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Parallel development of social behavior in
biological and artificial fish

Joshua D. McGraw 1,2,4 , Donsuk Lee 1,4 & Justin N. Wood 1,2,3

Our algorithmic understanding of vision has been revolutionized by a reverse
engineering paradigm that involves building artificial systems that perform the
same tasks as biological systems. Here, we extend this paradigm to social
behavior.Weembodied artificial neural networks in artificialfish and raised the
artificial fish in virtual fish tanks that mimicked the rearing conditions of bio-
logical fish. When artificial fish had deep reinforcement learning and curiosity-
derived rewards, they spontaneously developed fish-like social behaviors,
including collective behavior and social preferences (favoring in-group over
out-group members). The artificial fish also developed social behavior in nat-
uralistic oceanworlds, showing that these embodiedmodels generalize to real-
world learning contexts. Thus, animal-like social behaviors can develop from
generic learning algorithms (reinforcement learning and intrinsic motivation).
Our study provides a foundation for reverse-engineering the development of
social behavior using image-computable models from artificial intelligence,
bridging the divide between high-dimensional sensory inputs and collective
action.

A core scientific goal is to understand the algorithms underlying bio-
logical intelligence. Recently, a new reverse engineering paradigm has
transformed our algorithmic understanding of perception (e.g.,
vision1, audition2, and olfaction3), action (e.g., walking4, soaring5, and
visually-guided grasping6), and higher-level cognitive abilities (e.g.,
language7, navigation8,9, and memory10). These success stories were
fueled by breakthroughs in artificial intelligence, where it is now pos-
sible to build artificial neural networks (ANNs) that perform the same
tasks as humans, in some cases achieving human levels of perfor-
mance. Since ANNs perform the same tasks as humans, and use com-
putational machinery that is based on neuron-like units, ANNs can
reveal which learning algorithms are necessary and sufficient to solve
psychological tasks. ANNs can be directly compared to biological
systems (e.g., on an image-by-image basis), allowing ANNs to serve as
runnable, neurally mechanistic, and computationally explicit hypoth-
eses of the algorithms underlying animal intelligence11.

Despite these strengths, there are significant differences between
ANNs and animals that prevent direct comparisons between artificial

and biological systems. The ANNs typically used to reverse engineer
perceptual and cognitive abilities are disembodied passive consumers
of data, waiting to be spoon-fed the right sorts of experiences for
learning. Most ANNs also do not have bodies, and their behavior
typically consists of applying a limited stock of labels to static images
(e.g., object recognition tasks) or strings of text (i.e., NLP tasks).
Conversely, animals have bodies with rich behavioral repertoires.
Animals choose where to go and what to look at, producing
developmentally-structured datasets for optimizing learning across
their lifespan12. Biological intelligence also emerges over multiple,
nested timescales as animals learn to ground knowledge in real-world
experience by interacting with the environment in purposeful ways13.

Recent studies have addressed some of these concerns. In vision,
for example, researchers have shown that self-supervised algorithms
learn core object recognition skills when trained ‘through the eyes’ of
human infants14–16 and newborn chicks17,18. These findings suggest that
disembodied ANNs can learn animal-like abilities when trained with
biologically plausible data (embodied data streams), in the absence of
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labels and supervision. Researchers have also built embodied com-
putational models to explore how ANNs learn in more realistic
environments19–25. These studies suggest that some neural findings
(e.g., head direction cells, grid cells, place cells) and behavioral skills
(e.g., path integration, ego motion, object-based attention) emerge
spontaneously when ANNs are trained in embodied learning contexts.

To date, however, it is unclear whether ANNs are accurate models
in the embodied learning conditions faced by newborns. ANNs are
widely assumed to be data hungry, requiring vast amounts of training
data to develop brain-like intelligence26–28. Conversely, newborn ani-
mals rapidly learn to solve challenging tasks, with many abilities
emerging within the first few days29–32. Controlled-rearing studies,
which involve controlling the experiences (training data) available to
newborn animals, provide particularly striking examples of the power
and efficiency of newborn brains. For instance, newborn chicks rapidly
develop high-level vision, including object segmentation30, object
recognition31, and object permanence32. Newborn animals also rapidly
develop social knowledge, including face recognition33 and selective
attention towards social partners34,35. Can embodied ANNs account for
the rapid feats of learning observed in newborn animals?

To address this question, we argue that the field needs ‘embodied
developmental benchmarks’ focused on reverse engineering the core
learning algorithms that power biological intelligence. These bench-
marks must have two features. First, the animals and ANNs must be
raised in the same environments. Intelligence emerges both from the
learning algorithms and training data acquired by agents. Thus, dif-
ferences in intelligence across animals and ANNs could be due to dif-
ferences in the learning algorithms or training data. Evaluating
whether ANNs learn like animals requires ‘raising’ embodied ANNs in

the same environments as animals and giving ANNs and animals access
to the sameexperiences. Second, the animals andANNsmustbe tested
with the same tasks. Psychologists have long recognized thatmeasures
of intelligence are task-dependent36–38. Confirming that animals and
ANNs learn the same abilities requires testing them with the same
tasks, ensuring that differences across the animals and ANNs were not
due to differences in the tasks themselves.

Here, we describe digital twin experiments that meet both
requirements, allowing newborn animals and ANNs to be raised in the
same environments and tested with the same tasks (Fig. 1). Digital twin
experiments involve first selecting a target animal study, then creating
digital twins (virtual replicas) of the animal environments in a video
game engine. Artificial animals (embodied ANNs) are then raised and
tested in those virtual environments and their behavior is compared to
the behavior of the biological animals in the target study. By raising
and testing animals and ANNs in the same environments, we can
measure whether animals and ANNs spontaneously develop along
common pathways and produce common learning outcomes.

We focused on social behavior. Animals are inherently social and
organize spontaneously into cohesive groups, such as insect swarms39,
bird flocks40, fish schools41, and human crowds42. Many animals begin
grouping early in life, within days to weeks after birth43.

To study collective behavior, researchers typically use rule-based
models, where individuals are modeled as featureless points that
change their behavior according to a fixed set of hard-coded interac-
tion rules44,45. Rule-based models have provided many valuable
insights into collective behavior46–49. However, rule-based models are
not well-suited for studying the learning algorithms and motivational
systems that drive collective behavior because these models typically

Fig. 1 | Digital twin method for comparing the development of social behavior
across biological and artificial fish. First, biological fish were reared and tested in
controlled environments (Steps 1–2). Second, we built populations of artificial fish
(Step 3), then reared and tested them in digital twins (virtualworlds) that simulated
the fish environments (Steps 4–5). Third, we compared the social behavior of the
biological and artificial fish (Step 6). We used this method to evaluate whether

artificialfish learnfish-like collective behavior and social preferenceswhen raised in
the same visual environments as biological fish. We use a circular diagram to
emphasize that pixels-to-actions models allow scientists to build models that learn
like newborn animals in one study, then iteratively add new studies to the testbed
to validate and refine those models.
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lack learning algorithms andmotivational systems. Rule-basedmodels
also do not typically operate over raw sensory inputs; rather, they
operate over high-level features (e.g., position and orientation of
neighbors) that are not directly available from sensory signals. The
models thus make simplifying assumptions about the nature of visual
learning andbehavior. Todevelop collective behavior in the realworld,
animals must learn to convert high-dimensional sensory inputs (∼106

optic nerve fibers) into a manageably small number of perceptually
relevant features to drive adaptive action.

