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Air pollution below US regulatory standards
and cardiovascular diseases using a double
negative control approach

Yichen Wang1,2 , Mahdieh Danesh Yazdi3, Yaguang Wei 1,4 &
Joel D. Schwartz 1,5

Growingevidence suggests that long-termair pollution exposure is a risk factor
for cardiovascular mortality and morbidity. However, few studies have inves-
tigated air pollution below current regulatory limits, and causal evidence is
limited.We use a double negative control approach to examine the association
between long-term exposure to air pollution at low concentration and cardi-
ovascular hospitalizations among US Medicare beneficiaries aged ≥65 years
between 2000 and 2016. The expected values of the negative outcome control
(preceding-year hospitalizations) regressed on exposure and negative expo-
sure control (subsequent-year exposure) are treated as a surrogate for omitted
confounders. With analyses separately restricted to low-pollution areas
(PM2.5 < 9μg/m³, NO2 < 75.2 µg/m3 [40 ppb], warm-season O3 < 88.2μg/m3

[45 ppb]), we observed positive associations of the three pollutants with hos-
pitalization rates of stroke, heart failure, and atrial fibrillation and flutter. The
associations generally persisted in demographic subgroups. Stricter national
air quality standards should be considered.

Long-term exposure to air pollution has been recognized as an
important modifiable risk factor for cardiovascular diseases1,2. An
increasing number of epidemiological studies support positive asso-
ciations between long-term air pollution and the occurrence of cardi-
ovascular events, although specific cardiovascular outcomes have
been less investigated relative to overall cardiovascular mortality and
morbidity. Stroke, which is characterized by high incidence and mor-
tality, is the second leading cause of death worldwide3. Researchers
have reported that long-term exposure to air pollution, particularly
fine particulate matter with an aerodynamic diameter <2.5μm (PM2.5),
could be associated with an increased risk of hospitalization, inci-
dence, and mortality due to stroke4. Heart failure (HF) and atrial
fibrillation (AF) are other two major cardiovascular diseases. They are
important risk factors for stroke onset5. Several studies demonstrated
the adverse effect of long-term air pollution on the risk of HF6–8 and

AF9,10, although these two endpoints have been understudied as pri-
mary outcomes of interest. Overall, the evidence for the hypothesized
association, especially with HF and AF, remains scarce and incon-
sistent. In addition, with the predominant focus on PM2.5, the potential
cardiovascular effects of long-term exposure to other major air pol-
lutants such as nitrogen dioxide (NO2) and ozone (O3) have been
under-examined, and the correlations between different pollutants
have also been overlooked. To conclude, the potential causal rela-
tionships between multiple air pollutants and specific cardiovascular
events need to be further elucidated.

Most of the existing studies linking long-term exposure to air
pollution to cardiovascular events examined the entire range of
exposure. The average pollution levels may differ substantially by
region and thereforepartially account for the geographical differences
in the estimated associations. Average pollution level differences
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could only explain geographical differences if the association is not
linear. There is a dearth of our understanding of the health impacts of
air pollution at concentrations below regulatory standards, which has
important implications for air pollution regulations in regions such as
the United States (US) where populations experience generally low air
pollutant exposures. Previous studies found the shape of the
exposure–response (E–R) curves for long-termPM2.5 and all-cause and
cardiovascular mortality to be curvilinear with no evidence of a
threshold11,12. According to several studies of large cohorts in the US9,13

and Europe14,15, the risk of cardiovascular diseases per mass unit could
persist and even become stronger at lower exposure levels below the
annual limit values recommended by the US Environmental Protection
Agency (EPA; 9μg/m3 for PM2.5 and 53 ppb [99.6μg/m3] for NO2) and
European Union (10μg/m3 for PM2.5 and 20μg/m3 for NO2). Further
research specifically at lower concentrations can help quantify the
disease burden attributable to low-level air pollution and elucidate the
true “safe” level. This could further inform recommendations for even
stricter air quality guidelines, as suggested by the World Health
Organization (5μg/m3 for PM2.5 and 10μg/m3 for NO2).

Furthermore, all observational studies are subject to the possibi-
lity of confounding by omitted variables, and causal modeling meth-
ods that can capture some omitted confounders are therefore
valuable. Propensity scores are widely adopted in air pollution
research by balancing measured covariates across different levels of
continuous exposure. However, this method is weakened by its strin-
gent requirement for precisely specified regression of exposure on

measured covariates and its inability to control for unmeasured cov-
ariates. Negative controls have been suggested as a useful tool to
enhance causal inference independently of covariate distributions and
to tackle unmeasured confounding bias16. The negative exposure
control is a variable knownnot to be causally related to the outcomeof
interest, while the negative outcome control is a variable known not to
be caused by the exposure of interest. Both of them may share a
common confounding mechanism with the exposure and outcome17.
Therefore, they can serve as instruments for reducing bias by
unmeasured confounders. In prior air pollution and health studies,
researchers have used future air pollution as a negative control
exposure18–21, or a negative outcome due to causes other than primary
exposure as a negative control outcome22,23. More recently, double
negative control adjustment has been employed to strengthen causal
inference in studies examining short- and long-term effects of air
pollution24–26.

To address the research gaps, the present study used a double
negative control approach to analyze the relationships between long-
term exposure to PM2.5, NO2, and warm-season O3 at low concentra-
tions with risk of hospitalizations for three major cardiovascular dis-
eases (stroke, HF, and AF) in the Medicare population aged ≥65 years
across the contiguous US from 2000 to 2016. We focused on the areas
where populations were consistently exposed to low pollutant con-
centration levels (PM2.5 < 9μg/m³, NO2 < 75.2 [40 ppb], warm-season
O3 < 88.2μg/m

3 [45 ppb]). Furthermore, we conducted stratified ana-
lyses to investigate potential susceptible demographic subpopulations.

