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Scalable crystal structure relaxation using an
iteration-free deep generative model with
uncertainty quantification

Ziduo Yang1,2,3,10, Yi-Ming Zhao 1,10, Xian Wang4, Xiaoqing Liu1, Xiuying Zhang1,
Yifan Li1, Qiujie Lv1,2, Calvin Yu-Chian Chen 3,5,6,7,8 & Lei Shen 1,9

In computational molecular and materials science, determining equilibrium
structures is the crucial first step for accurate subsequent property calcula-
tions.However, the recent discovery ofmillions of newcrystals and super large
twisted structures has challenged traditional computational methods, both
ab initio and machine-learning-based, due to their computationally intensive
iterative processes. To address these scalability issues, here we introduce
DeepRelax, a deep generative model capable of performing geometric crystal
structure relaxation rapidly and without iterations. DeepRelax learns the
equilibrium structural distribution, enabling it to predict relaxed structures
directly from their unrelaxed ones. The ability to perform structural relaxation
at the millisecond level per structure, combined with the scalability of parallel
processing, makes DeepRelax particularly useful for large-scale virtual
screening. We demonstrate DeepRelax’s reliability and robustness by applying
it to five diverse databases, including oxides, Materials Project, two-
dimensional materials, van der Waals crystals, and crystals with point defects.
DeepRelax consistently shows high accuracy and efficiency, validated by
density functional theory calculations. Finally, we enhance its trustworthiness
by integrating uncertainty quantification. This work significantly accelerates
computational workflows, offering a robust and trustworthymachine-learning
method formaterial discovery and advancing the application of AI for science.

Atomic structure relaxation is usually the first step and foundation for
further computational analysis of properties in computational chem-
istry, physics, materials science, and medicine. This includes applica-
tions such as chemical reactions on surfaces, complex defects in
semiconductor heterostructures, and drug design. To date,

computational relaxation algorithms have typically been achieved
using iterative optimization, such as traditional ab initio methods, as
shown in Fig. 1a. For example, each iteration in density functional
theory (DFT) calculations involves solving the Schrödinger equation to
determine the electronic density distribution, from which the total
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energy of the system can be calculated. The forces on each atom,
derived from differentiating this energy with respect to atomic posi-
tions, guide atomicmovements to lower the system’s energy, typically
using optimization algorithms. Despite its effectiveness, the high
computational demands and poor scalability of DFT limit its applica-
tions across high-dimensional chemical and structural spaces1, such as
the complex chemical reaction surfaces, doped semiconductor inter-
faces, or in the structural relaxation of the 2.2 million new crystals
recently identified by DeepMind2. It is worth noting that the discovery
of huge new materials has been significantly accelerated by high-
throughput DFT calculations3–6 and advanced machine learning (ML)

algorithms7–10, which is promoting the development of more efficient
relaxation algorithms.

ML has emerged as a promising alternative for predicting relaxed
structures1,11–18. As conventional iterative optimization, iterative ML
approaches1,11–14,17,18 utilize surrogate ML models to approximate
energy and forces at each iteration, as shown in Fig. 1a, thereby cir-
cumventing the need to solve the computationally intensive Schrö-
dinger equation. A typical example is the defect engineering in
crystalline materials19–21. Mosquera-Lois et al.13 and Jiang et al.22

demonstrated that ML surrogate models could accelerate the optimi-
zation of crystals with defects. These ML models can retain DFT-level
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Fig. 1 | An overview of ML methods for crystal structure relaxation. a Iterative
ML methods that iteratively estimate energy and force to determine the equilibrium
structure. b Illustration of our proposed DeepRelax method, which employs a

periodicity-aware equivariant graph neural network (PaEGNN) to directly predict the
relaxation quantities. Euclidean distance geometry (EDG) is then used to determine
the final relaxed structure that satisfies the predicted relaxation quantities.
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accuracy by training on extensive databases containing detailed
information on structural relaxations, including energy, forces, and
stress.

However, there are two primary challenges in current iterativeML
structural optimizers: training data limitations and non-scalability.
Their training datasetmust include full or partial intermediate steps of
DFT relaxation. However, almost all publicized material databases,
such as ICSD23 and 2DMatPedia6, do not provide such structural
information, potentially limiting the application of iterative ML
methods. The other challenge is that the large-scale parallel processing
capability of iterative ML methods is limited due to their step-by-step
nature. To address this, Yoon et al.16 developed amodel called DOGSS,
and Kim et al.15 proposed amodel named Cryslator. Both conceptually
introduce direct ML approaches to predict the final relaxed structures
from their unrelaxed counterparts. However, these approaches have
only been validated on specific datasets or systems, and their universal
applicability to diverse datasets or systems remains unproven.

In this work, we introduce DeepRelax, a scalable, universal, and
trustworthy deep generative model designed for direct structural
relaxation. DeepRelax requires only the initial crystal structures to
predict equilibrium structures in just a few hundred milliseconds on a
single GPU. Furthermore, DeepRelax can efficiently handle multiple
crystal structures in parallel by organizing them into mini-batches for
simultaneous processing. This capability is especially advantageous in
large-scale virtual screening, where rapid assessment of numerous
unknown crystal configurations is essential. To demonstrate the
reliability and robustness, we evaluate DeepRelax across five different
datasets, including diverse 3D and 2D materials: the Materials Project
(MP)24, X-Mn-O oxides15,25, the Computational 2D Materials Database
(C2DB)26–28, layered van der Waals crystals, and 2D structures with
point defects19,21. DeepRelax not only demonstrates superior perfor-
mance compared to other direct ML methods but also exhibits com-
petitive accuracy to the leading iterative ML model, M3GNet11, while
being ~ 100 times faster in terms of speed. Moreover, we conduct DFT
calculations to assess the energy of DeepRelax’s predicted structures,
confirming our model’s ability to identify energetically favorable
configurations. In addition, DeepRelax employs an uncertainty quan-
tification method to assess the trustworthiness of the model. Finally,
we would like to highlight that the aim of using DeepRelax is not to
replace DFT relaxation but pre-relaxation, making the predicted
structures very close to the DFT-relaxed configuration. Thus, the DFT
method can rapidly complete the residual relaxation steps, sig-
nificantly speeding up the traditional ab initio relaxation process,
especially for complex structures.