To address these limitations, we built embodied pixels-to-actions
models of collective behavior that learn from raw sensory inputs,make
decisions, and perform actions, driven by self-supervised learning
objectives. We then compared the development of collective behavior
across these pixels-to-actions models and newborn fish. We chose fish
because they can be reared in controlled environments, aremobile on
the first day after hatching, and rapidly learn collective behavior based
on visual information43,50–52.

The biological fish and computational models (artificial fish)
shared three constraints: (1) both were embodied and performed
actions in 3D environments; (2) both learned from raw visual inputs;
and (3) both learned through self-supervised objectives. This placed
strong constraints on learning, forcing the ANNs in the artificial fish to
solve similar problems as the brains in biological fish. Both biological
and artificial fish needed to learn to convert high-dimensional sensory
signals into adaptive actions in complex visual and social environ-
ments, guided solely by intrinsic motivation.

Here, we show that these constraints are sufficient to produce
fish-like social behaviors in embodied ANNs. We support this conclu-
sion in experiments on collective behavior (Experiments 1-2) and social
preferences (Experiment 3).

Results
Experiment 1: Collective behavior
For the target animal study, we chose Hinz & de Polavieja43, who dis-
covered that collective behavior develops gradually in zebrafish. Fish
began turning toward each other around 7 days post-fertilization (dpf)
and increased the intensity of social interactions until 3 weeks of age.
Hinz & de Polavieja43 explained this pattern with a simple attraction
rule, in which fish attract each other part of the time, with attraction
defined as the behavior of turning toward another randomly chosen
fish. Over time, fish spend more time in attraction behavior, thereby
increasing attraction strength across development. We explored
whether ANNs move along a common developmental trajectory as
zebrafish when they are embodied in artificial fish and raised in virtual
fish tanks.

We modeled the virtual fish tank after the fish tank described in
the target animal study43 (Methods). We built the artificial fish by
embodying self-supervised learning algorithms in artificial fish
(Methods). Each fish received raw visual input through an invisible
forward-facing camera attached to its head. The artificial fish could
move around the virtual tank by selecting an action on every time step
(Methods). Movement was restricted to a single flat plane in order to
mimic the action space of a thin, shallow, layer of water commonly
used in zebrafish research to prevent motion along the height axis.

The artificial fish had two biologically inspired learning algo-
rithms: (1) reinforcement learning (RL) and (2) intrinsic motivation.
In RL, agents maximize their long-term rewards by performing actions
in response to their environment and internal state. To succeed in
environments approaching real-world complexity, agents must learn
abstract and generalizable features to represent their environment. To
this end, deepRL combines RLwith deepneural networks to transform
rawsensory inputs into efficient representations capableof supporting
adaptive behavior53.

The second algorithm—intrinsic motivation—provides a self-
supervised reward landscape for optimizing deep RL. Prior studies

show that intrinsic motivation can drive the development of
complex behaviors24,54. For example, one form of intrinsic motivation,
curiosity-driven learning, promotes learning by motivating
individuals to seek out informative experiences55. By seeking less
predictable experiences, agents can gradually expand their knowledge
of the world, continuously acquiring useful training data for
learning56,57.

To explore whether the development of collective behavior
requires a particular type of intrinsic motivation, we tested intrinsic
motivational algorithms spanning major classes of self-supervised
learning used for deep RL (Methods). We used an Intrinsic Curiosity
Module (ICM)56, ICM with random features for encoding
observations57, Random Network Distillation (RND)58, and Curious
Representation Learning (CRL)59 adapted from a popular contrastive
learning algorithm60,61. Each algorithm takes batches of inputs and
produces sets of rewards. The batches and rewards are used to train a
policy network, which controls the moment-to-moment behavior of
the artificial fish. For all algorithms, we used the same policy optimi-
zation algorithm: Proximal Policy Optimization (PPO)62. The policy
network was optimized to maximize the reward generated by the
intrinsic motivation algorithm.

Intrinsic motivation drives learning in humans and animals63,
including fish64, so we hypothesized that intrinsic motivation and RL
would drive the development of social behavior in artificial fish. Social
partners are typically the least predictable things in a newborn’s visual
environment, so embodied agents equipped solely with intrinsic
motivation and generic learning algorithms (e.g., deep RL) should
learn to track and follow social partners. If our hypothesis is accurate,
then artificial fish should develop common social behaviors as biolo-
gical fish when artificial fish are equipped with ANNs that learn solely
through deep RL and intrinsic motivation.

During training,we reared the artificialfish in virtualfish tanks and
saved their ANNweights across 20 equally-spaced checkpoints. The 20
checkpoints corresponded to the 20 days of experimental data col-
lected in the fish study43. We then compared each real day of devel-
opment (biological fish) to each ‘artificial day’ (checkpoint) from the
digital twin experiments.

To directly compare biological and artificial fish, our analyses
parallel those used in the target animal study43. We first performed
trials with pairs of fish, using a measure that involved calculating the
distance between the two fish across time (Fig. 2a). Hinz & de
Polavieja43 reported that the distance between two fish gradually
decreases as fish mature over the first 24 days. Likewise, the distance
between the artificial fish decreased across the training phase,
mimicking the developmental trajectory of biological fish (Fig. 2b). For
all intrinsic motivation algorithms, the mean distance between the
artificialfish was significantly lower than control randomized data (Fig.
S1 and Methods). Supplementary Movie 1 shows the learned behavior
across training. At first, the artificial fish behaved randomly, but by the
end of training, they showed clear signs of collective behavior, spon-
taneously forming cohesive groups.

Since interactions depend not only on the distance between fish
but also on their relative positions in space, we also measured the
relative positions of the artificialfish using a coordinate systemwith its
origin on a focal fish and the positive y axis pointing in the direction of
its velocity vector. We then computed the probability of finding the
second fish in space. As reported by Hinz & de Polavieja43, the biolo-
gical fish spent significantly more time with other fish in close side-by-
side and front/back positions, and as the fish matured, they spent
increasingly more time close to each other (Fig. S2a). Likewise, the
artificial fish spent significantly more time with other fish in close
proximity (typically front/back positions), and as the artificial fish
learned during training, they spent increasingly more time close to
eachother (Fig. S2b).We observed the samepattern across all intrinsic
motivation algorithms.
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We did observe a difference between the biological and artificial
fish in terms of the relative placement of other fish: the biological fish
spent more time with other fish in both front/back and side-by-side
alignments, whereas the artificial fish tended to spend more time with
other fish in a front/back alignment. This likely occurred because the
fish had two eyes, one on each side of the body, while our artificial fish
had one eye, positioned at the front of the body. The biological and
artificial fish may have followed the same strategy (i.e., “keep social
partners in view”), leading biological fish to position social partners to
their side and artificial fish to position social partners in front.

