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Integration of scHi-C and scRNA-seq data
defines distinct 3D-regulated and biological-
context dependent cell subpopulations

Yufan Zhou 1, Tian Li1, Lavanya Choppavarapu2,3, Kun Fang 2,3, Shili Lin 4 &
Victor X. Jin 2,3

An integration of 3D chromatin structure and gene expression at single-cell
resolution has yet been demonstrated. Here, we develop a computational
method, a multiomic data integration (MUDI) algorithm, which integrates
scHi-C and scRNA-seq data to precisely define the 3D-regulated and biological-
context dependent cell subpopulations or topologically integrated sub-
populations (TISPs). We demonstrate its algorithmic utility on the publicly
available and newly generated scHi-C and scRNA-seq data. We then test and
applyMUDI in a breast cancer cell model system to demonstrate its biological-
context dependent utility. We find the newly defined topologically conserved
associating domain (CAD) is the characteristic single-cell 3D chromatin
structure andbetter characterizes chromatin domains in single-cell resolution.
We further identify 20 TISPs uniquely characterizing 3D-regulated breast
cancer cellular states. We reveal two of TISPs are remarkably resemble to high
cycling breast cancer persister cells and chromatin modifying enzymes might
be functional regulators to drive the alteration of the 3D chromatin structures.
Our comprehensive integration of scHi-C and scRNA-seq data in cancer cells at
single-cell resolution provides mechanistic insights into 3D-regulated hetero-
geneity of developing drug-tolerant cancer cells.

Three-dimension (3D) chromatin architecture within a nucleus can be
constructed from chromosome conformation capture (3C) related
techniques including 3C1, 4C2, 5C3, ChIA-PET4, Hi-C5, TCC6 and in situ Hi-
C7. These profiling methods have revealed major 3D genomic features,
including genomic compartments5,8, topologically associating domains
(TADs)9 and chromatin loops7.Many computationalmethodshavebeen
simultaneously developed to determine these features, including nor-
malizing interacting contact maps8,10, computing A/B compartments5,11,
calling TADs12,13, detecting significant interactions7,14,15, enhancing the
low sequencing depth data16,17, and visualizing the contact matrices18–21.
Further, in order to delineate the heterogeneity of population cells,
single-cell Hi-C (scHi-C) protocols have been newly developed to iden-
tify 3D chromatin architecture at single-cell resolution22–25. For instance,

the dynamic chromosomal organization of cell cycle26, the organization
of zygote chromatin27,28, the nuclear changes of stem cell
differentiation29, and single-allele chromatin interactions30,31 have been
fully examined by scHi-C technique. Meanwhile, new sets of computa-
tional methods have been developed for processing scHi-C data to
reconstruct single-cell 3D chromatin32–34, to impute the chromosome
contact matrices35–37, to identify TAD-like domains38, to classify single
cells39, to identify chromatin loops40, and to provide toolbox of scHi-C41.
However, none of these methods were designed to algorithmically
integrate scHi-C and single-cell (sc)RNA-seq data. Therefore, it is
imperative todevelopamethod for comprehensively integrating single-
cell chromatin domains and single-cell gene expression to precisely
define 3D-regulated cell subpopulations.
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Drug-tolerant cancer cells (DTCCs) are a subpopulation of cancer
cells that resist the anti-cancer drug treatment and likely cause the
patient relapse after therapeutics. DTCCs usually consists of three dif-
ferent groups according to the period of drug treatment42. The first
group is cancerpersister cells survived in the short-termdrug shock. The
second group is extended persister cells revived and proliferated in the
mid-term drug stress. The third group is stable drug-resistant cancer
cells survived with clonal selection in the long-term drug treatment.
Studies have shown that genetic43 or non-genetic mechanisms44,45 were
involved in regulating the development of DTCCs. In our recent study,
we found that thedynamic changes of 3Dchromatin structuresmight be
a non-genetic mechanism driving breast cancer endocrine resistance46.
However, the patterning and characteristics of 3D chromatin structures
in DTCCs at single-cell resolution have not been elucidated.

Here, we develop a computational method, a multiomic data
integration (MUDI) algorithm, which integrates scHi-C and scRNA-seq
data to precisely define the 3D-regulated and biological-context
dependent cell subpopulations or topologically integrated sub-
populations (TISPs). We demonstrate its algorithmic utility on the
publicly available and newly generated scHi-C and scRNA-seq data.We
then apply MUDI in a breast cancer cell model system, including three
stages of breast cancer cells, tamoxifen-sensitive breast cancer cells
(MCF7), MCF7 cells after being temporally treated with tamoxifen for
1 month (MCF7M1), and MCF7 derived tamoxifen-resistant cells
(MCF7TR) after being temporally treatedwith tamoxifen for 6months.
We identify and characterize distinct 3D-regulated cancer cell sub-
populations, and further determine 3D-regulated heterogeneity of
developing drug-tolerant cancer cells.

Results
Developing a computational method to integrate scHi-C and
scRNA-seq data
To comprehensively integrate scHi-C and scRNA-seq data, we devel-
oped a novel computational method, a multiomic data integration