Results
DeepRelax architecture
DeepRelax emerges as a solution to the computational bottlenecks
faced in DFTmethods for crystal structure relaxation. Figure 1b shows
the workflow of DeepRelax, which takes an unrelaxed crystal structure
as input anduses a periodicity-aware equivariant graphneural network
(PaEGNN) to predict the relaxation quantities, including interatomic
distances in the relaxed structure, displacements between the initial
and relaxed structures, and the lattice matrix of the relaxed structure.
DeepRelax then employs a numerical Euclidean distance geometry
(EDG) solver to determine the relaxed structure that satisfies the pre-
dicted relaxation quantities. In addition, DeepRelax also quantifies
bond-level uncertainty for each predicted interatomic distance and
displacement. Aggregating these bond-level uncertainties allows for
the computation of the system-level uncertainty, offering valuable
insights into the trustworthiness of the model.

A notable feature of PaEGNN, distinguishing it from previous
graph neural networks (GNNs)29,30 is the explicit differentiation of
atoms in various translated cells to encode periodic boundary condi-
tions (PBCs) using a unit cell offset encoding (UCOE). In addition, its

design ensures equivariance, facilitating active exploration of crystal
symmetries and thus providing a richer geometric representation of
crystal structures.

Benchmark on X-Mn-O dataset
For our initial benchmarking, we utilize the X-Mn-O dataset, a hypo-
thetical elemental substitution database previously employed for
photoanode application studies25,31. This dataset derives from the MP
database, featuring prototype ternary structures that undergo ele-
mental substitution with X elements (Mg, Ca, Ba, and Sr). It consists of
28,579 data pairs, with each comprising an unrelaxed structure and its
corresponding DFT-relaxed state. The dataset is divided into training
(N = 22, 863), validation (N = 2, 857), and test (N = 2, 859) sets, adhering
to an 8:1:1 ratio. As illustrated in Supplementary Fig. 1, there are sig-
nificant structural differences between the unrelaxed and DFT-relaxed
structures within this dataset.

We conduct a comparative analysis of DeepRelax against the
state-of-the-art (SOTA) benchmark model, Cryslator15. In addition, we
incorporate two types of equivariant graph neural networks-PAINN29

and EGNN32-into our analysis (see Subsection 4.8 for the details). The
choice of equivariant models is informed by recent reports high-
lighting their accuracy in direct coordinate prediction for structural
analysis32–34. To ensure a fair comparison, we use the same training,
validation, and testing sets across allmodels. As a baselinemeasure, we
introduce a Dummy model, which simply returns the input initial
structure as its output. This serves as a control reference in our eva-
luation process.

To evaluate model performance, we use the mean absolute error
(MAE) of Cartesian coordinates, bond lengths, lattice matrix, and cell
volume to measure the consistency between predicted and DFT-
relaxed structures. In addition, we calculate the match rate–a measure
of how closely predicted relaxed structures align with their ground
truth counterparts within a defined tolerance, as determined by
Pymatgen3. Detailed descriptions of these metrics are provided in
Subsection 4.10.

Table 1 presents the comparative results, showing that DeepRelax
greatly outperforms other baselines. Notably, DeepRelax shows a
remarkable improvement in prediction accuracy over the Dummy
model, with enhancements of 63.06%, 68.30%, 71.49%, 89.63%, and
30.71% across coordinates, bond lengths, lattice, cell volumes, and
match rate, respectively. Moreover, DeepRelax surpasses the previous
SOTAmodel, Cryslator, by 8.66% in coordinate prediction, and 45.16%
in cell volume estimation. Figure 2a shows the distribution of MAE for
coordinates, lattice matrix, and cell volumes as predicted by the
Dummy model and DeepRelax. DeepRelax demonstrates a notable
leftward skewness in its distribution, signifying a tendency to predict
structures that closely approach theDFT-relaxed state. To visualize the
performance of DeepRelax, we take two typical structures, Sr4Mn2O6

Table 1 | Comparative results of DeepRelax and baseline
models on the X-Mn-O dataset, evaluated based on MAE of
coordinates (Å), bond length (Å), lattice (Å), cell volume (Å3),
and match rate (%) between the predicted and DFT-relaxed
structures

Model Coordinates Bond
length

Lattice Cell
volume

Match
rate

Dummy 0.314 0.429 0.221 32.8 64.8

PAINN 0.159 0.175 0.066 3.8 81.2

EGNN 0.166 0.189 0.066 4.2 77.5

Cryslator* 0.127 – – 6.2 83.7

DeepRelax 0.116 0.136 0.063 3.4 84.7
*The results ofCryslator are taken from15. DeepRelax is evaluatedon thesame training, validation,
and testing sets as Cryslator for a fair comparison.
The best performance in each metric is highlighted in bold.
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and Ba1Mn4O8, from the X-Mn-O database (see Fig. 3), and relax them
using DeepRelax. As can be seen, the DeepRelax-predicted structures
are highly consistent with the DFT-relaxed ones. The results demon-
strate close agreement with DFT-relaxed structures. More DFT vali-
dations are in Subsection 2.7.

Benchmark on Materials Project
To demonstrate DeepRelax’s universal applicability across various
elements of the periodic table and diverse crystal types, we conduct
further evaluations using the Materials Project dataset11. This dataset
spans 89 elements and comprises 187,687 snapshots from 62,783
compounds captured during their structural relaxation processes. By
excluding compounds missing either initial or DFT-relaxed structures,
we refined the dataset to 62,724 pairs. Each pair consists of an initial
and a corresponding DFT-relaxed structure, providing a comprehen-
sive basis for assessing the performance of DeepRelax. This dataset is
then split into training, validation, and test data in the ratio of 90%, 5%,
and 5%, respectively. As illustrated in Supplementary Fig. 1, the struc-
tural differences for each pair tend toward an MAE of zero, indicating
that many initial structures are closely aligned with their DFT-relaxed
counterparts.

