cut using a brainmatrix
andGFP+ (tumor) andGFP- regions (stroma)weremicrodissectedunder
an epifluorescence stereomicroscope (Leica M205, Leica Biosystems).
Microdissected tissue was then enzymatically digested into a single-cell
suspension using the Papain Dissociation System according to the
manufacturer’s instructions (Worthington Biochemicals, LK003150).
The dissociated cell solution was separated on an OptiPrep density
gradient to removedebris, followedbyGFP+ cell sorting using FACSAria
II (BD Biosciences). Sorted cells were plated into NeuroCult NSC pro-
liferation media (STEMCELL Technologies, 05701) containing 20ng/ml
EGF (Miltenyi Biotec), 20 ng/ml bFGF (Miltenyi Biotech,130-093-243),
10 ng/ml PDGF-AA (Shenandoah Biotechnology), 10 ng/ml PDGF-BB
(Shenandoah Biotechnology) and 2μg/ml Heparin (STEMCELL Tech-
nologies, 07980). Cells were grown as spheroids (gliomaspheres) using
ultra-low attachment plates (Corning). Once cell lines were established,
they were cultured as monolayer prior experiments using Neurobasal
media (Gibco-Life Technologies, 21103-049) containing 1% of GlutaPlus
(200mM,Wisent, 609-066-EL), 1% N2 supplement (100X, Wisent, 305-
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116-1 L) and 2% of NeuroCult SM1 (50X, StemCell Technologies, 05711),
10 ng/mL of bFGF (Miltenyi Biotech,130-093-243) and EGF (Miltenyi
Biotech, 130-097-751).

Mouse cell line H3.3K27M/ATRX-TP53KD/PDGFRAoe was pro-
vided by Dr Paolo Salomoni, and the cell line H3.3K27M/TP53DN/
PDGFRAoe by Dr Sameer Agnihotri, and maintained as previously
described26,27. SU-DIPGXIII cell line was provided by Dr Michelle
Monje, and were cultured as previously described4,28. All cell lines
were authenticated using STR profiling and negative for
mycoplasma.

Orthotopic injection and treatment
Engrafted mouse tumors were obtained using intracranial stereotaxic
injections. For this, 150-700,000 single cells resuspended in cold HBSS
were injected into the pons of 5- to 6-week-old male or female BL6
(C57BL/6 J), NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ), or Hu-CD34 +NSG
(NOD.Cg-Prkdcscid Il2rgtm1Wjl) mice, Jackson Laboratory. For tumor serial
transplantation experiments, GFP+ tumors were dissected from brains
once mice showed tumor burden symptoms, mechanically dis-
aggregated and followed by enzymatic digestion using DNase and
LiberaseT (Roche, 05401020001). Briefly, tissuewas incubated at 37 °C
for 10–20min and reactionwas inhibitedby addingPBS containing 75U
DNase and 1% FBS. Cells were spinned and resuspended in neurobasal
media. Intracranial injections were performed as described above.

For in vivo treatment, anti-CSF1R (CD115, BioXCell, BP0213) and
anti-PD1 4H2 (kindly provided by Bristol-Meyer Squibb) antibodies
were administered by intraperitoneal (IP) injection. Animals were
randomly assigned. Mice received 300 µg of anti-CSF1R three times
during one or four week(s), and/or 200 µg of anti-PD1 twice a week
during four weeks, 3 days post cell injection.

Immunohistochemistry
Brains were fixed in 10% PFA overnight then transferred into 70%
ethanol media. Following fixation, the samples were dehydrated and
embedded in paraffin for processing. For IHC, samples were sectioned
in 3–5 µm slices. IHC was performed using Ventana Discovery Ultra
Instrument (Ventana Medical Systems) or Leica automated Bond-III
platform in conjunction with the Polymer Refine Detection System
(DS9800). Sections were incubated with primary antibodies: mouse
anti-CD3 (Roche/Ventana, 790-4341), human anti-CD4 (Abcam,
ab133616, 1:100), human anti-CD8 (ThermoFisher, MA5-14548, 1:100),
anti-CD68 (Cell Signaling, 76437, 1:100), anti-H3K27M (RevMab
Bioscience, 31-1175-00, 1:100), anti-F4/80 (Cell Signaling, 70076T,
1:100). Slides were counterstained with hematoxylin and Bluing
Reagent, and finalized with mounting medium. Sections were scanned
using the Aperio AT Turbo Scanner (Leica Biosystems). Images were
analyzed using ImageJ software, using multiple high-power fields. The
positively stained cells were counted using automated method after
adjusting particle size, circularity and intensity threshold.

