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Microbial communities exhibit intricate interactions underpinned by meta-
bolic dependencies. To elucidate these dependencies, we present a workflow
utilizing random matrix theory on metagenome-assembled genomes to con-
struct co-occurrence and metabolic complementarity networks. We apply this
approach to a temperature gradient hot spring, unraveling the interplay
between thermal stress and metabolic cooperation. Our analysis reveals an
increase in the frequency of metabolic interactions with rising temperatures.
Amino acids, coenzyme A derivatives, and carbohydrates emerge as key
exchange metabolites, forming the foundation for syntrophic dependencies,
in which commensalistic interactions take a greater proportion than mutua-
listic ones. These metabolic exchanges are most prevalent between phylo-
genetically distant species, especially archaea-bacteria collaborations, as a
crucial adaptation to harsh environments. Furthermore, we identify a sig-
nificant positive correlation between basal metabolite exchange and genome
size disparity, potentially signifying a means for streamlined genomes to
leverage cooperation with metabolically richer partners. This phenomenon is
also confirmed by another composting system which has a similar wide range
of temperature fluctuations. Our workflow provides a feasible way to decipher
the metabolic complementarity mechanisms underlying microbial interac-
tions, and our findings suggested environmental stress regulates the coop-
erative strategies of thermophiles, while these dependencies have been
potentially hardwired into their genomes during co-evolutions.

Microbial ecosystems thrive on intricate webs of interactions, often advances in sequencing and computational modeling, microbial co-
obscured by their vast diversity and hidden by limitations in conven-  occurrence networks, constructed from patterns of species co-
tional culture-based methods'”. While studying pairwise interactions occurrence across environmental samples, have become a powerful
provides valuable insights**, understanding the complete picture tool to infer interspecies connections®®. The use of co-occurrence
within natural complex communities remains challenging’. With the  network analysis became popular after several ready-to-use workflows
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with user-friendly visualizations were published’ . However, as sev-
eral previous studies argue, co-occurrence alone does not provide
conclusive evidence of ecological interactions™ . To address this
limitation, we combine co-occurrence data with evidence of metabolic
complementarity to infer more robust interactions and explore
potential underlying mechanisms.

Metabolic dependencies have been proposed as a major driver of
species co-occurrence’®. However, it has also been suggested that
species co-occurrence could in turn drive metabolic dependencies®.
This highlights the need for a nuanced understanding of the dynamic
interplay between metabolic interactions and microbial community
assembly. Long-read sequencing and improved assembly enable high-
quality metagenome-assembled genomes (MAGs), opening doors to
map metabolic cooperation and competition in complex communities
through nutrient exchange'”’. Although genome-scale metabolic
models (GSMMs), along with flux balance analysis (FBA), have shown
potential in predicting metabolite exchange and growth under curated
laboratory conditions®?, there remains substantial potential for fur-
ther exploration in this area. Integrating these models with co-
occurrence networks to validate and refine predictions of metabolic
dependencies within uncontrolled natural habitats is an untapped
frontier.

Geothermal springs, characterized by extreme temperatures,
fluctuating ionic strengths, and enriched minerals, harbor a unique
community of thermophiles with specialized physiological and meta-
bolic adaptations” . These adaptations often involve genome
streamlining, leading to reduced genomes and temperature-adapted
proteins®®. Yet, thermophiles exhibit remarkable genomic plasticity
and metabolic flexibility>. Metabolic reconstructions of some geo-
thermal phyla suggest dependence on interspecies exchange of amino
acids, vitamins, and cofactors, implying close syntrophy®***. This is
further supported by observations of highly cooperative communities
formed by small-genome auxotrophs, where cross-feeding promotes
mutual benefit* . This suggests that harsh geothermal conditions
while restricting growth, may simultaneously drive synergistic inter-
actions. Nevertheless, this hypothesis requires a systemic examination.
Addressing this question may yield insights into the ongoing debate
regarding the prevalence of either antagonistic or synergistic interac-
tions within natural microbial communities, as well as how environ-
mental stresses affect their prevalence® 2

