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Topological superconductivity from
unconventional band degeneracy with
conventional pairing

Zhongyi Zhang 1,2,3, Zhenfei Wu4, Chen Fang 2,5, Fu-chun Zhang3,5,6,
Jiangping Hu 2,5, Yuxuan Wang4 & Shengshan Qin 7

We present a new scheme for Majorana modes in systems with
nonsymmorphic-symmetry-protected band degeneracy. We reveal that when
the gapless fermionic excitations are encoded with conventional super-
conductivity and magnetism, which can be intrinsic or induced by proximity
effect, topological superconductivity and Majorana modes can be obtained.
We illustrate this outcome in a systemwhich respects the space group P4/nmm
and features a fourfold-degenerate fermionic mode at (π, π) in the Brillouin
zone. We show that in the presence of conventional superconductivity, dif-
ferent types of topological superconductivity, i.e., first-order and second-
order topological superconductivity, with coexisting fragile Wannier
obstruction in the latter case, can be generated in accordance with the dif-
ferent types of magnetic orders; Majorana modes are shown to exist on the
boundary, at the corner and in the vortices. To further demonstrate the
effectiveness of our approach, another example related to the space group P4/
ncc based on this scheme is also provided. Our study offers insights into
constructing topological superconductors based on bulk energy bands and
conventional superconductivity and helps to find newmaterial candidates and
design new platforms for realizing Majorana modes.

Topological superconductors1–5 (TSCs) are renowned for hosting
a special kind of quasiparticles, the Majorana modes, whose anti-
particles are themselves. Owing to their potential application in
fault-tolerant quantum computation4,6,7, a substantial effort has been
made to search for theMajoranamodes, and great advances have been
achieved both in theory5,8–18 and in experiment19–28 over the past few
decades. The p-wave superconductors have been suggested as pro-
mising candidates for the TSCs, and experimental signatures ofp-wave
superconductivity have been detected29–31. Various artificial devices
have been proposed to support topological superconductivity, such as

the heterostructure between a conventional superconductor and a
topological insulator8 or the Rashba electron gas10,11, and experimental
evidence for the Majorana modes have been observed21,27. Despite the
progress, an efficient way towards platforms realizing the numerous
exotic topological superconducting phases15,32–48, especially the high-
order topological superconducting states, is still elusive.

In recent years, remarkable strides have been made in under-
standing the topological states of matter. It is realized that the topo-
logical property of a system can be indicated by the symmetry
information of its occupied bands at high-symmetry points, and the
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system must be topologically nontrivial if its symmetry information
at these points differs from that of an atomic insulator49–51. A
parallel formalismhas also beendeveloped for the TSCs52–54.Motivated
by these achievements, we suggest a new scheme to realize TSCs, built
on the heterostructure sketched in Fig. 1, based on symmetry-
protected band degeneracies near the fermi energy and conven-
tional superconductivity. Such fermionic modes, i.e., the band
degeneracies, always carry different quantum numbers, such as rota-
tion eigenvalues, mirror eigenvalues, etc. To make the core of our
proposal clearer, let us start with the time-reversal symmetric BdG
Hamiltonian with conventional superconductivity, i.e., the uniform s-
wave pairing. In such a system, the chiral symmetry, which is the
combined operation of the time-reversal symmetry and the particle-
hole symmetry, maps a negative-energy state to a positive-energy
state. Moreover, the unitary chiral symmetry commutes with the
crystalline symmetries3,33,42, leading to that the two states related by
the chiral symmetry carry the same quantum numbers. This property
implies that in the system, the information of the symmetry eigenva-
lues corresponding to all the negative-energy states at the high-
symmetry point in the Brillouin zone is always the same as the condi-
tionwhere the normal-state electronic states are fully occupied or fully
unoccupied, which must be topologically trivial52. Notice that the
above conclusion is always true, regardless of the location of the Fermi
energy. Therefore, in the sense of the symmetry indicator, any time-
reversal symmetric superconductor with uniform s-wave pairing is
topologically trivial52–54. However, if the time-reversal symmetry is
broken, such as by the magnetic orders, the above symmetry con-
straint fails. Moreover, as long as the eigenvalues of the crystalline
symmetries carried by the negative-energy states are different from
that in the time-reversal symmetric case, some nontrivial topology is
indicated in the superconductor, and such a condition ismost likely to
occur when there is band degeneracy near the Fermi energy. More
specifically, when the band degeneracy is encoded with magnetism, it
will split; If the chemical potential resides within the split band gap, in
the superconducting state, the symmetry eigenvalues carried by the
positive-energy states will no longer match those of the negative-
energy states, indicating the presence of nontrivial topology (more
details in Supplementary Note 1). We illustrate this scheme in a system
respecting the space group P4/nmm and show various topological
superconducting states can be achieved in accordance with the
different magnetic orders. To further show the effectiveness of
our approach, we provide another example related to the space group
P4/ncc in Supplementary Note 10. Compared with earlier
proposals4,10,11,55, the key advantage here is that by leveraging the
nonsymmorphic crystalline symmetries, the resulting phases of

topological superconductivity are much richer. In recent years, the
distinct irreducible representations (IRs) of the little group of the
crystalline symmetries can assist in identifying different types of
free fermionic excitations, such as the unconventional quasiparticles
beyondDirac andWeyl fermions56. Based on those abundant fermionic
excitations, ourmethod canbe applied to awide range of systems, and
opens up a new direction of searching for novel topological super-
conducting phases in these materials.