Immunofluorescence
For immunofluorescence, free-floating sections were incubated in a
blocking solution (10% goat or donkey serum, 3% BSA, 0.3% Triton-X in
PBS) for 1 h at RT and then incubated with primary antibodies at 4 °C
overnight. Sections were washed in PBS-Tween (0.05%) before addi-
tion of Hoechst 33342 and Alexa Fluor-conjugated secondary anti-
bodies in blocking solution for 1 h at RT. Following washing, sections
were mounted in ProLong Diamond Antifade mountant (Thermo
Fisher Scientific) and imaged on a confocal microscope (Leica SP8,
Leica Biosystems).

CyTOF
Tissue digestion. Tumor samples were processed and dissociated
utilizing the Brain Tumor Dissociation Kit (Miltenyi Biotec, 130-095-
942) into single cell suspensions per the manufacturer’s instructions.

Staining. CyTOF staining was performed per previously published
protocol41. Briefly, cells were washed in cell-staining buffer (CSB:DPBS
with 0.5% bovine serum albumin (Sigma, USA) and 0.02% sodium
azide) and then incubatedwithHumanTruStain FcX (BioLegend,USA).
The cells were then stained for viability with Rh103 (Fluidigm, USA).
After an additional wash with CSB, cells were stained with a surface
staining antibody cocktail (Supplementary Data 4). For intracellular
staining, cells were washed again with CSB and incubated with the
FOXP3 fixation andpermeabilizationbuffer solution (Invitrogen, USA).
After fixation and permeabilization, cells were washed with 1X FOXP3
wash buffer (Invitrogen, USA) and stained with intracellular antibody
cocktail. Cells were then washed with CSB, re-fixed with 1.6% paraf-
ormaldehyde (Sigma, USA), and kept in CSB overnight at 4 °C. On the
following day, samples were labeled with 191Ir/193Ir DNA Intercalator
(Fluidigm, USA) and then washed with CSB. Cells were pelleted and
shipped overnight to the Longwood Medical Area CyTOF Core of the
Dana-Farber Cancer Institute with refrigeration in CSB. On the day of
the analysis, cells werewashedwithMilliQwater. Beadswere added for
normalization in a 1:10 dilution (Fluidigm,USA). Analysiswasdoneona
Fluidigm mass cytometer at a rate of 250 events/s. Data were nor-
malized using the beads and exported as FCS files.

Analysis. FCS files were uploaded to the Premium Cytobank platform
(Beckman Coulter, USA) and manually gated. Beads were gated out
and cells were gated as positive for DNA, single events, and negative
for Rh103 for viable cells. Immune cells and microglia were further
gated on CD45. The resulting events were exported as new FCS files
and further analyzed using FlowJo (BD Life Sciences, USA) and the
FlowSOM plug-in feature. For the initial tumor analysis, FCS files were
grouped and concatenated based on sample type (i.e., de novo tumors
and subsequent retransplanted tumors). The resulting concatenated
files had equal numbers of events from each sample (n = 644 for de
novo tumors and n = 821 for retransplanted tumors) to ensure equal
representation of each sample across the experiment and used for
FlowSOM clustering. Subsequently, a new concatenated file was cre-
ated using all events fromallfiles and subjected to FlowSOMclustering
generated based on the balanced original concatenated file. For the
treatment analysis, the CD45 positive events for those samples were
gated on CD3, and the CD3 positive and CD3 negative events were
concatenated and analyzed separately (n = 4785 for the CD3 negative
cells and n = 4593 for CD3 positive cells). Dimensionality reduction for
populations was done with t-distributed stochastic neighbor embed-
ding (tSNE). FlowSOMclusteringwasperformedusingpreset k = 20 for
the tumor analysis and presets k = 15 and k = 5 for the treatment CD3
negative and CD3 positive events respectively. Clusters were manually
annotated using the expression heatmap generated through Flow-
SOM. The concatenated dataset was then re-gated into the original
samples and the percent abundance of each cluster per sample was
calculated. Similar clusters were grouped together and the non-
immune cell clusters were removed for the analysis. tSNE plots and
heatmaps were extracted from FlowJo. Mean metal intensities (MMI)
for specificmarkers and cluster abundance data were used to generate
plots using Graphpad Prism 9. Differences in cluster abundance and
MMIs between samples were calculated using unpaired t-tests with
Welch’s correction in Graphpad Prism 9.

