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Reducing herbivory in mixed planting by
genomic prediction of neighbor effects in
the field

Yasuhiro Sato 1,2,3 , Rie Shimizu-Inatsugi 1, Kazuya Takeda 2,
Bernhard Schmid 4, Atsushi J. Nagano 5,6 & Kentaro K. Shimizu 1,7

Genetically diverse populations can increase plant resistance to natural ene-
mies. Yet, beneficial genotype pairs remain elusive due to the occurrence of
positive or negative effects of mixed planting on plant resistance, respectively
called associational resistance or susceptibility. Here,we identify key genotype
pairs responsible for associational resistance to herbivory using the genome-
wide polymorphismdata of the plant speciesArabidopsis thaliana. To quantify
neighbor interactions among 199 genotypes grown in a randomized block
design, we employ a genome-wide association method named “Neighbor
GWAS” and genomic prediction inspired by the Ising model of magnetics.
These analyses predict that 823 of the 19,701 candidate pairs can reduce
herbivory in mixed planting. We planted three pairs with the predicted effects
in mixtures and monocultures, and detected 18–30% reductions in herbivore
damage in the mixed planting treatment. Our study shows the power of
genomic prediction to assemble genotype mixtures with positive biodiversity
effects.

Genetic diversity is increasingly recognized as a critical facet of
biodiversity1–3 that should be conserved as a provider of various eco-
system services4. In terrestrial ecosystems, plant genotypic diversity
can increase plant resistance to natural enemies as the number ofplant
genotypes in a contiguous group of plants, namely a stand,
increases5–7. However, such a stand of multiple plant genotypes does
not always result in positive outcomes8–10. Identifying beneficial pairs
from a mixture of genotypes helps us design a desirable mixture that
improves stand-level properties, such as resistance to herbivores or
pathogens.

In anti-herbivore defense, both positive and negative effects of
mixed planting on stand-level resistance have been reported in the
literature7,11–13. These phenomena are referred to as associational

resistance and associational susceptibility, respectively11,14,15. Associa-
tional resistance and susceptibility involve ecological interactions that
are mutually non-exclusive, such as plant–herbivore, plant–plant, and
plant–carnivore interactions11. In plant-herbivore interactions, asso-
ciational resistance or susceptibility occurs when chemical and phy-
sical plant traits jointly repel or attract herbivores to neighboring
plants14–17. For instance, plant odor and apparency may affect the set-
tlement of herbivores17–19, while physical barriers and toxicmetabolites
may alter herbivore behavior and growth after settlement20,21.
Plant–plant interactions may modulate the expression of these plant
traits through volatile-mediated communications22 or direct
competition23. Plant–carnivore interactions may also lead to associa-
tional resistance or susceptibility when a mixture of plants compared
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with the component monocultures attracts more or fewer natural
enemies of herbivores24,25. The complexity of associational resistance
and susceptibility makes it difficult to distinguish between positively
and negatively interacting genotype pairs for anti-herbivore resis-
tance. Nonetheless, the application of associational resistance to
agriculture is becomingmore andmore important to reduce the useof
insecticides17,26.

Despite long-standing interest4,27, few studies have employed
genome-wide polymorphism data to investigate stand-level properties
in biodiversity research. Other than anti-herbivore resistance, some
pioneering studies have used genome-wide association studies
(GWASs) to dissect the genetic basis underlying stand-level growth
within the model plant Arabidopsis thaliana28–30. For example, studies
on 98A. thaliana genotypes have reported quantitative trait loci that
mediate neighbor genotype effects on plant growth30 and conse-
quently mitigate belowground competition31. However, these studies
require considerable effort in pairwise cultivation to sufficiently con-
trol neighbor composition among many genotypes. Due to this com-
binatorial cultivation effort, previous studies focused on limited pairs
between ten focal and 98 counterpart genotypes in a controlled
environment29,31. These practical limitations remain an obstacle to
enabling large-scale GWAS and thereby identifying themost beneficial
pairs in anti-herbivore resistance in field environments.

In this study, we aimed to predict key genotype pairs that reduce
herbivory by combining genome-wide single nucleotide polymorph-
isms (SNPs) in A. thaliana32,33 with a recently developed GWASmethod
named “Neighbor GWAS”34 (Fig. 1). This GWAS method has the same
structure as the Ising model35 of magnetics, which has been applied to
various spatial patterns in biology such as cellular development36,
animal skin colors37, and forest gap dynamics38. Neighbor GWAS
employs this widely applicable model for spatial variation in quanti-
tative traits to distinguish locus-wise positive or negative interactions
between focal and neighbor individuals34 (Fig. 1a). Neighbor genotype
effects estimated by theNeighbor GWASmethoddeterminewhether a
mixture of two genotypes at a given locus alters phenotypic values at
population level (Fig. 1a), thereby distinguishing SNPs with positive or

negative effects. The practical advantage of Neighbor GWAS lies in its
applicability to randomized mixtures of many genotypes, providing a
suitable method to analyze how neighbor genotypes shape herbivore
damage across space. To apply thismethod, we first planted replicated
individuals of 199A. thaliana genotypes at twofield sites and observed
herbivore damage and naturally emerging communities of herbivores
and associated insect species (Fig. 1b), which were analyzed as exten-
ded phenotypes of the plants. We then used Neighbor GWAS as a tool
to quantify the phenotypic variation explained by neighbor genotype
effects and to conduct GWAS of neighbor genotype effects on herbi-
vore damage and insect community composition. Genome-wide
regression incorporating neighbor genotypes was used for genomic
prediction of associational resistance or susceptibility out of all pos-
sible 19,701 pairs among the 199 genotypes. To test associational
resistance, we finally planted three prospective beneficial pairs in
mixtures as well as in monocultures. Our joint study using the recently
developed method and large-scale field experiments identified key
genotype pairs responsible for associational anti-herbivore resistance.

Results
Herbivore damage on field-grown Arabidopsis thaliana
To enable GWAS of herbivore damage, we planted A. thaliana geno-
types in a randomized block design in two experimental gardens over
two years (Fig. 1 and Supplementary Data 1). This allowed us tomonitor
the individual number of 18 insect species on approximately 6400
individual plants (≈ 199 genotypes × 8 blocks × 2 sites × 2 years) at a
native (Zurich, Switzerland) or exotic (Otsu, Japan) field site (Fig. 2a–d
and i–l, Supplementary Fig. 1 andSupplementaryTable 1).Wequantified
herbivore damage as the number of leaf holes in Zurich and leaf area
loss in Otsu because the major herbivores in Zurich were flea beetles,
and those in Otsu were caterpillars of diamondback moths or small
white butterflies (Fig. 2b, j and Supplementary Fig. 1). Typicallymultiple
insect specieswere foundon each individual plant (average = 2.1 and 1.8
in Zurich and Otsu, respectively; Fig. 2d, l). The fact that the major
herbivore species observed inour studywere specialists of Brassicaceae
(Supplementary Fig. 1 and Supplementary Table 1) led us to classify
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these insects into external chewers (i.e., herbivores that harbor outside
and chew plant tissues) and other herbivores. The former is known to
trigger the defense pathways mediated primarily by the plant hormone
jasmonic acid, and the latter includes species that induce defense
through salicylic acid39–41. To identify the insect functional groups
responsible for the herbivore damage, we quantified three extended
phenotypes of insect communities: the individual number of external
chewers (flea beetles in Zurich or caterpillars in Otsu), the individual
number of other herbivores (aphids, thrips, stink bugs, and leafminers),
and the total number of insect species per individual plant (Fig. 2b–d
and j–l and Supplementary Fig. 2). All four phenotypes exhibited
quantitative phenotypic variation among the individual plants
(Fig. 2a–d and i–l), providing suitable target phenotypes for GWAS.