In the following, we focus on the space group P4/nmm, which has
a four-dimensional irreducible projective representation at the Bril-
louin zone corner. We show that the antiferromagnetic (AFM) order
and ferromagnetic (FM) order can both split the fourfold degeneracy
into two twofold ones. In the presence of conventional super-
conductivity, theAFMorder drives the system into a second-order TSC
state coexisting with fragile Wannier obstruction, while the FM order
results in a first-order TSC, as long as the chemical potential lies in the
magnetic gap. These results may be relevant to iron-based super-
conductors and heterostructures thereof, which host intrinsic AFM
order and high-Tc superconductivity.

Results
Fourfold degenerate fermion with SG 129
Webeginwith an introductionof the spacegroupG =P4=nmm (#. 129),
i.e., the symmetry group governing the iron-based superconductors.
We focus on the quasi-two-dimensional (2D) case and consider the
lattice in Fig. 2a, which is similar to the monolayer FeSe. The space
group P4/nmm is nonsymmorphic, and it has a special group structure
as follows57

G=T =D2d � Z2, ð1Þ

where T is the translation group, D2d is the point group at the lattice
sites, and Z2 is a two-element group, including the inversion symmetry,
which switches the two sublattices in the lattice in Fig. 2a. As D2d and
Z2 are defined on different points, Eq. (1) holds in a sense that symmetry
operations are equivalent if they differ by a lattice translation,
hence the quotient group on the left-hand side. According to Eq. (1),
G=T can be generated by the generators of D2d and Z2, including
the inversion symmetry {I∣τ0}, the mirror symmetry {My∣0} and the
rotoinversion symmetry {S4z∣0}. Here, we express the symmetry
operations in the form of the Seitz operators. In the generators, the
point group parts act on the Cartesian coordinates as I : (x, y, z) ↦ -
(−x, −y, −z), My : (x, y, z) ↦ (x, −y, z), and S4z : (x, y, z) ↦ (y, −x, −z), and
τ0 = a1/2 + a2/2 with a1 (a2) the primitive lattice translation along the x (y)
direction in Fig. 2a.

For electronic systems in the presence of spin-orbit coupling,
groupP4/nmmhas only one single 4D IR at (π,π), i.e., theMpoint in the
Brillouin zone, where all the symmetry operations in G=T are respec-
ted. It describes the fourfold degeneracy composed of two Kramers’
doublets, Jz = ±1/2 and Jz = ±3/2, with opposite parities, where Jz is the
angular momentum defined according to {S4z∣0}. The degeneracy can
be understood from the group structure in Eq. (1). The point groupDD

2d
(double group version of the point group D2d) supports two different
2D IRs corresponding to Kramers’ doublet Jz = ±1/2 and Jz = ±3/2
separately. At the M point, {S4z∣0} in DD

2d and {I∣τ0} in Z2 satisfy the
following anticommutation relation

fS4z j0gfIjτ0g φðkÞ
�� �

= fIjτ0gfS4z ja2gjφðkÞ
= eik�a2 fIjτ0gfS4z j0g φðkÞ

�� �
= � fIjτ0gfS4z j0g φðkÞ

�� �
,

ð2Þ

which enforces the degeneracy between the two 2D IRs labeled by
Jz = ±1/2 and Jz = ±3/2 at M (more detailed analysis in Supplementary
Note 2). In the paramagnetic state, besides crystalline symmetries, the
time-reversal symmetry T also exists. Correspondingly, the system

conventional superconductor

Fig. 1 | A sketch for platforms realizing topological superconductivity. It is
based on systems with gapless fermionic excitations (the intermediate layer) pro-
tected by nonsymmorphic crystal symmetries. In the system, the magnetism (top)
and the conventional superconductivity (bottom) can be induced through either
the proximity effect or the intrinsic properties of the intermediate layer. The
colored balls, black arrows and colored cones represent the different lattice sites,
the magnetic moments and energy dispersion, respectively.
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actually respects the type-II magnetic space group P4=nmm10

(#. 129.412), which reads

GPM=T =DD
2d � Z2 � ffEj0g,T g: ð3Þ

Notice that the time-reversal symmetry does not affect the 4D
fermionic IR at M.

