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Deep vein thrombosis (DVT) is a leading cause of morbidity and mortality after
trauma. Here, we integrate plasma metabolomics and proteomics to evaluate
the metabolic alterations and their function in up to 680 individuals with and
without DVT after trauma (pt-DVT). We identify 28 metabolites and 2 clinical
parameter clusters associated with pt-DVT. Then, we develop a panel of 9
metabolites (hexadecanedioic acid, pyruvic acid, L-Carnitine, serotonin, PE(P-
18:1(11Z)/18:2(9Z,127)), 3-Hydroxycapric acid, 5,6-DHET,
3-Methoxybenzenepropanoic acid and pentanenitrile) that can predict pt-DVT
with high performance, which can be verified in an independent cohort. Fur-
thermore, the integration analysis of metabolomics and proteomics data
indicates that the upregulation of glycolysis/gluconeogenesis-TCA cycle may
promote thrombosis by regulating ROS levels in red blood cells, suggesting
that interfering with this process might be potential therapeutic strategies for
pt-DVT. Together, our study comprehensively delineates the metabolic and
hematological dysregulations for pt-DVT, and provides potential biomarkers
for early detection.

Deep vein thrombosis (DVT) is a major health problem that can lead to
a variety of complications, such as post-thrombotic syndrome, recur-
rent DVT, and life-threatening pulmonary embolism (PE)**. DVT and PE
are collectively known as venous thromboembolism (VTE). Previous
studies have identified multiple risk factors of DVT, such as advanced
age, immobility, surgery, and hospitalization'*. Particularly, the risk of
DVT increased in trauma individuals secondary to injury patterns and
immobility>*. Post-traumatic DVT (pt-DVT) has long been recognized
as one of the most relevant clinical problems in the adult population®
since failure to recognize this common morbidity could lead to an
unacceptable rate of PE. It is also a leading cause of morbidity and

mortality after trauma®’. Furthermore, traumatic bone fractures are a
major public health issue in China®, and the incidence of pt-DVT can
reach up to 40%° "2, which makes pt-DVT a serious threat to public
health in China.

Currently, the diagnosis and treatment of pt-DVT follow the VTE
management approach. The diagnosis relies on laboratory measures of
D-dimer and specific imaging features of ultrasound (US)""*"", while
the treatment and prevention include widespread employment of
anticoagulants, mechanical prophylaxis, or inferior vena cava filter
(IVCF) placement’®. Although D-dimer has been validated as a risk tool
in hospitalized adult patients, the application in patients at risk of DVT
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after surgery or a traumatic event is unclear. In addition, surgery may
cause secondary trauma, and prevention and early diagnosis of
thrombosis in trauma patients are challenging during hospitalization
and perioperative nursing. Therefore, the identification of biomarkers
for pt-DVT is necessary and important to make an early diagnosis and
provide appropriate DVT management.

Metabolomics is a promising approach for biomarker discovery,
which could provide insights into pathology, treatment, and early
diagnosis of diseases” ™. Although previous studies’* have found
several metabolic alterations associated with VTE, including carnitines,
carnitine species, glucose, phenylalanine, 3-hydroxybutarate, lactic
acid, tryptophan, and some monounsaturated and polyunsaturated
fatty acids, our understanding on the global metabolic alterations in
pt-DVT is still limited.

Therefore, to investigate the potential metabolic mechanisms
of pt-DVT and recognize DVT patients among individuals with
traumatic fractures, we used untargeted metabolomics with
liquid chromatography-mass spectrometry (LC-MS) to system-
atically characterize plasma metabolites profiles between pt-DVT
patients and controls and screened the hematological alterations
associated with pt-DVT. Our study identified multiple metabolites,
clinical parameters (CPs), and metabolic pathways for pt-DVT.
Leveraging the multidimensional datasets, we further developed a
panel of biomarkers using a machine learning method to dis-
criminate post-traumatic DVT patients. It will be valuable for the
design of an early diagnostic test for pt-DVT. Finally, by proteomics
and metabolomics integrative analysis, we get insight into the
altered metabolic pathways and provide potential therapeutic stra-
tegies for pt-DVT.

Results

Clinical characteristics of the studied cohort

The study design and analysis workflow is illustrated in Fig. 1. Based on
the strict inclusion/exclusion criteria, a total of 680 patients were
enrolled in the discovery (N=580) and the validation (N=100)
cohorts. Briefly, for the discovery cohort, 252 patients diagnosed with
incident pt-DVT were selected as cases, and 328 patients without DVT
were selected as controls, which were enrolled from October 2018 to
December 2020. Subsequently, from March 2021 to July 2021, 50 pt-
DVT patients and 50 controls were selected with the same recruitment
criteria as a separate validation cohort. The clinical characteristics of
all the participants are shown in Supplementary Data 1, including 4
basic characteristics and 34 cardiovascular and hematological char-
acteristics. The basic characteristics were approximately balanced
between the pt-DVT group and controls.

Global plasma metabolic profiles

After MS/MS identification and data filtering, 326 metabolites that
could be reproducibly detected in all batches were considered stable
and reserved for subsequent analyses (Supplementary Data 2 and
Supplementary Data 3). The identified metabolites were categorized
into 8 functional groups and an unknown set according to the meta-
bolism pathways in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Fig. 2a), including lipid, amino acid, xenobiotics, carbohy-
drate, nucleotide, peptide, cofactors, and vitamins, energy, and others.
Principal components analysis (PCA) was performed to evaluate the
global metabolic variations and data quality in metabolic analysis. The
optimal separation of groups was obtained in PC 1 and 2, which
accounted for 8.6% and 4.7% of the whole variance of the dataset,
respectively (Supplementary Fig. 1).

Metabolite groups altered in pt-DVT
The volcano plot visualizes the significantly increased/decreased
metabolites between the two groups by the univariate analysis

(Fig. 2b). For multivariate analysis, we implemented orthogonal partial
least squares discriminant analysis (OPLS-DA) (Fig. 2¢) and identified
96 metabolites with a significant contribution to the variation (Fig. 2d).
The permutation test was performed to evaluate the validity of the
discriminant model to avoid overfitting (Supplementary Fig. 2).
Together, a total of 28 metabolites (Supplementary Data 4) identified
both by univariate and multivariate analyses were considered as sig-
nificantly changed metabolites, including 11 lipids, 5 amino acids, 3
carbohydrates, 2 peptides, 2 nucleotides, 2 xenobiotics, 1 energy
metabolic group, and 2 other groups. All 28 metabolites were used for
hierarchical clustering in a heatmap separating the 2 groups (pt-DVT or
Controls; Fig. 2e).