Before using theNeighborGWAS,weperformeda standardGWAS
to examine focal genotype effects on herbivore damage and the three
extended phenotypes of insect community composition. For all four
phenotypes, we found significant heritability among plant genotypes
at both sites (likelihood ratio test, χ2 > 19.4, d.f. = 1, p < 0.01: “focal” in
Fig. 2e–h andm–p; Supplementary Fig. 3 and Supplementary Table 2).
Our previous study detected single-gene effects of the trichome
developmental geneGLABRA1 (GL1) on resistance toherbivoredamage
made by flea beetles42; thus, two glabrous mutants were included to
test this effect. As expected, we detected significant effects of the
mutation in the GL1 gene on the herbivore damage in Zurich (p <0.05
after Bonferroni correction of multiple testing for SNPs; the most
significant SNP being located on the third chromosome in Supple-
mentary Fig. 4a and Supplementary Data 2). Although other studies
have reported significant effects of the glucosinolate genesGS-OH and
MAM1 on herbivory43, none of the measured phenotypes showed sig-
nificant peaks near these glucosinolate genes (Supplementary
Figs. 4a and 5a and Supplementary Data 2). Presumably, this was
because the majority of herbivores observed in this study were spe-
cialists (Supplementary Table 1) and thus overcame the glucosinolate
defense. The results of the standard GWAS agreed with previous evi-
dence for physical defense, whereas the herbivoredamageobserved in

our study was unlikely to be attributable to the known variation in
defense due to glucosinolates.

Genome-wide neighbor effects contributed to shaping
herbivore damage
To test whether the observed herbivore damage was affected by
neighbor genotypes, we quantified the phenotypic variation explained
(PVE) by neighbor genotypes using the Neighbor GWAS model that
considered neighbor genotype effects besides the focal genotype
effects34. This PVE corresponds to heritability attributable to neighbor
genotypic effects as well as focal genotype effects34. Compared with
focal genotype effects alone, we found that the inclusion of neighbor
genotypes explained a significant fraction of the phenotypic variation
in the observed herbivore damage (likelihood ratio test, χ2 > 7.4, d.-
f. = 1, p <0.01; “focal + neig.” in Fig. 2e, m; Supplementary Fig. 3 and
Supplementary Table 2). Permutation tests confirmed that the
observed fraction of herbivore damage explained by neighbor geno-
type effects was greater than that of randomly permuted neighboring
plants in Zurich (permutation test, p <0.05; Supplementary Fig. 6a and
Supplementary Note 1). This was also supported by a permutation
scheme called genome rotation44,45 that randomized population
genetic structure (permutation test, p <0.05; Supplementary
Fig. 6d and SupplementaryNote 1). These results show the importance
of neighbor genotypes in shaping herbivore damage in the field.

Similarly, we quantified the phenotypic variation explained by
neighbor genotypes for the three extended phenotypes of the insect
community composition to examine which types of observed herbi-
vores were the most influenced by neighbor genotypes. Specifically,
we asked whether neighbor genotypes were more likely to influence
insect species with higher mobility. The vast majority of external
chewers in Zurich were flea beetles that could jump between plants
(‘Ps’ and ‘Pa’ in Supplementary Fig. 1b, d and Supplementary Table 1),
and the individual number of external chewers on focal plants was
significantly influenced by neighbor genotypes (likelihood ratio test,
χ2 = 6.0, d.f. = 1, p <0.05; Fig. 2f and Supplementary Table 2).
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community composition on randomized mixtures of Arabidopsis thaliana
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e–h, m–p Bar plots show the proportion of phenotypic variation explained (PVE)
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In contrast, the contribution of neighbor genotypes to the individual
number of external chewers on focal plants was not significant in Otsu
(Fig. 2n andSupplementary Table 2),where themajor external chewers
were sedentary caterpillars that could not move quickly between
plants (‘Px’, ‘Pr’, and ‘Ar’ in Supplementary Fig. 1c and e and Supple-
mentary Table 1). In Otsu, instead, flower thrips that could move
between flowering stems (‘Fi’ in Supplementary Fig. 1c and e and
Supplementary Table 1) were abundant in the category of other her-
bivores, and accordingly, the individual number of other herbivores
was significantly influenced by neighbor genotypes (likelihood ratio
test, χ2 = 5.6, d.f. = 1, p <0.05; Fig. 2o and Supplementary Table 2).
Consistent with the significant influence of neighbor genotypes on
either external chewers in Zurich or other herbivores in Otsu, the total
number of insect species at both sites was affected by neighbor gen-
otypes (likelihood ratio test, χ2 > 4.8, d.f. = 1, p <0.05; Fig. 2h, p, Sup-
plementary Fig. 3 andSupplementary Table 2). Thesepatterns of insect
communities suggest that neighbor genotypes are more likely to
influence mobile herbivores than sedentary ones.

We then conducted GWAS of neighbor genotype effects on the
herbivore damage and the three extended phenotypes of insect
communities. To attribute phenotypic variation to each SNP, we
mapped the statistical significance of the neighbor genotype effect β2

on the A. thaliana genome and depicted Manhattan plots (Fig. 3a–d,
i–l, Supplementary Figs. 4, 5 and Supplementary Data 2). This GWAS
did not detect any significant SNPs for any of the four phenotypes at
each site (p >0.1 after Bonferroni correction of multiple testing for
SNPs: Fig. 3). This was also supported by permutation tests that shuf-
fled neighboring plants and by the genome rotation scheme (p >0.1;
Supplementary Fig. 6b, c, e, f and Supplementary Note 1). Together
with the significant PVE by neighbor genotype effects (Fig. 2e–h,m–p),
these results suggest a heritable but polygenic basis for neighbor
effects on the herbivore damage and insect community composition.

In the Neighbor GWAS, the sign of the estimated neighbor geno-
type effects β̂2 represents positive or negative interactions between
the twoalleles of paired neighbors, which corresponds to associational
resistance or susceptibility to herbivore damage and insect commu-
nity composition34,46 (upper right inset in Fig. 1a and Supplementary
Fig. 7c–f). We therefore examined the number and frequency of SNPs
withpositive or negative β̂2 separately for the four phenotypes per site.
We detected both negative and positive β̂2 in the top 0.1%-associated
SNPs (histograms in Fig. 3e–h,m–p and Supplementary Fig. 8a–h). The
SNPs with associational resistance (β̂2>0) involved more minor alleles
than those with associational susceptibility (β̂2<0) in five out of the
four phenotypes × two sites (boxplots in Fig. 3e–h, m–p, Supple-
mentary Fig. 8i–p and Supplementary Table 3), including the herbivore
damage in Zurich (Fig. 3e). These data suggest that associational
resistance may be less frequent than associational susceptibility
among the A. thaliana genotypes. This frequency bias further moti-
vated us to analyze another possible difference between the SNPs with
positive and negative β̂2, such as patterns of selection scanned by
using genome-wide polymorphism data. This selection scan revealed
that SNPs with associational resistance (β̂2>0) had more signatures of
balancing selection than those with associational susceptibility (β̂2<0)
(Supplementary Fig. 9 and Supplementary Note 2). These results
highlight the different features of the top-scoring SNPs with associa-
tional resistance and susceptibility. Among many possible SNPs, we
then attempted to determine key predictors that explain herbivore
damage or insect community composition.

Genomic prediction and validation of key genotype pairs in
the field
Due to the lackof significant SNPs associatedwith theneighbor effects,
it was not feasible to predict key genotype pairs based on a few SNP
predictors. We solved this problem using a genomic prediction
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Fig. 3 | GWAS of neighbor genotype effects on herbivore damage and insect
community composition on Arabidopsis thaliana genotypemixtures in Zurich
and Otsu. a–d, i–l Manhattan plots show the –log10(p) association score of the
neighbor genotype effect β2 across five chromosomes of A. thaliana at Zurich and
Otsu. The horizontal dashed line indicates the Bonferroni threshold at p =0.05 (see
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approach47 that incorporated genome-wide SNPs for phenotype pre-
diction. To predict the neighbor effects, we included all 1.2 million
SNPs representing focal genotypes and neighbor genotypes in the
least absolute shrinking and selection operator (LASSO)48. With or
without neighbor genotypes, LASSO prediction was validated using a
test dataset collected in an additional year (see “Methods”). Among the
four phenotypes we had measured per site, the test dataset of herbi-
vore damage in Zurich was slightly better explained by the neighbor-
including LASSO than by the neighbor-excluding LASSO (Spearman’s
ρ =0.416 and 0.391 for neighbor-including and neighbor-excluding
LASSO, respectively: Supplementary Fig. 10). This result indicates that
the herbivore damage in Zurich can be better predicted by incorpor-
ating neighbor genotypes. Therefore, we extracted 756 neighbor-
related SNPsusing theneighbor-including LASSO thatbetter predicted
the herbivore damage in Zurich (Supplementary Fig. 11a, b).