Assuming trivial band structure at other high-symmetry points,
we describe the fourfold degenerate fermion at M by the following
tight-binding model58,59

H0ðkÞ= 2tðcos kx + cos kyÞs0σ0 + 4t
0 cos

kx

2
cos

ky

2
s0σ1

� 2λ sin kxs2σ3 � 2λ sinkys1σ3,
ð4Þ

where a single s orbital is assumed at each site in the lattice in Fig. 2a. In
Eq. (4), the Pauli matrices si and σi (i = 1, 2, 3) stand for the spin and
sublattice degrees, respectively. t (t0) is the nearest-neighbor intrasu-
blattice (intersublattice) hopping. λ is the inversion-symmetric Rashba
spin-orbit coupling, which arises due to the mismatch between the
lattice sites and the inversion center60,61. The band structure based on
H0ðkÞ is plotted in Fig. 2b. We set the Fermi energy near the fourfold
band degeneracy, as indicated in Fig. 2b, and consider conventional
superconductivity in the system. The corresponding BdG Hamiltonian
takes the form

HBdGðkÞ= ½H0ðkÞ � μ�κ3 +Δscs0σ0κ1, ð5Þ

in the basis ψ†(k) = (c†(k), is2σ0c(−k)). In Eq. (5), the Pauli matrix κi
describes the Nambu spinor, μ is the chemical potential, and Δsc is the
superconducting order parameter. In the superconducting state, the
matrix form for the symmetry generators are I = s0σ1κ0,My = is2σ3κ0

and S4z = e
is3π=4σ3κ0

58, where I ,My and S4z correspond to
{I∣τ0}, {My∣0}, {S4z∣0} respectively. The time-reversal symmetry takes
the form T = is2σ0κ0K and the particle-hole symmetry P = s2σ0κ2K ,
with K the complex conjugation operation. It is easy to check that the
system described by HBdG in Eq. (5) is topologically trivial.

AFM order induced second-order TSCs
We study possible topological superconductivity in the structure
sketched in Fig. 1, based on the above fourfold degenerate fermion.
First, we consider the checkboard AFM order preserving the transla-
tional symmetries in the system as illustrated in Fig. 3a, andwe assume

the magnetic polarization along the z direction. Correspondingly, the
system is described by the following Hamiltonian

HBdG,AFM =HBdG +ΔAFMs3σ3κ0, ð6Þ

with ΔAFM the strength of the AFM order. It is easy to check that, the
system respects the type-III magnetic space group P40=n0m0m
(#. 129.416)

GAFM=T = SD4 � ffEj0g, fMxyjτ0gg � ffEj0g, fIjτ0gT g: ð7Þ

We consider the effect of the AFM order on the fourfold degeneracy at
M. Obviously, all the symmetry operations in GAFM=T preserve at theM
point. A direct analysis shows that the fourfold degeneracy is broken
into two twofolddegenerate ones. It is the Jz = 1/2 (Jz = −1/2) state that is
degeneratewith the Jz = 3/2 (Jz = −3/2) state. A detailed group analysis is
presented in the Supplementary Note 3. Such twofold band degen-
eracies arise from the relation fS4z j0gfMxyjτ0g= fMxyjτ0gfS

3
4z ja1g,

which at M leads to

fS4z j0gfMxyjτ0g∣φðkÞ
�
= � fMxyjτ0gfS

3
4z j0g∣φðkÞ

�
: ð8Þ

Recalling that S4z = S
5
4z , one immediately comes to the above conclu-

sion. We simulate the bands in the presence of the AFM order
numerically, and show the results at ΔAFM = 0.5 in Fig. 3a. Here, it is
worth mentioning that the bands in Fig. 3a are always twofold
degenerate due to the symmetry fIjτ0gT which exists at every k point
in the Brillouin zone and satisfies ðfIjτ0gT Þ2 = � 1.

As the magnetism breaks the time-reversal symmetry but pre-
serves the particle-hole symmetry, the systembelongs to class Dwhich
in the 2D case is characterized by aZ topological index, i.e., the Chern
number, according to the Altland-Zirnbauer classification5. The Chern
number can be calculated efficiently based on the symmetry eigen-
values carried by the occupied bands at the high-symmetry points. In
systems respecting the fourfold rotational symmetry C4, in the weak-
pairing condition, the Chern number Ch satisfies