(MUDI) algorithm, to precisely define 3D-regulated cell subpopula-
tions or TISPs (Fig. 1a). We first identified distinct scHi-C clusters from
scHi-C data, and scRNA-seq clusters from scRNA-seq data, respec-
tively. We then integrated these two types of clusters by the MUDI
algorithm (see Methods: Integration of scHi-C and scRNA-seq data) to
precisely define the distinct TISPs (Fig. 1a). Briefly, we first defined
topologically conserved associating domains (CADs) representing the
conserved 3D chromatin structure of any individual scHi-C cluster. We
then integrated CADs with differentially expressed genes (DEGs) of
each of scRNA-seq clusters to derive TISPs by implementing an
empirical quantitative formula to calculate an integration score of the
interaction frequency and the gene expression values. We tested our
MUDI on two cell types: pluripotent stem cells WTC11 from 4D
Nucleome Project of Bing Ren Lab and breast cancer cells MCF7 gen-
erated from this study. From scHi-C data, nine scHi-C clusters
(CC1–CC9) were identified with variable relative contact probability
(Fig. 1b, c and Supplementary Fig. 1a–c), whereCC1/3/5/7 andCC2/4/6/
8/9 aremajorly composed ofWTC11 cells andMCF7 cells, respectively.
From scRNA-seq data, ten scRNA-seq clusters (DD1–DD10) were clas-
sified with variable fold changes of differentially expressed genes
(DEGs) (Fig. 1d, e). DD1/2/4/5/7/8/9 and DD3/6/10 are majorly com-
posed of WTC11 cells and MCF7 cells, respectively. Our MUDI was
initially able to identify four TISPs (WMG1-WMG4) with the distinct
subpopulation features based on the number (M) of data types (here
M = 2) and the number of (N) of cell types (hereN = 2), such thatWMG1
is the subpopulation with integration of CC1/3/5/7 and DD1/2/4/5/7/8/
9, WMG2 is the subpopulation with the integration of CC1/3/5/7 and
DD3/6/10,WMG3 is the subpopulationwith integrationofCC2/4/6/8/9
and DD1/2/4/5/7/8/9, WMG4 is the subpopulation with integration of
CC2/4/6/8/9 and DD3/6/10 (Supplementary Fig. 1d, e). More impor-
tantly, the MUDI is further designed to be tailored to a biological-
context dependent integration, such that the number of TISPs can be
optimized according to a particular biologically meaningful factor on
individual studies. SinceYamanaka Factors,MYC, POU5F1, SOX2,KLF4,

Fig. 1 | Development of a computational method for integrating scHi-C and
scRNA-seq data. a Flowchart of Multiomic Data Integration (MUDI) algorithm.
DEGs differentially expressed genes, TADs topologically associating domains.
b Nine scHi-C clusters (CC1–CC9) identified from scHi-C data of WTC11/MCF7.
c Relative contact probability of scHi-C clusters. d Ten scRNA-seq clusters

(DD1–DD10) identified from scRNA-seq data of WTC11/MCF7. e Fold changes of
DEGs of scRNA-seq clusters. f Integration scores of 12 topologically integrated
subpopulations (TISPs), YFG1-12. Values in box plot of (c–f) from big to small are
maxima, the 75th percentile, median, the 25th percentile and minima. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52440-0

Nature Communications |         (2024) 15:8310 2

www.nature.com/naturecommunications


were used to characterize the stem cell differentiation, wewere able to
obtain 12 distinct TISPs (Fig. 1f and Supplementary Fig. 2a), where one
of subpopulations YFG1 was enriched with REACTOMEdevelopmental
biology signaling pathway (Supplementary Fig. 2b, c), suggesting this
subpopulation has high stemness and strong chromatin activities.

To further demonstrate the sensitivity and robustness of the
MUDI, we have first performed a sub-sampling analysis onWTC11 cells
and MCF7 cells (Supplementary Fig. 3a). We found that compared to
the whole set of 277 cells, it showed no significant difference of the
overlapped CADs in each cluster for the subset of 75% (208) cells and
the subset of 50% (138) cells, respectively, but significant difference for
the subset of less than 25% (69) cells. Therefore, ourMUDI algorithm is
sensitive to at least half of cells. We then tested the MUDI on sn-m3c-
seq data47 and scRNA-seq data48 generated from human brain tissues.
We first identified scHi-C clusters from human cortex sn-m3c-seq data
(Supplementary Fig. 3b) and scRNA-seq clusters from human cortex
scRNA-seq data (Supplementary Fig. 3c), respectively. Upon the inte-
gration, we identified 24 TISPs for the excitatory neurons (Supple-
mentary Fig. 4a).We not only captured the ground truth TISPs but also
identified new transition TISPs (Supplementary Fig. 4b, c). Similarly,
we identified 16 TISPs for the inhibitory neurons (Supplementary
Fig. 4d–f) including both the ground truth TISPs as well as new tran-
sition TISPs. Furthermore, our MUDI was successfully applied in three
datasets with significantly different sequencing depths, including (1)
sn-m3C-seq data of human prefrontal cortex tissue with an average of
1.2M contact pairs per cell, (2) scHi-C data of WTC11 cells with an
average of 10.5M contact pairs per cell, and (3) our newly generated
scHi-C data of three breast cancer cells with an average of 36.4M
contact pairs per cell (see next four sections). Our MUDI has been able
to identify computationally significant and biologically meaningful
TISPs, suggesting that our algorithm was much less dependent on the
sequencing depth. In summary, we have developed a novel and pow-
erful method, MUDI, to precisely define 3D-regulated and biological-
context dependent cell subpopulations.

Generating high quality scHi-C and scRNA-seq data in a breast
cancer cell model system
In order to further test and demonstrate the biological-context
dependent utility of MUDI, we have generated high quality scHi-C and
scRNA-seq data in a breast cancer cell model system, MCF7, MCF7M1
andMCF7TR cells (Fig. 2a), amodel system routinely used in the lab46. A
total of 293 cells (89 MCF7 cells, 91 MCF7M1 cells, 113 MCF7TR cells)
were used for scHi-C profiling (Supplementary Fig. 5a) and 22,425 cells
(6172 MCF7 cells, 10,156 MCF7M1 cells, 6097 MCF7TR cells) were used
for scRNA-seq profiling (Supplementary Fig. 5b). Single-cell chromatin
contacts with very high quality were obtained (Supplementary Fig. 5c)
upon preprocessing scHi-C data (Supplementary Fig. 5d, e and Sup-
plementary Data 1), The combined scHi-C data showed a significant
correlation with population Hi-C data, i.e., correlation coefficient
r=0.43 for combined single cellsMCF7 to populationMCF7, r =0.61 for
combined single cells MCF7M1 to population MCF7M1, and r =0.58 for
combined single cells MCF7TR to population MCF7TR, respectively.
The correlations were weak among combined single cells, i.e., correla-
tion coefficient r =0.05 for combined single cells MCF7 to combined
single cells MCF7M1, r =0.28 for combined single cells MCF7M1 to
combined single cells MCF7TR, r =0.07 for combined scHi-C MCF7 to
combined scHi-C MCF7TR, respectively (Fig. 2b). Genomic distance
dependent contact probability showed markedly characteristic shapes
of combined single cells (Fig. 2c, upper left) and individual single cells
(Fig. 2c, upper right, lower left, and lower right panels). We also
observed that the single cells had highly variable TADs but with more
superimposing of cells, the enrichedTADs havemore similar features of
population TADs (Fig. 2d–f). These results demonstrated a high quality
of scHi-C data had been successfully produced in cancer cells. Since
single-cell omics-seq data are generally sparse, an optimal resolution is
needed for the downstream analysis. Our scHi-C data have a low slope
of ratio of read pairs to square of bin numbers until the resolution
reaches to 1Mb (Supplementary Fig. 5f), thus the 1Mb resolution was
used for clustering of scHi-C data.