To understand the potential mechanisms behind the 756 SNP
predictors of the herbivore damage in Zurich, we performed gene
ontology enrichment analyses for candidate genes relevant to asso-
ciational resistance (the LASSO-selected SNPs with β̂2>0) or associa-
tional susceptibility (β̂2<0) (Supplementary Data 3). For the candidate

genes of associational resistance, we detected a significant enrichment
of gene ontology with ‘jasmonic acid biosynthetic process’ (false dis-
covery rate < 0.05; Supplementary Data 4), including the LIPOX-
IGENASE2 (LOX2) and LOX6 genes (chr3-16519704 with MAF =0.40
near LOX2; chr1-25316686 with MAF=0.44 and chr1-25317359 with
MAF =0.44 near LOX6; Supplementary Data 3). LOX2 is particularly
known as an essential gene for the production of volatiles49, which can
reduce herbivory on neighboring plants50. In contrast, jasmonate-
related gene ontology was not enriched in the candidate genes rele-
vant to associational susceptibility (Supplementary Data 4). These
results suggest the potential relevance of jasmonate-mediated defense
in associational resistance to herbivore damage, motivating us to
predict beneficial pairs using the set of SNPs selected by LASSO.

Using neighbor genotypes as a better predictor, we attempted to
predict associational resistance or susceptibility to herbivore damage
in Zurich. To this end, we extrapolated the 756 LASSO-selected SNPs to
virtual mixture (a pair of two different genotypes) or monoculture (a
pair of the same genotypes) conditions in silico (Supplementary
Fig. 11c). We estimated the relative effects of two-genotype mixtures
on herbivore damage (Fig. 4a, Supplementary Fig. 11d, e and
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Fig. 4 | Effects of mixed planting on herbivore damage in silico and in situ.
a Effect size estimates for pairwisemixed planting among 199A. thaliana genotypes.
Positive and negative values indicate associational resistance and susceptibility to
herbivore damage, respectively. b Estimated herbivore damage under virtual mix-
ture conditions plotted against that under monoculture conditions. A single dot
corresponds to a single genotype. The y-axis shows the average of estimated effect
sizes among the 198 counterpart genotypes for each focal genotype. The blue line
andgray area indicate linear trendswith standard errors alongsideSpearman’sρ (see
Results for the exact p-value). c Simulated damage plotted against the number of
randomly selected genotypes. Circles and bars indicate mean ± SD among 9999
iterations of the simulations (see “Methods”). dHerbivore damage by flea beetles on

the threepairs of genotypes undermonoculture (white) ormixture (gray) conditions
at the Zurich field site. The y-axis represents the number of leaf holes divided by the
initial plant size (no. /cm). Asterisks indicate significant differences in marginal
means between the monoculture and mixture conditions: * p <0.05 and ** p <0.01
(see Supplementary Table 4 for the list of test statistics and p-values). No. of plants:
n = 224 for Bg-2, Uod-1, Vastervik, and Jm-0 under themonoculture; n = 112 for Bg-2,
Uod-1, Vastervik, and Jm-0 under the mixture; n = 223 for Bla-1 and Bro1-6 under the
monoculture; and n = 111 for Bla-1 and Bro1-6 under the mixture. Box plots visualize
the median with upper and lower quartiles, with whiskers extending to 1.5 × inter-
quartile range. The estimated effect sizes of the three pairs tested in panel d are
labeled above the histogram of panel a.

Article https://doi.org/10.1038/s41467-024-52374-7

Nature Communications |         (2024) 15:8467 5

www.nature.com/naturecommunications


Supplementary Note 3). Consistent with the higher frequencies of
SNPs with associational susceptibility than associational resis-
tance in GWAS (Fig. 3e), the pairwise effect size had a negative
mode of distribution (Fig. 4a). Susceptible plant genotypes under
monoculture imposed more damage on their counterparts
when planted with another genotype, which was suggested by
the negative correlation between the pairwise effect size and
estimated herbivore damage under monoculture (Spearman’s
ρ = – 0.38; test for no correlation, p = 3.4E-08: Fig. 4b). In addition,
based on the pairwise effect size of mixed planting (Fig. 4a), our
simulations confirmed that herbivore damage increased when the
number of genotypes increased (Fig. 4c; Supplementary Fig. 11f;
see “Methods”). These results suggest the prevalence of associa-
tional susceptibility to herbivore damage in Zurich among the 199
genotypes. In this situation, we asked whether identifying bene-
ficial pairs would be feasible.

Despite the prevalence of negatively interacting pairs (<0 in
Fig. 4a), 823 pairs had a positive estimate for mixed planting (>0 in
Fig. 4a). To verify associational resistance at the stand level in situ, we
planted three genotype pairs under monoculture and mixture condi-
tions at the Zurich site (Supplementary Fig. 12). We tested Bg-2 and
Uod-1 as a pair with a large positive effect; Vastervik and Jm-0 as a pair
with a moderate positive effect; and Bro1-6 and Bla-1 as a pair with a
slightly positive effect from the range of positive effect sizes (Fig. 4a;
see “Methods”). Consistent with this order of effect size, the pair of Bg-
2 and Uod-1 indeed showed a significant reduction (average of 24.8%
within a pair; Supplementary Table 4b) in herbivore damage in the
mixtures in the field (marginal means of the herbivore damage,
t > 2.02, d.f. = 125, adjusted p <0.05; Fig. 4d and Supplementary
Tables 4, 5). The pair of Vastervik and Jm-0 also showed a significant
reduction (average of 22.7% within a pair) in herbivore damage in the
mixture compared with the averagemonocultures (marginal means of
herbivore damage, t > 2.22, d.f. = 125, adjusted p <0.05; Fig. 4d and
Supplementary Tables 4, 5). Expected from their smallest effect size,
the pair of Bla-1 and Bro1-6 did not show a significant reduction in
herbivore damage in the mixtures (Fig. 4d and Supplementary
Tables 4, 5). Next, we conducted laboratory choice experiments in
which black flea beetles were allowed to feed on themixture of each of
the three pairs. This experiment found significant differences in her-
bivore damage between Bg-2 and Uod-1 (likelihood ratio test,
χ2 = 13.35, d.f. = 1, p < 0.001); and between Vastervik and Jm-0
(χ2 = 5.71, d.f. = 1, p < 0.05); but not between Bla-1 and Bro1-6
(χ2 = 0.87, d.f. = 1, p =0.35; Supplementary Fig. 13 and Supplementary
Table 6), in agreement with observed effects of the field experiments.
Taken together, field experiments and laboratory evidence demon-
strated that candidate genotype pairs underpinned associational
resistance to herbivory.

Discussion
In this study, we successfully predicted key genotype pairs that
underpin associational resistance from numerous combinations of
genotypes in which associational susceptibility was by far more pre-
valent. Intraspecific associational susceptibility to specialist herbivores
is ubiquitous across plant species, as suggested by a previous meta-
analysis that reported the prevalence of negative effects of plant
genotypic diversity on resistance to specialist herbivores9. The present
work overcame the difficulty in distinguishing associational resistance
from associational susceptibility by leveraging genome-wide poly-
morphism data. Other than anti-herbivore resistance, recent genome-
wide studies have identified key genotype pairs that increase stand-
level growth based on the limited number of genotype pairs in a
controlled environment29,31. In contrast to this previous work, our
approach can be applied to randomized mixtures of many genotypes
over a large space in the field. Such applicability to large-scale field
experiments provides a novel solution to ecologically relevant

genetics and the prediction of intraspecific biodiversity effects on
various traits of interest.

Genomic prediction enabled us to identify key genotype pairs
even though no significant SNPswere detected byGWAS. This strategy
is comparable to genomic selection in plant breeding, in which elite
genotypes can be selected without identifying genes responsible for a
heritable phenotype51–53. Identification of elite genotypes is successful
when genome-wide polymorphisms are sufficiently dense to represent
the genetic potential of each genotype51. Prediction of genetic poten-
tial is often achieved using LASSO and its varieties52. Combining LASSO
and Neighbor GWAS, our study expanded the concept of genomic
selection towards neighbor genotype effects and thereby showed the
power of genome-wide polymorphism data to predict elite
genotype pairs.