Table 1 | Summary of ZIP code-level air pollution, meteorological covariates, and socioeconomic status (SES) covariates in the
low pollution areas from 2000 through 2016

Covariates PM2.5 < 9μg/m3 NO2 < 75.2μg/m
3 Warm-season O3 < 88.2μg/m

3

N (ZIP code) 4086 26,415 3708

N (beneficiaries) 7,988,816 63,639,732 12,992,320

Air pollution concentration

PM2.5 (μg/m
3) 5.2 (1.6) 9.6 (3.0) 7.8 (2.8)

NO2 (μg/m
3) 23.2 (14.7) 27.6 (13.4) 29.7 (17.7)

Warm-season O3 (μg/m
3) 88.8 (14.5) 88.2 (10.6) 73.1 (7.7)

Meteorological covariates

Summer average temperature (°C) 16.9 (4.0) 20.2 (3.7) 19.1 (5.1)

Winter average temperature (°C) 3.1 (6.0) 6.2 (5.8) 7.5 (8.7)

Summer average RH (%) 56.4 (14.7) 66.7 (9.4) 68.9 (7.1)

Winter average RH (%) 66.3 (11.0) 66.9 (7.1) 70.0 (7.2)

SES covariates

Percent Black (%) 1.1 (3.1) 8.5 (16.0) 6.5 (13.8)

Percent Hispanic (%) 10.5 (16.7) 7.8 (14.4) 14.8 (22.2)

Median household income ($) 46,759 (17,253) 48,419 (20,204) 52,232 (23,002)

Median house value ($) 175,012 (133,349) 149,969 (124,583) 230,709 (191,296)

Percent owner occupied (%) 75.8 (11.3) 74.2 (14.0) 69.1 (18.5)

Percent education <high school (%) 22.0 (14.8) 28.1 (16.1) 24.4 (16.4)

Population density (persons/mi2) 225 (751) 840 (2089) 3445 (10,150)

Percent ≥65 below poverty (%) 9.4 (7.9) 10.1 (7.7) 10.3 (8.4)

Percent annual HbA1c test (%) 82.0 (9.5) 83.5 (5.9) 84.6 (4.8)

Percent ambulatory visit (%) 78.1 (7.4) 79.8 (6.0) 76.6 (7.2)

Percent eye exam (%) 68.9 (7.7) 67.3 (6.7) 70.5 (6.3)

Percent LDL test (%) 75.6 (10.7) 78.6 (7.3) 80.6 (5.5)

Percent mammogram (%) 64.6 (9.0) 64.1 (7.2) 66.1 (7.3)

Distance to nearest hospital (km) 18.2 (15.9) 12.2 (10.6) 10.2 (10.6)

Lung cancer rate (‰) 0.4 (5.7) 0.4 (2.2) 0.4 (6.0)

Ever smokers (%) 48.0 (7.7) 47.3 (7.4) 47.6 (7.7)

Mean BMI (kg/m2) 28.1 (3.1) 28.1 (2.5) 27.4 (1.7)

Numbers in the table are presented as Mean (Standard Deviation) for ZIP code-level covariates.
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Results
Table 1 shows the summary statistics of ZIP code-level air pollution and
covariates in the low-pollution areas from 2000 through 2016. In low
PM2.5 areas, the annual average concentrations of PM2.5, NO2, andwarm-
season O3 were 5.2 ± 1.6μg/m3, 23.2 ± 14.7μg/m3, and 88.8 ± 14.5μg/m3,
respectively. In the areas with either NO2 or O3 deemed low in our
analyses, themean annual PM2.5 concentration was higher and closer to
the typical range. The Pearson correlation coefficients (r) for three air
pollutants are presented in Supplementary Table 1. We observed a
moderate-to-low positive correlation between annual PM2.5 and NO2 in
low NO2 areas (r = 0.38) and in low PM2.5 areas (r = 0.13). In contrast,
there was a strong correlation between annual PM2.5 and NO2 in areas
with low warm-season O3 (r =0.66). Warm-season O3 exhibited a
moderate-to-low correlation with both annual PM2.5 and NO2 in areas
with low levels of PM2.5 and NO2, while in areas with lower warm-season
O3, the correlations were negligible.

Supplementary Table 2 presents the total number of hospitaliza-
tions and the annual rate for stroke, HF, and AF in the low pollution
areas during the study period. The annual hospitalization rate for
stroke, HF, and AF among the Medicare participants were 0.87%,
0.84%, and 0.41%, respectively, in low PM2.5 areas where low NO2 and
warm-seasonO3 exposures concurrently occurred. The corresponding
hospitalization rates were similar in low O3 areas. However, the hos-
pitalization rates were higher in low NO2 areas where people experi-
enced more normal PM2.5 exposures. Nevertheless, the pattern of the
hospitalization rates for each cardiovascular outcome within

demographic groups was generally similar across all the defined low-
pollution areas. Overall, we observed higher annual hospitalization
rates for stroke and HF among those aged 85 years and older and
eligible forMedicaid. However, there were some inconsistencies in the
pattern by sex and race across specific outcomes. While the annual
hospitalization rate for stroke and HF was higher in males and black
individuals, this was not seen for AF.