Training a direct MLmodel for datasets with varied compositions
poses significant challenges, as evidenced in Cryslator15. This model

shows reduced prediction performance when trained on the diverse
MP database. Despite these challenges, DeepRelax demonstrates its
robustness and universality. As indicated in Table 2, DeepRelax sig-
nificantly surpasses the three baseline models in coordinate predic-
tion, highlighting its effectiveness even in diverse and complex
datasets. Figure 2b shows the MAE distribution for predicted struc-
tures compared to the DFT-relaxed ones for the MP dataset, which is
less significant compared to the results for the X-Mn-O dataset shown
in Fig. 2a. This is becausemany initial structures closely resemble their
DFT-relaxed structures in the MP database as evidenced by Supple-
mentary Fig. 1. Consequently, theMPdataset presents amore complex
learning challenge for structural relaxation models.

Transfer learning on 2D materials database
Given that most materials databases do not provide the energy and
force information of unrelaxed structures, it is difficult for conven-
tional iterativeMLmodels to transfer the trainedmodel fromMaterials
Project to other materials databases. This difficulty arises because
transfer learning typically depends on the availability of energy and
force information to fine-tune the model. DeepRelax, with its direct
structural prediction feature, is more compatible with transfer learn-
ing, making it a flexible tool even when only structural data are
available.

Coordinate MAE (Å) Lattice MAE (Å) Cell volume MAE (Å3)(a)

(c)

(b)

Fig. 2 | Distribution of MAE for predicted structures by the Dummy model and DeepRelax. a X-Mn-O dataset, (b) MP dataset, and (c) C2DB dataset. Each subfigure,
from left to right, displays the MAE for coordinates (Å), lattice matrices (Å), and cell volumes (Å3), respectively. Source data are provided in this paper.
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To demonstrate the reliable application of DeepRelax, we extend
the application of DeepRelax, initially pre-trainedon 3Dmaterials from
the MP dataset, to 2Dmaterials through transfer learning. We take the
C2DB dataset26–28 as an example, which covers 62 elements and com-
prises 11,581 pairs of 2D crystal structures, each consisting of an initial
and a DFT-relaxed structure. The dataset is divided into training,

validation, and testing subsets, maintaining a ratio of 6:2:2. The
structural differences for each pair in this dataset fall within the range
observed for the X-Mn-O and MP datasets, as shown in Supplemen-
tary Fig. 1.

In this application, DeepRelax trained via transfer learning is
denoted as DeepRelaxT to differentiate it from DeepRelax. Table 3
illustrates our key findings: Firstly, both DeepRelax and DeepRelaxT
outperform the other three baselines in the C2DB dataset, proving the
applicability of our directMLmodel to 2Dmaterials. Figure 2c presents
the MAE distribution for predicted structures by the Dummy model
and DeepRelax on the C2DB dataset. These results suggest a modest
improvement over the Dummy model. Notably, this improvement
surpasses those observed for the MP dataset, as depicted in Fig. 2b.
Secondly, DeepRelaxT demonstrates notable improvements over
DeepRelax, with enhancements of 5.61% in coordinates, 38.43% in
bond length, 3.53% in lattice, and 5.81% in cell volume in terms of MAE.
Finally, DeepRelaxT shows a faster convergence rate than DeepRelax,
as detailed in Supplementary Fig. 2. These results underline the ben-
efits of large-scale pretraining and the efficacy of transfer learning.

Application in layered vdW crystals
Layered vdW crystals are of significant interest in the field of materials
science and nanotechnology because of their unique tunable

Initial structure DFT-relaxed structure DeepRelax-predicted structure

a, b, c: (3.48, 8.53, 8.95)
α, β, γ: (74.43, 78.66, 78.08)

a, b, c: (3.16, 7.06, 7.12)
α, β, γ: (86.35, 77.19, 77.12)

a, b, c: (3.16, 6.99, 7.14)
α, β, γ: (86.48, 77.36, 76.88)

a, b, c: (6.06, 6.76, 6.88)
α, β, γ: (70.99, 63.90, 63.37)

a, b, c: (6.04, 6.78, 6.82)
α, β, γ: (73.20, 64.17, 63.87)

a, b, c: (5.50, 7.07, 7.49)
α, β, γ: (64.04, 68.48, 67.10)

SrSr BaBa MnMn OOSr Ba Mn O

(a)

(b)

Fig. 3 | Visualizationof two crystal structures relaxedbyDeepRelax. a Sr4Mn2O6 and (b) Ba1Mn4O8, wherea,b, and c are lattice constants in angstroms (Å), andα,β, and
γ are angles in degrees (∘). The results demonstrate close agreement between DeepRelax-predicted structures and DFT-relaxed structures.

Table 2 | Comparison of results between the proposed Dee-
pRelax and other models on the MP dataset. The perfor-
mances are evaluated by the MAE of coordinates (Å), bond
length (Å), lattice (Å), and cell volume (Å3) between the pre-
dicted and DFT-relaxed structures

Model Coordinates Bond
length

Lattice Cell
volume

Dummy 0.095 0.112 0.072 27.0

PAINN 0.088 0.082 0.043 9.3

EGNN 0.086 0.086 0.043 9.3

DeepRelax 0.066 0.094 0.041 9.6

Improvement 30.53% 16.07% 43.06% 64.44%

The improvement is calculated by comparing DeepRelax with the Dummy model. The best
performance in each metric is highlighted in bold.

Article https://doi.org/10.1038/s41467-024-52378-3

Nature Communications |         (2024) 15:8148 5

www.nature.com/naturecommunications


structures, such as twisting and sliding configurations35. One notable
characteristic of these crystals is that the weak inter-layer vdW force
may significantly change upon full relaxation, while the strong intra-
layer chemical bonds undergo relatively small changes.

Todemonstrate the reliable performanceof ourDeepRelaxmodel
on this type of crystal, we performedDFT relaxation of 58 layered vdW
crystals covering 29 elements using van der Waals corrections, para-
meterized within the DFT-D3 Grimmemethod. Given the small sample
size, we employ transfer learning, utilizing a model pre-trained on the
Materials Project dataset.

Supplementary. Table 1 shows the inter-layer distances for the
unrelaxed, DFT-D3-relaxed, and DeepRelax-predicted structures of six
vdW layered crystals. The inter-layer distances of the predicted
structures closely match those of the relaxed structures, highlighting
the effectiveness of transferred DeepRelax on layered vdW crystals.
Furthermore, an analysis of the MAE in bond length for representative
bonding pairs, detailed in Supplementary Table 2, further demon-
strates DeepRelax’s precision in predicting structural changes in
layered vdW crystals.