Single-cell and single nuclei transcriptomic analysis
Data processing and cell annotation of human tumor samples
Alignment and data preprocessing. Cell Ranger (10x Genomics)
(v2.2.0 and 3.0.1)42 was used with default parameters for read align-
ment, demultiplexing, and quantification of gene counts per cell.
Alignment was performed using the hg19 reference genome build,
coupled with the Ensembl transcriptome (v75)43. Downstream data
processing was performed as previously described19 using Seurat
(v4.0.0)44. Briefly, cellswerefiltered using the following quality control
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(QC) metrics: mitochondrial content (indicative of cell damage),
number of genes, and number of unique molecular identifiers (UMIs).
Libraries were scaled to 10,000 UMIs per cell and log-normalized. UMI
counts and mitochondrial content were regressed from normalized
gene counts and the residuals Z-scored gene-wise. Dimensionality
reduction was performed using principal-component analysis applied
to the top 2000most variant genes. The first 30 principal components
were then used as input for projection to two dimensions using
UMAP45 and for clustering using a shared nearest neighbor (SNN)
modularity optimization algorithm based on the Louvain algorithm on
a k-nearest neighbors graphwith k = 20.Mitochondrial and ribosomal
percentages per sample were calculated by dividing counts coming
from ribosomal (defined as having gene symbolsmatching ‘RPS’, ‘RPL’,
‘MRPS’, ‘MRPL’) or mitochondrial genes (defined as having gene sym-
bol beginning with ‘MT-’) by the total counts of the sample. Cell cycle
scores for G2/M and S phases were obtained as implemented in Seurat
by calculating the average expression of G2/M phase- and S phase-
associated gene lists in each single cell and subtracting the average
expression of control gene lists. Control gene lists were derived by
binning genes in each input list into 24 bins according to expression
levels and randomly selecting 100 control genes from within each
expression bin.

Cell type annotation. Cells were first annotated at the individual cell
level using scCoannotate, a consensus annotation pipeline using five
machine learning methods (Spearman correlation, support vector
machines, ACTINN46, SingleCellNet47, SciBet48) trained on a reference
of the developing mouse forebrain and pons19,49. Predicted labels
from each method were aggregated into broader categories based
on a pre-defined cell type ontology (Supplementary Data 2), and a
consensus label was determined using a majority vote based on the
five methods. Cells with ties between methods, or no majority, were
labeled as “Unresolved”. Clusters with a majority (>50%) of cells
bearing an immune label (microglia, macrophages) were labeled as
immune. The immune cells were then re-annotated at the single-cell
level using scCoAnnotate, with 10 machine learning methods,
Spearman correlation, support vector machines, ACTINN46,
SingleCellNet47, SciBet48 scPred50, SingleR51, scHPL52, scLearn53,
scClassify54, trained on a reference of GBM-associated brain immune
cells from a cohort of adult glioblastoma samples20. A consensus
label for each cell was computed using a modified version of the
CAWPE algorithm55 as follows: first, the F1 accuracy measure was
computed for eachmethod by performing a 5-fold cross validation in
the reference data set. Second, each machine learning method was
trained on the reference data set and used to produce a confidence
score for each reference cell type in each immune cell. Finally, the
class label for each immune cell was selected as follows:

celllabel =argmaxi2N
XM

j
W j

α � Ci

� �
ð1Þ

WhereWj is the cross-validation accuracy (F1)measure formethod j, α
is a hyper parameter (set to α =4), and Ci is the prediction confidence
score for the reference cell type i in the immune cell. Predicted labels
fromeachmethodwere aggregated intobroader categories basedon a
pre-defined cell type ontology (Supplementary Data 2).