We compared the estimated associations of long-term exposures
to PM2.5, NO2, andwarm-seasonO3 at low concentrationswith the rates
of hospitalizations for stroke, HF, and AF as determined from three-
pollutant double negative control models and GLM (Fig. 1). The results
from single-pollutant models are illustrated in Supplementary Fig. 1.
Overall, the adjustments for co-pollutants resulted in stronger esti-
mates for PM2.5, while those for NO2 and warm-season O3 remained
similar. When examining the associations between PM2.5 and all three
outcomes, we found that the GLM yielded estimates that were mod-
estly comparable but lower than those derived from the double
negative control models. While both modeling approaches produced
relatively similar estimates for the associations of NO2 and warm-
season O3 with AF, there were slight differences in the estimates for
stroke and HF. All the numeric results can be found in Supplementary
Table 3.

In this study, we focused on the results adjusted for co-pollutants
using double negative control adjustment. For long-term PM2.5 expo-
sure below 9μg/m3, each 1-μg/m3 increase in PM2.5 was associatedwith
the percent increases of 1.82% (95% confidence interval [CI]: 1.44%,

Fig. 1 | Percent change in hospitalization rate for cardiovascular diseases
associated with 1-μg/m3 increase in long-term exposure to air pollution at low
concentrations using double negative control models and generalized linear

models adjusted for co-pollutants. Error bars indicate the 95% confidence inter-
vals. Source data are provided as a Source Data file.
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2.19%), 2.83% (95% CI: 2.36%, 3.30%), and 0.13% (95% CI: −0.39%, 0.65%)
in the hospitalization rates for stroke, HF, and AF, respectively. For
each 1-µg/m3 increase in annual NO2 below 75.2 µg/m3, the percent
increases in the hospitalization rates for stroke, HF, and AFwere 0.01%
(95%CI:−0.002%,0.03%),0.18% (95%CI: 0.16%, 0.19%), and0.09% (95%
CI: 0.07%, 0.10%), respectively. For long-term exposure to warm-
season O3 below 88.2μg/m3, we found adverse associations with the
three outcomes with percent increases in the hospitalization rates of
0.32% (95% CI: 0.27%, 0.38%), 0.05% (95% CI: −0.01%, 0.12%), and 0.12%
(95% CI: 0.04%, 0.20%) per 1-µg/m3 increase in warm-season O3. The
estimates remained very similar after excluding additional confound-
ing adjustments from the prediction model for the negative outcome
control (Supplementary Table 4).

We conducted stratified analyses by individual demographic
characteristics to identify the vulnerable subgroups. The results of the
stratified analyses for stroke, HF, and AF from three-pollutant models
are shown in Figs. 2–4, respectively. The observed positive associa-
tions in the overall analyses generally persisted in demographic sub-
groups. Similar patterns of the potential effect modification by
demographics were found in both single- and three-pollutant models,
despite some differences in the magnitude and statistical significance
of the subgroup-specific effect estimates (Supplementary Figs. 2–4
and Tables 5–7).

We found a significantly larger effect of long-term PM2.5 below
9 μg/m3 on all three outcomes for black people compared to white
people. In the association of PM2.5 with stroke and AF, we identified

Fig. 2 | Percent change in hospitalization rate for stroke associated with 1-μg/
m3 increase in long-term exposure to air pollution at low concentrations in
stratified analyses in three-pollutant double negative control models.

Statistical significance is calculated via a two-tailed t-test (*P <0.05, **P <0.01,
***P <0.001). Error bars indicate the 95% confidence intervals. Source data are
provided as a Source Data file.
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Fig. 3 | Percent change inhospitalizationrate forheart failure associatedwith1-
μg/m3 increase in long-term exposure to air pollution at low concentrations in
stratified analyses in three-pollutant models using double negative control

adjustment. Statistical significance is calculated via a two-tailed t-test (*P <0.05,
**P <0.01, ***P <0.001). Error bars indicate the 95% confidence intervals. Source
data are provided as a Source Data file.
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Medicaid eligibility as a significant modifier, with a higher risk seen in
individuals whowere eligible forMedicaid than thosewhowere not. In
addition, age modified the PM2.5 association for HF with a stronger
effect in the younger group (aged 65–74 years), but this modification
pattern was not observed for stroke or AF. In contrast, we found no
evidence of any effect modification by sex on the association of all
outcomes in relation to PM2.5.

For long-term exposure to NO2 below 75.2 µg/m3, individuals aged
over 84 years and thosewhowerenotMedicaid-eligiblewere atgreater
risk of stroke. We observed similar effectmodification patterns by age
and Medicaid eligibility in the associations of HF and AF with NO2.
Regarding the modification by sex, males were at greater NO2-asso-
ciated risk of HF compared to females. At the same time, white people
exhibited a significantly higher NO2-associated risk of HF and AF
compared to black people.

In terms of long-term exposure to warm-season O3 below
88.2μg/m3, individuals aged 65–74 years had greater risks of all three
outcomes compared to older age groups. Black individuals were
found to be more susceptible to stroke and HF, while females were
more susceptible to HF and AF. Additionally, individuals eligible for
Medicaid were at greater risk of HF compared to those whowere not.

The E–R curves for the main associations from three-pollutant
GLM models with natural spline function are provided in Supplemen-
tary Fig. 5. For the relationship between PM2.5 with stroke and HF, a
positive association for stroke andHFwasapparent down to the lowest
concentrations. The effect size for AF was more complex, with a
positive association beyond levels of 5μg/m3, but negative at lower
concentrations. The E–R curves for NO2 displayed an almost positively
linear shape for HF with a steeper slope below 20μg/m3, however,
appeared negative before linearly increasing at around 25μg/m3 for
stroke and AF. For warm-season O3, the E–R curve showed a linear
positive association with stroke, while the curves for HF and AF
depicted a non-linear relationship, with effects increasing when
approaching the highest concentrations.