The debiased sparse partial correlation (DSPC) network (Fig. 3a)
shows the relationships in which the partial correlation coefficients
were significant (Supplementary Data 5). The topology of the network
demonstrates dense interactions occurred between both inter- and
intra-functional metabolite groups with the densest interactions
between lipid and amino acid metabolism. Besides, metabolites of
unknown function mainly occupied the position near these two
metabolite groups, N2,N2-Dimethylguanosine, and pyruvic acid, sug-
gesting that they may be involved in lipid, amino acid, nucleotide, and
carbohydrate metabolism. Together, these findings indicate that a
highly coordinated metabolite regulatory network underlies
thrombosis.

Dysregulation of multiple metabolic pathways related to pt-DVT
For pathway analysis, a total of 307 metabolites could be mapped to 52
KEGG pathways. We identified 17 significantly dysregulated pathways
involved in amino acid metabolism, carbohydrate metabolism, and
lipid metabolism (Fig. 3b and Supplementary Data 6), suggesting a
large-scale metabolic dysregulation in the pt-DVT group. The differ-
ential abundance (DA) score of 17 significantly altered pathways
(Fig. 3c and Supplementary Data 6) showed that 6 pathways involved
in amino acid metabolism were elevated activities. The activities of all 5
pathways associated with carbohydrate metabolism were notably
upregulated, including the well-studied citrate cycle (TCA cycle) and
glycolysis/gluconeogenesis. While the activities of all the 3 pathways
associated with lipid metabolism were downgraded. Moreover, we
identified several pathways for amino acid metabolism which were less
studied with pt-DVT, such as Cysteine and methionine metabolism,
Glycine, serine and threonine metabolism, Arginine and proline
metabolism, Alanine, aspartate, and glutamate metabolism, and His-
tidine metabolism.

CP Clusters altered in pt-DVT
We identified 14 significantly changed CPs, 5 of which were increased in
pt-DVT patients, and the others were decreased (Fig. 4a and Supple-
mentary Data 7). The Pearson correlation analysis showed that the CPs
were significantly increased/decreased and tended to cluster together
(Fig. 4b). Interestingly, the clinical features with functional similarity
were grouped within a cluster, such as the top increased CP cluster,
including fibrinogen (Fbg), platelet hematocrit (PCT), and platelet
count (PLT), while the most decreased cluster included the number of
red blood cell count (RBC), hematocrit percentage (HCT), and hemo-
globin concentration (HGB). Based on these, we revealed two typical
clinical features for pt-DVT, one is increased PLT-PCT-Fbg cluster
(named PLT cluster), and another one is decreased RBC-HCT-HGB
cluster (named RBC cluster).

We further evaluated the diagnosis effects of these 6 CPs in PLT and
RBC clusters for the diagnosis of pt-DVT (Supplementary Data 8). The
results showed that PLT and PCT had excellent specificity for pt-DVT
(Discovery cohort, PLT: specificity=0.991; PCT: specificity =0.994,
Validation cohort, PLT: specificity = 0.96; PCT: specificity =1) and might
be the promising diagnostic markers for clinical use.

Nature Communications | (2024)15:7831


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-52262-0

Clinical parameters profiles Doppler ultrasonography

a
/7 | ‘\ ® Demographics
/ ‘ ® Trauma time
1 k ©® Blood type
® Cardiovascular characteristics
; 9 th]@x :
i\ Blood sampling
( VB, _
'\
(0] i Coagulation profiles
oo
O i Complete blood count
e
Doﬂ/’ U Plasma metabolomics
| U Plasma proteomics
Traumatic fracture H italizati
patients ospitalization
b

Discovery cohort
N=580 (pt-DVT : Controls = 252 : 328)

Clinical parameters (CPs)

N— Study cohorts —

I
N/

Plasma metabolomics

Post-traumatic deep vein thrombosis
(pt-DVT)

Fracture individuals without deep vein
thrombosis (Controls)

I S T N

12 hours after hospitalization

Surgery

Validation cohort
N=100 (pt-DVT : Controls = 50 : 50)

v/

Plasma proteomics

. Complete
Coa%lil; oy blood count O:lh:;s
B N=24

183 samples derived from our cohort
(pt-DVT : Controls = 96 : 87)

Clinical parameters alteration

of pt-DVT

Metabolic profiles alteration
of pt-DVT

Fig. 1| The design and analyses workflow of study. a The design of the current study. b The analysis workflow of the current study. OPLS-DA, orthogonal partial least
squares discriminant analysis; DSPC, debiased sparse partial correlation; ROC, receiver operating characteristic.

Association between metabolic alteration and pt-DVT-related
blood characteristics

The correlation matrix by Pearson coefficient presents the dis-
tinctive metabolic patterns for the PLT and RBC cluster (Supple-
mentary Fig. 3). In total, 25 metabolites showed significant
correlations with at least one of 6 CPs, of which 18 metabolites were
related to the PLT cluster, while 17 metabolites were associated with

the RBC cluster, indicating that the CPs within a cluster had similar
metabolic patterns.

Next, using the linear regression model, we found 16 metabolites
significantly associated with the PLT cluster (Fig. 4c and Supplemen-
tary Data 9) and 15 metabolites associated with the RBC cluster (Fig. 4d
and Supplementary Data 9). We further conducted pathway-based
quantitative enrichment using the metabolites associated with two
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Fig. 2 | Metabolic profiles discriminating pt-DVT patients and controls.

a Metabolite distribution over pathway-based classes. b Volcano plot of differential
metabolites. The Benjamin-Hochberg false discovery rate (FDR) method was used
to address multiple comparisons. Metabolites with a fold change of <3/4 or >4/3
and adjusted P value of two-tailed unpaired Student’s ¢ test/Mann-Whitney U-test
less than 0.05 (FDR < 0.05) are considered significantly decreased (blue) or
increased (pink). Changes in other metabolites are not significant. The top 10
increased and decreased metabolites are labeled. ¢ Plot of orthogonal partial least

squares discriminant analysis (OPLS-DA) score. d Variable importance in projection
(VIP) score of OPLS-DA model. Red dots represent the metabolites that significantly
(based on fold change and two-tailed unpaired Student’s ¢ test/Mann-Whitney U-
test) altered in pt-DVT patients. e Heatmap of 28 differential metabolites
throughout individuals. Red indicates metabolites that are increased, and blue
indicates metabolites that are decreased in pt-DVT patients compared to controls.
Source data are provided as a Source Data file.

clusters, respectively (Supplementary Data 10). As shown in Fig. 4e, 8
metabolic pathways that may regulate the alteration of the PLT cluster
are mainly involved in lipid metabolism, especially with the oxidation
of fatty acids. We identified 4 key metabolites in these pathways,
including propionylcarnitine, I-carnitine, 5,6-DHET, and serotonin.