Fig. 2 | Generation of high quality scHi-C and scRNA-seq data in a breast cancer
cell model system. aWorkflow for the identification of 3D chromatin structures of
breast cancer cell lines at single-cell resolution. b Pearson correlation coefficients
of combined scHi-C data with population data. scMCF7: combined MCF7 scHi-C
data. scMCF7M1: combined MCF7M1 scHi-C data. scMCF7TR: combined MCF7TR

scHi-C data. cGenomic distance dependent contact probability. The thick lines are
combined single cells and the thin lines are individual single cells. Superimposing
single-cell TADs with 5 or 20 cells compared to population Hi-C TADs d for MCF7,
e for MCF7M1, and f for MCF7TR, respectively. All TADs were generated at the
resolution of 100Kb contact map. Source data are provided as a Source Data file.
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To exclude the effect of structure variations (SVs), we per-
formed single-cell DNA-seq on three breast cancer cell lines each
with a biological replicate: 33 MCF7 cells, 33 MCF7M1 cells and 39
MCFTR cells with a total of 105 cells. We found that (1) there was no
clear difference on copy number variations (CNVs) among single
cells (Supplementary Fig. 5g), (2) scHi-C contacts in the genomic
regions where 10% cells had CNVs had a very low ratio (almost zero)
and (3) there was not any significant difference between MCF7 cells
and MCF7TR cells (Supplementary Fig. 5h). These results illustrated
that single-cell level SVs didn’t significantly influence the chromatin
contacts.

Defining the characteristic single-cell 3D chromatin structure
Before performing scHi-C clustering,we first examined our scHi-C data
quality by comparing it with publicly available human scHi-C data. The
breast cancer cells from our study were clearly separated from other
types of human cells, leukemia cells K56227 and two pluripotent stem
cell types, WTC11C6 and WTC11C28 (4D Nucleome Project, Bing Ren
Lab) (Fig. 3a and Supplementary Fig. 6a, b). Furthermore, three stages
of breast cancer cells,MCF7,MCF7M1 andMCF7TRwere also distinctly
located in different spaces defined by first three eigenvectors
(Fig. 3b, c and Supplementary Fig. 6c). This analysis further validated
the high quality of our scHi-C data. We then applied scHiCluster36 to
identify an optimal nine scHi-C clusters, C1 to C9 (Fig. 3d) since the
peak of the Silhouette coefficient is at 9 (Supplementary Fig. 6d). We
removed the cells with the contacts lower than 6 in 1Mb bins to
minimize the false positive rate (Supplementary Fig. 7a–d) and thus
obtained a good quality of 231 cells (87 MCF7 cells, 54 MCF7M1 cells
and 90 MCFTR cells). Of nine clusters, a majority of cells in C2 and C7
were MCF7, a majority of cells in C1, C3, C4, C8, C9 were MCF7TR, and
the cells in C5 and C6 were miscellaneous of three stages of cells
(Fig. 3e). Interestingly, C1 and C5 had the smallest size of TADs and the
most numbers of TADs (Fig. 3f and Supplementary Fig. 8a), while
MCF7M1 cells had smaller sizes of TADs than MCF7 and MCF7TR cells
did (Supplementary Fig. 8b, c).

Although Higashi37 was able to increase our scHi-C data to 20Kb
resolution, there was no significant correlation between cell-type
specific TADs and cell-type specific gene expression for each of three
breast cancer cell types (Supplementary Fig. 9a–d). Therefore, to
better characterize chromatin domains in single-cell resolution, we
proposed a novel framework for analyzing 3D chromatin domain
behavior among single cells and defined a CAD which is the common
1Mb genomic region shared by all individual cells within any particular
scHi-C cluster that has very high chromatin contact probabilities.
Indeed, CADs showed lower shifted boundaries of TADs and greater
standard deviations than non-conserved associating domains (NADs)
(Fig. 3g and Supplementary Fig. 10a). CADs had different character-
istics from NADs in each of nine clusters. For example, CADs in C1
showed the highest shifted boundaries in compared to NADs at 100Kb
TAD size (Supplementary Figs. 10b–d and 11a–f), and there were the
most CADs either in all cells or per cell for C1, C3, C5, and C9 (Sup-
plementary Fig. 12a, b). Our results thus elucidated that the newly
defined CAD is the characteristic single-cell 3D chromatin structure
useful for functional analysis of scHi-C clusters.