Application in crystals with defects
Most crystals have intrinsic defects. To demonstrate the robustness of
DeepRelax to crystal structures with neutral point defects, we employ
MoS2 structures with a low defect concentration, including 5933 dif-
ferent defect configurations within an 8 × 8 supercell, as cataloged by
Huang et al.21, to evaluate DeepRelax. Supplementary Fig. 3 demon-
strates a notably lower MAE in both atom coordinates and bond
lengths for DeepRelax compared to the Dummy model, thereby
underscoring DeepRelax’s robustness and efficacy in defect structure
calculations, which is further validated by DFT calculations in the next
chapter.

DFT validations
Usually, the initial crystal structuremay deviate fromor be close to the
final relaxed structure. To demonstrate the efficacy and robustness of
DeepRelax, we perform DFT validations on two types of initial struc-
tures: those from the X-Mn-O dataset, which exhibit large deviations
from the DFT-relaxed state, and those from the MP dataset, which are
generally closer to their DFT-relaxed structures, as illustrated in Sup-
plementary Fig. 1. The detailed settings for the DFT calculations are
provided in Subsection 4.9.

In the first experiment, we evaluated our model’s predictive cap-
ability under challenging conditions using the X-Mn-O dataset. We
filtered out unrelaxed structures from the X-Mn-O test set that are
structurally similar to their DFT-relaxed counterparts using Pymat-
gen’s “Structure_matcher" function. From the remaining test set
(N = 1007), we randomly selected 100 samples. Figure 4a shows the
deviation distribution for the selected unrelaxed structures, which
closely aligns with that of the complete test set, thus confirming the
representativeness of the selected subset. Subsequently, we employed

DeepRelax to predict the relaxed structures for these samples. Fig-
ure 4b shows box plots of the energy distributions for the unrelaxed,
DFT-relaxed, and DeepRelax-predicted structures. The energy dis-
tributions of the DeepRelax-predicted and DFT-relaxed structures
show similar medians and interquartile ranges, validating the model’s
accuracy in predicting energetically favorable structures. The MAE in
energy is significantly reduced by an order of magnitude from 32.51
to 5.97.

In the second experiment, we tested whether DeepRelax
remains effective with structures starting from a relatively
rational initial unrelaxed state using the Materials Project dataset.
Here, we again randomly selected 100 samples from the test set.
Figure 4c shows the deviation distribution for these samples. The
energies of the unrelaxed, DFT-relaxed, and DeepRelax-predicted
structures were calculated using DFT. Figure 4d shows that the
predicted structures feature an energy distribution nearly iden-
tical to that of the DFT-relaxed structures, demonstrating the
model’s effectiveness in handling relatively rational initial unre-
laxed structures.

Besides the energy indicator, we further demonstrated our
model’s effectiveness using the number of residual optimizing (ionic)
steps required for DFT relaxation. Specifically, we randomly selected
20 structures from the test set of the point-defect dataset, with their
deviation distribution as shown in Fig. 4e. We then conducted DFT
calculations starting from the unrelaxed and DeepRelax-predicted
structures, respectively. As shown in Fig. 4f, starting DFT relaxation
from the DeepRelax-predicted structures significantly reduces the
number of required ionic steps, which is also robust.

Analysis of uncertainty
A critical challenge in integrating artificial intelligence (AI) into mate-
rial discovery is establishing trustworthy AI models. Current deep
learning models typically offer accurate predictions only within the
chemical space covered by their training datasets, known as the
applicability domain36. Predictions for samples outside this domain
can be questionable. Thus, uncertainty quantification has become
critical for AI models by quantifying prediction confidence levels,
thereby aiding researchers in decision-making and experimental
planning.

To validate the efficacy of our proposed uncertainty quantifica-
tion in reflecting the confidence level of model predictions, we com-
pute Spearman’s rank correlation coefficient between the total
predicted distance error and its associated system-level uncertainty.
Figure 5a–c shows the hexagonal binning plots of system-level
uncertainty against total distance MAE for the X-Mn-O, MP, and
C2DB datasets, respectively. Correlation coefficients of 0.95, 0.83, and
0.88 for these datasets demonstrate a strong correlation between
predicted error and predicted system-level uncertainty. Figure 5d, e
presents the bond-level uncertainty visualization for two predicted
structures, illustrating the correlation between predicted bond length
error and associated bond-level uncertainty. These results indicate
that the model’s predicted uncertainty is a good indicator of the pre-
dicted structure’s accuracy.

Ablation study
DeepRelax’s technical contributions are twofold: it utilizes UCOE
for handling PBCs explicitly, and it employs a method for estimating
bond-level data uncertainty to encourage the model to capture a
more comprehensive representation of the underlying data
distribution.

To validate the effectiveness of these two strategies, we introduce
three additional baseline models for comparison:

• Vanilla: Excludes both UCOE and data uncertainty estimation.
• DeepRelax (UCOE): Integrates UCOE but omits data uncertainty
estimation.

Table 3 | Comparison of results among DeepRelax, DeepRe-
laxT (transfer learning version), and other models on the
C2DBdataset. The performances are evaluated by theMAEof
coordinates (Å), bond length (Å), lattice (Å), and cell volume
(Å3) between the predicted and DFT-relaxed structures

Model Coordinates Bond length Lattice Cell volume

Dummy 0.268 0.400 0.142 149.6

PAINN 0.226 0.283 0.086 61.9

EGNN 0.232 0.311 0.089 67.9

DeepRelax 0.196 0.268 0.085 60.2

DeepRelaxT 0.185 0.165 0.082 56.7

The best performance in each metric is highlighted in bold.
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Fig. 4 |DFTvalidations. aDistributionsof deviations for 100 randomsamples from
theX-Mn-Odataset,measured usingMAE in coordinates (Å) between the unrelaxed
and DFT-relaxed structures. b Energy distribution for the three types of structures
among the 100 random samples from the X-Mn-O dataset. The boxplots show the
median (black line inside the box), interquartile range (box), and whiskers
extending to 1.5 times the interquartile range, with outliers plotted as individual
points. c Distribution of deviations for 100 random samples from the Materials
Project dataset with relatively rational initial structures. d Energy distribution for

the three types of structures among the 100 random samples from the Materials
Project dataset. e Distributions of deviations for 20 random samples from the 2D
materials defect dataset. fThenumberofDFT ionic steps required to completeDFT
structure relaxation, starting from the initial unrelaxed structures and the
DeepRelax-predicted structures, respectively. The samples are sorted based on the
number of ionic steps required by the unrelaxed structures for better observation.
Source data are provided in this paper.
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• DeepRelax (BLDU): Implements bond-level data uncertainty
estimation but not UCOE.