Elevated plasma propionylcarnitine, I-carnitine, and serotonin levels
were positively associated with PLT number, PCT, and Fbg level in the
blood. Moreover, 26 metabolic pathways are related to the RBC cluster
(Fig. 4f), including the pathways involved in amino acid metabolism,
carbohydrate metabolism, and lipid metabolism. Apart from fatty acid
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Fig. 3 | Dysregulation of multiple metabolic pathways related to pt-DVT.

a Debiased sparse partial correlation (DSPC) network of 28 significantly altered
metabolites. Here, each node represents a metabolite, and each edge represents
the strength of partial correlation between two metabolites. Edge weights
represent the partial correlation coefficient. b Metabolic pathway undergoing
significant changes in pt-DVT patients. The Benjamin-Hochberg false discovery
rate (FDR) method was used to address multiple comparisons. Red dots mean pt-
DVT related pathways with an adjusted P value of two-tailed Global test less than

0.05 (FDR < 0.05). ¢ A pathway-based analysis of metabolic changes for pt-DVT.
The differential abundance (DA) score captures the average gross change for all
metabolite measures in a pathway. A score of 1 indicates that all annotated
metabolites in the pathway increase in pt-DVT patients compared to controls, and
a score of —1 indicates that all annotated metabolites in the pathway decrease.
The size of the dot represents the number of annotated metabolites in the
pathway. Source data are provided as a Source Data file.

oxidation and other pathways associated with lipid metabolism,
increased imidazoleacetic acid and pyruvic acid levels were negatively
associated with RBC number, HCT, and HGB levels in blood. It may
contribute to pt-DVT pathogenesis through carbohydrate and amino
acid metabolism, such as two additional energy metabolisms of the
TCA cycle and glycolysis/gluconeogenesis.

Machine learning identified hematal-metabolic block to dis-
criminate pt-DVT

To verify the generalization ability of the predictive model, we per-
formed metabolomic analysis on 100 participants from an indepen-
dent validation cohort (Supplementary Datas 11, 12). Firstly, we
evaluated the performance of the three models using all significantly
altered CPs (N=14) and metabolites (N=28) identified above and
found that model 2 with 28 metabolites and model 3 with 42 predictors
showed excellent predictability both in the discovery and validation
cohort (Supplementary Fig. 4).

For potential clinical use, we next tested whether we could use
fewer features to distinguish pt-DVT and choose P value ranking for
model reduction due to better predictive performance (Supplemen-
tary Fig. 5a-c). Based on the results of model reduction, we, therefore,
selected the top 9 predictors for each model. The prediction effects of
the three models were rapidly reduced with the decreasing of features
(Supplementary Fig. 5d-f). As shown in Fig. 5a, b, the performance of
model 1 (Discovery cohort: AUC=0.873, Validation cohort: AUC =

0.857), which predicted pt-DVT using only CPs was the worst, indi-
cating that CPs alone might be not enough to diagnose pt-DVT at
present. Correspondingly, model 2 (Discovery cohort: AUC = 0.956,
Validation cohort: AUC=0.935) and model 3 (Discovery cohort:
AUC =0.935, Validation cohort: AUC =0.910) were well able to dis-
criminate DVT from trauma patients, which suggested that plasma
metabolites had a great contribution to pt-DVT early diagnosis and
prediction in clinical use. In particular, the performance of model 2
comprising 9 metabolites (hexadecanedioic acid, pyruvic acid, L-Car-
nitine, serotonin, PE(P-18:1(11Z)/18:2(9Z,127)), 3-Hydroxycapric acid,
5,6-DHET, 3-Methoxybenzenepropanoic acid and pentanenitrile)
(Fig. 5¢) was superior to other models both in the discovery cohort and
the validation cohort, indicating a better predictability and general-
ization ability.

Metabolomics and proteomics analyses reveal potential ther-
apeutic strategies for pt-DVT

Considering that proteomics can provide an insightful metabolic per-
spective by profiling the metabolic proteins and contribute to the
understanding of pt-DVT metabolism, we performed a global pro-
teomics study on 96 pt-DVT patients and 87 control participants derived
from our cohort. In total, 524 plasma proteins were quantified (Sup-
plementary Datas 13, 14), and 214 proteins were identified as differential
between the two groups (FDR<0.05 and FC <3/4 or >4/3), with 153
upregulated and 61 downregulated in patients with pt-DVT (Fig. 6a and
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Supplementary Data 15). KEGG pathway enrichment of differential pro-
teins found that 15 pathways were significantly altered (FDR < 0.05) in pt-
DVT patients (Fig. 6b). Notably, complement and coagulation cascades
were identified as the most significantly altered pathway, which is also
the regulatory pathway that directly delivers to DVT.

Combining metabolomics and proteomics findings, we found that
glycolysis/gluconeogenesis was changed both in metabolite and protein
levels. Glycolysis/gluconeogenesis produces pyruvic acid for the TCA
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cycle, and our study revealed that pyruvic acid, citric acid, and several
proteins in the glycolysis/gluconeogenesis pathway were significantly
increased in pt-DVT patients. Therefore, it is reasonable to speculate that
the upregulation of glycolysis/gluconeogenesis may result in the
pathogenesis of thrombosis. This promoted us to further explore the
roles of glycolysis/gluconeogenesis by integrating the metabolomics
and proteomics data. As shown in Fig. 6¢, we found 8 proteins (LDHA,
LDHB, GAPDH, GPI, PKM, MINPP1, ENO1, and TPI1) upstream of pyruvic
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Fig. 4 | Differential clinical parameters for pt-DVT and related metabolic dys-
regulation. a Volcano plot of differential clinical parameters (CPs). The Benjamin-
Hochberg false discovery rate (FDR) method was used to address multiple com-
parisons. CPs with a fold change of < 3/4 or > 4/3 and adjusted P value of two-tailed
unpaired Student’s ¢ test/Mann-Whitney U-test less than 0.05 (FDR < 0.05) are
considered significantly decreased (blue) or increased (pink). Changes in other CPs
are not significant. All significant increased and decreased CPs are labeled.