Associational resistance can occur through ecological interac-
tions that are mutually non-exclusive, such as plant–herbivore,
plant–plant, and plant–carnivore interactions. Although elucidation of
the detailed mechanisms is not the goal of genomic prediction, our
genome-wide analysis provides insights into the potentialmechanisms
of associational resistance. For instance, key SNPs near LOXs suggest a
potential relationship between jasmonate-induced defense and asso-
ciational resistance to flea beetles, as LOX genes alter volatile pro-
duction through jasmonic-acid pathways49,50. Such volatile chemicals
are known to play three multifunctional roles in associational resis-
tance by repelling herbivores away from neighboring plants19, eliciting
defense responses in neighboring plants22, and attracting carnivorous
insects25. In our study system, carnivore-mediated interactions are
unlikely to explain associational resistance because specialist pre-
dators or parasitoids have not been observed for flea beetles. This
observation suggests that volatile-mediated mechanisms allowing
herbivore repellency or direct plant–plant communication could be
two of the three ecological interactions in our study system. The
complex genomic basis of neighbor effects remains, however, as a
challenge in elucidating the mechanisms of associational resistance.
Manipulating multiple genes54 is ultimately needed to verify the set of
small-effect genes responsible for quantitative variation in herbivore
damage. To this end, our genome-wide study paves the way to identify
candidate genes for further genetic studies.

Our study highlights the importance of field data of the model
species A. thaliana in investigating ecological interactions under
naturally fluctuating conditions42,55–58. Based on detailed field surveys
of the insect community, we found that some herbivore species were
influenced by neighboring plant genotypes while others were not.
Specifically, we detected a significant influence of neighbor genotypes
on jumping flea beetles but not on sedentary caterpillars. The initial
occurrenceof caterpillars could be determined through ovipositionby
mobile adult females to some extent, but long-lived plant species
would be suitable to observe the process in which these caterpillars
becomemature anddisperse again onto neighboring plants.When our
method is applied to long-lived plants, it may enable us to predict the
impacts of intraspecific mixed planting on more diverse herbivores at
the community level.

Intraspecific mixed planting, also known as variety mixture, is of
considerable interest in pest management to reduce the use of agri-
cultural chemicals such as insecticides26,29,59. Targeting key genotype
pairs may help us design resistant mixtures without complicating
agronomic management. For instance, cultivars can be easily har-
vested when flowering time synchronizes between varieties within a
plant species59. The genotypes of our key pair Bg-2 / Uod-1 are known
to have similar flowering times (46.2 days for Bg-2 and 45.6 days for
Uod-1 under a long-day condition)60. This fact indicates that we have
achieved a resistant genotypemixturewithout differentiating plant life
history. This novel strategy to identify genotype pairs with beneficial
mixture effects may be more widely applicable to genotype mixtures
in crops and other plantations.
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Methods
Field GWAS experiments
Plant genotypes. We used A. thaliana genotypes that were selfed and
maintained as inbred lines, called “accessions.” To study the genomic
variation responsible for biotic interactions, we overlapped our
accessions with those used in the GWAS of microbial communities61

and glucosinolates62. We used 199 accessions with a few additional
accessions (Supplementary Table 1), all ofwhichweregenotyped in the
RegMap32 and 1001 Genomes33 projects. Seeds of these accessions
were obtained from the Arabidopsis Biological Resource Center
(https://abrc.osu.edu/). The Santa-Clara accession was replaced with
Fja1-1 in 2018 because the genotype of Santa-Clara was unavailable. For
the genotype data, we downloaded a full imputed SNP matrix of 2029
accessions from the AraGWAS Catalog63. Of the full 10,709,466 SNPs,
we used 1,819,577 SNPs with minor allele frequency (MAF) > 0.05.
Ler(gl1-1) and Col(gl1-2) were included as positive controls to test the
known single-gene effects ofGLABRA1 (GL1) on flea beetle resistance42.
The Ler or Col genome was assigned to the two gl1mutants, with only
theGL1 locus differing between the parental wild-type and gl1mutants.

Field setting. To investigate the two distinct herbivore communities,
we used field sites within or outside the natural distribution range ofA.
thaliana. As a native site, we used the outdoor garden of the University
of Zurich-Irchel campus (Zurich, Switzerland: 47 °23’N, 8 °33’E, alt. ca.
500m) (Fig. 1b). As an exotic site, we used the Center for Ecological
Research, Kyoto University (Otsu, Japan: 35 °06’N, 134 °56’E, alt. ca.
200m) (Fig. 1b). In the Otsu site, weeds were mown before the
experiment, and the surroundings were covered with agricultural
sheets before the experiment (Fig. 1b). In the Zurich site, each
experimental block was placed in a separate bed (Fig. 1b) that was not
accessible to molluscan herbivores.

Thefield experiment atOtsuwas conducted from lateMay tomid-
June, and that at Zurich was conducted from late June to mid-July. The
exact date of the field survey is annotated on the original data file64.
Plants were initially grown under controlled conditions and then
planted in a field garden for three weeks. Seeds were sown on Jiffy-
seven pots (33-mm diameter), and stratified under 4 °C for a week.
Seedlings were cultivated for 1.5 months under a short-day condition
(8 h light: 16 h dark, 20 °C). Plants were then separately potted in
plastic pots (6 cm in diameter) filled with mixed soil of agricultural
composts (Profi Substrat Classic CL ED73, Einheitserde Co. in Zurich;
Metro-mix 350, SunGro Co., USA in Otsu) and perlites at a 3:1 L ratio.
The potted plants were covered with agricultural shading nets and
acclimated to field conditions for a few days. A set of the 199 acces-
sions and an additional Col-0 accession — namely, 200 individuals in
total—was randomly assigned to each block without replacement and
positioned in a checkered manner (Fig. 1a). Eight blocks of the 200
accessions were set at each site on 2017 and 2018 for GWAS. Three
blocks of the 200 accessionswere set at each site in 2019 for themodel
validation of LASSO (see “Modified Neighbor GWAS for LASSO”
below). The blocks were > 2.0m apart.

Phenotype survey. Insects and herbivorous collembola on individual
plants were visually counted every 2–3 days. These species were
identified using a magnifying glass. Dwelling traces and mummified
aphids were also counted as proxies for the individual number of leaf
miners and parasitoid wasps, respectively. Eggs, larvae, and adults
were counted for all species, as long as they could be observed by the
naked eye. All counts were performed by a single observer (Y. Sato)
during the daytime at each site. At the Zurich site, yellow-striped and
black flea beetles occurred every year (at least for four years42,65). Small
holes made by these flea beetles were counted at the Zurich site and
their maximum number throughout the experiment was used as an
indicator of herbivoredamage. This phenotypingwas not applicable to
Otsu, because the most abundant herbivores were not flea beetles34.

Instead, the percentage of leaf area loss was scored in Otsu at the end
of the experiment as follows: 0 for no visible damage, 1 for < 10%, 2 for
> 10% and < 25%, 3 for > 25% and < 50%, 4 for > 50% and < 75%, and 5 for
> 75% of area eaten.

We also recorded the initial plant size and presence/absence of
inflorescences to incorporate these phenotypes as covariates in the
statistical analyses. Initial plant size was evaluated by the length of the
largest rosette leaf (mm) at the beginning of the field experiment
because this parameter represents the plant size at the growth stage.
The presence or absence of inflorescences was recorded 2 weeks after
transplantation. Herbivore damage was evaluated by the number of
leaf holes in Zurich and the leaf area loss in Otsu, as described above.
The maximum number of individuals in each experiment was used as
an index for the abundance of each insect species.