Next, we measured whether biological and artificial fish repel and
attract social partners in similar ways65,66. Following Hinz & de
Polavieja43, we computed the probability that the focal fish turned to
the side with the other fish (Fig. 2c). Biological fish begin turning
toward another fish early in development (7 days) and the probability
of this behavior becomes stronger across development. The artificial
fish showed a similar pattern, with attraction toward other fish devel-
oping gradually across training (Fig. 2d). We also studied social
attraction by measuring the probability of turning to the right side
depending on the specific position of the second fish in space (Fig.
S3a). The biological (Fig. S3b) and artificial (Fig. S3c) fish developed
common sensitivities to the relative position of other fish in space.

We thenmeasured collective behaviorwith fourfish (Fig. 3a). Hinz
& de Polavieja43 found that their data could be explained by amodel in
which each fish interacts by moving towards a randomly chosen fish
during certain periods of time. This model states that when a focal
animal has N1 animals to one side and N2 animals on the other side, the
probability of choosing the side with N1 animals is

PðN1jN1 : N2Þ=ps
N1

N1 +N2
+ ð1� psÞ

1
2

ð1Þ

and the probability of choosing the other side is P (N2 |N1: N2) = 1 − P
(N1 |N1: N2).

This model makes specific predictions for groups of four fish, in
which a focalfish canbe foundhaving nofish onone side and threefish

on the other side (configuration 0:3), or one and two fish to either side
(configuration 1:2). The model predicts a relationship for 0:3 and 1:2
configurations that is independent of the one parameter in the model
(ps = time spent in interactions):

P ð1j1 : 2Þ= 1
3
+
1
3
P ð0j0 : 3Þ ð2Þ

plotted as a dashed line in Fig. 3b. Both the biological and artificial fish
developed social attraction behavior that accorded with the theore-
tical predictions in Eq. (2).We observed the samepattern in all intrinsic
motivation algorithms.

We also testedwhether thepredictions of thismodel generalize to
larger groups (Fig. 3c). The interaction rule in Eq. (1) predicts that the
probability of turning to the side with N1 fish grows linearly with N1 as
N1 / (N1 +N2). Following Hinz & de Polavieja43, we tested artificial fish in
groups of seven, since there are four configurations arising in groups
of seven fish (3:3, 4:2, 5:1, 6:0). Like biological fish, development in the
artificial fish largely accorded with predictions of the interaction
rule (Fig. 3d).

Finally, we tested whether the trained artificial fish behaved like
adult fish (tested 150 days post-fertilization43). Following Hinz & de
Polavieja43, for eachday ti, wecomputed three values forps(ti) byfitting
Eq. (1) to the experimental probabilities P(2 | 2:1), P(0 | 0:3), and
P(0 | 0:1) of that day and computing its mean value (Fig. 4a). In biolo-
gical fish, the attraction parameter ps increased from 0.01 (6 days) to
0.47 (24 days), and then increased to 0.54 by the adult stage (red
dashed line in Fig. 4b). Likewise, the artificialfish showed an increase in
this attraction parameter in the early and middle stages of training,
before the attraction parameter reached values similar to (or stronger)
than the values observed in adult fish. Thus, biological and artificialfish
show common increases in the amount of time spent in social inter-
action. By the endof learning/training, bothbiological and artificialfish
spontaneously developed robust collective behavior.

There was one difference between the artificial fish and the bio-
logical fish in the target animal study. Hinz & de Polavieja43 reported

d

a

b

cBiological fish Artificial fish Biological fish Artificial fish

measure distance

measure probability of 
turning toward other fish

Development of grouping in biological and artificial fish Development of attraction in biological and artificial fish

Fig. 2 | Experiment 1 Results. For each intrinsic reward algorithm, we trained
artificial fish (n = 20) together in a virtual fish tank and saved the weights in their
neural networks at 20 equally spaced time points during training. “Age” is defined
as the index of the checkpoint in chronological order. a To measure whether the
artificial fish developed fish-like grouping behavior, we measured the distance
between pairs of biological fish and artificial fish across the training phase. b Both

biological and artificial fish developed common grouping behavior across
time. BL body lengths. c We also measured social attraction by studying the
probability of turning toward the other fish (fish were tested in pairs).
d Development of attraction: Probability of biological fish and artificial fish
accelerating toward the sidewhere another fish is located as a functionof age. Data
are presented as mean values. Error bars indicate ±1 SEM.
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that biological fish were equally likely to turn toward other fish when
there were three fish on one side and zero fish on the other side
compared to when there was just one fish on one side and zero fish on
theother side (Fig. S4). This pattern supports a simple attraction rule in

which fish turn toward another fish chosen at random. Conversely,
when therewere zero fishon the opposing side, we found that artificial
fish were more likely to turn toward three fish than one fish (Fig. S4).
This pattern indicates that the artificial fish followed a somewhat

Fig. 3 | Experiment 1 Results. a We studied collective behavior in groups of four
fish, measuring the probability of turning left versus right depending on the
number of fish on each side.bCommon attraction rules in biological fish (top) and
artificial fish (bottom 4 graphs). Relationship between the probability of turning to
the sidewith 1fish in a configuration (1:2), P(1 | 1:2), and theprobabilityof turning to
the side with no fish in a configuration (0:3), P(0 | 0:3). Dots indicate experimental
data (color coded by age). The dashed line indicates the theoretical line derived

from the interaction rule in Hinz & de Polavieja43. c We also studied collective
behavior in groups of seven fish, measuring the probability of turning left versus
right depending on the number of fish on each side. d Probability of turning to the
side with three, four, five, and six biological fish (top) or artificial fish (bottom 4
graphs) in a group of seven fish, for ages 7 (blue dots), 11 (orange dots), and 15
(green dots). Data from the biological fish reproduced from Hinz & de Polavieja43.
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different attraction rule. Specifically, this behavior can be explained
through the attraction rule proposed by Perez-Escudero & de
Polavieja67 (i.e., the probability given by their equation 17) to explain
the shoaling behavior of a different fish species, three-spined stickle-
backs (Gasterosteus aculeatus).

How did the development of collective behavior vary across the
intrinsic motivation algorithms? We observed two patterns. First, all
four intrinsic motivation algorithms were sufficient to learn collective
behavior. This implies that the development of collective behavior
does not require a particular type of intrinsic motivation. Collective
behavior is an emergent property of a large class of intrinsic motiva-
tion algorithms.