42

ei2πCh=4 =
ξ2ðΓÞ
ξ2ðMÞ

e�
i2mπ
4 ½NoccðΓÞ+NoccðMÞ�2NoccðXÞ�, ð9Þ

where m is the angular momentum carried by the Cooper pair, ξ(Γ)
and ξ(M) are the products of the C4 eigenvalues of the occupied
bands at Γ and M, respectively, and Nocc(Γ), Nocc(M) and Nocc(X) are
the number of the occupied bands at Γ, M and X, respectively.
Since C4 is equivalent to S4 in 2D systems, the formula in Eq. (9) applies
to our consideration (In fact, in the nonsymmorphic group P4/nmm
besides the S4z symmetry, there is also the C4z symmetry which is
defined at the center of the square formed by the four nearest neigh-
boring lattice sites in Fig. 2a, and we have specified this point in the
Supplementarymaterial. As group P4/nmmmerely has one 4D IR atM,
all the analyses related to S4z also work for C4z.). The conventional
superconductivity carries zero angular momentum, i.e., m = 0.
Therefore, the Chern number is completely determined by the S4z
eigenvalues of the occupied bands at Γ andM, and for the condition in
Fig. 3a, we find that Ch = 0, which is also confirmed by the gapped
modes on the (11) and ½11� edges (see Supplementary Note 5). None-
theless, the system is topologically nontrivial, as evidenced by the
helical edge mode on the (10) edge in Fig. 3b. In fact, the system is a
TSC protected by the antiunitary symmetry MyT . We focus on high-
symmetry line ky = π, where MyT and the particle-hole symmetry
P preserve. Moreover, MyT serves as a pseudo time-reversal
symmetry on line ky = π satisfying ðMyT Þ2 = 1. Therefore, the ky = π
line can be viewed as a 1D subsystem of the whole system, which
belongs to symmetry class BDI5. The topological property of such a

Fig. 2 | Lattice structure and band structure of paramagnetic state. a shows a
quasi-2D lattice respecting group P4/nmm. The green and red balls label the two
sublattices. The orange and brown dashed lines indicate the different edges con-
sidered in the text. The black dashed arrows represent a bending process from the
(10) edge to the [11] and ½11� edges.b presents the bands obtained from Eq. (4), with
G, X,M representing (0, 0), (π, 0), (π, π) in the Brillouin zone, respectively, with the
other parameters set to be ft, t0, λg= f�1:0,0:8,0:5g. The blue dashed line in (b)
represents the chemical potential considered in the text.
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system is featured by the winding number,

w=
Z π

�π

dkx

2π
Tr½eCH�1

BdG,AFMðkÞ∂kx
HBdG,AFMðkÞ�, ð10Þ

with eC =MyT P being the pseudo-chiral symmetry on ky = π. We
calculate the winding number straightforwardly, and it turns outw = 2
(details in Supplementary Note 4), which is consistent with the two
zero-energy modes at ky = π on the (10) edge presented in Fig. 3e.

More interestingly, the above even winding number state is
actually a second-order TSC state35–38 protected by MyT . We demon-
strate it numerically. As presented in Fig. 3e, a single Majorana mode
exists at the corner between the neighboring (11) and ð11Þ edges. To
understand the phenomenon, we start with the helical mode in Fig. 3b.
On the (10) edge, the symmetry fMyj0gT and the particle-hole sym-
metry preserve. Considering the two symmetries, we can get the
effective theory on the (10) edge as Hð10Þ = vkyη1, with v the Fermi
velocity and ηi the Pauli matrices in the space spanned by the helical
edge mode. Then, we bend edge (10) into a right angle, with the two
sides along the [11] and ½11� directions, as illustrated in Fig. 2a. The
helical mode on each edge gains a mass, since fMyj0gT breaks on the
(11)/ð11Þ edge. The gapped edge modes are depicted by the following
effective theory

Hð11Þ = vkη1 +mð11Þη3, Hð11Þ = vkη1 +mð11Þη3, ð11Þ

wheremð11Þ=ð11Þ is themass termon the (11)/ð11Þ edge.Moreover, fMyj0gT
requires mð11Þ = �mð11Þ. Therefore, Eq. (11) describes a massive Dirac
theory, with the mass changing sign at the corner between the (11) and
ð11Þ edges. The mass domain results in a single Majorana mode at the
corner62–64. Due to the pseudo-chiral symmetry eC, the corner Majorana
modes carry chirality, and the modes with the same chirality cannot
hybridize with each other. Thus, the classification for the second-order
TSC here is Z. Moreover, it is worth pointing out the above second-

order TSC state exists in the condition ð4t +μÞ2 +Δ2
sc <Δ

2
AFM, i.e., the

chemical potential in the AFM gap in the weak-pairing condition, and it
belongs to a Z classification corresponding to the winding number
along ky = π protected by fMyj0gT . We present more detailed analyses
of the above effective edge theory and the topological phase transitions
in Supplementary Note 5.

Interestingly, the negative energy states of theBdGHamiltonian in
Eq. (6) display both fragile Wannier obstruction and second-order
topology. To this end, we treat the BdG band structure as an insulator,
i.e., ignoring the particle-hole symmetry. Noting that particle-hole
partners in the BdG bands carry opposite angular momenta, the
angular momenta of the four “occupied" (negative energy) BdG bands
are Jz=±1/2, ±1/2 atG, Jz=−1/2,−1/2,−3/2,−3/2 atM, and Jz = ±1/2, ±1/2 at
X. By exhaustion, one can show that no Wannier representation exist.
However, if one includes two additional trivial bands (e.g., from core
electrons) that are equivalent to two Wannier orbitals with Jz = ±3/2
each at one of the 2aWyckoff positions shown in Fig. 3d, the combined
six bands, nevertheless, become Wannier representable. The six
Wannier orbitals are centered at Wyckoff position 2c with angular
momenta Jz = ±1/2, ±1/2 and Wyckoff position 2a with Jz = −1/2, 1/2, as
shown in Fig. 3c. Therefore, the occupied bands, despite not being
Wannier representable, can be viewed as the difference between two
Wannier representable systems, with six and two occupied bands,
respectively, as shown in Fig. 3c, d. By definition, the four occupied
bands display the fragile Wannier obstruction65. Formally, using the
modern language of magnetic elementary band representation66, we
express the fragile Wannier obstruction protected by the magnetic
space group symmetries in Supplementary Note 6.