In our dataset, we defined extended plant phenotypes that
represent insect community composition based on herbivore feeding
habits and species richness. The insect community composition more
significantly differed between the two sites than between 2017 and
2018 (redundancy analysis, F = 401, p <0.001 for the sites; F = 152,
p < 0.001 for the years: Supplementary Fig. 1a); thus, the dataset was
separated into Zurich and Otsu. The individual number of external
chewers or other herbivores was defined as the total number of indi-
viduals of leaf-chewing species (e.g., beetles and caterpillars) or spe-
cies that ate internal parts of a plant (e.g., phloem-sucking aphids, cell-
content-sucking thrips, sap-sucking stink bugs, and leaf miners). The
reason for this classification was to reflect the difference in plant
defense responses to external chewers and other herbivores through
jasmonic acid and salicylic acid pathways, respectively39–41. Leafminers
are known as endophagous herbivore66 that can elicit both the jas-
monic and salicylic acid pathways in plant defense responses41. Based
on their relevance to plant defense responsesmediated by the salicylic
acid pathway, leaf miners were included in the category of other her-
bivores. The individual number of other herbivores, to a large extent,
represented the individual number of sap-sucking herbivores (i.e.,
phloem-sucking aphids, cell content-sucking thrips, and sap-sucking
stink bugs) because leaf miners were very rare (0.35% of all
individuals in the other herbivore category; see the raw data64).
Specialist–generalist classification was not applicable to our dataset
because generalist herbivores were much fewer than specialist herbi-
vores at both sites (Supplementary Fig. 1; Supplementary Table 2).
Herbivore–carnivore ratio was also not applicable because carnivor-
ous insects (e.g., parasitoid wasps and aphidophagous ladybirds) were
much fewer than herbivores. These carnivorous insects were taken
into consideration to calculate insect species diversity. For the indexof
insect species diversity, we calculated the exponential Shannon
diversity and Simpson diversity indices in addition to the total number
of insect species i.e., species richness. However, Shannon diversity and
Simpson diversity showed a bimodal distribution that did not suit
GWAS, and only the total number of insect species had quantitative
phenotypic values (Supplementary Fig. 2). We, therefore, used the
total number of insect species as an index of the insect species
diversity. The insect community composition was analyzed using the
veganpackage v2.6-467 in R.All phenotypes except for the leaf area loss
(score variable) were ln(x+ 1)-transformed to improve normality for
GWAS and genomic prediction. Unless otherwise stated, all statistical
tests were two-sided and all figure presentations and basic statistical
analyses were performed using R version 3.6.1 or above68.

GWAS with focal and neighbor genotype effects
Neighbor GWASmodel. To separate the effects of focal and neighbor
genotype effects on herbivore damage and insect community com-
position, we used the Neighbor GWAS model developed by Sato et al.
(2021)34. Neighbor GWAS employs a linear mixed model that includes
additional fixed and random effect34. According to the same mixed
model as Eq. 2 of Sato et al.34, we present a specific case that fits the

Article https://doi.org/10.1038/s41467-024-52374-7

Nature Communications |         (2024) 15:8467 7

https://abrc.osu.edu/
www.nature.com/naturecommunications


data structure of the present field experiments as follows. Let xi and xj

be the allelic status at each SNP of the i-th focal plant and j-th neigh-
boring plant, respectively. The inbred accessions had two states as
xi 2 {– 1, + 1}. A phenotype value of the i-th focal individual plant yi was
then given as

yi =β0 +β1xi + β2

XJ

j = 1
xixj

� �
=J + ui + ei ð1Þ

whereβ0 is the intercept;β1xi is afixed effect of the focal genotype and
the same as standard GWAS, and the second coefficient β2 determines
positive or negative effects from the mean allelic similarity
PJ

j = 1xixj

� �
=J at a given locus between the focal individual i and

neighboring individuals j up to the total number of neighboring indi-
viduals J. When the focal plant shares the same allele with a neigh-
boring plant, the product xixj = (– 1) × (– 1) = + 1 or (+ 1) × (+ 1) = + 1. By
contrast, when a neighboring plant has a different allele from the focal
plant, the product xixj = (– 1) × (+ 1) = – 1 or (+ 1)× (– 1) = – 1. The aver-
age of these products represents themean allelic similarity of the focal

plant with neighboring plants
PJ

j = 1xixj

� �
=J (J representing the num-

ber of neighboring plants L in the linear mixed model Eq. 2 of Sato
et al.34). The coefficient β2 then determines the direction and strength
of the effects of neighbor genotype similarity on a phenotype. In
addition to the fixed effects, the random effects ui and residuals ei
contribute to phenotypic variation. These random effects and resi-
duals follow a normal distribution as ui ∼N 0,σ2

1K1 + σ
2
2K2

� �
and

ei ∼N 0,σ2
e

� �
(‘~’meaning ‘distributed as’: see alsopage 3 in Sato et al.34).

The variance component parameters σ2
1 and σ2

2 represent the poly-
genic effects of focal and neighbor genotypes on a phenotype,
respectively. Same as the standard GWAS69, K1 represents a kinship
matrix among n plants and is defined as the fraction of shared alleles
among all SNP sites for a pair of accessions. K2 represents a sample
structure due to additive effects of neighbor genotypes among n

plants given by the cross-product K2 =X
T
2X2= q� 1ð Þ (see page 3,

“Variation partitioning” in Sato et al.34). The elements of X2 include
covariates of the neighbor genotype similarity34. With all the elemental
covariates shown, the q-SNPs × n-plantsmatrixX2 can beexpressed as
follows:

X2 =

PJ
j = 1x1,1 xj

� �
=J

PJ
j = 1x1,2 xj

� �
=J :::

PJ
j = 1x1,n xj

� �
=J

PJ
j = 1x1,2 xj

� �
=J

PJ
j = 1x2,2 xj

� �
=J :::

PJ
j = 1x2,n xj

� �
=J

::: ::: ::: :::PJ
j = 1xq,1 xj

� �
=J

PJ
j = 1xq,2 xj

� �
=J :::

PJ
j = 1xq,n xj

� �
=J

0
BBBBBBB@

1
CCCCCCCA

Phenotypic values under monoculture or mixture
The core idea of the Neighbor GWASmethod was inspired by the Ising
model of ferromagnetism to estimate its interaction coefficient based
on the genotypic similarity between neighboring individuals34. In this
paragraph, we briefly describe the major points (see pages 2–3 and
Fig. 1 in Sato et al. for details34). To recapture the similarity between the
Ising model and Neighbor GWAS, we focused on the fixed effects of
Eq. 1 without the intercept β0, the randomeffects ui and residuals ei as

yi = β1xi +β2
PJ

j = 1xixj

� �
=J. When we sum up the phenotype values for

the total number of plants n and replaced it as E = � β2, H = � β1 and
ϵI =

P
yi, Eq. 1 can be transformed as ϵI = � E

P
<i,j>xjxj � H

P
xi,

which represents the interaction energy of the Ising model. The
neighbor genotype effect β2 and focal genotypic effect β1 can be
interpreted as the energy coefficient E and the external magnetic
effect H, respectively. In this analogy, an individual plant represents a
magnetwhosenorth or south dipole corresponds to twohomozygotes
at each locus. When simulating the spatial arrangement of individual

plants, the negative and positive β2 determine whether clustering or
mixing patterns decrease the total energy ϵI =

P
yi (Supplementary

Fig. 7a, b). The analogy of the Ising model suggests that the different
signs of β2 modulate phenotypic values under monoculture or a mix-
ture of the two genotypes at a given locus.

Increased or decreased phenotypic values under genotype mix-
tures can be shown by assuming random interactions among neigh-
boring plants46. Based on this assumption, we can provide a simplified
case of two inbred genotypes for the general model of frequency-
dependent selection46,70 and thereby clarify the relationships between
mean phenotype values and genotype frequencies in a neighborhood
(upper right inset of Fig. 1a). In particular, the diploid inbred case in Sato
et al.46 represents the present case of A. thaliana accessions. To show-
case this, we consider the mean trend of Eq. 1 without the random
effectsui and residuals ei below. Let f AA and f aa be the frequencies of AA
and aa genotypes within a population, where f AA + f aa = 1. Then Eq. S13a
and b of Sato et al.46 define the phenotype value for the AA or aa gen-
otype as:

yAA =β0 +β1 + β2 2f AA � 1
� �

yaa =β0 � β1 � β2 2f AA � 1
� �

and theweightedmeanof the twophenotype values yAA and yaa can be
given by Eq. S14 of Sato et al.46 as:

�y = f AAyAA + 1� f AA
� �

yaa

=β2ð2f AA � 1Þ2 + β1 2f AA � 1
� �

+β0

In this set of three equations, the sign of the neighbor gen-
otype effect β2>0 and β2<0 determines the convexness and con-
caveness of the weighted mean �y in response to the genotype
frequency f AA, respectively (upper right inset of Fig. 1a and Sup-
plementary Fig. 7c, d). This analysis led us to focus on SNPs with
β̂2>0 with the aim of reducing herbivore damage by mixed
planting (Fig. 1a).