Precisely identifying distinct 3D-regulated cancer cell
subpopulations
To precisely identify the 3D-regulated cancer cell subpopulations, we
further conducted scRNA-seqdata (Supplementary Fig. 13a, b)with the
replicates showing a highly identical pattern in MCF7, MCF7M1 and
MCF7TR cells (Supplementary Fig. 13c). We then identified 13 scRNA-
seq clusters, D1–D13 (Fig. 4a), in which amajority of cells in D2, D6, and
D11 are MCF7, a majority of cells in D1, D4, D5, D8, D9 and D10 are
MCF7M1, a majority of cells in D3, D7, D12, D13 are MCF7TR (Fig. 4b).
We also identified a gene signature of differentially expressed genes
(DEGs) for each of 13 clusters (Fig. 4c and Supplementary Data 2).
Interestingly, we found that the cell cycle signaling was among the top
enriched pathways from the top 2000 variably expressed genes
(Supplementary Figs. 13d and 14a) and the standardized variance of
cycling genes is much higher than that of housekeeping genes (Fig. 4d

Fig. 3 | Definition of the characteristic single-cell chromatin structure.
a Comparing our scHi-C data with public human scHi-C data. PC1, PC2 and PC3 are
first three eigenvectors.b 2D view of scHi-C data of breast cancer cells. c 3D view of
scHi-C data of breast cancer cells. d Nine clusters (C1–C9) identified from scHi-C
data of breast cancer cells. Each cluster is labeled with oval and assorted colors.
eNumberand the composition of single cells in individual scHi-C clusters. fThesize

of TADs of clusters. *: Two-sidedWilcoxon rank-sum test. g The shifted boundaries
of TADsof CADs andNADswhenTADbin size is 50K, 100K, 200K, 300K, 400Kor
500K. *: Two-sided Wilcoxon rank-sum test. Values in box plot of (f) and (g) from
big to small are maxima, the 75th percentile, median, the 25th percentile and
minima. Source data are provided as a Source Data file.
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and Supplementary Data 3). More specifically, there were much more
cycling geneswithinDEGs inD3, D5, D7, D8, D10 aswell aswithin CADs
in C1, C3, C5, C9 than other scHi-C or scRNA-seq clusters (Fig. 4e).
Remarkably, cycling signaling has been used to characterize cancer
persister cells, a rare subpopulation of DTCCs with a reversible
property45. We thus grouped scHi-C clusters into five categories based
on the breast cancer cell stage and the number (high: >9; low: =<9) of
cycling genes within CADs: (1) C1, C5—miscellaneous cells with high
cycling genes; (2) C6—miscellaneous cells with low cycling genes; (3)
C3, C9—resistant cells with high cycling genes; (4) C4, C8—resistant
cells with low cycling genes; (5) C2, C7—sensitive cells with low cycling
genes. Miscellaneous cells either with high cycling genes (C1, C5) or
with low cycling genes (C6) showed higher contact probabilities than
sensitive cells (C2, C7) (Supplementary Fig. 14b, c). On the contrary,
resistant cells regardless of with high (C3, C9) or low (C4, C8) cycling
genes had lower contact probabilities than sensitive cells (C2, C7)
(Supplementary Fig. 14d, e). Although both Categories (1) and (3) have
high cycling genes, miscellaneous cells (C1, C5) have more contact
probabilities than resistant cells (C3, C9) (Supplementary Fig. 13f). We
then computed an integration scorewithinMUDI program to integrate
five scHi-C categories with four scRNA-seq categories, and thus pre-
cisely defined 20TISPs, G1-20, each representing a 3D-regulatedbreast
cancer cellular state by an integration score (Fig. 4f).

Characterizing specific topologically integrated subpopulations
We further examined a few of the TISPs related to cycling genes.
Despite both G1 and G9 had high cycling genes in both CADs of scHi-C
clusters and DEGs of scRNA-seq clusters, G1 had a higher integration
score thanG9 (Fig. 5a andSupplementaryFig. 15a). In addition, someof
G1 and G9 genes were marked with super-enhancers (Supplementary
Fig. 15b, c). Interestingly, G1 genes were enriched with a REACTOME
chromatin modifying enzyme signaling pathway and these enriched

enzymes had higher integration scores in G1 than those in G9
(Fig. 5b, c). Of 15 enriched genes, ATXN7, ENY2, PRMT6, KDM5B,
KMT5A, MBIP, SMARCB1, TADA3 occurred in G1 and G9, BRWD1,
CCND1, ELP2, HMG20B, JADE1, KMT2E, MORF4L1 in G9 (Supplemen-
tary Fig. 15d). Higher expression of chromatin modifying enzymes in
breast cancer patient cohorts showed a lower recurrence-free survival
(Fig. 5d and Supplementary Fig. 15e–k). Of these genes, CCND1, ENY2
and KMT5A had epithelial cell-specific cis-regulatory elements at their
distal regions in luminal breast cancer patient tissue49. Together, these
results suggest G1 and G9 might resemble to cycling breast cancer
persister cells and their 3D chromatin structuresmight be regulatedby
chromatin modifying enzymes.

On the other hand, cell subpopulations, G2, G3, G10 and G11, had
high cycling genes in CADs of scHi-C clusters but low cycling genes in
DEGs of scRNA-seq clusters. REACTOME RNA polymerase II tran-
scription signaling pathway was the top enriched pathway from these
four subpopulations (Fig. 5e). Of 21 enriched genes, CEBPB and
YEATS4 existed in G2, THOC7 and TXNRD1 in G2 and G10, and
COX7A2L, RPS27A, UBE2I, ZNF221 and ZNF223 in G10, while RPRD1A
existed in G3, NELFA, PPM1D and SRAF1 in G3 and G10, and BNIP3L,
BTG2, CNOT6, DYRK2, EAF1, MED1, PABPN1 and TIGAR in G10 (Sup-
plementary Fig. 16a). Higher expression of transcription regulators in
breast cancer patient cohorts was correlated with a lower recurrence-
free survival (Fig. 5f and Supplementary Figs. 16b–h, 17a–e). Among
them, CEBPB, COX7A2L, NELFA, SRSF1, TXNRD1, UBE2I had epithelial
cell-specific cis-regulatory elements at their distal regions in luminal
breast cancer patient tissue49. Collectively, these results suggest that
these four cell subpopulations might resemble to non-cycling breast
cancer persister cells and their 3D chromatin structures might be
regulated by transcription regulators.