Here, we leverage the power of random matrix theory (RMT)
for robust co-occurrence and metabolic network constructions
while tapping into the rich information contained within MAGs®**.
This synergy allows us to identify species co-occurrence patterns
and predict potential metabolic interdependencies based on
metabolic pathways. Adopting this powerful tool, we show that
metabolic complementarity intensifies with rising temperatures, as
thermophiles under heat stress increasingly rely on interspecies
exchange of essential metabolites for survival. Additionally, we
demonstrate that phylogenetic distance dictates cooperative stra-
tegies, with closely related thermophiles competing for similar
resources while distantly related ones engage in mutually beneficial
metabolic exchanges. Furthermore, our findings reveal that species
with small genomes, potentially lacking vital metabolic pathways,
depend heavily on metabolic partnerships for survival and growth.
Our research offers a deeper understanding of microbial synergy in
challenging environments, providing valuable insights into the
interplay between environmental stress, metabolic dependencies,
and the evolution of cooperative strategies within microbial
communities.

Results

Network construction and thermal preferences of thermophiles
To comprehensively analyze both co-occurrence and metabolic com-
plementarity networks among thermophiles, we developed a unique

bioinformatic workflow (Fig. 1) and seamlessly integrated it into the
iNAP platform (https://inap.denglab.org.cn)* (Supplementary Fig. 1),
as updated iNAP 2.0%. This workflow leverages multiple metabolic
complementarity indices, infers the network thresholds of co-
occurrence and metabolic complementarity using the random
matrix theory (RMT), extracts shared interactions within both network
inferences, and identifies potential exchangeable metabolites.

A total of 449 million Illumina short reads (223.35 Gb of raw bases,
N=40) and 51 million Nanopore long reads (52.01 Gb of raw bases,
N=40) were obtained from the hot spring sediment samples across a
temperature gradient (63.5 °C-85.8 °C), with eight samples each hav-
ing five replicates. The Nonpareil method confirmed the estimated
average coverage of each sample above 80%, indicating sufficient
sequencing depth (Supplementary Fig. 2). There is an increasing trend
of sequencing diversity (NVz) from the high- to low-temperatures
(Fig. 2a), indicating that the environmental conditions of extreme
thermal temperatures have reduced the sequence diversity of its
microbial communities, and the inferred species diversity might be
more specialized. After assembly, binning, and CheckM quality con-
trol, 401 medium- and high-quality metagenome-assembled genomes
(MAGs) were retained for subsequent network analysis.

The taxonomic assignment revealed that 85.78% of MAGs belon-
ged to 38 bacterial phyla, whereas 57 MAGs were affiliated with seven
archaeal phyla (Fig. 2b, Supplementary Data 1). The MAG abundance
varied significantly across temperature ranges (PERMANOVA,
p <0.001) (Fig. 2¢), leading to the classification of sampling sites into
three groups: extremely thermal (ET, 78.5-85.8°C, 2 samples x5
replicates), highly thermal (HT, 67.5-73.9 °C, 3 samples x 5 replicates),
and moderately thermal (MT, 63.5-65.8 °C, 3 samples x 5 replicates).
Most MAGs exhibited distinct temperature preferences, with only a
few evenly distributed across the gradient. For example, 80.52% of the
relative abundance assigned to Thermoproteota MAGs originated from
the ET group, highlighting this archaea’s strong preference for extre-
mely high-temperature habitats. In contrast, Cyanobacteria and Bac-
teroidota preferred the cooler group, with 96.28% and 96.98% of
relative abundance originating from HT and MT groups (Fig. 2d, Sup-
plementary Data 2).

Archaea also displayed clear temperature preferences despite
accounting for only 7.31% of relative abundance across all samples.
While Thermoproteota favored the ET group, Micrarchaeota, the sec-
ond most abundant, exhibited a unique distribution, with nearly equal
contributions from HT and MT groups. These findings underscore the
diverse thermal adaptations and preferences of thermophile commu-
nities within this hot spring ecosystem.