Second, some intrinsicmotivation algorithmsdeveloped stronger
collective behavior than others (Fig. 4b). Despite these differences, all
algorithms generated Ps values (i.e., probability of engaging in social
interactions) that were at least as strong as the adult biological fish43

(Ps =0.54). These intrinsic motivation algorithms were thus sufficient
to mimic the rapid development of collective behavior observed in
biological fish.

Experiment 2: Collective behavior in naturalistic worlds
To confirm that artificial fish can learn collective behavior in more
realistic visual environments akin to those faced by fish in nature, we
tested whether the artificial fish learn to group when reared in natur-
alistic ocean worlds (Fig. 5a). We created a virtual seafloor world with
high-resolution sand textures, shadows, drifting ocean particles, and
caustic lighting. We also tested whether collective behavior develops
in both blue and orange fish to confirm that themodels can generalize
across different fish pigments. Experiment 2 was not a digital twin
experiment of a prior animal study, but rather a validity check that our
embodied models can generalize to naturalistic learning contexts.

During training, we measured the average pairwise distance
across all of the fish in the group. If the artificial fish developed col-
lective behavior, then the distance between fish should have declined
across the training period.

All four intrinsicmotivation algorithms, and both blue and orange
fish, rapidly developed collective behavior (Fig. 5b). The distance

between artificial fish declined across training, confirming that these
artificial fish can learn collective behavior in naturalistic visual worlds.

Experiment 3: Social preferences
Unified scientific models should explain findings across many studies.
This is one reason why pixels-to-actions models are valuable from a
scientific perspective. Pixels-to-actions models can be reared and tes-
ted in the same environments as animals, so they can be directly
compared to animals across a wide range of studies. We can select
other studies from the literature, run digital twin experiments, then
test whether the same model learns the same behaviors as animals
across studies. This idea embraces the integrative benchmarking
approach used to reverse engineer the ventral visual stream11, but
expands the approach to embodied learning contexts.

In Experiment 3, we selected a second controlled-rearing study
with newborn fish that explored the development of social
preferences50. We focused on social preferences for two reasons. First,
collective behavior and social preferences are typically studied sepa-
rately. For instance, the rule-based models used to study collective
behavior are not commonly used to study social preferences, since
rule-based models have hardcoded interaction rules, whereas social
preferences are widely thought to be learned. Studying collective
behavior and social preferences with the same pixels-to-actionsmodel
thus provides anopportunity tobuild unifiedmodels acrossfields at an
engineering-level of abstraction (the level at which we build models
that learn and behave like animals).

Second, social preferences are widespread in nature. Many ani-
mals, including humans, develop social preferences early in life,
rapidly learning to favor “us” over “them” during social
interaction50,68–70. Despite massive interest in social preferences across
psychology and neuroscience, we know little about the core learning
algorithms that generate social preferences in newborn organisms.
What learning algorithms cause social preferences to develop so
rapidly and flexibly early in life?

To tackle this question, we tested whether the core learning
algorithms from Experiments 1-2 are sufficient to develop fish-like
social preferences43,50. If so, then artificial fish should spontaneously

Fig. 4 | Experiment 1 Results. a Following Hinz & de Polavieja43, for each day ti, we
computed three values for ps(ti) by fitting Eq. (1) (right) to the experimental
probabilities P(2 | 2:1), P(0 | 0:3), and P(0 | 0:1) of that day and computing its mean
value. b For biological fish (red lines) and artificial fish, the mean value of the

attraction parameter (Ps from Eq. (1)) increases during development. Most of the
change in behavior can be explained simply by an increase in the amount of time
spent in interaction across development. Data are presented as mean values. Error
bars indicate ±1 SEM.
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develop “us vs. them” behavior, learning to prefer members of their
group over members of other groups.

For the target animal study, we chose Engeszner, Ryan, &
Parichy50, in which newly-hatched zebrafish were reared (for several
months) with fish of one of two pigments. Once the fish had been
rearedwith social partners of one pigment, the researchers used a two-
alternative forced-choice (2AFC) task to test whether the fish devel-
oped a preference for the familiar versus novel pigment. The fish
developed a preference for familiar pigmented fish, independent of
the fishes’ own pigment. This experiment thus reveals a central role of
learning in the development of social preferences.

To explore whether artificial fish develop fish-like social pre-
ferences, we performed a digital twin experiment, rearing and testing
artificial fish in virtual replicas of the rearing conditions used for the
biological fish50 (Fig. 6 and Methods). To simulate the rearing condi-
tions of the fish, we created two groups of differently colored artificial
fish (blue and orange fish from Experiment 2), then reared four orange
fish together in one group and four blue fish together in another
group. Each groupwas reared in a white virtual cup, akin to the rearing
conditions from Engeszer et al.50 (Fig. 6a).

After training, we froze the ANN weights to mimic sensitive/cri-
tical periods observed in animals. Many animals have sensitive/critical
periods which slow/stop learning, meaning part of an animal’s beha-
vior can be based on experiences that happened early in life, rather
than recently. ANNs do not have sensitive/critical periods, which poses
a problem for comparing animals to ANNs.One solution is to gradually
slow the learning rate of ANNs across the training phase and freeze the
weights when learning hits zero. We see this as roughly analogous to
critical periods in brains, where learning can gradually slow and cease
in animals.

We tested the artificial fish in two tasks. First, to mimic the testing
conditions of the biological fish, we used the 2AFC task (Fig. 6a). On
each trial, a single test fish was placed in the center of the chamber at a
random orientation. We then measured whether the fish spent more
timenear a shoal with familiar pigmented fish versus a shoal with novel
pigmented fish.

The artificial fish spent significantly more time near the familiar
versus novel pigmented fish (Fig. 6b). We observed this pattern for all

intrinsic motivation algorithms. In fact, the artificial fish developed
stronger social preferences than biological fish. The fish in Engeszer
et al.50 spent∼62% of their timewith in-groupmembers, whereasmost
artificial fish spent almost all of their timewith in-groupmembers. The
artificial fish also developed different levels of social preference, with
some strongly preferring in-group members and others developing
weaker in-group preferences. Despite being trained in identical
environments, the artificial fish developed different social
personalities.

In the real-world, social preferences drive animals to self-
segregate into groups. To test whether our artificial fish self-
segregate into groups, we created a second self-segregation task that
involved placing all of the artificial fish in the same environment and
measuring whether the fish spendmore timewith in-group versus out-
group members (Fig. 7a). The self-segregation task was not a digital
twin experiment of a prior animal study, but a validity check that the
2AFC task captures the construct under investigation: social
preferences.

To test whether the fish self-segregated, we measured the dis-
tance between each fish and every other fish at each time step, then
computed the in-group distance (average distance to familiar colored
fish) and out-group distance (average distance to novel colored fish).
The artificial fish spent significantly more time near fish with familiar
versus novel colors (Fig. 7b), indicating that the artificial fish sponta-
neously learned to self-segregate into social groups.