To further substantiate our findings, we performed an experi-
mental validation for the drug treatment on the two selected genes

Fig. 4 | Precise identificationof 3D-regulated andbiological-context dependent
cancer cell subpopulations. a Thirteen scRNA-seq clusters (D1–D13) identified
from scRNA-seq data of breast cancer cells. b Number and the composition of
single cells in individual scRNA-seq clusters. cGene expression heatmap of DEGs of
scRNA-seq clusters. d The standardized variance of cycling genes and house-
keeping genes in top 2000 variable genes. *: Two-sided Wilcoxon rank-sum test.
Values in box plot from big to small are maxima, the 75th percentile, median, the

25th percentile andminima. e The distribution of CADs in scHi-C clusters and DEGs
in scRNA-seq clusters according to the number of cycling genes and the number of
housekeeping genes in each cluster. Green line is the cutoff for high cycling genes
and low cycling genes. f Twenty topologically integrating subpopulations (TISPs)
(G1–G20) dependent on the number of cycling genes and cell compositions of the
scHi-C clusters and scRNA-seq clusters.
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identified by our MUDI, PRMT6 and DYRK2. The section of these two
genes was purely due to the commercially available inhibitors to them.
We treatedMS023, an inhibitor to PRMT6, a key regulator in G1 andG9
subpopulations, and LDN-192960, an inhibitor to DYRK2, a key tran-
scriptional regulator in G10. We found both inhibitors showed stron-
ger growth inhibition in MCF7TR cells than that in MCF7 cells
(Fig. 5g, h), as well as impededMCF7TR cells from cell proliferation but
not MCF7 (Fig. 5i–k), demonstrating the capability of the inhibitors of
these regulators in restoring the drug-sensitivity.

Taken together, we propose a mechanistic model with two dis-
tinct 3D-regulated cellular states for the transition of drug-sensitive to
tolerant cancer cells: (1) a drug-sensitive cancer cell subpopulation
with silenced chromatin modifying enzymes initially shows very lower
chromatin interactions (Supplementary Fig. 17a); upon an interimdrug
treatment, this subpopulation activates the enzymes to trigger higher
chromatin interacting activities for the cycling genes, resulting in
reversible cancer persister cells (Supplementary Fig. 17b); under a
long-term drug treatment, they further reshape the altered 3D chro-
matin structures render a cycling drug-tolerant cancer cells (Supple-
mentary Fig. 17c); and (2) another drug-sensitive cancer cell
subpopulation with silenced transcription regulators initially shows
lower chromatin interactions (Supplementary Fig. 17d); upon an
interim drug treatment, this subpopulation activates transcription
regulators to trigger higher chromatin interacting activities for the
non-cycling genes, resulting in reversible cancer persister cells

(Supplementary Fig. 17e); under a long-term drug treatment, they
further reshape the altered 3D chromatin structures render a non-
cycling drug-tolerant cancer cells (Supplementary Fig. 17f).

Discussion
In this study, we developed a novel computational method, MUDI, to
comprehensively integrate scHi-C and scRNA-seq data and to precisely
define distinct 3D-regulated and biological-context dependent cell
subpopulations or TISPs. In the MUDI, we first defined CADs repre-
senting the conserved 3D chromatin structure of any individual scHi-C
cluster. We then integrated CADs with DEGs of each of scRNA-seq
clusters to derive TISPs by implementing an empirical quantitative
formula to calculate an integration score of the interaction frequency
and the gene expression values. A high integration score of a TISP
indicates it is strongly associated with a set of higher expressed genes
with higher chromatin interacting activities. More importantly, the
identified TISPs are readily used to interpret biological-context
dependent 3D-regulated cell subpopulations according to a parti-
cular biologically meaningful factor on individual studies. Further-
more, these 3D-regulated and biological-context dependent cell
subpopulations can be used to elucidate a specific biological
mechanism.

Remarkably, upon the application of MUDI in three stages of
breast cancer cells, we illustrated cycling breast cancer cell sub-
populations (miscellaneous or resistant) have distinctive altered 3D

Fig. 5 | Characteristics of TISPs in breast cancer cells. a The integration score of
G1 and G9. *: Two-sided Wilcoxon rank-sum test. Values in box plot from big to
small are maxima, the 75th percentile, median, the 25th percentile and minima.
b Enrichment of REACTOME chromatin modifying enzymes signaling pathway of
G1 genes. NES normalized enrichment score. p value was determined by
permutation-based calculation with number of permutations at 1000.
c Comparison of the integration score between G1 and G9. *: Two-sided Wilcoxon
rank-sum test. Values in box plot from big to small aremaxima, the 75th percentile,
median, the 25th percentile andminima. d The expression of chromatin modifying
enzymes in relapse-free and relapse breast cancer patient cohort GSE2990.
e Enrichment of REACTOME RNA polymerase II transcription signaling pathway of
the combination of G2, G3, G10 and G11. NES normalized enrichment score. p value
was determined by permutation-based calculation with number of permutations at
1000. fThe expression of transcription regulators in relapse-free and relapsebreast

cancer patient cohort GSE2990. g Real-time live cell growth curve of PRMT6 inhi-
bitor MS023. Cells treated with DMSO as reference. *p <0.05, two-sided paired
Student’s t test, p value is 0.0291. h Real-time live cell growth curve of DYRK2
inhibitor LDN-192960. Cells treated with DMSO as reference. **p <0.01, two-sided
paired Student’s t test, p value is 0.0097. i Cell proliferation assay of MS023 and
LDN-192960 in MCF7 cells. j Cell proliferation assay of MS023 and LDN-192960 in
MCF7M1 cells. *p <0.05, two-sided paired Student’s t test, p value is 0.0262. k Cell
proliferation assay ofMS023 and LDN-192960 inMCF7TRcells. *p <0.05, **p <0.01,
two-sided paired Student’s t test. p value of MS023 vs. DMSO in day 2, 4, 6 are
0.0187,0.0396, 0.0035 individually.p valueof LDN-192960 vs.DMSO inday4, 6 are
0.0302, 0.0307 individually. Three biological replicates were performed, and data
were presented with mean values ± standard deviation in (g–k). Source data are
provided as a Source Data file in (g–k).
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chromatin structures regulated bydifferent regulators. It is reasonable
to speculate these cell subpopulations resemble to breast cancer
persister cells. Future studies will be focused on functionally exam-
ination of breast cancer persister cells. We may apply a Watermelon, a
high-complexity expressed barcode lentiviral library45 to simulta-
neously trace each breast cancer Tam-sensitive cell’s clonal origin and
proliferative state with a short period series of Tam-treatment
(0–14 days), then conduct 3D-FISH, 3C/RT-qPCR and Tam-treatment
to confirm if cycling persister cells is indeed 3D-regulated and can be
re-sensitized.