b Correlation matrix colored by the two-tailed Pearson correlation coefficient of
each pair of pt-DVT-related CPs across samples. The Benjamin-Hochberg false
discovery rate (FDR) method was used to address multiple comparisons. The
asterisk (*) represents that each pair is significantly correlated (FDR < 0.05), and the
P value < 0.0001 are marked in white. ¢, d Associations between pt-DVT related

metabolites and PLT cluster (c) and RBC cluster (d) using linear regression model in
580 participants from the discovery cohort. The Benjamin-Hochberg false dis-
covery rate (FDR) method was used to address multiple comparisons. Metabolites
with adjusted two-tailed P value less than 0.05 (FDR < 0.05) are considered sig-
nificant. Data are presented as coefficients + SE. e, f Metabolic dysregulation
associated with PLT cluster (e) and RBC cluster (f). Diamond represents the
metabolite that was significantly (FDR < 0.05) associated with CP clusters, while
ellipse is the pathway associated with the metabolites. Ellipse size represents the
enrichment ratio of the pathway. Each edge represents that the metabolites can be
annotated in the pathway, and the dotted edge suggests a close relationship
between the pathways. Source data are provided as a Source Data file.
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Fig. 5 | Machine learning identified features to discriminate pt-DVT. a Area
under the receiver operating characteristic curve (AUROC) of model 1 (CPs only),
model 2 (metabolites only), and model 3 (CPs and metabolites) in the discovery
cohort. b AUROC of model 1, model 2, and model 3 in the validation cohort. ¢ Box
and violin plot shows the relative abundance of 9 features in model 2 across

580 samples in the discovery cohort. Statistical analyses were performed by two-

tailed unpaired Student’s ¢ test/Mann-Whitney U-test, and data were presented as
mean = SD. The effect size of ¢ test was presented as Cohen’s D value and 95%
confidence interval (CI). Box-plot, center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range. Source data are provided as a Source
Data file.

acid were significantly upregulated (FDR <0.05, P value ranged from
2.88x10™ to 1.87x107?) in pt-DVT patients. The glycolysis/gluconeo-
genesis-TCA cycle cascaded by pyruvic acid is a major source generating
nicotinamide adenine dinucleotide (NADH), which plays a crucial role
in the cellular redox status®. Previous studies have demonstrated
that reactive oxygen species (ROS) in RBCs will alter erythrocyte
membrane structure and be enhanced in thrombosis** . Consistent
with these reports, our data indicated that ROS-related peroxiredoxins
were slightly disturbed, with PRDX5 upregulated (FC=1558,
P value=271x102) and PRDX2 downregulated (FC=0.599,

Pvalue =3.96 x10™) in pt-DVT. The correlation analysis found that most
differential proteins in the glycolysis/gluconeogenesis pathway (7/8)
were significantly correlated with PRDX5 (Supplementary Fig. 6). In
addition, lactate dehydrogenases (LDHA/LDHB), the most significantly
changed proteins in glycolysis/gluconeogenesis, were reported to be
involved in ROS production in a variety of cells?*. It can be proposed
that the upregulation of glycolysis/gluconeogenesis-TCA cycle cascaded
by pyruvic acid may be associated with the accumulation of ROS in RBCs,
thereby enhancing thrombosis. Together, our metabolomics and pro-
teomics data highlight that intervening with glycolysis/gluconeogenesis
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Fig. 6 | Metabolomics and proteomics analyses reveal potential therapeutic
strategies for pt-DVT. a Volcano plot of differential proteins. The Benjamin-
Hochberg false discovery rate (FDR) method was used to address multiple com-
parisons. Proteins with a fold change of <3/4 or >4/3 and adjusted P value of two-
tailed unpaired Student’s ¢ test/Mann-Whitney U-test less than 0.05 (FDR < 0.05)
are considered significantly decreased or increased. Changes in other proteins are
not significant. The top 40 changed proteins are labeled. b KEGG pathway
enrichment of differential proteins identified 15 significant pathways associated
with pt-DVT. The Benjamin-Hochberg false discovery rate (FDR) method was used
to address multiple comparisons. Pathways with an adjusted P value of one-tailed

pt-DVT  Control pt-DVT  Control pt-DVT  Control

Fisher Exact test less than 0.05 (FDR < 0.05) are considered significant enrichment.
¢ Schema of metabolic pathways (glycolysis/gluconeogenesis and TCA cycles) with
select metabolites and proteins. Metabolites and proteins with upregulated,
downregulated, and unchanged were colored in red, blue, and black, respectively.
Gray nodes represent proteins that were not detected. Statistical analyses were
performed by two-tailed unpaired Student’s ¢ test/Mann-Whitney U-test, and data
were presented as mean + SD. The effect size of ¢ test was presented as Cohen’s D
value and 95% confidence interval (Cl). Box-plot, center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range. Source data are pro-
vided as a Source Data file.

and redox homeostasis might serve as potential therapeutic targets for
pt-DVT. Based on these results, we performed pharmacological analysis
with the related proteins associated with glycolysis/gluconeogenesis
and redox homeostasis in our data and identified 50 potential com-
pounds targeting glycolysis/gluconeogenesis and redox homeostasis
(Supplementary Data 16), which facilitates subsequent functional studies
and drug development.

Since inflammation appears to be central to the thrombosis®*, we

also focused on the inflammation markers and found that C-reactive
protein (CRP) was significantly elevated (P value =2.39 x10™) in the pt-
DVT patients (Supplementary Data 15). To further assess the relation-
ship between inflammation and pt-DVT-related metabolites and CPs, we
performed linear regression in 156 participants, both measured pro-
teomics and metabolomics. The results showed that CRP was
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significantly associated with Fbg, RBC, HCT, HGB, and PE(P-18:1(11Z)/
18:2(9Z,127)) (FDR < 0.05) (Supplementary Data 17), suggesting that the
dysregulated lipid metabolism and hematological characteristics rela-
ted to pt-DVT may be associated with the inflammatory response trig-
gered after trauma.