To test whether intrinsic motivation was important for the
development of social preferences, we created a new batch of artificial
fish but reduced the strength of their curiosity reward from 1.0 to .001.
We made no other changes. In these curiosity-reduced fish, we found
weaker evidence for social preferences in the 2AFC task (Fig. S5a) and
self-segregation task (Fig. S5b). Without a robust reward landscape to
drive learning, the artificial fish generally did not develop social
preferences.

Like Engeszer et al.50, we also examined the importance of social
experiences on the development of social preferences (Fig. 6c). Rather
than rearing the artificial fish together during training, we reared them
separately. These artificial fish acquired visual experience with the
environment but did not acquire experience with other artificial fish.
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Fig. 5 | Experiment 2Methods and Results. aWe testedwhether artificial fish can
learn collective behavior when trained in naturalistic visual environments, akin to
those faced by fish in nature. We created a realistic underwater seafloor environ-
ment with high-resolution sand textures, shadows, drifting ocean particles, and
caustic lighting. b During the training period, we measured the average pairwise

distance across all of the fish (n = 16) in the group. All of the artificial fish (all four
intrinsic motivation algorithms and both the blue and orange fish), rapidly devel-
oped collective behavior early in training. Data are presented asmean values. Error
bars indicate ±1 SEM.
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TEST

Fig. 6 | Experiment 3Methods and Results. aWe reared two groups (orange and
blue fish) separately in small white virtual cups, akin to the rearing conditions from
the biological fish study (Engeszer et al.50). After training, we froze learning in the
artificial fish and tested their social preferences with the 2AFC task used in
Engeszer et al.50, measuring whether each fish spent more time with the familiar
versus novel group. The red, green, and blue coordinate lines are for visualization
and were not visible to the artificial fish. b Results from the 2AFC task. Each bar
shows the social preference score (proportion of time spent with familiar versus
novel group) of a singlefish (n = 8). The fish reared in the orange group spentmore
time with orange fish versus blue fish, and the fish reared in the blue group spent
more timewith bluefishversus orange fish.Most of the artificialfish spontaneously
developed social preferences for in-group members. c To measure the impact of

social experiences in learning social preferences, we reared artificial fish in non-
social environments, without other artificial fish. During training, all fish acquired
experience with the visual environment, but the fish reared separately did not
acquire experience with social partners. Compared to the artificial fish reared in
groups, the artificial fish reared separately showed little to no evidence of social
grouping in the 2AFC task. The development of social preferences in the artificial
fish required experience with social partners, akin to the development of social
preferences in newborn fish, who develop preferences for social partners
encountered early in life. One-sample t-tests were performed to determine statis-
tical significance (*p <0.05, **p <0.01, and ***p <0.001, uncorrected; the exact p
values and raw values are provided in the SourceData). Data arepresented asmean
values. Error bars indicate ±1 SEM.
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Fig. 7 | Experiment 3: Self-Segregation Task. a We also tested the artificial fish
(n = 8) in a self-segregation task, where we spawned the fish in the middle of the
chamber, then measured the distances between all of the fish to measure whether
they spontaneously self-segregated into groups. b Results on the self-segregation
task. The fish reared in the orange group self-segregated with orange fish versus
blue fish, and the fish reared in the blue group self-segregated with blue fish versus
orangefish. cContrary to the artificialfish reared in groups, the artificial fish reared

separately spent similar amounts of timewith in-group versus out-groupmembers.
Paired samples t-tests (two-tailed) were performed to determine statistical sig-
nificance (*p <0.05, **p <0.01, and ***p <0.001, uncorrected; the exactp values and
raw values are provided in the Source Data). Black dots indicate performance of
individual artificial fish. Data are presented as mean values. Error bars indi-
cate ±1 SEM.
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We then froze the ANNs and tested the social preferences of the
artificial fish.

The artificial fish reared separately showed little to no evidence
for social preferences in the 2AFC task (Fig. 6c) or self-segregation task
(Fig. 7c). The development of social preferences required experience
with social partners, akin to the development of social preferences in
newbornfish,whodeveloppreferences for social partners seen early in
life50.

Discussion
What learning algorithms produce social behavior? To address this
question, we took a reverse engineering approach. We built ANNs
formalizing two core learning principles in psychology and neu-
roscience (reinforcement learning (RL) and intrinsic motivation),
embodied the ANNs in artificial fish, and raised the artificial fish in
virtual fish tanks. We then compared the development of social
behavior across artificial and biological fish43,50. We found that artificial
fish spontaneously develop fish-like collective behavior. Like fish, the
artificial fish rapidly learned to group from high-dimensional sensory
inputs, using intrinsic motivation to guide learning. The artificial fish
also learned to turn toward each other early in development, and then
increased the intensity of their social interactions over time. This
learning trajectory can be captured with simple attraction rules
observed in biological fish43,67.

We also found that artificial fish develop grouping behavior in
realistic ocean environments, showing that these embodied models
can generalize to naturalistic learning contexts. Finally, we found that
artificial fish develop fish-like social preferences. When reared in par-
allel visual environments as biological fish50, artificial fish sponta-
neously develop “us versus them” behavior, preferring in-group over
out-group members. These artificial fish self-segregated, sponta-
neously forming groups with in-group members.

Our study thus reveals a set of core learning algorithms that are
sufficient to produce animal-like social behavior in embodied agents
(Fig. 8). By revealing learning algorithms that produce animal-like
social behavior, our results inform classic questions in biology and
psychology. First, how do animals learn to group? We show that two
generic learning mechanisms, RL and intrinsic motivation, provide a
sufficient computational foundation for learning social behavior from
raw visual inputs. By optimizing thousands of synaptic weights across
thousands of observations to maximize intrinsic information-seeking
rewards, artificial agents can rapidly learn to transform high-
dimensional sensory inputs into social behavior.

Researchers across psychology71,72, biology73, and artificial
intelligence74–76 have long noted that curiosity (and other forms of
intrinsic information search) can aid learning. By motivating agents to
seek new information and experiences, curiosity provides a generic
and universal reward for learning diverse skills. We hypothesize that
curiosity produces social behavior because social partners are the least
predictable things in a newborn’s visual environment. Curiosity-driven
learning systems are attracted to unpredictable things andwill learn to
produce actions that lead tounpredictable outcomes (e.g., actions that
keep social agents in view). Curiosity-driven systems should thus
develop social behavior when (1) they are raised/trained in environ-
ments with social partners (e.g., parents and siblings) and (2) there is a
critical period (i.e., cessation of learning), which are widespread in
animals, especially during early brain development77–80. Under these
conditions, we have shown that generic learning systems can rapidly
develop core social skills.