Discussion
AmongUSMedicareparticipants,we found that long-termexposure to
low-level PM2.5 (<9μg/m3), NO2 (<75.2 µg/m3), and warm-season O3

(<88.2μg/m3) could be positively associated with increased rate of

hospitalizations for stroke in three-pollutant models that accounted
for correlations between co-existing air pollutants and controlled for
unmeasured confounders using negative controls. PM2.5 and NO2were
most strongly associated with HF, whereas the strongest effect of
warm-season O3 was seen on stroke. Black people and Medicaid-
eligible people appeared to be more vulnerable to the cardiovascular
risk attributable to PM2.5 and warm-season O3. The youngest-old and
females were also found to bemore vulnerable to thewarm-seasonO3-
related risk. However, the NO2-related risk showed contradictory
effect modification patterns.

We designed a pair of negative control exposure and outcome
variables in an attempt to capture uncontrolled confounding. The
selection of negative exposure control (or negative outcome control)
relies on the absence of a causal relationshipwith the true outcome (or
exposure) due to chronological order. However, correlations between
them are likely present due to their relations with unmeasured con-
founders. If the assumption of linearity between unmeasured covari-
ates with exposure and negative exposure control holds, regressing
the negative outcome control on the exposure and negative exposure
control is expected to reveal confounded associations. Therefore,
adjusting for the expected counts of hospitalization in the preceding
year aims to capture confounding bias and strengthen the causal
interpretation of our observed associations. Given that concurrent-
year air pollution exposure and subsequent-year exposure can be
highly correlated, an alternative assumption of the two variables
sharing the same magnitude of a correlation with the omitted con-
founders is rendered more reasonable. The GLM method yielded
comparable results with the double negative control approach, exhi-
biting only slight differences in the effect size estimates. Such dis-
crepancies may be attributable to unadjusted confounding bias. The
consistent findings derived from these two statistical methods
demonstrate the robustness of our results to different model adjust-
ments, suggesting that any omitted confounding bias is small, and
negative in the case of PM2.5 but positive for NO2. A previous study
reported that greater control for SES resulted in increased effect sizes
for PM2.5

27.
Our study has a special emphasis on long-term exposure to low-

level air pollution below the annual US EPA limits. While a growing
number of prior studies have revealed increased health risks at lower

Fig. 4 | Percent change in hospitalization rate for atrial fibrillation and flutter
associated with 1-μg/m3 increase in long-term exposure to air pollution at low
concentrations in stratified analyses in three-pollutant models using double

negative control adjustment. Statistical significance is calculated via a two-tailed
t-test (*P <0.05, **P <0.01, ***P <0.001). Error bars indicate the 95% confidence
intervals. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52117-8

Nature Communications |         (2024) 15:8451 5

www.nature.com/naturecommunications


levels of air pollution exposure under regulatory standards, most have
focused on all-cause and cardiovascularmortality11,12,28,29. However, the
available evidence concerning cardiovascular disease risk at these
lower pollution levels remains limited. In consistence with our find-
ings, several previous studies of theMedicare population have found a
steeper E–R curve for a range of cardiovascular outcomes when
restricted to lower exposures9,13,26,30. Specifically, we found no thresh-
old below which cardiovascular effects were absent in our E–R curves
for PM2.5 in relation to stroke and HF. In addition, the positive curves
for NO2 and HF displayed a steeper increase in risk below 20μg/m3.
Our E–R curves for warm-season O3 also showed an increasing ten-
dency at higher concentrations, which was the most pronounced for
stroke second to AF. These findings indicate that substantial health
benefits can likely be obtained by lowering ambient air pollution levels
even at low concentrations. Similarly, in a large population-based
Canadian cohort, Bai et al.7 found the concentration-response curves
for congestive HF with long-term exposure to PM2.5 and NO2 to be
supralinear with no discernable threshold values. They also observed a
sublinear relationship for O3 with an indicative threshold. A meta-
analysis of 102 coefficients from 53 cohort studies reporting associa-
tions with all-cause or cause-specific mortality found a steeper E–R
curve at lower PM2.5 concentrations for cardiovascular mortality,
which also supports these findings12. Overall, our findings indicate the
need to reassess the current air quality guidelines and tighten pollu-
tion control policies and measures.

This study also supplemented the limited epidemiologic evidence
regarding the long-term effects of multiple air pollutants on cause-
specific cardiovascularmorbidity. Our findings of adverse associations
are in accordance with some of the existing literature, despite some
slight difference in the statistical significance. Prior studies of the
Medicare population using diverse methodologies and different ran-
ges of exposure have reported significant positive associations of our
studied outcomes with annual PM2.5, NO2, and warm-season O3

9,13,31. A
review and meta-analysis identified five studies of long-term exposure
to PM2.5 and stroke incidence from North America and Europe and
found a 6.4% (95% CI: 2.1%, 10.9%) increase in the hazard for each
5-μg/m3 increase in PM2.5

32. A more recent review article reported that
each 10-μg/m3 increase in long-term PM2.5 exposure could be asso-
ciated with an increased risk of 13% (95% CI: 11%, 15%) for incident
stroke, synthesizing the results of fourteen studies across the globe33.
Additionally, other studies conducted in Canada7,34, the UK6,8, and
Sweden35 indicated an increased risk of HF associated with PM2.5 at
relatively low exposures. According to state-of-the-art evidence, the
odds ratios of HF associated with each 10-μg/m3 increase in long-term
PM2.5 and NO2 exposure were estimated to be 1.019 (95% CI:
1.008–1.030) and 1.012 (95%CI: 1.007–1.017), respectively36. Yue et al.10

conducted a systematic review and meta-analysis to quantify the
association between air pollutants and AF based on eighteen studies.
They indicated that exposure to all air pollutants including PM2.5, NO2,
andO3 had a deleterious impact on AF onset in the general population.
By contrast, several other studies reported null relationships between
air pollution and the risk of these outcomes37–40.