Discussion

In two independent trauma cohorts, we identified a set of 28 meta-
bolites and 14 CPs as potential biomarkers of pt-DVT, revealing the
metabolic and hematological alterations in pt-DVT. Beyond that, we
developed a panel of biomarkers including 9 features to distinguish pt-
DVT patients efficiently using a machine learning algorithm, suggest-
ing the potential clinical use of an early diagnostic test in pt-DVT.
Finally, data resulting from integrative metabolomics and proteomic
analyses indicated that the upregulation of glycolysis/gluconeogen-
esis-TCA cycle cascaded by pyruvic acid may be related to ROS in
RBCs, thus enhancing thrombosis.

Based on our study design, the metabolites and pathways we
identified may be potentially suggestive of DVT or involved in the
mechanism of thrombosis. Among the changing metabolites and
pathways, the major class that increased was carbohydrates, including
pyruvic acid and citric acid, which participate in the TCA cycle and
glycolysis. Pyruvic acid originated from pyruvate metabolism and
glycolysis/gluconeogenesis is transported to the mitochondria where
it is converted to acetyl coenzyme A (acetyl-CoA) and further pro-
duced as citric acid for the TCA cycle. The disturbance of the TCA cycle
and glycolysis/gluconeogenesis have been reported to be closely
related to venous thrombosis?®®, but the role of pyruvate and citric
acid in the disease remains unclear. Besides, another class that sig-
nificantly changed in pt-DVT was lipids, particularly I-carnitine and
fatty acids metabolism, which have been validated in previous
studies® . It should be noted that some of the altered metabolites
showed different trends in diverse studies due to discrepant detection
platforms and study participants. For instance, Sung et al’. studied
metabolic alterations in serum and vein wall extracts of the mouse
model of DVT and found that citric acid was decreased in the DVT
group, which was inconsistent with our finding. In contrast, I-carnitine
was found to be of greater abundance in the serum of DVT animals®,
which was consistent with our study.

To get insight into the metabolic perspective and enhance the
understanding of pt-DVT metabolism, we combined the proteomics
data to profile the proteins related to pt-DVT metabolism. The inte-
gration of metabolomics and proteomics data suggested that the
upregulation of pyruvic acid, citric acid, and several proteins in gly-
colysis/gluconeogenesis may produce more ROS and enhance
thrombosis. ROS accumulate within RBCs due to endogenous hemo-
globin autoxidation and uptake of extracellular ROS released by other
cells. Previous studies?*?® have found that elevated ROS in RBC affects
the structure and function of RBC membranes, leading to loss of
membrane integrity and reduced deformability. These alterations
impair the function of RBCs in hemostasis and thrombosis by enhan-
cing RBC aggregation, RBC binding to endothelial cells, RBC-induced
platelet activation, RBC interaction with and activation of coagulation
factors, and favoring a hypercoagulable state’**°. Consistent with
these reports, ROS-related peroxiredoxins (PRDX5 and PRDX2) were
also disturbed in our data. In addition, our study observed that lactate
dehydrogenases (LDHA/LDHB) were drastically increased in pt-DVT,
which have been reported to be involved in ROS production in a
variety of cells**%, A recent study” for cholangiocarcinoma found that
LDHA and LDHB both exhibited hydrogen peroxide-producing activity
or promoted oxidative stress in cancer cells in vitro and in vivo.
Another study® in chondrocytes found that LDHA can promote ROS
and may be a potential therapeutic target for osteoarthritis treatment.
In general, our findings identified that intervening with glycolysis/
gluconeogenesis and redox homeostasis might serve as potential

therapeutic targets for pt-DVT in a relatively large population, while
this hypothesis needs to be verified by further functional studies.

Among the changed CPs, we identified two major features,
including the increased PLT-PCT-Fbg cluster and the decreased RBC-
HGB-HCT cluster in pt-DVT patients. Accumulating evidence indicates
that platelets contribute to thrombosis and might regulate effector
functions of innate immune cells recruited to the thrombus*. Besides,
mechanistic studies indicate that RBCs can promote thrombus for-
mation and enhance thrombus stability’. When venous thrombosis is
formed, a large number of RBCs will be recruited, which may result in a
decrease in the number of RBCs in circulating blood. In addition to PLT
and RBC, we also identified multiple pt-DVT-related CPs that have not
been reported in previous studies, such as PCT, HGB, and HCT, of
which PCT has the same excellent specificity for pt-DVT as PLT. It
should be addressed that D-dimer (D-D), the laboratory measure for
VTE or DVT diagnosis, did not significantly change in our study. Our
data showed that D-D had the lowest false negative rates (FNR) (Sup-
plementary Data 8), indicating that although D-D had poor specificity,
it had the highest sensitivity and could be used as a preliminary indi-
cation for pt-DVT.

Assessment of the relationship between CPs and metabolites
shows that the elevation of the PLT cluster is associated with lipid and
amino acid metabolism, while the decrease of the RBC cluster is
associated with energy metabolic processes, such as TCA cycle and
glycolysis/gluconeogenesis, in addition to lipid and amino acid meta-
bolism. The role of lipid metabolism, particularly fatty acids oxidation
and arachidonic acid metabolism, in platelet promotion of thrombosis
has not been well elucidated. A study®® in diabetic patients found that
|-carnitine might aggravate platelet hyperactivity by increasing the
provision of surplus acetyl-CoA to the cytoplasmic compartment,
which may explain the mediation of fatty acid oxidation in platelet
promotion of thrombosis. In addition, I-carnitine has been shown to
promote HGB elevation®. For RBC cluster-related metabolic dysregu-
lation, the most interest is pyruvic acid involved in glycolysis/gluco-
neogenesis and TCA cycle, which was consistent with our findings that
the upregulation of glycolysis/gluconeogenesis-TCA cycle cascaded by
pyruvic acid may be associated with accumulation of ROS in RBCs, thus
enhancing thrombosis.