The elucidation of the fragile Wannier obstruction enables an
alternative understanding of the second-order topology invoking only
S4z. Ignoring the particle-hole symmetry, the stable second-order
topology degenerates into the fragile Wannier obstruction. More
specifically, from Fig. 3c, the six-orbital Wannier representation dis-
plays a filling anomaly. Indeed, viewed as an insulator, if we neglect the

(1
1
)

(1 )1̄

Jz = − 1/2, − 3/2

Jz = ± 1/2

⊝

Lattice site WO Jz = ± 1/2 WO Jz = ± 3/2

(10)(1 )1̄

|e |
2

(1
0
) ed

g
e

C.M.

V.M.

V. M. V. M.

a b c d

e f g h

Fig. 3 | Distinctmanifestations of topology in the AFM case. a shows the normal
bands for the system in Eq. (6) at ΔAFM = 0.5, with the AFM order illustrated in the
inset. The blue dashed line represents the chemical potential atμ = 4.0.b shows the
superconducting edge modes corresponding to the bands in (a) on the (10) edge.
The edge modes on the right and left edges are degenerate. c shows an atomic
insulator constructed by placing two Wannier orbits (WOs) with Jz = ±1/2 at 2c
Wyckoff positions (the center of the square formed by the red and green balls), one
WOwith Jz=+1/2 atoneof 2aWyckoff positions (redballs) andoneWOwith Jz=−1/2
at the other 2a Wyckoff position (green balls). d shows an atomic insulator con-
structed by placing one WO with Jz = +3/2 at one of 2a Wyckoff positions and one

WO with Jz = −3/2 at the other 2a Wyckoff position. e shows the low-energy
superconducting spectrum (inset) and the real-space wavefunction profiles of the
zero-energy modes, corresponding to the bands in (a). Open boundary conditions
are set in both the [11] and ½11� directions. f shows the low-energy superconducting
spectrum in the presence of a single vortex in (e). In the shadow region, among the
three zero-energy modes, there are two vortex-bound Majorana modes (V.M.) and
one corner-bound Majorana mode (C.M.). g and h show the real-space wavefunc-
tion profiles of the two V.M. in the shadow region in (f), and the C.M. in (f) has a
similarwavefunction to that in (e). The color bars in (e), (g), and (h) are in the unit of
10−3. In the calculations, the superconducting order is set to be Δsc = 0.2.
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difference between two 2a sites in Fig. 3c, and combine both the ionic
charge and electronic charge at 2a, the configuration is exactly the
same as the Benalcazar-Bernevig-Hughes model35 for higher-order
topology protected by fourfold rotation symmetry (equivalent with
our S4z), only rotated by 45 degrees. It can be verified from ref. 67 that
our model hosts a corner charge e/2 because of the mismatch of
charge neutrality and rotation symmetry, which ensures a degeneracy
of four corner states. In our system, corner states are pinned at zero
energy by the particle-hole symmetry and they are Majorana zero
modes. Since the filling anomaly requires only S4z, the corner zero
modes are stable even when the corner is asymmetric under {My∣0}. In
fact, to reveal the corner charge in an S4z symmetric sample, one only
needs to avoid the edge terminations (10) and (01) where gapless edge
modes are present due to additional mirror symmetries {My∣0}. Con-
sidering the various topology in the system, for clarity we summarize
the relation between the symmetry and the topology in Table 1.

Vortex-bound Majorana modes
In the the second-order TSC state in the above, each vortex can bind
two Majorana modes which are stable due to the S4z symmetry. The
phenomenon is closely related to the fact that for group P4/nmm, the
effective theory near M in the normal state can be viewed as a direct
sumof twoRashba electron gas systemswith angularmomenta Jz = ±1/
2 and Jz = ±3/2 separately. To make it clearer, we consider the low-
energy theory near M in the second-order TSC state, for instance,