It is worth noting that direct comparisons across these studies
might be challenging because of potentially heterogeneous air pollu-
tion ranges and diverse demographic characteristics of study popu-
lations. In addition, in the presence of correlations between air
pollutants, considering the influence of co-pollutants in the air pollu-
tion mixture is crucial for the validity of the estimated association.
Recent studies have increasingly emphasized the importance of uti-
lizing multi-pollutant models to better disentangle the individual
effect of a certain pollutant6,13,31,35,37, which is the most widely used way
to adjust for confounding bias by co-pollutants41. In contrast, results
obtained from single-pollutant models in other studies are more likely
confounded by the impact of other pollutants that share similar
sources with the pollutant under investigation7,34,39,40. Therefore, our

use of multi-pollutant models likely yields more accurate estimates in
describing the individual cardiovascular effect of each air pollutant.

Multiple pathophysiological mechanisms have been proposed to
explain the detrimental cardiovascular effects of air pollution. It is
widely accepted that air pollution can trigger systemic inflammation,
oxidative stress reactions, and dysfunction of the autonomic nervous
system1. The autonomic imbalance can further result in increases in
cardiac frequency and arterial pressure, and a reduction in heart rate
variability42. Numerous experimental studies have demonstrated that
these responses may further instigate endothelial dysfunction, ather-
osclerosis, and vascular dysfunction42,43. Another plausiblemechanism
underlying the onset of cardiovascular diseases is that inhaled irritants
can traverse the pulmonary epithelium and directly enter the blood
circulation and cardiac organs, which may alter blood coagulability
and contribute to thrombus formation44. A higher PM2.5- and NO2-
associated risk appeared to be seen for HF hospitalization possibly
because it was the common consequence of most cardiovascular dis-
eases, especially for elderly people.

Environmental justice is an increasing concern and we found
evidence that independent of differences in exposure, some dis-
advantaged groups had worse responses to any given level of air pol-
lution. Specifically, we identified Medicaid eligibility as a positive
modifier of the association of low-level PM2.5 andwarm-seasonO3with
at least one studied cardiovascular outcome. This suggests a greater
vulnerability for lower-SES individuals even when residing in low-
pollution regions, as Medicaid coverage is provided for low-income
elderly beneficiaries to expand their healthcare access45. Low SES has
been determined as a significant risk factor for cardiovascular diseases
because socio-economically disadvantaged individuals tend to have
poorer health, higher psychosocial stress, and a propensity for
unhealthy behaviors and lifestyles46. In addition toMedicaid eligibility,
we found that the effect sizes for effects of PM2.5 and warm-season O3

on all outcomes were more pronounced for Black individuals com-
pared to white individuals. The tendency of a higher susceptibility
among Blacks is consistent with much of the existing evidence13,47.
Black populations have been disproportionately affected by the det-
rimental health impacts of historic discrimination and ongoing racial
segregation, and this study demonstrates additional susceptibility to
air pollution. Additionally, while we observed increased susceptibility
to warm-season O3 in individuals aged 65–74 years, the specific
underlying reasons for this pattern remain unclear. It is likely that a
lower baseline risk in this age group may influence these findings. We
also found greater susceptibility among females compared to males,
which is similar to the sex difference reported in someprevious studies
and could be explained by physiological differences48,49. This pattern
and the specific reasons are worth attention in future research.

In terms of the adverse effects of NO2, our results indicated that
people aged ≥85 years, males, white people, and those who were not
Medicaid-eligible may be more vulnerable to at least one cardiovas-
cular disease we studied. First, an increased risk in the oldest group is
understandable, given that advanced age significantly drives the
deterioration of cardiovascular functionality in older people50. Relative
to age differences, sex as a potential modifier of cardiovascular risk in
relation to air pollution as well as the relevant biological mechanisms
has been more underappreciated. While some researchers found a
more prominent NO2-attributed cardiovascular risk among males51,52,
which is comparable to our finding for HF, there is no consensus on
this question53,54. Ourfindings of a higher susceptibility among the very
elderly and males are not conclusive, but we think that paying more
attention to these questions can be meaningful to improve the dis-
tribution of preventive medical care in the future. Interestingly, when
we looked at the modification by race and Medicaid eligibility, the
greater susceptibility for NO2 seen in white individuals and non-
Medicaid eligible individuals contrasts with our findings for PM2.5 and
warm-season O3. Such inconsistent results in the modifying roles of
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demographics and SES exist in the literature examining the association
between air pollution and cardiovascular health, whichmay have to do
with specific air pollutants and outcomes9,55,56. For example, a study
utilizing US nationwide survey data found an adverse association
between PM2.5 and hypertension among non-Hispanicwhite adults but
a nearly null association among non-Hispanic black and Hispanic
adults, although the latter two groups are generally thought to
experience higher exposure and are more vulnerable56. Moreover,
there is also a controversy over the presence and direction of mod-
ification by community-level SES in the current empirical-based lit-
erature, which could be explained by discrepancies in underlying
vulnerable factors in diverse neighborhood samples55,57–59. In fact, the
specious modification patterns we found for NO2 are unlikely but still
possible. As a pollutant predominantly coming from urban origins and
often transported on a local scale, NO2 can vary by urbanicity level60. It
is reasonable to assume that NO2 might be more of a proxy for com-
mercial activities, since its emissions from other major sources (e.g.,
diesel traffic, fuel combustion, power plants) have been reduced in
recent years61,62. Therefore, the observed higher vulnerability in white
and non-Medicaid eligible individualsmight be partially accounted for
by their higher access to urbanization or commercial activities. In
addition, we should also note that our estimate is ameasure relative to
the baseline risk and does not necessarily represent the magnitude of
its absolute attributable risk. For example, the lower baseline risk of
hospitalization rates in non-Medicaid eligible beneficiaries might have
exaggerated the magnitude of relative risk, although the difference in
rate is unlikely to be the major explanation.