Second, these results shed light on why animals group. Our
developmental simulations show that when embodied agents have RL
and intrinsic motivation, the agents will spontaneously develop
animal-like social behaviors when raised in environments with social
partners. Thus, we provide computationally explicit evidence that
collective behavior candevelop in the complete absence of hardcoded

interaction rules (e.g., cohesion, co-alignment), which are typically
used in rule-based models of collective behavior. It is not necessary to
hardwire interaction rules into embodied agents to produce collective
behavior and social preferences. Rather, generic learning algorithms
can drive the development of core social behavior.

The RL and intrinsic motivation algorithms used here were not
originally designed to produce social behavior. Nevertheless, when
these learning algorithms are embodied and permitted to learn in
social environments, social behavior spontaneously develops. Social
behavior, with all of its survival benefits, may thus be an emergent
property of generic learning algorithms adapting (fitting) to the spa-
tiotemporal statistics of embodied data streams acquired during early
postnatal social interactions.

This finding implies that evolution would not have needed to
‘discover’ innate, domain-specific learning mechanisms to produce
social behavior81,82. Once evolution discovered generic (i.e., domain-
general) learning mechanisms, animals would have rapidly started
developing social behavior early in life. We thus speculate that the
computational foundations of social behavior are domain-general
algorithms (e.g., RL, intrinsic motivation). These generic learning
algorithms provide a sufficient computational basis for learning
domain-specific social knowledge from experience.

Ultimately, a deep understanding of social behavior requires
understanding at multiple levels, ranging from complex, neurally
mechanistic models that actually perform the same tasks as animals to
simple, low-dimensional models that explain behavior using human-
interpretable parameters. To this end, our study links complex neu-
rallymechanistic models (artificial fish) with simplemodels (attraction
rules with a single parameter). This approach illuminates the algo-
rithms driving social behavior, while simultaneously revealing simple
attraction rules for understanding common developmental pathways
and learning outcomes across biological and artificial systems.

Our study builds on the rich reverse engineering paradigm
popularized in systems neuroscience83–89. This paradigm aims to dis-
cover an engineering-level description of biological intelligence,
similar enough to biology to preserve the essential algorithms, but
abstract enough to discard details not required for reproducing bio-
logical intelligence in artificial systems. A core promise of this para-
digm is that it will lead to unified models that explain whole bodies of
experimental findings11. For example, in the domain of object recog-
nition, image-computable models have been evaluated across a range
of images, allowing individual models to be compared across many
experimental findings84. Engineering-level models are runnable (they
perform the same tasks as animals), so thesemodels have the potential
to unify large swaths of the scientific literature83–89.

Our approach has much in common with the reverse engineering
approach used to study sensory capacities, including a reliance on
precise (high signal-to-noise ratio) data fromanimals and a shared goal
of building neurally mechanistic, image-computable models of biolo-
gical intelligence. While we did not focus on internal (neural) mea-
surements here, future studies could collect neuralmeasurements and
compare developing neural activation patterns across biological and
artificial systems.

Our approach also prioritizes different dimensions of the reverse
engineering problem.We focus on newborn animals (rather than adult
animals) to study the core learning algorithms that drive animal
intelligence. We focus on embodied (rather than disembodied) AI
models because much of intelligence emerges from an agent’s inter-
actionswith theworld. Andwe focus on controlled rearing (rather than
uncontrolled datasets) to characterize the respective roles of learning
machinery and experience on the development of intelligence. Our
approach thus extends the call from a large group of scientists arguing
for Embodied Turing Tests that involve benchmarking and comparing
animals versus machines90. We suggest that Newborn Embodied Tur-
ing Tests (NETTs)91,92 will be particularly useful for building unified
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models of biological intelligence, focused on whether animals and
ANNs develop along common pathways and learn similar behaviors
over time.

We provide an existence proof that NETTs are tractable and can
produce task-performing models of core social behaviors. We
emphasize that we did not fit the behavior of the artificial fish to the
biological fish in any way. Rather, the artificial fish learned fish-like
social behavior when they were reared in similar environments as real
fish and had behavioral goals that are ethologically plausible for ani-
mals (i.e. curiosity/novelty seeking). Adding biological constraints to
the training of ANNs (constraints imposed by brain, body, and envir-
onment) led to reasonably accurate models of social behavior. This
finding accords with goal-driven modeling studies showing that real-
world tasks place strong constraints on the internal parameters of

ANNs84. By expanding goal-driven modeling to embodied learning
contexts, we can place additional constraints on ANNs and explore the
roles of brains, bodies, and environments in the development of
intelligent behavior.

Importantly, the body of an animal includes not only its general
morphology but also its physiology (e.g., metabolism, thermoregula-
tion, reproductive mechanisms) and sensors (e.g., eyes, ears, nose). If
animals havedifferent sensors, for example, then their brainswill receive
different information. Behavioral differences across animals and ANNs
could thus be due to differences in brains, bodies, or environments. All
of these factors influence how animals fit to different evolutionary
niches.

These results set the stage formany exciting future directions.With
the discovery of models that spontaneously develop animal-like social

Fig. 8 | Summary figure. Across three experiments, we show that biological and
artificial fish (embodied deep neural networks) develop the same social behaviors
when reared in the same environments. Experiment 1 reports the parallel devel-
opment of collective behavior in biological and artificial fish; Experiment 2 shows
that the artificial fish learn social behavior in naturalistic ocean environments; and

Experiment 3 reports the parallel development of social preferences in biological
and artificial fish. Our study provides a foundation for reverse engineering the
origins and development of social behavior using image-computable models from
artificial intelligence.
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behavior, we can now search through themodel class tofindparticularly
strong models, via a continuous cycle of model creation, model pre-
diction, and model testing against new experimental results (e.g., new
controlled-rearing studies). The most promising models can then be
investigated in richerdetail, leading togreater intuitiveunderstandingof
the underlying algorithms. Controlled comparisons with different
brains, bodies, and environments could also define the necessary and
sufficient conditions for learning animal-like social behavior.

One limitation in building embodied models is the availability of
algorithms that can learn with high-dimensional action spaces. To
avoid this roadblock,webuilt artificialfishwith low-dimensional action
spaces. Future work might close this gap between animals and
machines by building more realistic virtual animal bodies, with similar
action spaces to animals93. This would add additional (and potentially
valuable) constraints on ANNs and may help close the behavior gap
between animals and machines.

A second limitation is that our artificial fish only had a single
objective: to maximize rewards from their intrinsic motivation algo-
rithm. Animals, however, have multiple needs (e.g., hunger, thirst,
temperature regulation, curiosity), which likely shape learning and
behavior in important ways. This might explain why our artificial fish
developed stronger social behavior than biological fish. We suspect
that artificial fish would develop weaker (more fish-like) social beha-
vior if they had all of the same needs as biological fish. Future studies
could explore this possibility by building artificial fish with fish-like
objectives, potentially with control systems that capture the diverse
homeostatic needs of biological systems94.