The co-occurrence patterns of thermophiles within three
temperature groups

Three co-occurrence networks were constructed using the relative
abundance information, employing the RMT-based method (Fig. 3,
Supplementary Data 3). Positive edges constituted the majority in the
three networks (ET: 98.82%; HT: 75.54%; MT: 77.99%). Post-extraction
of positive edges as subnetworks, the R? values of the power-law model
for the co-occurrence networks of the HT and MT groups were 0.59
and 0.53, respectively, but the ET group could not fit well to the power-
law distribution, losing its scale-free property. We found that the ET
group subnetwork exhibited a higher network density, shorter average
path distance (GD), lower harmonic geodesic distance (HD), higher
average clustering coefficient, and reduced modularity compared to
the other two subnetworks (Table 1). These characteristics suggested a
tighter interaction structure in the ET group subnetwork than in the
other two subnetworks. A harsh environment (high temperature)
induces tight and synergistic interactions among thermophiles. Fur-
thermore, the global topological properties of the three networks were
significantly different from the respective randomized networks
(generated 100 times), demonstrating that all observed interactions
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Fig. 1| A schematic diagram of our study workflow. The entire analytical pro-
cedure can be segmented into four distinct parts. a Samples were collected, and
DNA extraction was performed. Long contigs were obtained by hybrid assembly of
short and long reads. b MAG abundance was calculated by read-length mapping
after genome binning. ¢ The genome-scale metabolic model of MAG was con-
structed by protein prediction after genome binning, and the pairwise metabolic

(Potentially transferable

Mi Complementarity Matrix metabolites)

complementarity index (Mlcomptementariry) Of MAGs was calculated. d An RMT-based
method was used to generate a co-occurrence network and a metabolic com-
plementary network, and their common edges were analyzed further to provide
metabolic clues for potential co-occurrence of species. This figure was created with
BioRender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.

filtered by RMT cutoff were not randomly connected (Table 1, one
sample t-test).

The inferred pairwise metabolic complementarity among
thermophiles

To assess metabolic dependencies, we reconstructed genome-scale
metabolic models for each MAG. We defined the PhyloMint metabolic
complementarity index (Mlcompiementariey) tO quantitatively assess the
degree of metabolic dependencies between each pair of MAGs within
three temperature groups (see “Methods” section). Specifically, 29
MAGs were unique to the ET group, while 70 MAGs were detected
across all temperatures, likely representing heat-tolerant generalists.
Both approaches revealed a surprising rarity of synergistic metabolic
interactions (Fig. 4), while the RMT-based threshold yielded an even
more stringent classification, with less than 3% of interactions deemed
significant (ET: 4.13%; HT: 4.68%; MT: 6.46%) (Fig. 4).

Notably, observed synergistic interactions displayed a marked
asymmetry of Ml ompiementariey Values under all three groups. We cate-
gorized these into mutualistic (both Ml.ompiementaricy Values of pairwise
MAGs exceeding the threshold) and commensalistic (only one
Mlcompiementariey Value of pairwise MAGs exceeding the threshold)
metabolic interactions. Regardless of the threshold used, mutualistic
interactions were extremely rare, constituting less than 0.3% of all pairs
in any group (Fig. 4). This suggests that metabolism-based synergy
within the hot spring community is primarily driven by unidirectional
feeding, with one thermophile benefiting from the metabolic products
of another. In particular, the species pairs involved in commensalistic
and mutualistic interactions exhibit dramatically different patterns
regarding genome size differences. Across the three temperature
groups, the average genome size differences (estimated genome size
of the giver minus that of the taker) identified as commensalistic
interactions by the RMT threshold were ET: 716 Kbp, HT: 1204 Kbp, and

MT: 879 Kbp. However, the average genome size differences for
mutualistic interactions were close to O for all three temperature
groups. In all commensalistic interactions, the proportion of interac-
tions where the estimated genome size of the taker is less than 2 Mbp
and that of the giver is more than 2 Mbp accounted for as high as
31.29% (87 pairs) in the ET group, while in the HT and MT groups, these
values were 37.01% (624 pairs) and 29.87% (1057 pairs), respectively.
These results indicated that most metabolic dependency between one
streamlined genome and another more comprehensive genome is a
more prevalent pattern in commensalistic interactions.