Phenotypic variation explained by focal and neighbor genotype
effects. Using the Neighbor GWAS model (Eq. 1), we quantified the
proportion of the phenotypic variation explained (PVE) by focal and
neighbor genotype effects for each phenotype. The individual-level
equation (Eq. 1) can be expressed as a conventionalmatrix form, which
is the same as Eq. 3 of Sato et al.34, as follows:

y=X~β +Zu+ e ð2Þ

where y is n× 1 vector of phenotypes;X includesmean, focal genotype

values xi, neighbor genotype similarity
PJ

j = 1xixj

� �
=J and other con-

founding covariates as a matrix of fixed effects for n plants; ~β is a
vector that represents coefficients of the fixed effects; Z is a design
matrix that assigns individuals to a genotype, and becomes an identity
matrix if all plants have different genotypes; u is the random effect
with Var(u) = σ2

1K1 + σ
2
2K2; and e is residual as Var(e) = σ2

eI. We esti-

mated σ̂2
1 and σ̂2

2 (‘hat’ meaning estimates) using Eq. 2, and calculated

PVE by Neighbor GWAS model as PVE = σ̂2
1 + σ̂

2
2

� �
= σ̂2

1 + σ̂
2
2 + σ̂

2
e

� �
.

When β2 and σ2
2 are set to 0, the Neighbor GWAS model (Eq. 1) is

equivalent to the standard GWAS model yi =β0 + β1xi +ui + ei or
y=X~β+Zu+ e, where Var(u) = σ2

1K1 (see page 4 of Sato et al.34). We
used this standard GWAS model to quantify SNP heritability as
h2 = σ2

1 = σ2
1 + σ

2
e

� �
, where h2 was equivalent to the single PVEself defined

by Sato et al.34. Because focal genotype values xi and neighbor geno-

typic similarity
PJ

j = 1xixj
� �

=J are correlated each other (Supplemen-

tary Fig. 14 and Supplementary Note 4), it was difficult to separate the
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focal and neighbor genotype effects as σ̂2
1 = σ̂2

1 + σ̂
2
2 + σ̂

2
e

� �
and

σ̂2
2= σ̂2

1 + σ̂
2
2 + σ̂

2
e

� �
34 (see also the page 4 and Fig. 3 in Sato et al.34).

Instead, the net contribution of neighbor genotype effects to a phe-

notype can be sufficiently evaluated as PVE – h2, which is equivalent to
the net PVEnei of Sato et al.34 (Supplementary Fig. 15 and Supplemen-
tary Note 4). To avoid confounding focal and neighbor genotype
effects, PVE should be tested from simpler to complex models. This
stepwise procedure for the likelihood ratio tests was established in our
previous study (see page 6 in Sato et al.34), as follows:

1. Compute the null likelihood with σ2
1 =0 and σ2

2 =0.
2. Compare models with and without σ2

1 based on the likelihood
ratio test for σ2

1 .
3. Calculate h2 = σ̂2

1 = σ̂2
1 + σ̂

2
e

� �
.

4. Compute the likelihood with σ2
1≠0 and σ2

2 = 0.
5. Compare models with and without σ2

2 based on the likelihood
ratio test for σ2

2.
6. Calculate PVE = σ̂2

1 + σ̂
2
2

� �
= σ̂2

1 + σ̂
2
2 + σ̂

2
e

� �
.

This procedure was performed using the rNeighborGWAS package
v1.2.434, where linear mixed models were solved using the average
information-restricted maximum likelihood method implemented in
the gaston package v1.5.571. The statistical significance of the PVE was
determined using the likelihood ratio between a simpler and complex
model, which asymptotically follows a χ2 distribution with one degree
of freedom.Multiple testingwas not considered among phenotypes as
it was not common in PVE analyses and GWAS of multiple
phenotypes30,60,61. The initial plant size, presence/absence of inflor-
escences, study years, and differences in experimental blocks were
considered non-genetic covariates. To empirically test the significance
of PVE, we also performed a permutation test in which neighboring
plants within blocks or genomic positions were randomized (Supple-
mentary Fig. 6 and Supplementary Note 1).

Genome-wide association study (GWAS). We tested the focal or
neighbor genotype effects β1 or β2 for all SNPs to conduct GWAS.
Similar to the PVE test, the likelihood ratio test was performed from
simpler to complex models. The stepwise likelihood ratio test was
established inour previous study (seepage6 in Sato et al.34), as follows:

1. Compute the null likelihood with σ2
1≠0 and σ2

2 =0.
2. Test the focal genotypic effect β1 in comparison with the null

likelihood.
3. Compute the focal likelihood with σ̂2

1 , σ̂
2
2, and β1.

4. Test the neighbor genotype effects β2 in comparison with the
focal likelihood.

This line of GWAS analysis was implemented in the rNeighborGWAS
package34, which internally uses the gaston package71 and proceeds
as follows. The statistical significance, i.e., p-values of each para-
meter, was calculated based on a χ2 distribution with one degree of
freedom34. For β2, a sample structure among individuals was cor-
rected by a weighted kinship matrix K0 = σ̂2

1K1 + σ̂
2
2K2

71. For the effi-
cient testing of β1 or β2, we used the lmm.diago function of the
gaston package71 to apply eigenvalue decomposition for σ̂2

1K1 or K0.
The initial plant size, presence/absence of inflorescences, study
years, and differences in experimental blocks were considered non-
genetic covariates. The genome-wide significance level for the
p-values of β1 or β2 was determined using the Bonferroni correction
of multiple testing for all SNPs at p = 0.05. To empirically determine
the significance threshold, we also performed a permutation test in
which neighboring plants within blocks or genomic positions were
randomized (Supplementary Fig. 6 and Supplementary Note 1). We
repeated the GWAS analysis at J = 0 (i.e., standard GWAS), J = 4 (up to
the nearest neighbors) and J = 12 (up to the second-nearest

neighbors). If K2 is ignored, imperfect correction of the sample
structure leads to inflation or deflation of the p-values (Supplemen-
tary Fig. 16 and Supplementary Note 5).

List of candidate genes. Provided that linkage disequilibrium (LD)
decays within 10 kbp on average in the A. thaliana genome72, we
searched for candidate genes within 10 kbp near SNPs with the top
0.1% p-values. Functional annotation data from The Arabidopsis
Information Resource (TAIR) were used for the gene model and
description of A. thaliana73.

LASSO with focal and neighbor genotype effects
Modified Neighbor GWAS for LASSO. To perform multiple regres-
sions on all SNPs, we used sparse regression that could simultaneously
select important SNP predictors and estimate their coefficients. The
Neighbor GWAS model (Eq. 1) is expressed as a multiple regression
model as follows:

y=X0β0 +X1β1 +X2β2 + e ð3Þ

where y is a phenotype vector; β0 is a vector including coefficients for
an intercept and non-genetic covariates; β1 and β2 are vectors
including coefficients of focal and neighbor genotype effects,
respectively; X0 is a matrix that includes a unit vector and non-
genetic covariates for n individuals. X1 is a matrix that includes the
focal genotype values for n individuals and q SNP markers. X2 is a
matrix that includes the neighbor genotype similarity for n individuals
and q SNP markers, as noted above (see the subsection ‘Neighbor
GWAS model’ above). To simultaneously perform variable selection
and coefficient estimation, we applied the least absolute shrinkage and
selection operator (LASSO)48 to Eq. 3. We further cut off 1,819,577
GWAS SNPs to 1,242,128 SNPs for LASSO with the criterion of LD at
r2 < 0.8 between adjacent SNPs, because LASSO is sensitive to high
correlations among explanatory variables. The initial plant size,
presence/absence of inflorescences, study years, and experimental
blocks were considered fixed covariates. Important variables were
selected from 1,242,128 SNP markers and the same number of
neighbor-related SNPs using LASSO. We used the Python (v3.6.8)
version of the glmnet package v1.074 to perform the LASSO. The kinship
and sample structure among individuals were implicitly considered
because LASSO regression can deal with all SNPs simultaneously. While
a gradient of sparse regressions from the LASSO, via the elastic net, to
the ridge regression was available in the glmnet package74, we used the
sparsest regression, LASSO, because of the computational burden of
recursive calculation during the effect size estimation and simulation
(see “The effect size of mixed planting” below).