A third limitation is that although we showed that RL and intrinsic
motivation are sufficient to produce social behavior, we have not
shown that they are necessary. Other learning algorithms might also
produce social behavior in embodied agents. We started with RL and
intrinsic motivation because they are deeply rooted in psychological
and neuroscience research, but we hope that researchers will explore
how other learning algorithms perform in this domain.

In sum, we show that embodied ANNs are viable models of
the core learning algorithms that produce social behavior. This
digital twin approach lays a foundation for linking pixels-to-actions
models in artificial intelligence to the study of social development.
Pixels-to-actions models allow researchers to test how brains, bodies,
and environments shape the development of social behavior.
Researchers can then dissect the best-performing models to under-
stand which components are critical for learning and collect new data
to challenge and constrain future generations of social behavior
models.

Methods
Virtual environments
The virtual environments were created in the Unity Game Engine. Due
to its flexibility, Unity is an ideal testbed for many forms of AI simu-
lation. We used a package known asML-Agents Toolkit95, which allows
researchers to train artificial agents in virtual worlds. We used the
following software: Unity ML-Agents version 2.0.1, Python 3.8.10 with
PyTorch 1.7.1+cu110, Python mlagents library version 0.26.0, ml-
agents-envs version 0.26.0, and ML-agents’ Communicator API 1.5.0.
The virtual environments mimicked the holding tanks and experi-
mental arenas for raising and testing zebrafish in Hinz & de Polavieja43

(Experiment 1) and Engeszer et al.50 (Experiment 3).
In Experiment 1, the virtual rearing tank had white walls, and its

floormeasured 40 × 40 units. The circular test arena had a radius of 16
units. We trained 20 artificial fish simultaneously in the virtual rearing
tank. In Experiment 2, we trained the artificial fish in a realistic
underwater seafloor environment with high-resolution sand textures,
shadows, drifting ocean particles, and caustic lighting (Fig. 5a). In
Experiment 3, we trained the artificial fish in a virtual rearing tank
designed to mimic the 100mL cup described by Engeszner et al.50.

Artificial fish
The artificial fish measured 2 units (length) by 0.7 units (height). The
artificial fish received visual input through an invisible forward-facing
camera attached to its head (64×64 pixel resolution) and a field of view
of 160°. Wide fields of view can cause peripheral distortions to cam-
eras, where objects closer to the edges of the visual field appear larger
than those at the center. To avoid this, we used Unity’s built-in
cylindrical (Panini) projection to adjust the agent’s camera. This helped
mitigate distortions and created a more realistic perspective.

We simulated collisions between the artificial fish using built-in
colliders in the Unity game engine. The body of each artificial fish was
centered in a capsule colliderwith a radius of 0.5 units and a length of 2
units, and the position of the artificial fish was defined as the location
of the center of its collider. Since two colliders cannot pass through
one another, this prevented the artificialfish frommoving throughone
another.

ANN architecture
We used the same ANN architectures across Experiments 1-3. The
policy network contained two convolutional layers with Leaky ReLU
activations, followed by two fully connected layers with 128 hidden
units and an actionoutput layer. The intrinsicmotivation networks had
an identical encoder architecture (two convolutional layers with Leaky
ReLU activations, followed by two fully connected layers with 128
hidden units).

For the ICM, the inversedynamicsmodel contained a hidden layer
with 256 hidden units and two output heads to predict translation and
rotation actions, and the forward dynamics model was a 2-layer MLP
with 128 hidden units and 128 output units. The predictor and random
network for RND consisted of the convolutional encoder, which pro-
duced 128-dimensional representation vectors. The predictor network
of CRL consisted of the encoder followed by a projection network,
which contained two fully connected layers with 128 hidden units and
128 output units.

Training the artificial fish
In Experiment 1, the artificial fish could take one full action on every
frame of the simulation. One full action was the result of two discrete
movement sets: (1) [move fast or move slow] and (2) [rotate left,
rotate right, or no rotation]. For example, the fish might decide to
[move fast] + [rotate left] on one frame, and then [move fast] + [no
rotation] on the next frame. A sharp right turnwould then be the result
of [move slow] + [rotate right] for several frames. For the artificial
fish in Experiments 2-3, one full action was the result of two discrete
movement sets: (1) [move forward or stay] and (2) [rotate left, rotate
right, or no rotation]. For example, the fish might decide to [move
forward] + [rotate left] on one frame, and then [move forward] + [no
rotation] on the next frame. A sharp right turnwould then be the result
of [stay] + [rotate right] for several frames. Each rotationwas∼2° along
the y axis per step.

At the beginning of each training episode, the positions and
orientations of the artificial fish were randomized. The ANNweights in
each artificial fish’s ANN were randomly initialized at the start of
training. We used the Proximal PolicyOptimization algorithm (PPO) to
update the model weights every five episodes, using a batch size of
500. The rewarddiscount factorwas set to0.99, and the initial learning
rate was set to 0.001, with a linear decay schedule. Each episode
consisted of 1,000 time steps, and the artificial fish were trained for a
total of 2000 episodes (equivalent to 2 million time steps).

In Experiment 2, we trained 16 artificial fish in the virtual ocean
world.We trained each fish for onemillion timesteps. The blue fish and
orange fish were trained in separate groups. To reduce the computa-
tional load associated with training large numbers of artificial fish
simultaneously, we used four brains (ANNs), each of which controlled
(and received input from) four fish bodies. This provided the brains
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with four times as many experiences for learning and allowed us to
train larger numbers offish simultaneously, akin to the largefish shoals
found in nature. In Experiment 3, we trained 4 fish in the virtual world
modeled after Engeszer et al.50. We used the same training approach as
in Experiment 1, where each fishwas controlled by its ownbrain (ANN).

Across all experiments, all of the fish in the same group had the
same intrinsic motivation algorithm. Each artificial fish started with a
different random initialization of connection weights, and each fish’s
connection weights were shaped by its own particular experiences
during training.

Testing the artificial fish
In Experiment 1, we tested the artificial fish by grouping the 20 trained
fish into 10 pairs of fish and then deploying each pair in the test arena.
The fish brains (ANNs) were initialized with the saved weights during
one of the 20 checkpoints from training and the weights were not
updated during the test trials. For each checkpoint, we collected the
artificial fish’s trajectories for 10,000 time steps in total (2 test trials,
each containing 5000 time steps). We then computed the average
distance between each pair over the 10,000 time steps and computed
the mean across the average distances of the 10 fish pairs.

In Experiment 2, we tested the fish by measuring the average
distance between group members across the training episodes. If the
fish developed grouping behavior, then the distance between fish
should have decreased across the training phase. We observed rapid
grouping behavior in both the orange and blue fish (Fig. 5b).