Heff ðqÞ= ½�tðq2
x +q

2
yÞ+2λðqxs2σ3 + qys1σ3Þ�κ3

+ t0qxqyσ1κ3 +ΔAFMs3σ3 +Δscκ1,
ð12Þ

where q is defined with respect to theM point and the identity matrices
are omitted for simplicity. Ignoring the high-order t0qxqy term, it is
obvious to notice that Heff can be decoupled in the σ space, i.e., the
sublattice space. In the σ = ±1 subspace, it describes a superconducting
Rashba electron gas in the presence of a Zeeman field ±ΔAFM; and in
each subspace, the vortex can bind a single Majorana mode10 carrying
S4z eigenvalue 1. Notice that in the presence of a vortex, the S4z
symmetry takes eigenvalues ±1 and ±i. However, the σ = +1 subspace is
spanned by the Kramers’ doublet Jz = ±1/2, while σ = −1 subspace is
spanned by Jz = ∓3/2, which can be inferred from the basis ofHeff . When
we consider the S4z eigenvalue of theMajoranamode, in the σ = −1 sub-
space, the basis contributes an additional phase factor ei∓π = −1.
Therefore, the vortex-bound Majorana mode in the σ = ±1 subspace
has S4z eigenvalue ±1. The two Majorana modes are immune to
perturbations preserving the S4z symmetry, such as the t0qxqy term in
Eq. (12). Namely, the second-order TSC state in the above supports two
Majoranamodes in each vortex protected by the S4z symmetry, i.e., one
with S4z eigenvalue +1 and the other −1. We carry out numerical
simulations for the vortex-bound states and present the results in
Fig. 3f–h. It is interesting tonotice that in the second-orderTSCstate, the
corner MZMs in Fig. 3e coexist with the two vortex-bound MZMs. This
arises from the fact that, the vortex core is far away from the corners,
making the corner MZMs can hardly feel the effect of the vortex.

FM order induced first-order TSCs
We also consider FM order in the system in Eq. (5), and we assume the
magnetic polarization along the z direction. Correspondingly, the

whole system can be depicted by the following Hamiltonian

HBdG,FM =HBdG +ΔFMs3σ0κ0, ð13Þ

where ΔFM is the strength of the FM order. We first study how the FM
order affects the fourfold degenerate fermion atM in the normal state.
According to the real-space configuration in Fig. 4a, the symmetry of
the system is lowered to the type-III magnetic space group P4=nm0m0

(#. 129.417)

GFM=T = SD4 � Z2 � ffEj0g, fMyj0gT g, ð14Þ

with SD4 the double group generated by {S4z∣0}. All the symmetry
operations in GFM=T maintain at the M point. A direct group theory
analysis shows that the 4D IR in the paramagnetic state atM splits into
two 2D IRs, similar to the AFM case. However, differently in the FM
case, one corresponds to twofold banddegeneracy between the Jz= 1/2
and Jz=−3/2 states and theother between the Jz=−1/2 and Jz=3/2 states
(more details in Supplementary Note 3). Such degeneracies can be
understood from the anticommutation relation between {S4z∣0} and
{I∣τ0} atM, proved in Eq. (2).We confirm the above analysis numerically
in Fig. 4a.

To study the topological property in systems depicted byHBdG,FM

corresponding to the normal bands in Fig. 4a, we first calculate the
Chern number. Based on the formula in Eq. (9) and the above analysis,
the Chern number can be calculated to be ∣Ch∣ = 2, whose sign depends
on the sign of ΔFM. To verify this, we simulate the superconducting
edgemodes numerically. As shown in Fig. 4b, two chiralmodes appear
on each edge corresponding to the normal state in Fig. 4a, which is
consistent with the above analysis. In fact, the above chiral TSC state
arises through a gap-close-reopen process at M as the FM order
becomes stronger, and the phase transition occurs at
ð4t +μÞ2 +Δ2

sc =Δ
2
FM. Accordingly, in the weak-pairing condition, the

system is a TSC with ∣Ch∣ = 2, as long as the chemical potential is in the
FM gap (details in Supplementary Note 4). Moreover, the vortex in the
chiral TSC state can also bind twoMajorana modes, and the analysis is
similar to that of the AFM case. We present a more detailed analysis
and simulate the vortex-bound states numerically in Supplemen-
tary Note 8.

Discussion
Wediscuss the effects of the symmetry-breakingperturbations (For the
TSC states, more essential are the symmetries in the magnetic states
rather than the specific magnetic orders considered in Figs. 3a and 4a.
Therefore, here we refer to the perturbations breaking the magnetic
group symmetries.), whichmay arise from tilting themagnetization off
the z direction in Figs. 3a and 4a, on the above TSC states. Obviously,

Table 1 | Summary table for the Jz of occupied band, the roles
played by symmetries and the corresponding protected
topology in different cases

Jz Symmetry Topology Classification

AFM −1/2, −3/2 MyT ,P Winding number Z

S4z Fragile. Wan. Obs. Z2

FM +1/2, −3/2 ⧹ Chern number Z

Fig. 4 | Lattice structure, band structure and corresponding edgemodes in the
FMcase. aThebands in thepresence of the FMorderwithΔFM=0.3. The inset in (a)
illustrates the real-space configuration of the FM order. The blue dashed line in (a)
represents the chemical potential at μ = 4.0. b shows the superconducting edge
modes on the (10) edge corresponding to the bands in (a), with the edgemodes on
the right (left) edge marked by the red (green) color. In (a) and (b), the other
parameters are the same as those in Fig. 2.
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the vortex-boundMajorana modes are sensitive to the {S4z∣0} breaking
perturbations and will gap out immediately. However, the Majorana
edge and corner modes can persist against the perturbations. The
chiral TSC state is robust as long as the bulk energy gap is not closed.
For the second-order TSC state, perturbations breaking fMyj0gT gap
out the helical Majorana mode on the (10) edge and break the Z clas-
sification of the corner Majorana modes to aZ2 one. Nevertheless, the
corner Majorana modes can be more robust due to a S4z protected
filling anomaly, or due to the boundary obstruction47,68.