Following RMT threshold determination (Fig. 4), the constructed
metabolic networks for the ET group posed more robust scale-free
properties than that of the occurrence networks (Table 2). In addition,
the topological properties of metabolic networks varied across tem-
peratures. The hottest ET network, despite its smaller size, exhibited
the highest average clustering coefficient, highest density, and short-
est communication paths (Table 2), suggesting a highly inter-
connected community in this harsh environment. However, the
patterns in average degree, average path distance, and harmonic
geodesic distance were opposite to those of the co-occurrence net-
works. Such findings illustrated that metabolic complementarity and
co-occurrence networks do not exhibit the same characteristics of
microbial communities, which were then reflected in the topology of
the network. The hub node identification using z;~P; analysis illumi-
nated the key players in the metabolic networks (Supplementary
Data 4). The ET network, with 36 hubs, hosted 6 archaeal hubs (3
connector hubs, 1 module hub, and 2 network hubs), including 4
assigned to Thermoproteota, 1 to Asgardarchaeota, and 1 to Aenigma-
tarchaeota. The larger HT and MT networks revealed diverse hubs (137
and 97), while both contained hubs from Thermoproteota, Micrarch-
aeota, and Methanobacteriota. These results indicated that despite
their low abundance, archaea, particularly Thermoproteota and
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Fig. 2 | Display of sequence diversity and MAG taxonomic distribution across
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Methanobacteriota, emerge as essential hubs across all temperature
networks, demonstrating their unique metabolic capabilities and
indispensable roles in the thermophile communities.

To understand how microbial interactions arise, we investigated
the relationships between phylogenetic distance (Faith’s PD) and the
co-occurrence patterns/ metabolic complementarity. The co-
occurrence strength, measured by Spearman’s correlation, nega-
tively correlated to PD in all temperature groups (Fig. 5a-c). However,
a fascinating pattern emerged after RMT filtering (cutoff = 0.830). The
density distribution of PD exhibited two distinct peaks: one near 0 and
another near 2. This suggested two potential drivers of co-occurrence:
the close association of similar species with shared resource require-
ments (PD at peak 0) and the co-occurrence of phylogenetically distant
species with complementary metabolic needs (PD at peak 2). Besides,
significant positive correlations between Ml.opiementaricy and PD were
observed in all temperature groups (Fig. 5d-f), indicating that distantly
related MAGs were more likely to exhibit strong metabolic depen-
dencies. This trend was particularly pronounced in the hottest tem-
perature. Notably, after RMT filtering, those MAG pairs of PD lower
than 1 became rare, with most values clustering around 2. It suggested
that the analysis of metabolic complementarity omitted co-
occurrences based on phylogenetic proximity, highlighting the
importance of metabolic complementarity between distantly related
species.

Genomic clues to species metabolic synergies

Genome sizes and contents were shown to be crucial connecting links
for metabolic interactions within the hot spring community, which
also were intricately linked to nutrient requirements. The estimated
genome sizes of MAGs distributed at different temperatures

underwent a transition from negative to positive correlation with
temperature from the ET group (T85 and T78) to lower temperature
(Fig. 6a). In harsh environments with extremely high temperatures,
small-genome species tend to occupy higher abundances. However,
when the environmental temperature drops to a range where most
species can adapt, the small-genome species no longer hold this
abundance advantage and tend to occupy only a small abundance in
the environment. Genome size was also confirmed to correlate with
the proportion of genes in the genome that perform different func-
tions (Fig. 6b). Estimated genome size showed a significant positive
correlation with the proportion of genes involved in Secondary meta-
bolites biosysthesis, transport and catabolism (COG-Q, Spearman’s
Rho =0.670, p < 0.001), Carbohydrate transport and metabolism (COG-
G, Spearman’s Rho = 0.473, p < 0.001), Lipid transport and metabolism
(COG-1, Spearman’s Rho = 0.234, p < 0.001) and /Inorganic ion transport
and metabolism (COG-P, Spearman’s Rho=0.125, p<0.05). Con-
versely, smaller genomes prioritized housekeeping functions like
Translation, ribosomal structures and biogenesis (COG-J, Spearman’s
Rho =-0.932, p < 0.001), Nucleotide transport and metabolism (COG-F,
Spearman’s Rho=-0.634, p<0.001) and Replication, recombination
and repair (COG-L, Spearman’s Rho = -0.462, p < 0.001). Furthermore,
a linear mixed-effect model was constructed to reveal that when
genome size was set to be random effect, differences in biological
functions such as energy production and conversion, metabolism of
nucleotide, amino acid and lipid had a strong positive effect on
Mlcompiementariey (Fig. 6€). The Mlcompiementariey Of pairwise MAGs sig-
nificantly increased with the difference in genome sizes (Fig. 6d-f).
This correlation was strongest in the ET group, suggesting that gen-
ome size plays more crucial role in shaping metabolic partnerships in
harsh environments. These results reflected a trade-off of smaller size
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Fig. 3 | The co-occurrence networks of three temperature groups and their corresponding positively-linked subnetworks. a-c Network visualizations of co-
occurrence networks of three temperature groups. d-f Corresponding positively-linked subnetworks of three temperature groups.