Sample integration. Cells fromall single-cell RNA-seq samples (N = 27)
and single-nuclei RNA-seq samples (N = 39) were integrated separately
for each technology using Harmony with default parameters, 30
principal components as input, and regressing out difference between
samples56. The integrated spacewasprocessed as previouslydescribed
for individual samples. After integration and clustering of the single-
cell RNA-seq immune cells, post-clustering QC was performed, and
three clusters were removed: one cluster defined by a high

mitochondrial content, a cluster containing a single cell, and a cluster
of potentially misclassified cells that lacked immune cell markers and
expressed the non-immune genes PDGFRA, OLIG2, SOX2, NOVA1.

Testing proportions of cell types. Proportions of cell types between
the tumor entities were tested using the R-packgage scPro-
portionsTest (v1.0.0), with default parameters and the number of
permutations set to 10000.

Differential gene expression analysis. Differentially expressed genes
(DEGs) between tumor entities were computed per cell type using the
Wilcoxon rank sum test implemented in the FindMarkers function
from the Seurat package (logFC.threshold=1, min.pct=0.05). Gene set
enrichment analysis for DEGs ranked by log2 fold change was per-
formed using enrichGO function from the clusterProfiler package
(v4.6.2) and the Hallmarks57 gene sets (MSigDBr v 7.5.1) with adjusted
p-values < 0.05 as the significance threshold.

Immune activation signature enrichment analysis. Single-sample
gene set enrichment analysis (ssGSEA)58 was performed at the indivi-
dual cell level using the escape R package59. In order to characterize
immune cell subsets and evaluate immune activation, we performed
ssGSEA for a number of published microglial, macrophage, and T-cell
activation signatures from previous single-cell RNA-seq studies60–62. In
addition, we evaluated 10 general signatures of immune activation and
myeloid recruitment from a bulk RNA-seq study on the adult glio-
blastoma immune component24.

Differential gene expression analysis. Cell-cell communication infer-
ence. Cell-cell communications between immune and neural cells were
inferred in individual tumor samples using CellphoneDB v225. This
computational tool predicts communication between groups of cells
using gene expression of ligands and receptors. Cell groups used for
immune cellswere asdescribed inBroad celltype annotation. Labels for
non-immune cells (RGC, glial progenitors, OPC, oligodendrocytes,
astrocytes, ependymal, neuronal progenitors, neurons, non-neu-
roectoderm, other) were retrieved from the first round of annotation
with a developing mouse reference. Cells with label “No consensus”
were removed. CellphoneDB was run individually in each single-cell
H3.3K27M sample (n = 4) with gene names, in statistical methodmode
set to default parameters. In each sample, predicted ligand-receptor
interactions (i.e., ligand-receptor pair between a given pair of cell
groups) with p value > 0.01 and predictions between two immune cell
groups or two non-immune cell groups were removed. The resulting
list of ligand-receptor pairs predicted between immune and non-
immune cell groups from each sample was intersected to retain only
the pairs appearing in all four samples.

Data processing and cell annotation of mouse tumor samples
Alignment and data preprocessing. For mouse data, a custom gen-
ome reference was built, consisting of the mm10 reference plus the
different vectors used in themousemodels. Five customchromosomes
were added to themm10 genome: the first one containing the piggybac
transferase; the second one containing Akaluc and the GFP sequences;
the third one containing the humanH3F3A genewithHA tag; the fourth
one containing the p53 guide RNA and the last one containing the
shATRX sequence. Reads were aligned to this reference using Cellran-
ger (v2.2.0 and 3.0.1), and reads mapping to the additional chromo-
somes were quantified using a custom GTF file supplied to Cellranger.

Cell type annotation. Mouse cell types were annotated as described
for the human tumor data. Annotation of immune subsets was per-
formed using a reference of brain immune cells fromwild-type mouse
GBM models20.
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Expression of immune signatures in Single Cell and Single
Nuclei data. Immune signatures were generated fromGBM-associated
brain immune cells (45) by computing differently expressed genes
from each immune cell type with the Seurat (v4.0.0) function Fin-
dAllMarkers. For each cell type a signature was generated by first fil-
tering for genes with adjusted p value < 0.05 and then taking the top
100 genes ranked by log fold change. The average expression of each
gene in signature was plotted for single cell vs single nuclei data.