Interestingly, we found that cell cycle genes highly enriched
within CADs were a key factor to stratify the Tam-sensitive cells from
1-month Tam-treated and Tam-resistant cells. Indeed, many studies
have demonstrated cell cycle pathwayplayed important roles in breast
cancer tamoxifen resistance50–54. For instance, cyclin D1 was essential
for the progression of tamoxifen resistance50 and inner nuclear
membrane protein LEM4 activated cell cycle proteins to render
tamoxifen resistance53, Importantly, our data further linked cell cycle
signaling with 3D chromatin organization. This finding is pretty novel
but not very surprising given that our other recent studies have
demonstrated 3D chromatin architecture was associated with endo-
crine resistance46,55–57.

Furthermore, we identified two key groups of genes, 15 chromatin
modifying enzymes and 21 transcriptional regulators, which were not
only essential in 3D-regulated breast cancer cellular states, but also
predicted a lower recurrence-free survival. Many of these genes have
been extensively demonstrated their functional ormechanistic roles in
different cancers58–72. For example, Protein arginine methyltransferase
PRMT6 was shown to advance the progression in gastric cancer60,
endometrial cancer61 and lung cancer62. Transcription factor CEBPB
stimulated the metabolic reprogramming to increase the occurrence
of cancer67. Phosphorylationof transcriptionmediatorMED1 increased
the drug resistance in prostate cancer70.

During the revision, there are three publications73–75 in which the
authors developed new co-profiling protocols to simultaneously
detect single-cell chromatin architecture and gene expression at the
same cell. Despite of their experimental advantage, the technical
challenges and complex workflows might prevent it to be easily
adopted by many labs. In contrast, our MUDI utilizes a novel compu-
tational method to integrate scHi-C and scRNA-seq data from either
separately on different cells from the same population, or in tandem
from each individual cell. More importantly, ourmethodwas designed
under a clear biological guidance with the following novelties, (1) the
first to discover conserved topological domains of each single-cell
cluster where these domains represent the chromatin structure sig-
natures of the cluster; (2) the first to define the integration scores of
individual genes, and this integration score includes information of
both chromatin structure signature and gene signature. Higher inte-
gration score means higher gene expression levels and higher chro-
matin contacts. This definitionmakes it possible to quantify chromatin
eventsmore precisely; (3) the first to integrate non-simultaneous scHi-
C and scRNA-seq data and identify integrated subpopulations; (4) the
first to investigate single-cell 3D chromatin structure in cancer cells
and todemonstrate how toutilize scHi-C and scRNA-seq tounderstand
single-cell cancer 3D chromatin events; (5) the first to confirm that
novel therapeutic targets could be discovered by the integration of
scHi-C and scRNA-seq data; and (6) the first to demonstrate three
omics-seq (scHi-C, scDNA-seq and scRNA-seq) at single-cell resolution
on the same biological system. Our comprehensive single-cell
sequencing data will benefit the cancer and genome research com-
munities. In addition, our MUDI is able to identify the TISP genes with
higher chromatin interactions but non-differentially expressed. As
shown in Supplementary Fig. 19a, we identified many CAD genes with
non-DEGs in each of nine clusters, including 1946 in C1, 6606 in C3,
1554 inC5 and 3324 in C9, respectively. Upon theMUDI integration, we

obtained 451, 1607, 324 and 802 MUDI genes in C1, C3, C5 and C9,
respectively, and further classified them into high or low chromatin
interactions for each of four clusters such that H1: C1 high; H2: C1 low;
H3: C3 high; H4: C3 low; H5: C5 high; H6: C5 low; H7: C9 high; H8: C9
low (Supplementary Fig. 19b). Since C5 was mainly composed of
MCF7M1 and MCF7TR cells, we thus particularly examined this scH-C
cluster and found there were 153 genes in the high group with higher
integrated scores, i.e., H5 (Supplementary Fig. 19c). Interestingly, GO/
Pathway analyses showed that protein binding, cytosol, protein
transport, negative regulation of cell proliferation, endosome organi-
zation and metabolism were the top significantly enriched terms,
indicating that these genes with higher chromatin interactions but
non-differentially expressed betweenMCF7TR/MCF7M1 andMCF7 are
basic protein binding and involved in transportation, not related to
many canonical functional signaling pathways. We then examined our
MUDI integrated genes with 3083 human genes that could potentially
regulate the dynamic nature of chromatin folding screened by HiDRO,
named as chromatin regulators (CRs)76, and found there were many
overlapped genes for each of four clusters (Supplementary Fig. 19e). In
particular, of 153 H5 genes, 20 and 5 were among Top 3000 and Top
500 CRs, respectively (Supplementary Fig. 19f). Our results thus
strongly demonstrated that our MUDI is able to provide more biolo-
gical insights than using scRNA-seq or scHi-C only.

Overall, we demonstrated 3D-regulated cancer cell subpopula-
tions were distinctly associated with different functional regulators.
Our work might provide mechanistic insights into 3D-regulated het-
erogeneity of developing drug-tolerant cancer cells, giving a rationale
in designing novel therapeutics of treating drug-tolerant cancer.