To determine the LASSO regularization parameter λ, we first
trained the LASSO models with the learning data (2017 and 2018) and
then validated their outputs using the test dataset collected in another
year (2019; see also “Field setting” above). The predictability of the
four phenotypes was evaluated based on the correlations between the
predicted and observed values of each phenotype. Spearman’s rank
correlation ρ was used because some phenotypic values were not
normally distributed. The predicted values were obtained from LASSO
models with different values of λ. To assess genetically based pre-
dictability, we quantified the observed phenotype values in 2019 as the
residuals of a standard linear model. This standard linear model
incorporated the samenon-genetic explanatory variables as the LASSO
model, including the initial plant size, presence of inflorescences, and
difference in three experimental blocks, while each phenotype was
considered a response variable. To determine whether the incor-
poration of neighbor genotypes improved the correlationwith the test
data, we compared LASSO with or without neighbor genotypes across
a series of λ values. If the neighbor-including LASSO yielded a larger
correlation than the neighbor-excluding LASSO at a given λ, this
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indicates that neighbor genotypes were able to improve the predict-
ability of a target phenotype by LASSO. In this context, themaximum ρ
of the neighbor-including LASSO was larger than that of the neighbor-
excluding LASSO for herbivore damage in Zurich (Supplementary
Fig. 10a). Furthermore, the neighbor-including LASSO achieved this
maximum ρ even with stringent regularization (= larger λ) compared
to the neighbor-excluding LASSO (Supplementary Fig. 10a). For the
Otsu site, the neighbor-including LASSO also had slightly larger cor-
relations with herbivore damage than the neighbor-excluding LASSO,
supporting the improved predictability of herbivore damage by
neighbor genotypes at another site (Supplementary Fig. 10e). None of
the community composition phenotypes, however, showed better
predictability with neighbor-including LASSO (Supplementary
Fig. 10b–d, f–h). This was presumably because the individual number
of the predominant species differed between study years (Supple-
mentary Fig. 1b–g). These additional results support the improved
predictability of herbivore damage but suggest difficulty in predicting
community composition by neighbor genotypes.

When the neighbor-including LASSO outperformed the neighbor-
excluding ones at a given λ, we obtained the vectors of the estimated
coefficients β̂2 that were able to improve the phenotype prediction.
LASSO could yield multiple sets of β̂2 across a series of λ where the
neighbor-including LASSO yielded larger correlations. A larger λ tends
to yield fewer non-zero SNPs with large coefficients, whereas a smaller
λ tends to yield more non-zero SNPs with small coefficients. To con-
sider the polygenic basis of neighbor effects, we averaged the esti-
mated coefficients β̂2 per SNP across the range of λ, resulting in 756
SNPs with non-zero β2 for herbivore damage in Zurich (see “Results” in
the main text). This estimated vector of neighbor coefficients β̂2 was
used to estimate the effect size.

Post-LASSO analysis (i): The effect size of mixed planting. To esti-
mate the pairwise effect size of mixed planting, we extrapolated the
LASSO model (Eq. 3) under a virtual monoculture (a pair of the same
accessions) or pairwise mixture (a pair of different accessions). The
pairwise effect size was determined by the difference in the linear sum

½xi ° xj � � β̂2 � ½xi ° xi� � β̂2 between a pair of accessions. The first term

½xi ° xj � � β̂2 represents the phenotype values expected from different

genotype vectors between accessions i and j (= pairwise mixture),

whereas the second term ½xi ° xi� � β̂2 represents those expected from

the same genotype vectors between accessions i and i (=mono-
culture). The element-wise product ½xi ° xj� or ½xi ° xi� represents the
neighbor genotype similarity between a pair of different or the same
accessions, respectively. The neighbor genotype effects turned out to
have no significant SNPs (Figs. 2e–h,m–p, 3a–d, and i–l); therefore, the
genotype pairs predicted by many moderate-effect loci were suitable
for testing the estimated effects of mixed planting. In contrast, geno-
type pairs showing the largest effect size were selected based on a few
large-effect but less reliable loci. Assuming that multiple moderate-
effect loci could result in the effects of mixed planting, we avoided the
extreme tail of the effect size distribution when focusing on the three
pairs: a pair with a large positive effect, Bg-2 and Uod-1 (effect size =
0.8); a pairwith amoderate positive effect, Vastervik and Jm-0 (0.23); a
pair with a slight positive effect, Bro1-6 and Bla-1 (0.1) (Fig. 4a). Note
also that β2 in the neighbor GWAS models (Eqs. 1 and 3) denotes
symmetric interactions between the focal i and neighbor j
individuals34, and thus ½xi ° xj � and ½xj ° xi� exert the same effects on a

target phenotype.
To test whether the increasing number of plant genotypes

increases or decreases herbivore damage, we also simulated herbivore
damage inZurich, i.e., ln(no. of leaf holes+1) using the estimated vector
of neighbor coefficients β̂2. Assuming the nearest neighbors in a two-
dimensional lattice, we simulated mixtures of up to eight genotypes.

The herbivore damage was predicated by its marginal value with
respect to the net neighbor effects ½xi ° xj � � β̂2. To examine the overall
and selected patterns, we tested two types of genotype selection: (i)
randomselection fromall pairs or (ii) randomselection frompairswith
positive estimates of pairwise mixed planting (positive values in
Fig. 4a). First, eight genotypes were randomly selected from the 199
accessions to represent the overall pattern (Fig. 4c). We listed one
(monoculture), two, four, or eight (full mixture) genotype combina-
tions among the selected eight genotypes and averaged their pre-
dicted damage ½xi ° xj � � β̂2 among all the combinations. Second, four
positively interacting pairs (x-axis > 0 in Fig. 4a) were randomly
selected to test whether the random selection of positive pairwise
interactions yielded positive relationships between genotype number
and anti-herbivore resistance (Supplementary Fig. 11f). Duplicates of
accessions were not allowed when selecting four pairs of two paired
accessions. This line of randomsamplingwas performed9999 times to
calculate the mean and standard deviation. In the first case, Fig. 4c
shows the negative relationship between the number of genotypes and
plant resistance. In the second case, herbivore damage decreased by
paired mixing but increased by four- and eight-genotype mixing
(Supplementary Fig. 11f). This was because scaling up pairwise mix-
tures to four or eight genotypes confounded negatively interacting
pairs. In addition to Fig. 4a, c, these supplementary results also support
the difficulty in targeting the positive relationships between genotype
richness and anti-herbivore resistance.

Post-LASSO analysis (ii): GO enrichment analysis. To infer the
category of genes related to positive and negative neighbor effects, we
performed gene ontology (GO) enrichment analyses for candidate
genes near LASSO-selected SNPs (i.e., SNPs with non-zero β̂2). Same as
the list of candidate genes in GWAS, we searched for genes within 10
kbp around each selected SNP. We omitted duplicated genes after
listing the candidate genes. We then performed Fisher’s exact prob-
ability tests for each GO category against the entire gene set of A.
thaliana. Multiple testing for genes was corrected using a false dis-
covery rate (FDR)75. The entire set was built upon TAIR GO slim
annotation73 using the GO.db package v3.17.076 in R. To summarize the
results of the GO enrichment analysis, we applied the REVIGO
algorithm77 to the list of significant GO terms at FDR <0:05. When
summarizing the significant GO terms, we focused on the Biological
Process with the similarity measure at 0.7 (i.e., the same as the default
setting). The rrvgo v1.12.078 and org.At.tair.db v3.17.079 packages in R
were used to run the REVIGO algorithm. This line of GO analysis was
separately performed for SNPs with negative or positive β̂2 to detect
GO terms unique to positive or negative neighbor effects on anti-
herbivore resistance. Note also that post-GWAS GO analyses possess
the issue of statistical non-independence due to LD in the standard
GWAS80. However, LASSO was less likely to be subject to this issue
because (i) this sparse regression could sparsely select SNP variables
across a genome, (ii) we pruned adjacent SNPs on the strong LD at
r2 > 0.8, and (iii) we focusedon unique genes before using Fisher’s test.
Therefore, we applied the conventional GO enrichment test based on
Fisher’s test with FDR correction to the LASSO results. The in-house R
package that includes utility functions of theGOenrichment analysis is
available at Zenodo81.