Our study has multiple strengths. Foremost is the use of a double
negative control approach. This methodology provides an alternative
tool to instrumental variables to control for omitted confounding and
thus enhance the credibility of the estimated associations. We also
thoroughly considered a variety of cardiovascular risk factors to
reinforce the confounding adjustment. Another notable strength is
that we leveraged the data from the Medicare population. The data
that we used was from a very large nationwide cohort, which ensured
sufficient statistical power and increased the generalizability of our
results to the population that suffers over three quarters of the deaths
in the US. Furthermore, the exposure data were derived from high-
quality models with a fine resolution and satisfactory predictive
accuracy, further assuring the reliability of our analyses. Moreover,
compared to restricting the analyses to low exposures in ZIP code-year
combinations in prior Medicare studies13,63, the selection criteria
applied in this study are somewhat more rigorous by imposing low-
exposure constraints over the 17-year study duration. Hence, the
possibility of mistakenly including the individuals impacted by past
higher exposures was reduced, despite that the exposure history due
to migration and travel patterns was not fully accounted for. Last, we
attempted to address the correlations among air pollutants and more
accurately estimate the independent effect of each exposure by con-
structing both single- and three-pollutant models.

Some limitations of this study should also be cautioned. First, we
may not generalize the conclusions to younger populations or highly
polluted regions. Second, there could be residual or unmeasured
confounding by omitted cardiovascular risk factors such as diet when
the assumption of the same magnitude of linear correlations of them
with true exposure and subsequent-year exposure is violated. How-
ever, we considered a series of major confounders, ranging from
possible meteorological conditions, and area-level health behavioral
factors, to socioeconomic measures, which should have captured
most of the confounding bias. It is noteworthy that we controlled for
co-exposures to other air pollutants using the three-pollutant models
as well. Admittedly, the moderate correlation between annual PM2.5

andNO2 concentrationsmay indicate potential collinearity and the risk
of over-controlling issues. Third, the ZIP code-level air pollution data
derived from exposure models may not fully represent true personal

exposures. Specifically, our exposure metrics did not account for the
exposures occurring distant from the participants’ residences. How-
ever, the National Human Activity Pattern Survey reported that US
adults spent 69% of their time at home and 8% of the time immediately
outside their home64. Older people may spend even more time at
home, implying that the exposuremisclassification would be relatively
minor. Another concern is that the variations in personal exposures
caused by different indoor activity patterns and building features
might not be captured by the neighborhoodmetrics. Nevertheless, the
resulting error is likely a Berksonian exposure error and may cause
little bias65. In addition, ambient concentration serves as an instru-
mental variable for personal exposure and thus personal behavioral
factors which were not available would not confound the association
between ambient exposure and outcomes66. That is neighborhood
level pollution can be correlated with neighborhood level covariates,
but if e.g. neighborhoods with a high intake of saturated fats had
higher exposure to a pollutant, a vegetarian living in the neighborhood
would get the same ambient exposure, despite not eating any satu-
rated fats. Therefore, the confounding is with neighborhood char-
acteristics, not individual ones. Some residual prediction errors of
exposuremodels may be present, but they should beminimal because
we studied low air pollutant concentrations. Last, we accessed hospital
discharge diagnoses from the administrativeMedicare database as the
morbidity measure, which may not capture some cases with milder
symptoms. This outcome classificationmight be differential because it
can be related to SES factors such as healthcare accessibility.

In conclusion, using a double negative control approach, we
found positive associations of long-term exposure to PM2.5, NO2,
warm-season O3 at low concentrations with the hospitalization rate of
stroke, HF, and AF in US Medicare older adults. Our findings suggest
that the current National Ambient Air Quality Standards (NAAQS) for
annual PM2.5 and NO2 may not be adequate to minimize the cardio-
vascular disease burden. Future guidelines for warm-season O3 could
be warranted.

Methods
Study population and outcome assessment
We used data from a national cohort of fee-for-service (FFS) Medicare
beneficiaries aged 65 years and older across the contiguous US from
January 1st, 2000 to December 31st, 2016. The beneficiaries were fol-
lowed up from January 1st of the year after their Medicare enrollment
until the development of the outcome of interest, death, censoring, or
the end of the follow-up time. In this study, we restricted the analyses
to the individuals who were consistently exposed to low-level annual
air pollution for the entire period (2000–2016) with certain thresholds
(PM2.5 < 9μg/m3, NO2 < 75.2 µg/m3 [40 ppb], warm-season
O3 < 88.2μg/m3 [45 ppb]). Therefore, separate datasets were created
for each pollutant according to its specified threshold. We further
restricted the datasets to ZIP code areas with more than 100
beneficiaries.

Beneficiary records were provided by theMedicare denominator
file from the Centers for Medicare and Medicaid Services, which
contained information on age, self-reported sex, self-reported race,
Medicaid eligibility, date of death, and residential ZIP code for each
beneficiary. Information on age, Medicaid eligibility, and residential
ZIP code are updated each year. We obtained the hospital discharge
claims ofMedicare enrollees from theMedicare Provider Analysis and
Review (MEDPAR) file. The International Classification of Diseases
(ICD) codes were used to identify the primary discharge diagnosis for
each of our three cardiovascular outcomes of interest: stroke (ICD-9
codes: 430–438, ICD-10 codes: I60–I69), heart failure (ICD-9 code:
428, ICD-10 code: I50; hereafter referred to as HF), and atrial fibrilla-
tion and flutter (ICD-9 code: 427.3, ICD-10 code: I48; hereafter refer-
red to as AF). For each cardiovascular outcome, we computed the ZIP
code-level annual counts based on the beneficiaries’ residential
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addresses. All hospitalizations from each beneficiary occurring after
enrollment during the multi-year follow-up period were counted
as cases.