Methods
MUDI algorithm
After identifying scHi-C clusters by scHiCluster36, and scRNA-seq
clusters by Seurat77, the CADs of each scHi-C cluster were integrated
with DEGs of each scRNA-seq cluster to acquire integration scores. We
defined the integration score calculated by individual genes present
both in CADs and DEGs as the following:

Ig =
FgEg

DR

where Ig is the integration score of a gene. Fg is the relative contact
probability (log2) of scHi-C data. Eg is expression fold changes (log2) of
DEGs of scRNA-seq data.D is the ratio of DEGs of scRNA-seq clusters to
total DEGs. R is the ratio of scRNA-seq cluster cells to total cells. “g”
represents genes present in both scHi-C clusters and scRNA-seq
clusters. The statistical p value of the difference of integration score
was computed byWilcoxon rank-sum test. We further classified scHi-C
clusters into appropriate X scHi-C categories and scRNA-seq clusters
into appropriate Y scRNA-seq categories by the biological-contexts,
cell types or stages. Finally, product of X and Y is the total number of
subpopulations. Each subpopulation has genes with integration score
representing the expression level and chromatin interaction
probability.

Data processing for scHi-C data
The raw reads of scHi-C were first aligned to human HG19 genome,
then filtered by HiC-Pro version 2.11.178 to get the valid pairs. The
correlation of combined single cells to population cells was performed
at the resolution of 1Mb with R package HiCRep version 1.11.079. The
relative contact probabilities of individual cells were computed by
cooltools version 0.4.080 with the compensation of combined single
cells. The TADswere called by Insulation Score12 at 100Kb resolution if
not specifically mentioned. The clustering of single cells was executed
by Python package scHiCluster version 0.1.036. Commonly Associating
Domains (CADs) were defined as the common domains in a particular
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cluster at the resolution of 1Mb, and non-commonly associating
domains (NADs) were those non-common domains in that cluster. The
difference of CADs, NADs and TADs was calculated with Wilcoxon
rank-sum test. Super-enhancers were called with ChIP-seq data of
H3K27ac in tamoxifen-resistant MCF7 cells46 by Rank Ordering of
Super-Enhancers (ROSE)81.

Data processing for scRNA-seq data
The raw reads of scRNA-seq were first aligned to humanHG19 genome
and then feature-barcode matrices were generated with software Cell
Ranger developed by 10X Genomics. The gene expression levels were
further identifiedbySeurat version4.0.377with thefilteringparameters
of min.cells at 3 and min.features at 200 on the module of Create-
SeuratObject, and percent.mt <30 on the module of subset. The
resolution for finding clusters was set to 0.75 on the module of
FindClusters. The differentially expressed genes (DEGs) of clusters
were defined by the module of FindAllMarkers with the parameters of
min.pct at 0.25 and logfc.threshold at 0.25. The difference of stan-
dardized variance between housekeeping genes and cycling genes in
top 2000 variable genes were computed withWilcoxon rank-sum test.

Cell lines and reagents
Human breast cancer parental MCF7 cells and tamoxifen-resistant
MCF7TR cells were derived from previous study46,82–84. Temporal
tamoxifen-resistantMCF7M1 cells were generated fromparentalMCF7
cells treated with 100 nM tamoxifen metabolite 4-hydroxytamoxifen
(4-OHT) (Sigma, Catalog # H7904-5MG) for 1 month (30 days). MCF7,
MCF7M1 and MCF7TR cells were cultured in phenol-free RPMI1640
medium (Thermo Fisher Scientific, Catalog # 11835055) supplemented
with 10% charcoal stripped fetal bovine serum (FBS) (Sigma, Catalog #
F6765-500ML) and 1% Penicillin-Streptomycin (Thermo Fisher Scien-
tific, Catalog # 15140122), while no 4-OHT for MCF7 and MCF7M1 but
supplemented with 100 nM 4-OHT for MCF7TR.

In situ Hi-C (population cells) profiling
In situ Hi-C experiments were performed as previously described with
minor modifications12. Two to five million cells were crosslinked with
1% formaldehyde and then lysed with 0.2 Igepal CA630 to get the cell
nuclei. The pelleted nuclei were solubilized with 0.5% sodium dodecyl
(SDS) and then digested with restriction enzyme HindIII or DpnII. The
restriction fragment overhangs were filled with biotin-14-dATP.
The crosslinked proximity DNA was ligated with T4 DNA ligase. The
crosslinked proteins were degraded by proteinase K. The DNA was
pelleted downwith ethanol and with sonication. A size of 300–500 bp
DNA was selected with AMPure XP beads and then the biotinylated
DNA was pulled down with Dynabeads MyOne Streptavidin T1 beads.
The ends of sheared DNA were repaired with DNA polymerase I. After
the ligation of the adapter, the Hi-C libraries were amplified and pur-
ified. The libraries were sequenced on IlluminaHiSeq 3000Sequencer.
Each sample was conducted in biological replicates. The sequencing
reads were mapped to human HG19 genome with further normal-
ization and filtering by HiC-Pro78.

scHi-C profiling
Single-cell Hi-C experiment was performed majorly referring to Flya-
mer et al.27 withminor revision. Two to fourmillionMCF7parental cells
were fixed for 10min by resuspending the cell pellet in 5ml full culture
medium supplemented with 1% formaldehyde. The reaction was
quenched by addition of 2Mglycine to a final concentration of 125mM
and incubation for 5min on ice. After washedwith phosphate-buffered
saline (PBS), cells were resuspended in lysis buffer (50mMTris-HCl pH
8.0, 150mM NaCl, 0.5% NP-40, 1% Triton X-100, 1X protease inhibitor
cocktail and incubated on ice for at least 45min. The lysed cell pellet
was resuspended in 100 µl of 0.3% SDS in 1X NEBuffer 3 and incubated
at 37 °C for 1 h. Then the resuspension was diluted with 330 µl of 1X

NEBuffer 3 and 53 µl of 20% Triton X-100 and incubated at 37 °C for 1 h
to quench SDS. The chromatin pellet was further digested with 600U
restriction enzyme DpnII (New England BioLabs, Catalog # R0543M)
overnight at 37 °C with rotation. On the second day digestion was
inactivated by incubation at 65 °C for 20min. The digested cell nuclei
were ligated with 50U T4 DNA ligase for 4 h and then washed with
sterile PBS. The sample was stained with two drops of Hoechst 33342
(ThermoFisher Scientific, Catalog # R37165) for 30min at 37 °C. Single
cells were picked up by FACS sorter and loaded into 96-well PCR plate
which each well filled with 5 µl sample buffer from the GenomiPhi V2
DNA amplification kit (previously GE Healthcare currently Cytiva,
Catalog # 25660032), covered by 5 µl mineral oil after the sorting, then
incubated at 65 °C overnight. The genomic DNA were amplified
according to Kumar et al.85. The amplified genomic DNA of amounts
more than 1 µg were prepared for sequencing with NEBNext Ultra II
DNA Library Prep Kit for Illumina (New England BioLabs, Catalog #
E7645L).