Table 1| The statistical properties of the co-occurrence networks (positive links) of MAGs within three temperature groups

Global Properties ET HT MT
RMThreshold 0.830

Total nodes 19 230 294
Total links 925 902 173

R square of power-law 0.100 0.587 0.529
Average degree (avgK) 15.546 7.843 7.980
Average clustering coefficient (avgCC) 0.745 0.740 0.710
Average path distance (GD) 2.280 2.459 4.476
Harmonic geodesic distance (HD) 1.738 1.818 3.050
Density 0.132 0.034 0.027
Modularity (No. of modules) 0.387 (9) 0.752 (30) 0.757 (33)

Randomized Network Indexes (100 iterations, data are presented as mean values + standard deviation)

Average clustering coefficient (avgCC) 0.331+£0.016*** 0.07£0.008*** 0.042 +0.006***
Average path distance (GD) 2.206 +0.023*** 2.904 +0.034*** 3.003 +0.021***
Harmonic geodesic distance (HD) 0.512+0.004 0.382+0.003 0.366 +0.002
Modularity 1.953+0.014*** 2.62+0.02*** 2.729 £0.014***

*p <0.05, **p < 0.01, ***p <0.001 (N =100, One sample t-test, two-sided).

genomes, where the genes associated with genetic information sto-
rage and processing were retained to a greater degree while genes
related to various metabolisms underwent loss, relying on synergistic
interactions to compensate for their limited metabolic repertoire.
However, it is essential to consider that the absence of specific genes
might also be due to incomplete genome reconstruction, given the
accepted cutoff for MAG completeness at 50%.

More genomic clues of species synergies were found in the
overlapped partnerships between co-occurrence and metabolic
complementarity networks. Only a handful partnerships (7, 49, and
58 in the ET, HT, and MT groups, respectively) exhibited strong
metabolic complementarity alongside persistent co-occurrence
(Supplementary Data 5). Among these partnerships, 274 metabo-
lites were detected as potentially transferable, while 58 were
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Fig. 4 | The distributions of three categories of interactions based on the pairwise Mlcomprementariey Values. In network graphs, gray links represent asymmetrical
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coenzyme A derivatives. Amino acids (with peptides and analogs)
and carbohydrates (and carbohydrate conjugates) followed, with 43
and 36, respectively. There were also 30 molecules classified as
nucleosides, nucleotides, and analogs deemed to be potentially
transferrable. Notably, between those paired species, the types of
metabolites potentially transferred from one to the other were quite
different (Supplementary Data 5).

In exploring the intricacies of species metabolic synergies, our
focus was drawn to 17 archaea-bacteria interactions, which were
supported by both metabolic networks and co-occurrence networks,
indicating that inter-domain synergies were prevalent in harsh
environments such as hot springs. In these interactions, there were
some MAGs that exhibited the properties of co-occurrence and
metabolic complementarity with multiple other species. For
instance, an archaeal MAG (T64.bin.92, Micrarchaeota phylum) had
seven distinct bacterial partners (Fig. 7). This centrally positioned
MAG, characterized by its smaller estimated genome size of
0.857 Mbp, predominantly assumed the role of a taker in these
interactions. This was evidenced by its substantial reliance on
obtaining several types of metabolites, such as some coenzyme A
derivatives and other crucial metabolic need that it cannot fulfill
endogenously, from other species. Despite its taker centric position,
T64.bin.92 contributed to these commensalistic relationships by
providing potential surplus materials like carbohydrates and
nucleoside/nucleotide- related substances, embodying a reciprocal
dynamic in these interactions. This necessity for external coenzyme
A derivatives, vital for biosynthesis reactions involving acyl transfers,
underlines the significant dependence of T64.bin.92 and its partners.
Furthermore, its requirement for certain inorganic substances,
including various metal ion and non-metal compounds from its
metabolic counterparts, further illustrated the complexity and sig-
nificance of its role as a taker. However, it is important to note that
these conclusions are based on genetic potential inferred from
genomic data. To confirm the actual metabolic exchanges and
interactions, additional validation with functional omics and meta-
bolomics data is necessary.