This study was approved by the institutional review board at
Harvard T. H. Chan School of Public Health. Our study was exempt
from consent requirements as it is considered non-human subject
research.

Exposure assessment
We obtained the daily concentrations of ambient PM2.5, NO2, and O3 at
1 km× 1 km spatial resolution across the contiguous US from three
ensemble predictionmodels that combinedmultiplemachine learning
algorithms67,68,69. The exposure models incorporated meteorological
variables, chemical transport model simulations, land-use features,
and satellite remote sensing data. They were well validated using 10-
fold cross-validation.We aggregated the daily predictions of PM2.5 and
NO2 to annual averages. For long-term O3, we calculated its warm-
season levels based on the daily predictions from April 1st through
September 30th, since the health impacts of O3 are suggested to be
more observable during warm seasons compared to throughout the
year13,31,54. We then computed the ZIP code-level exposures by aver-
aging the 1 km× 1 kmgrid cell predictionswhose centroidswerewithin
the boundary of ZIP code polygons or assigning the nearest grid cell
predictions for the ZIP codes that do not have polygon representa-
tions. Annual average exposures were then linked to Medicare bene-
ficiaries based on their residential ZIP codes for each calendar year
over the study period.

For each exposure, we limited our dataset to the ZIP code areas
where the populations were always exposed to low-concentration air
pollutionbelowthresholdswe set over the studyperiodof 2000–2016.
The threshold was determined for each pollutant individually to more
directly assess its specific health effects and allow for greater statistical
power given the different distributions of exposures for the different
pollutants.We chose 9μg/m3 as the threshold for annual average PM2.5

concentration, which is the latest limit set by theUS EPAon February 7,
2024 to substitute the previous NAAQS of 12μg/m3. For NO2, we chose
an annual limit of 75.2 µg/m3 [40 ppb] for our analysis, well below the
NAAQSof 99.6 µg/m3 [53 ppb], as the annual NO2 concentrations in the
US rarely exceeded this standard. Although there is no formal annual
regulatory standard for long-termO3, we selected 88.2μg/m3 [45 ppb]
as the threshold value to define low-level warm-season O3, which has
been chosen as a plausible pollution target in previous studies to
evaluate its effectiveness in reducing health risk70,71. We did not
examine lower thresholds due to potentially insufficient statistical
power from fewer observations.

Covariates
We considered a variety of SES covariates at the ZIP code tabulation-
area (ZCTA) level as important predictors for cardiovascular disease72,
including percent of the population self-reporting as Black, percent of
the population self-reporting as Hispanic, percent of the population
≥65 years of age living in poverty, population density, percent of the
population ≥65 years of age who had not graduated from high school,
medianhome value,median household income, and percent of owner-
occupied housing unit. These data were obtained from the US Census
Bureau 2000 and 2010 Census Summary File 3 and the American
Community Survey from 2011 through 2016. To account for long-term
smoking behaviors, we included lung cancer hospitalization rates as a
surrogate measure for each ZIP code from the MEDPAR file. We also
accessed county-level data on the yearly percentage of residents who
ever smoked and mean body mass index (BMI) from the Centers for
Disease Control and Prevention (CDC) Behavioral Risk Factor Surveil-
lance System (BRFSS)73. These county-level lifestyle datawere assigned
to ZIP codes. Additionally, from the Dartmouth Atlas of Health Care74,

we obtained several access-to-care covariates in each hospital service
area, and further assigned them to ZIP codes: proportion of Medicare
beneficiaries with at least 1 hemoglobinA1c test per year, proportion of
diabetic beneficiaries whohad a lipid panel test in a year, proportion of
beneficiaries who had an eye examination in a year, proportion of
beneficiaries with at least 1 ambulatory doctor visits in a year, and
proportion of female beneficiaries who had a mammogram during a
2-year period. We also calculated the distance from the centroid of
each ZIP code to the nearest hospital, a proxy for healthcare accessi-
bility, using data on hospital locations derived from an ESRI dataset75.
Given that seasonal meteorological conditions have been known to
impact cardiovascular health76,77, we assessed the average temperature
and relative humidity (RH) during the summer (June-August) and the
winter (December-February) for each ZIP code and each year based on
the 4 km Gridded Surface Meteorological (gridMET) dataset78,79.

Missing values for all area-level risk factors were filled in using
linear interpolation and extrapolation. Any other missingness
accounting for <1% of the observationswas assumed to be randomand
was excluded from our analyses.

Statistical analysis
In this study, we analyzed the association between long-term exposure
to low-level air pollution and hospitalization rate of major cardiovas-
cular diseases among theUSMedicare population. As aforementioned,
the analysis was restricted to the low pollution ZIP code areas with
more than 100 Medicare beneficiaries. We used a double negative
control strategy16, which has been recommended to address unmea-
sured confounding in observational settings, to enhance the causal
evidence of a potential relationship79. The detailed descriptions of this
double negative control approach can be found elsewhere26. A sum-
mary of the principles is givenbelow. First, weconsider a quasi-Poisson
regression model to obtain the unbiased association between the
exposure (A) and the outcome (Y), adjusting for unmeasured con-
founders (U):

ln½EðY Þ�=βY0 +βYAA+βYUU ð1Þ

The negative exposure control (Z) and negative outcome control (W)
are designed to capture confounding bias introduced by U. In this
study, we chose the exposure to air pollution in the year after cause-
specific hospitalizations as Z. It cannot lead to the hospitalization
outcome in the concurrent year, however, it could be influenced by
unmeasured or measured confounders that are correlated with air
pollution level in the year of the hospitalization outcome. Similarly, we
defined the count of cause-specific hospitalizations in the year before
exposure as W, as it is by no means affected by the exposure in the
concurrent year but may be correlated to omitted confounders. Given
the hypothesized correlations of U with A and Z, and non-causality
between A and W, the formulas (2) and (3) can be derived:

E Uð Þ=βU0 +βUAA+βUzZ ð2Þ

ln½EðW Þ�=βW0 + βWUU ð3Þ

If we substituteUwith its expected value regressedonA andZ from the
formula (2), the formula (1) can be interpreted into:

ln½EðY Þ�= ðβY0 +βYUβU0Þ+ ðβYA +βYUβUAÞA+ βYUβUzZ ð4Þ

where βYUβUA is exactly equal to the bias due to unmeasured con-
founders. Thus, if the equation βUz = βUA holds, the subtraction
between the coefficient of A and the coefficient of Z will yield a causal
effect of A on Y.
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If we substitute Uwith its expected value again in the formula (3),
W as a surrogate for U can be predicted by A and Z based on:

ln½EðW Þ�= ðβW0 +βWUβU0Þ+βWUβUAA+βWUβUzZ ð5Þ

Alternatively, assuming the linear correlations ofUwith A and Z, which
renders the formulas (2) and (5) valid, wecanmitigate the confounding
effect of U by including the predicted W in the outcome
regression model.

To summarize, unmeasured confounding bias can be captured if
either of the following two assumptions holds true:
(1) We assume that U is linearly correlated with both A and Z.

Although W is unlikely to link to exposure variables by its defini-
tion, a correlation of W with A and Z can be introduced due to a
connection with U. Therefore, the precited value of W by regres-
sing it onA and Z represents the part ofU that is related toA and Z.
As a surrogate for U, adjusting for predicted W is equivalent to
removing omitted confounding bias.

(2) Alternatively, we assume that U has the same magnitude of cor-
relations with A and Z (βUz = βUA). According to the formula (4), if
βUz = βUA, the causal effect ofA on Y canbe derived by subtracting
the coefficient for Z from the coefficient for A. If either assump-
tion holds, omitted confounder U is controlled for.

Conversely, violations may occur if neither of these two assump-
tions is satisfied.

In both the model used to predict the negative outcome control
and the outcome regression model, we adjusted for a variety of area-
level risk factors for cardiovascular diseases selected prior, including
SES, behavioral, and meteorological covariates which are described in
the covariates section, to relax our assumptions and to mitigate
potential uneliminated confounding bias as comprehensively as pos-
sible. Confounding bias by other unmeasured area-level and
individual-level factors was assumed to be addressed given the afore-
described assumptions. We also included the admission year as a
categorical indicator in the models to control for the time trends of
omitted confounders thatmight drive an association. We analyzed the
effect of each air pollutant separately using both a single-pollutant
model and a three-pollutant model. A directed acyclic graph for the
double negative control approach consideringmeasured confounders
altogether is shown in Supplementary Fig. 6. The performance of the
outcome regression models is evaluated as satisfactory through
computing theQuasi-Akaike information criteria and pseudo-R2 values
(Supplementary Table 8).

As a secondary analysis, we repeated the main analyses using
generalized linear models (GLM) without the negative controls. To
examine the shape of E–R curves, we further applied natural spline
functions with three degrees of freedom to the GLM adjusted for co-
pollutants.

We examined the potential effect measure modification by indi-
vidual demographic characteristics, namely, age (65–74 years, 75–84
years, 85+ years), sex (male or female), race (White or Black), and
Medicaid eligibility (yes or no), using stratified analyses.We conducted
comparisons of coefficients within the strata of each factor to detect
any statistically significant differences, assuming the difference
between the coefficients to followa normal distributionwith amean of
zero and a variance of the sum of the strata variances. To assess the
robustness of the results, we repeated the primary analysis by
removing confounding adjustments from the predictionmodel for the
negative outcome control. In the above analyses, we reported the
effect as the percent change in hospitalization rate and its 95% CIs for
eachcardiovascular outcomeperμg/m3 increase in annual exposure to
PM2.5 and per ppb increase in annual exposure to NO2 and O3.

All analyses were performed using R software version 4.2.3 on the
Research Computing Environment as part of Research Computer at

Harvard University Faculty of Arts and Sciences. A two-sided P-
value < 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Medicare data are available under restricted access for the
requirements from the Center for Medicare and Medicaid Services
(CMS). Therefore, the authors do not have permission to share Medi-
care data. Interested investigators can obtain it by applying for their
own Data Use Agreement to the CMS and the CMS dissemination
contractor will process the data request. The air pollution data are
available at the NASA SEDAC website (https://sedac.ciesin.columbia.
edu/data/collection/aqdh/sets/browse). The SES data from US census
and American Community Survey are available at https://www.census.
gov/data/datasets/2000/dec/summary-file-3.html, https://www.
census.gov/data/datasets/2010/dec/summary-file-1.html, and https://
www.census.gov/data/developers/data-sets/acs-1year.html. The
BRFSS data are available at https://www.cdc.gov/brfss/annual_data/
annual_data.htm. The data from the Dartmouth Atlas of Health Care
are available at https://data.dartmouthatlas.org/. The air pollution data
are freely available online at the NASA SEDAC website (https://sedac.
ciesin.columbia.edu/data/collection/aqdh/sets/browse). Source data
of the figures are available with this paper. Source data are provided
with this paper.

Code availability
The R codes of this study are publicly available from https://github.
com/Yichen0430/air_pollution_negative_control.
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