In Experiment 3, we tested the artificial fish using two measures.
First, to mimic the testing conditions of the biological fish, we tested
the artificial fish using a 2AFC task (Fig. 6a). The chamber contained
two shoaling groups (n = 11 fish): one group had a familiar pigment
(matching the testfish), while the other group had a novel pigment. On
each test trial, the test fish was placed in the center of the chamber
facing a random direction. On every time step, we recorded the posi-
tion of the test fish and measured its distance to the center of each
shoal. As with biological fish from Engeszer et al.50, we measured the
proportion of time the target fish spent in proximity to the group with
the familiar versus novel pigment (measured as the distance to the
center of each shoal). Each of the 8 artificial fish were tested separately
across 1000 test trials and each test trial contained 3000
actions (steps).

Second, the self-segregation task (Fig. 7a) involved placing all 8 of
the trained artificial fish (4 orange fish and 4 blue fish) in a single
environment. At the start of each trial, the fish were centered in
the environment, oriented randomly, and then allowed to freely move
around the environment and interact with other fish. To measure
whether the fish self-segregated according to pigment, we measured
the Euclidean distance between each fish and every other fish at each
time step, then computed the in-group distance (i.e., the average dis-
tance to fish of the same color) and the out-group distance (i.e., the
average distance to fish of novel color). We tested the fish across 1000
trials, where each trial lasted 3000 time steps (actions).

Control randomized data
In Experiment 1, following Hinz & de Polavieja43, we obtained control
data for the condition involving pairs of fish by randomizing the data
obtained from the experimental procedure. For a test trial of two fish,
we paired the position of the first fish at each time step in an episode
with the position of the second fish at a randomly selected time step in
a different episode (to eliminate correlations). We repeated this pro-
cess for the second fish, pairing the positions of the second fish with
randomized positions of the first fish. We used 20 different random
seeds to obtain 20 randomized trials from each original test trial. As a
result, for a given checkpoint, we obtained 200 (20 × 10 pairs) ran-
domized trials from the original data.

To compute statistical significance, we followed the approach
described by Hinz & de Polavieja43, where significance was computed
as the probability that the control randomized data gave the experi-
mental result. First, we obtained the average distance for each of the
10 fish pairs for each training checkpoint. We then computed
the mean across the 10 pairs to obtain dexp. Next, we generated
200 randomized trials using the procedure above, and then computed
200 average distance values from the randomized data. We then
drew 10 random values from the 200 average distances and computed
their mean, d. We repeated this 10,000 times to obtain 10,000 values
of d. Finally, we computed the P value as the proportion of
these 10,000 values equal to or smaller than the experimental
value, Pðd ≤dexpÞ:

Measuring turning probabilities
Tomeasure the turning probabilities of the artificial fish in Experiment
1, we generated a large set of test images, each showing a unique
spatial configuration of neighbors from the perspective of a focal fish.
For each fish configuration (1:0, 2:1, 3:0, etc.), we recorded 600 test
images. To create each image, we randomly positioned N1 neighbors
onone side andN2 neighbors on the other sideof theoptical axis of the
focal fish’s camera. Images were recorded from the camera of a fish
whose position and orientation was fixed at the center of the testing
arena. Next, we fed the 600 images into the artificial fish’s neural
network and recorded its output behavior (i.e. actions) in response to
each image. Finally, we calculated the frequency of turns towards the
sides with N1 versus N2 neighbors to estimate the turning probabilities
of the artificial fish.

Intrinsic motivation algorithms
The intrinsicallymotivated artificial fish had two learning components:
(1) a predictor (reward) network that learned a self-supervised pre-
diction task, and (2) a policy network that learned to convert pixel
inputs into action outputs by maximizing the intrinsic reward, which
was proportional to the predictor network’s error. All of the intrinsic
motivation networks produced rewards based on the prediction error
of the agent’s internal model of the world. Below, we describe the four
intrinsic motivation algorithms, each of which employed a different
self-supervised task for the predictor network.

Intrinsic curiosity module (ICM). ICM uses forward dynamics56 pre-
diction for its self-supervised task. Instead of making predictions in a
high-dimensional sensory space, the model makes predictions in a
learned feature space. Specifically, ICM consists of three learning
components: a feature encoderφ, an inverse dynamicsmodel g, and a
forwarddynamicsmodel f, parametrized by θφ, θg and θf, respectively.
Given a transition (st, at, st+1), where st and st+1 are visual observations
on consecutive time steps and at is an action taken at time t, the
visual observations are encoded into representations xt =φ(st; θφ) and
xt+1 =φ(st+1; θφ) by the feature encoder. The inverse model learns to
predict actions ât = g(xt, xt+1; θg) from the features of two consecutive
observations. The forward model learns to predict the features of the
observation at time t + 1, x̂t + 1 = f(xt, at; θf), from the features xt and
action at time t. The prediction error of the forward model is used as
the intrinsic reward.

ICM with random features. The original formulation of ICM56 used
features learned by an inverse dynamicsmodel formaking predictions
about the environment’s forward dynamics. However, this can result in
learning instability since the feature space for prediction continues to
change as the inverse dynamics model undergoes training. To fix this
issue, Burda et al.57 eliminated the use of the inverse dynamics model
and instead used the feature space of a CNN feature extractor that was
randomly initialized and kept fixed thereafter.
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Random network distillation (RND). RND is a novelty-based
approach58 that uses two neural networks (target network and pre-
dictor network). The target network is a neural network that is randomly
initialized and then kept fixed, and it defines the self-supervised pre-
diction task. Thepredictor network is then trained to predict the output
of the target network. The prediction error between the output of the
target network and the output of the predictor network constitutes the
intrinsic reward signal for the policy optimizer. Since the predictor
network tends to have lower prediction errors on examples similar to
what it has already experienced during training, this intrinsic reward
encourages the agents to explore unfamiliar parts of the environment.
The target network f : O ! Rk transforms an observation x into an
embedding, and the predictor network f 0 : O ! Rk is trained to mini-
mize the square error between the prediction and target embeddings
jj f 0ðx; θÞ � f ðxÞjj2 with respect to its parameters.

Contrastive curiosity learning. We used a self-supervised temporal
contrastive59 learning technique that aims to learn representations of
sequential data, such as images. The method involves comparing the
representations of different samples in a sequence, where the repre-
sentations of nearby samples are more similar than those of distant
ones. During training, a neural network is trained to minimize a con-
trastive loss function, which promotes similar representations for
nearby (positive) samples and dissimilar representations for distant
(negative) samples. Positive pairs are generated by selecting two
consecutive observations from the experience buffer, while negative
pairs are generated by selecting pairs of observations that are not
temporally proximate. The dissimilarity between the representations
of two consecutive states is used as the intrinsic reward signal.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All of the source data used to create the figures in this paper are
available as a Source Data file. Source data are provided with
this paper.

Code availability
The data and code used for training and testing artificial fish is avail-
able on our GitHub page: https://github.com/buildingamind/McGraw_
Lee_Wood_2024.
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