In the proposal, the FM order can be replaced by an external
magnetic field. More difficult is to construct the antiferromagnetic
heterostructures, which require well-matched lattices between the
magnetic layer and the layer offering the band degeneracy. A possible
candidate is the heterostructure between the antiferromagnetism
ACo2As2 (A = Ca, Ba, Sr) and the iron-based superconductors, whose
lattice constants are similar69,70. A more feasible scheme lies in
the magnetic materials. For example, in Eu1−xLaxFeAs2

71 and
Sr2VO3−δFeAs

72, magnetic layers exist next to the superconducting
FeAs layer; and in Ba1−xNaxFe2As2

73 and Ba1−xKxFe2As2
74, a tetragonal

AFM phase may coexist with the superconductivity. By methods of
doping or gating, one may tune the chemical potential in the iron-
based superconductors near the fourfold band degeneracy, and
topological superconductivity can possibly be realized. We use the
genuine bands of the iron-based superconductors to simulate the
topological superconductivity in Supplementary Note 9.

In the above analysis, we have mainly focused on the TSC states in
the space group P4/nmm and the possible material realization. However,
as pointed out, our method can be applied to a wide range of systems
with band degeneracy near the Fermi energy. To further demonstrate the
effectiveness of our method, we analyze another case where the lattice
respects the space group P4/ncc. The group protects an eightfold band
degeneracy at (π, π, π) in the normal state. When conventional super-
conductivity is introduced, both the FM order and the C-type AFM order
drive the system into the nodal TSC states, but the topological properties
are different. More detailed analyses are presented in the Supplementary
Note 10. Another interesting pointworthmentioning is that the symmetry
of the system in thepresenceof themagnetic order is determinedbyboth
the type of the magnetic order and the direction of the spin polarization,
and it is possible that the higher-order TSC states can be realized by
the simpler FM order, which deserves further study in the future.

In summary, we propose a general method that is based on the
bulk energy bands and the conventional superconductivity to realize
topological superconductivity. We show that bymanipulating systems
with crystal symmetry-protected fermionic excitations with magnet-
ism, TSCs, including the high-order ones, can be generally obtained
when conventional superconductivity is introduced, and the property
of the TSCs is thoroughly determined by the property of the mag-
netism. Thus, our study provides a new method to realize the various
types of topological superconductivity and can help to find new plat-
forms to realize the Majorana modes.

Near the end of the paper, we became aware of a work75 in which
the vortex-bound states in high-order TSCs are studied, and the con-
clusion of the work is consistent with our results in the second-order
TSC state in the AFM case.

Methods
Symmetries in time-reversal invariant superconductors
Generally, a superconductor can be described by the following BdG
Hamiltonian

HBdGðkÞ=
H0ðkÞ � μ ΔðkÞ

ΔyðkÞ �H*
0ð�kÞ+μ

 !
, ð15Þ

in the basis ψyðkÞ= ðcyk,", c
y
k,#, c�k,", c�k,#Þ. Notice that we neglect other

indices except for the spin index here. For a time-reversal symmetric

superconductor, it respects the following three symmetries: the time-
reversal symmetry T , the particle-hole symmetry P and the combined
chiral symmetry C =PT . These symmetries act on the Hamiltonian as
follows

T HBdGðkÞT �1 =HBdGð�kÞ,
PHBdGðkÞP�1 = �HBdGð�kÞ,

CHBdGðkÞC�1 = �HBdGðkÞ:
ð16Þ

Moreover, in the basis for HBdGðkÞ in Eq. (15), the above symmetries
take the form T = is2κ0K ,P = s0κ1K and C = is2κ1. Besides the above
local symmetries, the system also respects the crystalline symmetries.
The crystalline symmetry eg transforms the BdG Hamiltonian asegHBdGðkÞeg�1

=HBdGðeg�1kÞ, and has the form

eg =
g 0

0 ηg*

� �
: ð17Þ

In the above equation, η is determined by the pairing symmetry, i.e.,
gΔ(k)gT = ηΔ(k). In the present study, we focus on the conventional
superconductivity, which belongs to the trivial irreducible repre-
sentation of the crystalline symmetry group. Namely, η always equals 1
for eg in Eq. (17) in our consideration.