It should be noted that the results that have been reported by
other studies?*??***°*! mainly in patients without trauma, such as I-
carnitine, pyruvic acid, citric acid, PLT, and RBC, which are not specific
to post-traumatic DVT. Some of our findings that have not been
reported might be specific to DVT after trauma, such as hex-
adecanedioic acid, D-Xylulose, 5,6-DHET, HGB, HCT, and PCT. How-
ever, the role of these metabolites and CPs in thrombosis for trauma
patients is unclear. The traditional Virchow Triad pathogenetic
mechanism of VTE indicates that venous injury, slow blood flow, and
hypercoagulability of the blood are three important factors in
thrombosis"*2. Trauma may trigger vascular injury and slow blood flow
caused by immobility, leading to specific metabolic and hematologic
features of DVT. For example, immobility in patients with bone frac-
tures can disrupt venous flow in venous valves, thereby promoting
platelet retention and contributing to thrombosis*’. In addition, the
inflammatory response triggered by vascular injury may also con-
tribute to specific metabolic and hematologic patterns that favor
thrombosis. Previous studies showed that CRP was not only a marker
of inflammation but also had significant biological effects in regulating
many of the aspects central to the pathogenesis of VTE”. The sig-
nificant association results between CRP and Fbg, RBC cluster, and
PE(P-18:1(117)/18:2(9Z,127)) suggest that the dysregulated lipid meta-
bolism and hematological characteristics of pt-DVT may be related to
the inflammatory response triggered by vascular injury. The detailed
mechanisms of PE(P-18:1(117)/18:2(9Z,12Z)), RBC cluster, and Fbg in
DVT are currently unknown, but observational studies have found that
PE levels were prognostic for worse outcomes in trauma®?, while lipid
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levels are associated with favorable changes in coagulation and
inflammatory biomarkers in causal models®’. Although there are no
definitive studies elucidating how our findings play a role in the
mechanism of inflammatory response-mediated thrombosis, obser-
vational studies have identified PE and lipids associated with trauma,
inflammatory response, and coagulation, which may facilitate the
traditional Virchow Triad pathogenetic mechanism of VTE.

An important result of this study is that we constructed a pre-
dictive model for pt-DVT using a machine learning algorithm. Using a
similar approach, a recent study” identified plasma biomarkers to
characterize venous thromboembolism. Nevertheless, the participants
in the study were diagnosed with VTE rather than pt-DVT, and the
plasma was collected 3 months after an incident VTE, which could not
present the metabolic changes at disease states. Our design allowed us
to sensitively capture the metabolic and hematological alterations in
pt-DVT patients during thrombogenesis and to ensure good general-
ization ability of the prediction model through an independent cohort.
We hypothesized that this information might help us to screen the
more effective biomarkers and develop a more accurate diagnostic
model to improve current trauma care through early diagnosis or
prediction of thrombosis formation.

An apparent advantage of this study is the large sample size in pt-
DVT metabolomics and proteomics analyses till now. This may give our
study higher statistical power to guarantee reliable results. Meanwhile,
the limitations of our study should also be addressed. First, due to the
different medical treatment times, the trauma time before blood
sampling in this study could not be unified. To eliminate this inter-
ference, we implemented multiple linear models fitted with ‘sex’, ‘age’,
and ‘time from trauma to sampling’ as independent variables. Second,
to obtain the metabolite that can be consistently detected for diag-
nostic biomarkers screening, we kept metabolites that were identified
in all three batches for analysis, which may lead to the missing of some
potentially relevant metabolites. Third, the severity of trauma is rela-
ted to hemorrhage as such, the hematological alterations may be a
surrogate for the severity of trauma, which could be associated with pt-
DVT and thus confounding the results. Due to the lack of information
on hemorrhage at the time of patient admission, we were unable to
correct this problem during analyses. However, the participants in our
study are only patients with mild trauma severity (ISS <16) and with a
similar trauma mode (trauma cause: 73.8% participants are falling
during physical activity and biking; fracture location; 70.29% partici-
pants are femur, tibia or fibula), which may minimize the potential
impact of trauma severity and hemorrhage. Fourth, our study is only
suggestive of the metabolic changes and hematological characteristics
associated with pt-DVT, and the in-depth mechanisms of thrombosis in
trauma patients need more functional experiments to investigate.

In conclusion, this cohort study identified 28 metabolites and 14
CPs significantly associated with pt-DVT and comprehensively demon-
strated the metabolic and hematological alterations in pt-DVT patients.
Based on these significantly altered metabolites and CPs, we developed a
panel of 9 metabolites to effectively distinguish pt-DVT patients. More
importantly, combined with proteomics data, we found that the upre-
gulation of the glycolysis/gluconeogenesis-TCA cycle cascaded by
pyruvic acid may promote thrombosis regulating ROS levels in RBCs. It
suggests that interfering with glycolysis/gluconeogenesis and redox
homeostasis might be potential therapeutic strategies for pt-DVT
treatment. In general, our study characterizes the metabolic dysregula-
tion in pt-DVT and identifies plasma biomarkers with a large-scale
cohort. We believe that our findings can facilitate functional research of
pt-DVT, and contribute to early diagnosis for clinical use.

Methods

Ethics statement

The study was approved by the Ethics Committee of Xi'an Jiaotong
University Honghui Hospital. All patients were provided written,

informed consent before participating in the study. The study protocol
can be available from the corresponding author upon reasonable
request.

Study design and participants

The patients in our study were recruited as part of the study which was
registered in the Chinese Clinical Trial Registry (ChiCTR) (Registration
number: ChiCTR1800017754). It can be available in the World Health
Organization (WHO) International Clinical Trials Registry Platform
(ICTRP) (https://trialsearch.who.int/). The study design is illustrated in
Fig. 1a. We carried out a nested case-control study design using a
prospective cohort, which enrolled ~-4000 Chinese Han participants
diagnosed with acute traumatic fractures at the Department of Trauma
Surgery, Honghui Hospital (Xi’an, China) from October 2018 to Octo-
ber 2022 (Fig. 1a). All participants were adult inpatients (over 18 years
of age). All patients were not on anticoagulants or antiplatelet drugs
before sampling, and fasting venous blood samples were obtained
from each patient less than 12 hours after hospitalization. Follow-up
assessments to determine DVT status were confirmed by US screening
after blood sampling and prior to surgery, usually within 72 hours of
admission. We didn’t consider the sex of participants before the study
design, and there were no sex-based analyses in our study because we
corrected all data for sex as a covariate.