Table 4 demonstrates that DeepRelax (UCOE) attains a significant
performance enhancement over the Vanilla model, suggesting the

UCOE contributes greatly to model performance. On the other hand,
DeepRelax (BLDU) shows a more modest improvement, which indi-
cates the added value of data uncertainty estimation. Overall, Dee-
pRelax shows a 25.16% improvement in coordinate MAE and a 20.00%
advancement in bond length MAE over the Vanilla model. These

Uncertainty quantificationDeepRelax-predicted structureDFT-relaxed structure

0 0.2 0.4 0.6 0.8 1.0

Normalized uncertainty

(a) (b) (c)

(d)

(e)

SrSr Mg MnMn OOSr Mg Mn O

0 0.2 0.4 0.6 0.8 1.0

Normalized frequency

0 0.2 0.4 0.6 0.8 1.0

Normalized frequency

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

Normalized frequency

0 0.2 0.4 0.6 0.8 1.0

Normalized frequency

0 0.2 0.4 0.6 0.8 1.0

Normalized frequency

Fig. 5 | Uncertainty quantification. Hexagonal binning plots comparing system-
level uncertainty with distance MAE (Å) for the (a) X-Mn-O, (b) MP, and (c) C2DB
datasets. d, e illustrate the bond-level uncertainty for each predicted pairwise

distance in Sr2Mn2O4 and Mg1Mn1O3, respectively, demonstrating the correlation
between distance prediction errors and their associated bond-level uncertainties.
Source data are provided in this paper.
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comparative results underscore the combined effectiveness of UCOE
and data uncertainty estimation in our final DeepRelax model.

Discussion
The rapid advancement of generative models like CDVAE8, PGCGM10,
and MatterGen9, has opened avenues for the prolific generation of
hypothetical materials with potentially desirable properties, such as 2.2
millionnewmaterials recentlydiscoveredbyGoogleDeepMind.Clearly,
it is impossible to relax such a huge number of structures using the
traditional ab initio method, and it is also very difficult using the itera-
tive ML relax models. For example, we further compare the efficiency
between DeepRelax and M3GNet, a leading iterative ML relaxa-
tionmodel. DeepRelaxoffers a substantial speedadvantage, being ~ 100
times faster than M3GNet (see Supplementary Table 3). Based on this
estimation, to relax the 2.2million newmaterials, our DeepRelaxmodel
only needs around 100 hours or 4 days, while M3GNet will take around
400 days. Moreover, our DeepRelax model supports parallel GPU pro-
cessing, which can further significantly reduce computer time. While
there are other direct structure-prediction ML methods, such as
DOGSS16 and Cryslator15, detailed comparisons with these methods are
provided in Supplementary Note 6. Overall, we introduce a fast, scal-
able, and trustworthy deep generative model, DeepRelax, for direct
structural relaxation. Despite its advancements, opportunities for fur-
ther improvement remain, whichwe explore in subsequent discussions.

Firstly, DeepRelax primarily focuses on predicting interatomic
distances, which are quantities fundamentally involving two-body
interactions. Incorporating the prediction of higher-order many-body
quantities could further enhance the accuracy of structural predic-
tions. Removing the PaEGNN and EDG modules to an end-to-end
model could further increase the speed of process of structure
relaxation.

Secondly, implementing active learning strategies37,38 may further
enhance DeepRelax’s performance, particularly in underexplored
chemical spaces. Active learning efficiently reduces the need for
extensive training data by strategically choosing the most informative
samples. DeepRelax’s capability to assess prediction uncertainty aligns
well with the principles of active learning, suggesting its feasibility as a
future enhancement method.

Thirdly, DeepRelax is not designed to replace DFT but to sig-
nificantly speed up the traditional ab initio relaxation process, espe-
cially for complex structures, such as complex chemical reaction
surfaces or doped/disordered/twisted crystal interfaces.

In conclusion,DeepRelax represents a significant advancement
incrystal structureprediction,offeringefficient, scalable,universal,
and trusted structural relaxation capabilities. It excels at direct
predictions from initial configurations and effectively handles per-
iodic boundary conditions, incorporating uncertainty quantifica-
tion. Thus, DeepRelax stands as a powerful tool in advancing
material science research.

Methods
Periodicity in crystals
A crystal can be conceptualized as a periodic arrangement of
atoms in 3D space8. This periodicity is typically captured by a unit
cell, that effectively represents the crystal structure. Such a unit
cell, containing N atoms, can be fully characterized by three
components:

• Atom Types: Represented by A= ða0,:::,aNÞ 2 AN , where A
denotes the set of all chemical elements.

• Atom Coordinates: Denoted by R= ð r!0,:::, r
!

NÞ 2 RN × 3.

• Lattice Vectors: Expressed as L = ð l!1, l
!

2, l
!

3Þ 2 R3 × 3.

Given M = (A, R, L), we can model the infinite periodic structure as:

fða0
i, r

0!
i Þja0

i =ai, r
0!
i = r!i + k1 l

!
1 + k2 l

!
2 + k3 l

!
3, k1, k2, k3 2 Zg, ð1Þ

where (k1, k2, k3) are the unit cell offsets used to replicate the unit cell
across the 3D space.