Then, we consider the commutation relation between the unitary
chiral symmetry C and the crystalline symmetries. It can be directly
shown

CegC�1 =
s2g

*s2 0

0 s2gs2

 !
, ð18Þ

where we have taken use of the fact η = 1 in eg. Recall that in a time-
reversal symmetric system, the time-reversal symmetry commutes
with all the crystalline symmetries, and in the normal state, it demands
TgT�1 = g = ðis2KÞgðis2KÞ�1 = s2g

*s2 where T stands for the time-
reversal symmetry in the normal state. Therefore, we have CegC�1 = eg
in Eq. (18), namely ½C, eg�=0. The above commutation relation leads to
that for any eigenstate ∣ϕðkÞ� ofHBdGðkÞ carrying energy E(k), its chiral
partner C∣ϕðkÞ� possesses energy −E(k) but the same symmetry
eigenvalue with ∣ϕðkÞ� for any crystalline symmetry. Thismeans that in
the level of the symmetry indicator, the system must be equal to the
topological trivial superconductor. More detailed analyses are
presented in Supplementary Note 1.

The calculation of winding number
To analytically calculate the winding number at ky = π in the AFM
case, we rewrite HBdG,AFM in Eq. (6) in the basis diagonalizing the
pseudo-chiral symmetry eC. After the basis transformation, HBdG,AFM

takes an off-diagonal form in the Nambu space. In the specific AFM
case, the off-diagonal block matrix Q(kx) in the upper right corner is

QðkxÞ=
q + ðkxÞ 0

0 q�ðkxÞ

� �
, ð19Þ

with q± ðkxÞ= � ½2tðcos kx � 1Þ � μ�s0 ± 2λ sin kxs2 ±ΔAFMs3 ± iΔscs2.
Accordingly, the winding number along ky = π can be calculated as

νðQÞ= i
2π

Z 2π

0
dkx∂kx

log½detQðkxÞ�

=
i
2π

Z 2π

0
dkx∂kx

log½ðdet q+ ðkxÞdet q�ðkxÞÞ�

=
i
2π

Z 2π

0
dkx∂kx

½logðdet q+ Þ+ logðdet q�Þ�

= νðq+ Þ+ νðq�Þ:

ð20Þ

Article https://doi.org/10.1038/s41467-024-52156-1

Nature Communications |         (2024) 15:7971 6

www.nature.com/naturecommunications


Here, ν(q±) characterizes thewinding number of detq± ðkxÞ around the
origin point in the complex plane. See more details in Supplemen-
tary Note 4.

A short review of MEBR
When we place the bases fϕα

i g of the irreducible co-representations ui
of these on-site magnetic point groups Gx at their corresponding
Wyckoff positions x, the induced co-representation ðuiÞx " G of the
space groupG from the irreducible co-representations of the subgroup
Gx is referred to as magnetic elementary band representations
(MEBR). In the AFM case, the four negative-energy bands host the co-
representations

• At G point: �Γ7 � �Γ7
• At M point: �M7 � �M7
• At X point: �X3

�X5 � �X2
�X4

Therefore, our target band can only be expressed as a combination of
MEBRs with the negative integer

ð�EÞ2c " GAFM � ð1�E1Þ
2a

" GAFM ⊝ ð1�E2Þ
2a

" GAFM, ð21Þ

which implies the fragile topology. See more details in Supplemen-
tary Note 7.

Model Hamiltonian used for SG 130
To illustrate the effectiveness and generality of our method, we
introduce a more complex example for space group P4/ncc (#. 130).
We start with the paramagnetic normal state, where the system actu-
ally respects the type-IImagnetic space group P4=ncc10. The group can
be generated by the following symmetry operations

fC4z j000g, fC2x j
1
2
1
2
0g, fIj 1

2
1
2
1
2
g, T : ð22Þ

The magnetic space group P4=ncc10 has one and only one eightfold
irreducible representation at the A point, i.e., the (π, π, π) point, in the
spinful condition. Namely, all the bands are eightfold degenerate and
respect the same low-energy effective model in the spinful case. In the
lattice model condition, the eightfold band degeneracy can be
captured by the following tight-binding model76

H0ðkÞ = t0ðcos kx + cos ky + cos kzÞ+ txyτx cos
kx

2
cos

ky

2

+ tzμx cos
kz

2
+ λ1τzμy cos

kz

2

+ λ3τxμz σx sin
kx

2
cos

ky

2
+ σy cos

kx

2
sin

ky

2

� �
+ λ2τz ðσx sinky � σy sin kxÞ:

ð23Þ

Based on this model, we study the possible TSC states in the
system when conventional superconductivity and different magnetic
orders are introduced. More details are presented in Supplementary
Note 10.

Data availability
All data needed to evaluate the conclusions in the study are present in
the paper and/or the Supplementary Information. The data that sup-
port the findings of this study are available from the corresponding
authors upon request.

Code availability
The computer code used for numerical calculation and theoretical
understanding is available upon request from the corresponding
authors.
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