Based on this prospective cohort, we adopted strict inclusion/
exclusion criteria to select samples for our study: (i) participants with
major diseases or known metabolic diseases were excluded, including
type 2 diabetes, coronary artery disease, hypertension, obesity, kidney
or liver diseases, hyperthyroidism, dyslipidemia, and cancers; (ii) par-
ticipants with chronic use of medications affecting metabolism (hor-
mone replacement therapy and corticosteroid therapy) were
excluded; (iii) we mainly focused on traumatic fractures (falling during
physical activity and biking: 73.8%; traffic accident: 12.9%; falling down
from a high altitude: 9.4%; and crushing by the heavy object: 3.9%), and
participants with osteoporotic fractures or anti-osteoporosis drug
intake were excluded to minimize potential influence on metabolic
backgrounds; (iv) we focused on lower extremity fractures (femur:
50%; tibia or fibula: 20.29%; pelvis: 6.62%; knee: 9.85%; ankle: 6.03%;
multiple bone fractures: 7.21%) and included only patients with mild
trauma severity based on the Injury Severity Score (ISS) (definition of
mild injury: ISS <16) to reduce the potential impact of trauma severity
or mode; (v) all cases were patients with distal DVT of lower extremity
(DVT involved the gastroc-soleal veins: 63.89%; DVT involved the axial
calf veins: 10.32%; DVT involved both the axial calf veins and the
gastroc-soleal veins: 25.79%) and the thrombi in all cases were rela-
tively large in size (>10 millimeters x 2 millimeters, length x width).
Based on the strict inclusion/exclusion criteria, 20.1% of patients were
diagnosed as pt-DVT cases.

Clinical parameters characterization

The participants were required to fast overnight before blood collec-
tion and tested for three cardiovascular characteristics, including heart
rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP)
in the meantime. Coagulation tests and complete blood count (CBC)
were performed in the clinical laboratory of Honghui Hospital using
the reagents purchased from SUNBIO (Shanghai, China) coupled with
an Automatic Coagulation Analyzer (Sysmex, Japan) and an Automatic
Hematology Analyzer (Sysmex, Japan).

Plasma metabolomics analysis

We performed untargeted metabolomics analyses on the discovery
and validation cohorts, respectively. The discovery cohort was used to
identify pt-DVT-related metabolic features and explore their relation-
ships with CPs. Based on the identified metabolic and clinical features,
we constructed a prediction model for pt-DVT using a machine
learning algorithm. To further evaluate the generalization ability of the
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model, we assessed the predictive performance of the corresponding
metabolic and clinical features in the validation sample. All the plasma
samples from both cohorts were separated from whole blood and
extracted using chemical reagents for metabolomics analysis. Samples
from the discovery cohort were analyzed in 2 batches at different time
points, and the samples from the validation cohort were analyzed in a
separate batch. The quality control (QC) sample was prepared by
mixing an equal aliquot of the supernatants from all of the samples. We
used the same QC (mixed in batch 1) for all batches. LC-MS/MS ana-
lyses were performed using a UHPLC system (Vanquish, Thermo Fisher
Scientific) with a UPLC BEH Amide column (2.1 mm x 100 mm, 1.7 pm)
coupled to Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo).
For each data batch, the acquisition order of all samples was randomly
distributed and the QC injections were inserted every 10 samples
injections. The raw data were converted to the mzXML format and
processed with an in-house program, which was developed using R and
based on XCMS*. Then, an in-house MS/MS database (BiotreeDB) was
applied in metabolite annotation and the cutoff of similarity score was
set at 0.4. The in-house software package and database have been
widely used in many metabolic studies* %, For the features detected in
both positive and negative modes, we kept the one with a higher
annotation score. Within a different analytical batch, all metabolic
peaks were filtered to remove noise. After data filtering, the abun-
dances of remaining peaks were normalized by dividing the intensity
of internal standard (IS), and the data were log-transformed and scaled
by median centered within a batch”. Metabolites measured in all bat-
ches were retained for study. Additional details about plasma meta-
bolomics analysis are available in Supplementary Methods.

Plasma proteomics analysis

Sample preparation, including protein denaturation, reduction, alky-
lation, digestion, and peptide cleaning, was performed according to
the iST kit (PreOmics, Germany) protocol. All samples were re-
dissovled and added 11 tryptic iRT peptides (Biognosys, KI-3002-1) for
LC-MS analysis. The peptide mixture was fractionated by high pH
separation using the Ultimate 3000 system (ThermoFisher scientific,
MA, USA) connected to a reverse phase column (XBridge C18 column,
4.6 mm x 250 mm, 5 pm, Waters Corporation, MA, USA). A total of 14
fractions were collected and analyzed by Q Exactive™ Plus coupled to a
U3000 system (Thermo Fisher Scientific, MA, USA). The mass spec-
trometer was run under data-dependent acquisition (DDA) mode, and
automatically switched between MS and MS/MS mode. Raw Data of
DDA were processed and analyzed by Spectronaut 16.0 (Biognosys AG,
Switzerland) with default settings to generate an initial target list.
Furthermore, the mass spectrometer was run under data-independent
acquisition (DIA) mode with a hybrid data strategy*’. Raw Data of DIA
were processed by Spectronaut 17.0 (Biognosys AG, Switzerland)
software with default settings. The summation of the top 3 filtered
peptides that passed the 1% false discovery rate (FDR) cutoff was used
to calculate the major group quantities. Based on processed protein
profiles, we also conducted data imputation consistent with metabo-
lomics data. After data filtering, the abundances of remaining proteins
were log-transformed and scaled by median centered. Additional
details about plasma proteomics analysis are available in Supplemen-
tary Methods.

Statistical analyses

The Benjamin-Hochberg false discovery rate (FDR) method was used
to address multiple comparisons issue, and the significance threshold
of all statistical analyses in our study is corrected P value less than 0.05.
All statistical analyses were performed using R software (version 3.6.1).

Covariate adjustment
The whole analyses workflow is illustrated in Fig. 1b. To minimize the
influence of confounding factors, the metabolites, proteomics and

»

clinical parameters profile data were first corrected with “sex”, “age”,
and “trauma time” as covariates. In short, a multiple linear model was
fitted with ‘sex’, ‘age’, and ‘trauma time’ as independent variables and
the relative abundance of each metabolite, protein and CP as the
dependent variable. The correction for metabolites and CPs was per-
formed within the discovery and the validation cohorts separately. The
correct data were residuals transformed and were scaled by median
centered for subsequent analysis. After data pre-processing, we eval-
uated whether all metabolites, proteins, and CPs conformed to a
normal distribution (P value >0.05) using the Kolmogorov-Smirnov
(KS) Test. The two-tailed Student’s ¢ tests were performed for normally
distributed features, and the two-tailed Mann-Whitney U-tests were
used for non-normally distributed features. The effect size of the sta-
tistical test was calculated using the Computation of Effect Sizes
(http://www.psychometrica.de/effect_size.html) website, with Cohen’s
D value used for ¢ test and Eta squared (n?) used for the U-test.