Multi-graph representation for crystal structures
Multi-graphs offer an intuitive way to represent crystal structures
under periodic boundary conditions (PBCs)8, as depicted in Fig. 6(a).
These graphs can be effectively processed by GNNs through graph
convolutions or message passing, which simulate many-body
interactions11,12,29,30,32,35,39–57. Formally, we define a multi-graph G= ðV,EÞ
to encode these periodic structures. Here, V = fv1,:::,vNg represents the
set of nodes (atoms), and E = feij,ðk1 , k2, k3Þji, j 2 f1,:::,Ng, k1, k2, k3 2 Zg
signifies the set of edges (bonds). The edge eij,ðk1 ,k2,k3Þ denotes a
directed connection from node vi in the original unit cell to node vj in

the unit cell translated by k1 l
!

1 + k2 l
!

2 + k3 l
!

3. Nodes are inter-
connected with their nearest neighbors within a cutoff distance D (set
to 6 Å in our study).

To actively explore the crystal symmetry, each node vi 2 V is
assigned both a scalar feature xi 2 RF and a vector feature x!i 2 RF × 3,
i.e., retaining F scalars and F vectors for each node. These features are
updated in a way that preserves symmetry during training. The scalar
feature xð0Þ

i is initialized as an embedding dependent on the atomic
number, EðziÞ 2 RF , where zi is the atomic number, and E is an
embedding layer mapping zi to a F-dimensional feature vector. This
embedding is similar to the one-hot vector but is trainable. The vector
feature is initially set to zero, x!ð0Þ

i = 0
!2 RF × 3. In addition, we define

r!ij = r!j � r!i as the vector from node vi to vj.

Periodicity-aware equivariant graph neural network
PaEGNN iteratively updates node representations in two phases:
message passing and updating. These phases are illustrated in Fig. 6b
and further detailed in Fig. 6c–e. During message passing, nodes
receive information from neighboring nodes, expanding their acces-
sible radius. In the updating phase, PaEGNNutilizes the node’s internal
messages (composed of F scalars and F vectors) to update its features.
To prevent over-smoothing58,59, skip connections are added to
each layer.

In subsequent sections, we define the norm ∥ ⋅ ∥ and dot product
〈 ⋅ , ⋅ 〉 as operations along the spatial dimension, while concatenation
⊕ and the element-wise product ∘ are performed along the feature
dimension.

Unit cell offset encoding. A notable featureof PaEGNN, distinguishing
it from previous models29,30, is the explicit differentiation of atoms in
various translated unit cells to encode PBCs. To achieve this, we define
the set C = f�2,� 1, 0, 1, 2g. We then use this set to generate translated
unit cells with offsets ðk1, k2, k3Þ 2 C × C × C. The translated unit cells,
resulting from the offsets ðk1, k2, k3Þ 2 C × C × C, are generally sufficient

Table 4 | Ablation study to investigate the impact of unit cell
offset encoding (UCOE) and bond-level data uncertainty
(BLDU) estimation onmodel performance. The performances
are evaluated by theMAE of coordinates (Å), bond length (Å),
lattice (Å), and cell volume (Å3) between the predicted and
DFT-relaxed structures

Model Coordinates Bond length Lattice Cell volume

Dummy 0.314 0.429 0.221 32.839

Vanilla 0.155 0.170 0.063 3.478

DeepRelax (UCOE) 0.121 0.147 0.063 3.563

DeepRelax (BLDU) 0.142 0.171 0.064 3.539

DeepRelax 0.116 0.136 0.063 3.442

The best performance in each metric is highlighted in bold.
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Fig. 6 | The architecture of PaEGNN. a Illustration of the multi-graph repre-
sentation designed to capture atomic interactions across cell boundaries in peri-
odic structures. bMessage passing that collects messages from a node’s neighbors
and message updating that updates node representations using a node’s internal
states. c Overview of PaEGNN, comprising four layers, each with message passing
and message updating phases, taking unit cell offset integer Kji, initial vector

x!ð0Þ
i = 0

!
, initial scalarxð0Þ

i = EðziÞ, and relativeposition r!ji as inputs andoutputting
the final vector x!ðTÞ

i and scalar xðT Þ
i representations. d During the message passing

phase, a node vi aggregates messages from neighboring vectors x!ðtÞ
j and scalars

xðtÞ
j , forming intermediate vector and scalar variables m!i and mi. e The message

updating phase integrates the F vectors and F scalars within m!i andmi to generate
updated vector x!ðt + 1Þ

i and scalar xðt + 1Þ
i .
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to encompass all atomswithin a 6Å cutoff distance.We use ðk1, k2, k3Þij
to denote the unit cell offset from node vi to node vj, where node vj is

located in a unit cell translated by k1 l
!

1 + k2 l
!

2 + k3 l
!

3 relative to
node vi. Let Kij = (k1 + 2) + (k2 + 2)5 + (k3 + 2)25 be a positive integer that
uniquely indexes the unit cell offset, the sinusoidal positional
encoding60 for Kij is computed as:

pðKij , f Þ=
sinðKij=10000

f =F Þ, if f 2 f0,2,4, . . . ,F � 2g
cosðKij=10000

ðf�1Þ=F Þ, if f 2 f1,3,5, . . . ,F � 1g

(
ð2Þ

The full positional encoding vector is then

pðKijÞ= pðKij , 0Þ,pðKij , 1Þ, . . . ,pðKij , F � 1Þ
� �

2 RF ð3Þ

The unit cell offset encoding p(Kij) explicitly encodes the relative
position of the unit cells in which the two nodes, vi and vj, are located.
This encoding enables the GNN to explicitly recognize the periodic
structure, thereby enhancing predictive performance.

Message passing phase. During this phase, a node vi aggregates

messages from neighboring scalars xðtÞ
j and vectors x!ðtÞ

j , forming

intermediate scalar and vector variables mi and m!i as follows:

mi =
X

vj2N ðviÞ
ðW hx

ðtÞ
j Þ ° γh λðk r!ji kÞ � pðKjiÞ

� �
ð4Þ

m!i =
P

vj2N ðviÞ
ðW ux

ðtÞ
j Þ ° γu λðk r!ji kÞ � pðKjiÞ

� �
° x!ðtÞ

j

+ ðW vx
ðtÞ
j Þ ° γv λðk r!ji kÞ � pðKjiÞ

� �
°

r!ji

k r!jik

ð5Þ

Here, ⊕ denotes concatenation, N ðviÞ represents the neighboring
nodes of vi,W h,W u,W v 2 RF × F are trainableweightmatrices, λ is a set
of Gaussian radial basis functions (RBF)46 that are used to expandbond
distances, and γh, γu, and γv are a linear projection mapping the con-
catenated feature back to F-dimensional space.