Mixed planting experiment
Field experiment. To test the effects of mixed planting on herbivore
damage,we transplanted threepairs of accessions (i.e., Bg-2 andUod-1;
Vastervik and Jm-0; and Bla-1 and Bro1-6) under mixture and mono-
culture conditions. The theory of plant neighbor effects suggests that
both the plant patch size and neighbor composition should be
manipulated to distinguish the effects of mixed planting from the
density-dependent attraction of herbivores16,82. Therefore, we set large
and small plant patches in addition to monoculture or mixture
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conditions. The field experiment was conducted from late June to July
2019 and 2021 in the outdoor garden of the University of Zurich-Irchel.
Plants were first grown under short-day conditions and then trans-
ferred to the outdoor garden following the sameprocedure as the field
experiment for GWAS above. Two accessions were then mixed in a
checkered manner under the mixture condition, whereas either of the
two accessionswasplacedunder themonoculturecondition. The large
patch included 64 potted plants in 8 × 8 trays and had a single repli-
cate, whereas the small patch included 16 plants in 4 × 4 trays and had
three replicates (upper photographs in Supplementary Fig. 12). In the
mixture setting, the two potted accessions filled the square space in a
checkered manner without a blank position (upper photographs in
Supplementary Fig. 12). The total number of initial plants was two
accessions × three pairs × mixture or monoculture × large or small
patches × two years = 2016 individuals. Only a few pots per plot were
labeled to track the plots in the field, whereas the other pots were not
labeled to blind their information. The initial plant size was measured
in the samemanner as in thefieldGWAS. Leaf holeswere counted three
weeks after transplantation. Four plants died during the field experi-
ment, resulting in a final sample size of 2012 plants.

Statistical analysis. We analyzed the herbivore damage (i.e., the
number of leaf holes per plant) as a response variable. Linear mixed
models were used for the number of leaf holes because this variable
appeared to be normally distributed. The number of leaf holes was
ln(x + 1)-transformed to improve the normality. The explanatory vari-
ables were plant accession, mixture or monoculture conditions, small
or large patches, and study years. The initial plant size, represented by
the length of the largest leaf (mm), was considered as an offset term.
Two-way interactions were also considered among the plant acces-
sions, mixture conditions, and patch conditions. Because the large and
small patches had different numbers of individual plants, this imbal-
ance was dealt with using a random factor. We split the large patch by
4 × 4 potted plants (= the same size as the small patch; see also pho-
tographs in Supplementary Fig. 12), and considered these subplot dif-
ferences — i.e., the total of 126 subplots — as a random effect. The
significance of each explanatory variable was tested using Type III
analysis of variance based on Satterthwaite’s effective degrees of free-
dom and F-tests83. To compare herbivore damage for each accession
between the mixture and monoculture conditions, we calculated mar-
ginal means for the full model based on Satterthwaite’s method with
Sidak correction ofmultiple testing for accessions84. For the analyses of
leaf holes, we used the lme4 v1.1-3485, lmerTest v3.1-383, and emmeans
v1.8.784 packages in R. Box plots visualize the median with upper and
lower quartile, with whiskers extending to 1.5 × inter-quartile range.

To examine the effects of patch size and year in addition to
mixed planting (Fig. 4d), we analyzed a separate dataset for patch
conditions and study years (Supplementary Fig. 12a–d and Supple-
mentary Table 5). Consistent with the order of the estimated effect
size (Fig. 4a), themarginal means across these conditions showed the
largest sum of the effects of mixed planting between Bg-2 and Uod-1
(= 0.495 in Supplementary Table 4b) and the second largest effect
between Vastervik and Jm-0 (= 0.453 in Supplementary Table 4b).
The significant effects of mixed planting on herbivore damage were
more detectable in the large patches than in the small patches
(Supplementary Fig. 12). The Bg-2 and Uod-1 accessions showed a
significant reduction in herbivore damage among five cases out of
the two accessions × two years × two patch conditions (Supple-
mentary Fig. 12 and Supplementary Table 5) and a marginally sig-
nificant case in the small patch (p = 0.053 in Supplementary Table
5a). The Vastervik and Jm-0 showed three significantly positive cases
favoring the reduction in herbivore damage out of the eight condi-
tions (Supplementary Fig. 12 and Supplementary Table 5), indicating
less consistency than the Bg-2 and Uod-1 pairs under diverse condi-
tions. The Bla-1 and Bro1-6 pairs did not have significantly positive

cases favoring the reduction in herbivore damage out of the eight
conditions and even had one case of increased damage by mixed
planting (Supplementary Fig. 12 and Supplementary Table 5). The
main results and separate data show that the order of the observed
mixing effects is consistent with that of the estimated effect size.

Laboratory choice experiment
Insect materials. To examine the feeding by flea beetles, we con-
ducted laboratory choice experiments using one of the twomajor flea
beetles, the black flea beetle Phyllotreta astrachanica. Adult P. astra-
chanica were collected from Brassica spp. at the University of Zurich-
Irchel. Adults and larvae were reared on German turnips (Kohlrabi)
following a previously established protocol86. The species of flea bee-
tles were identified based on the DNA sequence of the mitochondrial
gene encoding cytochrome c oxidase subunit I (COI). DNA was
extracted using ZYMO RESEARCH Quick-DNA Tissue/Insect Kits (cat.
no. D6016). We used universal COI primers designed by Folmer et al.87

for Polymerase Chain Reaction (PCR) amplification under the follow-
ing conditions: Initial denaturation at 95 °C for 5minutes followed by
40 cycles of 95 °C for 15 s, 50 °C for 30 s, 72 °C for 60 s and a final
extension at 72 °C for 3min. The PCR products were sequenced using
Sanger sequencing. We compared our sequences with the COI
sequences registeredbyHendrich et al.88, which included 15Phyllotreta
species with several individual vouchers per species collected in Cen-
tral Europe. Our sequences and the registered sequences were clus-
tered using a neighbor-joining tree and the default alignment method
implemented in the Qiagen CLC Main Workbench. We identified the
species from our samples based on phylogenetic clusters. Our
sequence data were registered in GenBank with IDs OQ857829 to
OQ857834, which included three individuals of black- and yellow-
striped flea beetles.

Experimental setting. We used the three pairs of six A. thaliana
accessions, Bg-2 vs. Uod-1, Vastervik vs. Jm-0, and Bla-1 vs. Bro1-6.
Seedswere sownon Jiffy-seven pots (33-mmdiameter) and stratified at
4 °C for a week. Seedlings were cultivated under long-day conditions
(16 h light: 8 h dark, 22/20 °C) for 3weeks,with liquid fertilizer added a
week after the start of cultivation. Two adult beetles were allowed to
feed on themixture of two individuals × two accessions for three days
under long-day conditions (Supplementary Fig. 13a). The feeding arena
was constructed using a transparent plastic cup (129mm in diameter
and 60mm in height) that enclosed four Jiffy-potted seedlings.
Excluding cupswithout any infestation by P. astrachanica, weobtained
15–20 replicates of feeding arena per pair.

Statistical analysis. We analyzed the herbivore damage (i.e., the
number of leaf holes per plant) as a response variable using generalized
linear models. Negative binomial errors and a log-link function were
chosen because the number of leaf holes was zero-truncated (Supple-
mentary Fig. 13b). Plant accessions and arena IDs were included as the
explanatory variables. Likelihood ratio tests based on a χ2-distribution
were used after checking whether the ratio of residual deviance to the
residual degree of freedom was nearly one. The significance of each
explanatory variable was tested by excluding one variable from the full
model. The glm.nb function in the MASS package in R was used for
generalized linear models with negative binomial errors. Likelihood
ratio tests showed that flea beetles showed a significant preference
between Bg-2 and Uod-1 and between Vastervik and Jm-0 but not
between Bla-1 and Bro1-6 (Supplementary Table 6). The effect of the
experimental area on leaf holes explained deviance but was only sig-
nificant in the Bg-2 and Uod-1 pairs (Supplementary Table 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Phenotype data obtained in this study are available in the GitHub
repository (https://github.com/yassato/AraHerbNeighborGen) and in
Zenodo (https://doi.org/10.5281/zenodo.7945317)64. Mitochondrial
COI sequences obtained from flea beetles are registered in GenBank
with the accession numbers OQ857829 OQ857830 OQ857831
OQ857832 OQ857833 OQ857834. Plant genotype data are available
at theAraGWASCatalogwebsite (https://aragwas.1001genomes.org/#/
download-center)63. Source data are provided in this paper.

Code availability
All the source codes are available in the GitHub repository (https://
github.com/yassato/AraHerbNeighborGen) and in Zenodo (https://
doi.org/10.5281/zenodo.7945317)64.
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