Identification of differential metabolites for pt-DVT
Identification of significant alteration metabolites was performed
using a two-step approach comprising univariate analysis and multi-
variate analysis in the discovery cohort. For univariate analysis, we
performed a two-tailed unpaired Student’s ¢ test/Mann-Whitney U-test
and fold change (FC) to select differential metabolites. FDR < 0.05, and
FC>4/3 or < 3/4 was considered significant’®, In multivariate analysis,
unsupervised PCA was performed to explore the global metabolic
variations between cases and controls. The supervised OPLS-DA*® was
used to maximize the global metabolic variations between two groups,
and the metabolites with the threshold of variable importance in
projection (VIP) score >1 were supposed to significantly change. The
OPLS-DA model was validated by 1000 permutation tests to avoid
overfitting. The metabolites that up to all significant criteria were used
for hierarchical clustering and DSPC network analysis (R package
MetaboAnalystR)*, which can capture the association between two
metabolites after conditioning on all other variables in the network.
The partial correlation coefficients were significant at FDR < 0.05, and
the visualization of the DSPC network was realized by Cytoscape
software>”.

Metabolic pathway analysis
The metabolic pathway analysis was performed with all identified
metabolites utilizing MetaboAnalystR 5.0 (https://www.metaboanalyst.
ca/MetaboAnalyst/home.xhtml)***. The metabolites were mapped into
the KEGG database, and the statistical significance of the changes in a
pathway’s activity between two groups was evaluated by global testing
(FDR<0.05). The topological pathway impacts were calculated
according to relative-betweenness centrality. To quantify pathway
activity, we calculated the DA score to demonstrate the tendency for a
pathway with increased/decreased levels of metabolites compared to
the control group*®. The DA score was calculated by applying a differ-
ential abundance test (FDR corrected Student’s ¢ tests) to all metabo-
lites in a pathway. After determining which metabolites were
significantly altered, the DA score was defined as:

DA score=(No. of metabolites increased -No. of metabolites
decreased)/No. of measured metabolites in the pathway.

In short, the DA score varies from -1 to 1 which indicates all
metabolites in a pathway decreased or increased in abundance.

Identification of differential CPs and the related metabolic
characterization

For clinical profiling, we used logistic regression (R function glm), two-
tailed unpaired Student’s ¢ test/Mann-Whitney U-test, and FC to select
significantly altered CPs in the discovery cohort. FDR<0.05, and
FC>4/3 or <3/4 was considered significant. To get insight into the
metabolic dysregulation of pt-DVT-related blood characteristics
above, Pearson correlation analysis was applied to evaluate the
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association between a pair of CPs and pt-DVT-related metabolites.
FDR < 0.05 was considered a significant correlation. In addition, a lin-
ear regression model was carried out to identify the metabolites
associated with altered CP clusters (FDR < 0.05), which used the rela-
tive abundances of metabolites as the independent variables and the
average level of CPs in a cluster as the dependent variables. The
metabolites identified above were further employed to conduct
pathway-based quantitative enrichment based on the small molecule
pathway database (SMBPD)> using MetaboAnalystR 5.0%.

Identification of differential proteins for pt-DVT and pharma-
cological evaluation

For proteomics data, we also used two-tailed unpaired Student’s ¢ test/
Mann-Whitney U-test and FC to select significantly altered proteins
associated with pt-DVT. FDR<0.05, and FC >4/3 or <3/4 was con-
sidered significant. KEGG pathway analysis was performed with dif-
ferential proteins using The Database for Annotation, Visualization,
and Integrated Discovery (DAVID) website, and FDR < 0.05 was con-
sidered significantly enriched. For the potential target proteins
screened in conjunction with metabolomics, we used the Connectivity
Map (CMAP) (https://clue.io/)*” to identify compounds with pt-DVT-
related proteins®®. Based on their algorithm, compounds with lower
scores showed better overall inhibition of all input genes, and we show
results with scores less than -99, considered as potential compounds
for targeting pathways.

Machine learning for pt-DVT prediction

To predict pt-DVT from bone-fractured patients, we built the predic-
tion models developed with support vector machine (SVM; R package
€1071) algorithms. We tried three kernel parameters of the SVM algo-
rithm (Linear, Radial Basis Function, Polynomial) and chose the best-
performing polynomial for model construction. Based on different
feature groups, we developed 3 models, including CPs only (model 1),
metabolites only (model 2), and the full model comprising CPs and
metabolites (model 3). The prediction ability was assessed by the area
under the curve (AUC) of the receiver operating characteristic (ROC)
curve (R package pROC). In addition, the bootstrap method was
applied 1000 times in the discovery cohort to develop the training sets
and the test sets (8:2) to dilute the selection bias. The discovery cohort
was divided into training sets (N =465, pt-DVT: controls =202: 263)
and test sets (N =115, pt-DVT: controls = 50: 65) by bootstrap method,
and the validation cohort (N =100, pt-DVT: controls = 50: 50) was used
to further evaluate the generalization ability of the model. We selected
features by model reduction method according to the Pvalue (¢ test/U-
test, in all 580 samples from the discovery cohort) and the importance
(SVM model, mean value of 1000 training sets) of potential variates.
Then, the performance of the prediction model was evaluated in test
sets and independent validation cohorts. Based on the bootstrap
method, we obtained the AUC 1000 times in test sets and calculated
the 95% confidence interval (95% CI). Besides, we chose the data divi-
sion that corresponded to the average value of 1000 AUC as the final
statistical model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All relevant data support the key findings of this study are available
within the article and its Supplementary Information files. Source data
are provided in this paper. The raw intensity values and processed data
matrix of metabolomics and proteomics are available in Supplemen-
tary Data. The mass spectrometry metabolomics data generated in this
study have been deposited in the OMIX, China National Center for
Bioinformation / Beijing Institute of Genomics, Chinese Academy of

Sciences (https://ngdc.cncb.ac.cn/omix)**®° under accession code

OMIX005819. The mass spectrometry proteomics data generated in
this study have been deposited in the ProteomeXchange (https://
proteomecentral.proteomexchange.org) Consortium via iProX
repository®®* with the dataset identifier PXD054131. Raw data for
clinical information are available from the corresponding author upon
request. All data in this study is only allowed for academic use. Source
data are provided in this paper.

Code availability

No custom code or mathematical algorithm was used in the methods.
All statistical analyses were conducted in R using published libraries
and functions.
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