Message updating phase. The updating phase concentrates on inte-
grating the F scalars and F vectors within mi and m!i to generate
updated scalar xðt + 1Þ

i and vector x!ðt + 1Þ
i :

xðt + 1Þ
i =W s1ðmi� k Um!i kÞ+W s2ðmi� k Um!i kÞhVm!i,Um!ii ð6Þ

x!ðt + 1Þ
i =W vðmi� k Um!i kÞ ° ðVm!iÞ ð7Þ

whereW s1,W s2,W v 2 RF × 2F and U ,V 2 RF × F .

Predicting relaxation quantities
Assuming PaEGNN comprises T layers, we define the bond feature
hij = γ λðk r!ij kÞ � pðk1, k2, k3Þ

� �
, where γ is a linear projection map-

ping the concatenated feature back to F-dimensional space. The
prediction of a pairwise distance d̂ij for the edge eij,ðk1 , k2, k3Þ is for-
mulated as:

d̂ij = j f dðW dx
ðTÞ
i �W dx

ðTÞ
j � hijÞj ð8Þ

where W d 2 RF × F is a learnable matrix and f d : R3F ! R is a linear
map. Using Eqn. (8), we can predict both the interatomic distances in
the relaxed structure and the displacements between the initial and
relaxed structures. In addition, DeepRelaxpredicts the latticematrix of

the relaxed structure as follows:

L̂= rL f L W l l
!

1 � l
!

2 � l
!

3

� �
�

X
vi2G

W xxi

0
@

1
A

0
@

1
A

0
@

1
A ð9Þ

Here,W x 2 RF × F ,W l 2 R9× F , and f L : R
2F ! R9 is a linear mapping

yielding a 9-dimensional vector Lv. The operation rL reshapes Lv into a
3 × 3 matrix L̂ to reflect the lattice vectors.

Uncertainty-aware loss function
In real scenarios, each predicted distance is subject to inherent noise
(e.g., measurement errors or human labeling errors). To capture this
uncertainty, we can model the pairwise distances as random variables
following a Laplace distribution, i.e., dij ∼ Laplace ðd̂ij,b̂ijÞ. Here, d̂ij and
b̂ij are the location parameter and scale parameter, respectively. In our
application, d̂ij represents the predicted distance and b̂ij represents
the associated bond-level data uncertainty. The scale parameter b̂ij is
predicted as follows:

b̂ij = f bðW bx
ðTÞ
i �W bx

ðTÞ
j � hijÞ ð10Þ

where W b 2 RF × F is a learnable matrix, and f b : R3F ! R is a
linear map.

To train DeepRelax such that its output follows the assumed
Laplace distribution, we propose an uncertainty-aware loss Lu, which
comprises interatomic distance loss Li and displacement loss Ld :

Li =
X

eij,ðk1 , k2, k3 Þ2E
logð2b̂ijÞ+

jdij � d̂ijj
b̂ij

ð11Þ

Ld =
X

eij, ð0,0, 0Þ2E
logð2b̂ijÞ+

jdij � d̂ijj
b̂ij

ð12Þ

Lu =Li +Ld ð13Þ

In these expressions, dij represents the ground truth distance. The
edges eij,ðk1 , k2, k3Þ 2 E pertain to interatomic distance predictions,
whereas eij, ð0,0, 0Þ 2 E denotes edges used for displacement predic-
tions within the unit cell, discounting PBCs. In essence, Li and Ld

represents the negative log-likelihood of the Laplace distribution,
thereby capturing the data uncertainty. Consequently, a larger b̂ij

indicates greater bond-level data uncertainty in the prediction, and
vice versa. The total loss L is consist of Lu and a lattice loss Ll :

Ll =
X

jL̂� Lj ð14Þ

L=Lu +Ll ð15Þ

where L represents the ground lattice matrix of the relaxed structure.

Numerical Euclidean distance geometry solver
Wepropose a numerical EDG solver to determine the relaxed structure
that aligns with the predicted relaxation quantities. Specifically, for a
givengraphG = ðV,E,dÞ and adimensionK, the EDGproblem61–63 seeks a
realization-specifically, a coordinate matrix R̂ 2 RN ×K : V ! RK in K-
dimensional space that satisfies the distance constraint d as follows:

8ðu, vÞ 2 E, k R̂ðuÞ � R̂ðvÞ k =duv ð16Þ

For simplicity in notation, R̂ðuÞ and R̂ðvÞ are typically written as R̂u

and R̂v.
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We reformulate the conventional EDG problem into a global
optimization task:

Lg =
X

ðu,vÞ2E
j k R̂u � R̂v k �duvj ð17Þ

This is a non-convex optimization problem, and minimizing Lg gives
an approximation solution of R̂.

In our specific application, we aim to find a coordinate matrix
R̂ 2 RN × 3 for a systemofN atoms in three-dimensional space,meeting
the constraints imposed by d̂ij , b̂ij , and L̂. Specifically, we first define an
upper bound and a lower bound using d̂ij , b̂ij as following:

d̂
u

ij = d̂ij + expðb̂ijÞ ð18Þ

d̂
l

ij = d̂ij � expðb̂ijÞ ð19Þ

Subsequently, we propose minimizing a bounded Euclidean distance
(BED) loss:

Lg =
P

eij, ðk1, k2, k3Þ 2 E
eij,ð0,0,0Þ 2 E

maxð0, k R̂u � R̂v k �d̂
u

ijÞ

+
P

eij,ðk1,k2,k3Þ 2 E
eij,ð0,0,0Þ 2 E

maxð0, d̂l
ij� k R̂u � R̂v kÞ

ð20Þ

For each edge eij,ðk1 ,k2,k3Þ, the location of node vj is dictated by
k1 l̂1 + k2 l̂2 + k3 l̂3, where l̂1, l̂2, l̂3 are predicted lattice vectors. The BED
loss only penalizes coordinate pairs whose distances fall outside the
lower and upper bounds, thus mitigating the impact of less accurate
predictions. In our work, we use Adam optimizer to minimize Lg .