Imaging mass cytometry
Samples. A total of 12 formalin-fixed, paraffin-embedded (FFPE)
patient tumor samples (H3.3K27M, N = 7 and H3.3G34R/V, N = 5) was
processed. A human tonsil sample was also added and used as a con-
trol for the immune markers. Cores (1.5mm in diameter) were
removed from FFPE tissue blocks and assembled into tissue micro-
arrays. Patient samples’ information can be found in Supplemen-
tary Data 1.

Antibody panel and staining. Antibody optimization, panel and
staining were prepared as previously described23. An antibody panel of
24 targets was designed to distinguish cell types and states, including
immune,mesenchymal, proliferative and immune checkpoint proteins
(Supplementary Data 3). Five antibodies failed and were not included
in the analysis. Nine antibodies were already purchased metal-labeled
(Fluidigm) and the remaining unlabeled antibodies were conjugated
with metals using Maxpar X8 Multimetal Labeling Kit (Fluidigm,
201300) following the manufacturer’s protocol. All antibody titration
and specificitywere tested by IMCusing human tumor samples, spleen
and/or tonsil. Details about metals, antibodies, and concentration are
described in Supplementary Data 3.

Tissue slides were stained following the IMC staining protocol23.
Briefly, FFPE TMA slides underwent deparaffinization and heat-
mediated antigen retrieval using the Ventana Discovery Ultra auto-
stainer platform (Roche Diagnostics), according to the manufacturer’s
instructions. Slides were rinsed and blocked (Dako Serum-free Protein
Block solution, Agilent) and stained with a cocktail containing metal-
conjugated primary antibodies at 4 °C overnight. A secondary anti-
body cocktail containing metal-conjugated anti-biotin was added.
Slides were counterstained with Cell-ID Intercalator-Ir (Fluidigm),
rinsed, and air-dried prior to IMC acquisition. IMC acquisition was
performed using the Hyperion Imaging System (Fluidigm).

Image processing and analysis. Analyses were based on not trans-
formed and raw measurements. Single-cell marker expressions are
summarized by mean pixel values for each channel. For heat map
visualization, expression data were normalized to the 95th percentile
and z-scored cluster means were plotted. All lineage and functional
markers underwent a staining quality check prior to cell segmentation.
A subset of functional markers did not stain consistently with IMC and
were subsequently removed from analysis (PD-L1-Biotin, FoxP3, PD-1,
CD45RA, CD45RO; see Supplementary Data 2). Cell segmentation was
done using machine learning-based computer vision algorithms as
previously described23.

IMC cell–cell pairwise interaction analysis. To identify significant
pairwise interaction and avoidance behaviors between cell types, we
performed permutation tests of single-cell interactions as previously
described23. Cells within a 6-pixel radius (6 μm) were considered
interacting. Significant interaction or avoidance between G34R and
K27M samples were determined by comparing the mean interaction/
avoidance score for each pairwise comparison using a two-sample
t test (MATLAB). P-values less than 0.01 were considered significant
where at least one of the groups had a tendency for interaction/
avoidance >50% (random chance).

Statistics and reproducibility
The description of statistical details for each experiment is indicated in
the figure legends. Experiments were validated in at least three bio-
logical replicates unless stated otherwise. Significance was assigned by
tests deriving a p value less than 0.05. All the data shown are repre-
sented either as Mean ± standard deviation (SD) or Mean± standard
error mean (SE), as detailed in the figure legends or Methods section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
scRNA-seq and snRNA-seq data for pediatric human tumors have been
deposited in the European Genome-phenome Archive (EGA) under
accession number EGAS00001007510. Previously publisheddata used in
this study is deposited in the European Genome-phenomeArchive (EGA)
under accession number EGAS00001005773 (https://ega-archive.org/
dacs/EGAC00001002411), EGAS00001003170 and EGAS00001004301
(https://ega-archive.org/dacs/EGAC00001001571) and Gene Expression
Omnibus (GEO) under accession number GSE125969. Accession num-
bers for previously published samples used in this study are also pro-
vided in Supplementary Data 1. scRNA-seq and snRNA-seq data for
H3.3K27M mouse models have been deposited in Gene Expression
Omnibus (GEO) under accession number GSE241985. All other data are
available in the article and its Supplementary files or from the corre-
sponding author upon request. Source data are providedwith this paper.

Code availability
Code for cell type annotation is available at https://github.com/
fungenomics/scCoAnnotate.
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