scRNA-seq profiling
Cells were digested with 0.5% Trypsin-EDTA (Thermo Fisher Scientific,
Catalog # 15400054) at the optimal time to avoid cell death and cell
aggregation. After centrifugation, the cell pellet was resuspended in
PBS (Thermo Fisher Scientific, Catalog # 14190250) at the concentra-
tion of 700–1200 cells per µl. If the viability of cells was higher than
90%, cells were then filtered with 40 µm sterile cell strainer (Fisher
Scientific, Catalog # 22363547) to get individual cells. The samples of
single cells were loaded on 10X Genomics Chromium system to run
single-cell RNA-seq protocol according to the technical manual.

scDNA-seq profiling
MCF7,MCF7M1 andMCF7TR cells were collected and sent to BioSkryb
Genomics for isolation of single cell and scDNA-seq libraries prepara-
tion with the approach of Primary Template-directed Amplification
(PTA)86. ResolveDNA Whole Genome Amplification Kit (Catalog #
100136, BioSkryb Genomics) was used for amplification of genomic
DNA. ResolveDNALibrary PreparationKit (Catalog# 100080, BioSkryb
Genomics) was used for the library construction. Libraries of scDNA-
seq were sequenced on Illumina NovaSeq 6000 system. Sequencing
raw reads were mapped to human HG19 genome and copy number
variation was identified by SCCNV version 1.0.287.

Enrichment of signaling pathway
For scRNA-seq data, genes were pre-ranked by standardized variance
then enriched by Gene Set Enrichment Analysis (GSEA) version 4.1.088.
Kyoto Encyclopedia of Genes and Genomes (KEGG) were used as gene
sets database. For integrated scRNA-seq and scHi-C data, genes were
pre-ranked by integration score then enriched by GSEA. REACTOME
Pathway Database were used as gene sets database.

Recurrence-free survival analysis
Two cohorts of breast cancer patients were used for survival analysis.
Cohort GSE2990 was from Sotiriou et al.89 and cohort GSE6532 was
from Loi et al.90. The patients were filtered by having tamoxifen
treatment but no radio therapy or no other chemotherapy. The sur-
vival analysis was performed by R package Survival version 3.2-11. The
patients were stratified by gene expression levels at the top quartile
(25%) as high expression vs. the rest (75%) as low expression. The log-
rank test was used for calculation of p value.

Incucyte real-time live cell imaging
For a real-time live cell imaging of MCF7, MCF7M1 and MCF7TR, cells
were seeded in 96-well plates at a density of 1 × 103 cells per well. The
cell media was replaced after 24 h and cells were treated with MS023
(10 µm) and LDN (5 µm) and the proliferation is monitored by the
analysis of occupied area (% confluence) of cell images over time. As
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cells proliferate, the confluence increases. Confluence was an excep-
tional replacement for proliferation, until cells were densely packed or
when large changes in morphology occurred. The graphs from the
phase of cell confluence area were recorded from day 0 to day 6
according to the IncuCyte S3 Live-Cell Analysis System (Sartorius)
manufacturer’s instructions. Incucyte S3 software version 2020B was
used for the analysis.

Cell proliferation assay
Cell viability was measured by CCK-8 (CCK-8, Dojindo, USA) assay
following themanufacturer’s instructions. In brief,MCF7,MCF7M1 and
MCF7TR cells were harvested and plated at a density of 1 × 103 cells per
well in96-well plates (Corning Inc) and cultured in an incubator 5%CO2

incubator at 37 °C. After 24 h, the culture media was replaced, and the
cells are treatedwithMS023 (10 µm)andLDN (5 µm). At the endof each
time point, 10μL of CCK-8 solution was added to each 96-well plate
and themixturewas incubated for 1 h in the incubator at 37 °C. TheOD
value of each well was measured by BioTek™ ELx800™ Absorbance
Microplate Reader at 450nm. The assay was repeated three times.

Simulation of 3D chromatin structure
Compartments of single cells were called by CscoreTool version 1.111 at
50Kb resolution with the compensation of combined single cells. The
compartments were then annotated as A1 (Cscore≥0 and ≤0.2), A2
(Cscore >0.2), B1 (Cscore <0 and >−0.2) and B2 (Cscore ≤−0.2) fol-
lowed by simulation with chromatin dynamics software Open-
MiChroM version 1.0.091. The simulated structures were visualized by
UCSF Chimera version 1.1592.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawandprocessed scHi-Cdata forMCF7,MCF7M1andMCF7TRcells are
deposited in GEO under accession number GSE194308. Raw and pro-
cessed scRNA-seq data for MCF7, MCF7M1 and MCF7TR cells are
deposited in GEO under accession number GSE195610, and raw and
processed in situ Hi-C data for MCF7, MCF7M1 and MCF7TR cells are
deposited in GEO under accession number GSE195810. Raw and pro-
cessed scDNA-seq data for MCF7, MCF7M1 and MCF7TR cells are
deposited in GEO under accession number GSE239435. WTC11C6 and
WTC11C28 scHi-C datasets are publicly available datasets from 4D
Nucleome Project Data Portal under accession numbers 4DNESJQ4RXY5
and 4DNESF829JOW. WTC11 scRNA-seq datasets are publicly available
datasets from the ArrayExpress database under accession number E-
MTAB-626893. Source data are provided with this paper.

Code availability
The source code of MUDI is available at https://github.com/
yufanzhouonline/MUDI94. Source data and source code for figures
are provided with this paper at https://github.com/yufanzhouonline/
Nat_Commun_202495.
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