Uncertainty quantification
We initially quantify bond-level uncertainties and subsequently
aggregate these to determine the system-level uncertainty of the
predicted structure. The bond-level uncertainty can be further
decomposed into data uncertainty and model uncertainty. Data
uncertainty arises from the inherent randomness in the data, while
model uncertainty arises from a lack of knowledge about the best
model to describe the data64.

We employ ensemble-based uncertainty techniques36,65,
which involve training an ensemble of T independent model
replicates, with T = 5 used in this study. The T model replicates
have the same neural network architectures and hyperpara-
meters, but the learnable parameters are initialized with different
random seeds. For the t-th model replicate, let d̂ijðtÞ denote the
predicted distance, b̂ijðtÞ the associated bond-level data uncer-
tainty, and ŵijðtÞ the associated bond-level model uncertainty.
Model uncertainty for each pair is calculated as the deviation
from the mean predicted distance �dij :

ŵijðtÞ= j d̂ijðtÞ � �dijj ð21Þ

where the mean predicted distance �dij is given by:

�dij =
1
T

XT
t = 1

d̂ijðtÞ ð22Þ

The total bond-level uncertainty Ûij is the sumof the exponential of the
data uncertainties and the model uncertainties across T models:

Ûij =
1
T

XT
t = 1

expðb̂ijðtÞÞ+ ŵijðtÞ
� �

ð23Þ

Finally, the system-level uncertainty Û is computed as the averageof all
bond-level uncertainties:

Û =
1
N

X
eij, ðk1 , k2, k3Þ 2 E
eij, ð0,0, 0Þ 2 E

Ûij
ð24Þ

where N represents the total number of evaluated pairs.

Implementation details
The DeepRelaxmodel is implemented using PyTorch. Experiments are
conducted on an NVIDIA RTX A6000 with 48GB of memory. The
training objective is to minimize Eqn. (15). We use the AdamW opti-
mizer with a learning rate of 0.0001 to update themodel’s parameters.
In addition, we implement a learning rate decay strategy, reducing the
learning rate if there is no improvement in a specified metric for a
duration of 5 epochs.

We implement PAINN29 and EGNN32 models, utilizing the source
code available at https://github.com/Open-Catalyst-Project/ocp and
https://github.com/vgsatorras/egnn, respectively. These equivariant
models are adept at directly predicting the coordinates of a relaxed
structure from its unrelaxed counterpart, leveraging the intrinsic
property that coordinates are equivariant quantities.

DFT calculations
In our study, DFT calculations are performed using the Vienna Ab initio
Simulation Package (VASP)66, employing the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional. All VASP calculations are performed using the
electronic minimization algorithm “all band simultaneous update of
orbitals” (ALGO=All), with a cut-off energy of 550eV, an energy con-
vergence criterion of 1.0 × 10−5 eV, and a Gaussian smearing width of
0.02 eV. For the X-Mn-O dataset, we run the self-consistent calculation
to obtain the total energy without spin polarization. The K-pointmesh is
a 9 ×9×9 grid, ensuring precise total energy calculations. The effective
on-site Coulomb interactions (U value) of Mn 3d orbital is chosen as
3.9 eV, aligning with that used in Cryslator15. For theMP dataset, the self-
consistent is running with a 5 × 5 × 5 K-point mesh for structures con-
taining fewer than 60 atoms and 3×3 × 3 for those with more than 60
atoms. Spin polarization is applied to structures exhibiting magnetism
to enhance the convergence of total energy calculations. For layered
vdW crystals, we performed DFT calculations with van der Waals cor-
rections (DFT-D3 Grimme method). For MoS2 structures with defects,
the structure is relaxed until the interatomic force is smaller than
0.05 eV/Å. Spin polarization is included following previous studies19,21.
These high-throughput self-consistent and structural relaxation calcu-
lations are implemented utilizing the AiiDA computational framework67.

Performance indicators
MAE of coordinate. The MAE of coordinates assesses the structural
difference between the predicted and DFT-relaxed structures. It is
defined as:

Δcoord =
1
N

X
vi2G

jr̂ i � r!ij ð25Þ

whereN represents the total number of nodes inG, r̂ i and r!i represent
the predicted and ground truth Cartesian coordinates, respectively.

MAE of bond length. The MAE of bond length measures the error in
predicting interatomic distances:

Δbond =
1
M

X
eij, ðk1 , k2, k3 Þ2E

jd̂ij � dijj ð26Þ
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where M is the total number of chemical bonds, d̂ij and dij are the
predicted and ground interatomic distances.

MAEof lattice. Thismetric calculates the error in predicting the lattice
matrices:

Δlattice =
1
9

X
jL̂� Lj ð27Þ

where L̂ and L are the predicted and ground lattice matrices.

MAE of cell volume. The error in predicting the cell volume is given
by:

Δvolume = ĵl1 � ð̂l2 × l̂3Þj � j l!1 � ð l
!

2 × l
!

3Þj
��� ��� ð28Þ

where × is the cross product and l̂i and l
!

i are the predicted and
ground truth lattice vectors.

Match rate. We utilize the “Structure_matcher" function from the
Pymatgen package3 to compare the predicted structure with the DFT-
relaxed structure. Default parameters are used for this function
(ltol = 0.2, stol = 0.3) to ensure consistent and objective comparisons.

Data availability
The dataset for X-Mn-O is available at https://zenodo.org/records/
8081655(ref. 68). The dataset for Materials Project is available at https://
figshare.com/articles/dataset/MPF_2021_2_8/19470599 (ref. 69). The
dataset for C2DB is available at https://cmr.fysik.dtu.dk/c2db/c2db.html.
The dataset for MoS2 structures with defects is available at https://
research.constructor.tech/p/2d-defects-prediction. The layered vdW
crystals dataset is in-house collected and currently unpublished; access
can be obtained by contacting Dr. Lei Shen with reasonable requests.
Source data and a Python script to reproduce the figures in this paper
are provided. Source data are provided in this paper.

Code availability
Code for DeepRelax is available at https://github.com/Shen-Group/
DeepRelaxand https://zenodo.org/records/13160937 (ref. 70).
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