The validation of our study on composting system experiment
In hot spring habitats, we noticed that symmetric interactions
(mutualism) were rare. Besides, in commensalistic and mutualistic
interactions, the genome size differences between species pair var-
ied. In a similar vein, our findings from a composting system where
temperature is a key stress factor mirror those from hot springs. A
low occurrence of mutualistic interactions were observed across
different sampling time (temperature) groups: DOO(7T,,=26.02 °C),
DO5(T4yg= 64.29 °C), and D25(T 4, = 41.35 °C), with mutualism rates
at 0.23%, 0.087%, and 0.23%, respectively. Asymmetrical interac-
tions, suggesting commensalism, were slightly more common at
4.23%, 2.73%, and 4.18%. The genome size differences in commen-
salistic interactions at DOS5 were around 1.36 Mbp, similar to findings
in hot springs, whereas mutualistic interactions across all groups
showed negligible genome size differences (Supplementary Fig. 3).
The correlation between phylogenetic distance and pairwise
Ml compiementaricy Was also observed to be significant in composting
system. Specifically, DO5, as the highest temperature sample in the
experiment, showed the strongest positive correlation. Furthermore,
the pattern that the greater the genome size difference between two
species corresponds to higher their complementarity potential was
confirmed by testing the significance of the correlation between
Ml comptementaricy and genome size difference (DOO: Spearman’s Rho =
0.122, p<0.001; DOS: Spearman’s Rho=0.213, p<0.001; D25:
Spearman’s Rho =0.090, p < 0.001).

The sequencing data from the composting experiment recovered
few overly streamlined genomes, suggesting that such genomes might
arise from long-term selection rather than short-term temperature
changes. Nevertheless, we observed asymmetrical synergistic interac-
tions, with a significant proportion being commensalistic (Supple-
mentary Fig. 4). These interactions showed a considerable difference
in genome size, particularly in the highest temperature group (genome
size difference: DOO, 815 Kbp; D05, 1368 Kbp; D25, 525 Kbp), similar to
the hot spring habitats. This implies that high temperatures are a
crucial factor driving synergy between genomes of vastly differ-
ent sizes.
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Table 2 | The statistical properties of the metabolic complementarity networks of MAGs within three temperature groups

Global Properties ET HT MT
RMThreshold 0.338

Total nodes 16 273 338

Total links 295 1749 3677

R square of power-law 0.395 0.495 0.418

Average degree (avgK) 5.086 12.813 21.757
Average clustering coefficient (avgCC) 0.652 0.415 0.378

Average path distance (GD) 2.003 1.990 1.969
Harmonic geodesic distance (HD) 1.944 1.933 1.899

Density 0.044 0.047 0.065
Modularity (No. of modules) 0.237 (5) 0.190 (4) 0.151 (3)
Randomized Network Indexes (100 iterations, data are presented as mean values * standard deviation)

Average clustering coefficient (avgCC) 0.003 £ 0.004*** 0.004 +0.005*** 0.014 +0.006***
Average path distance (GD) 1.995 + 0.006*** 1.983 + 0.006*** 1.96 +0.004***
Harmonic geodesic distance (HD) 0.516 +0.001 0.519+0.001 0.528 +0.001

Modularity 1.939 £0.004***

1.929 +0.004** 1.893 £0.002***

*p<0.05, **p<0.01, **p <0.001 (N =100, One sample t-test, two-sided).
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phylogenetic distance (PD) of three temperature groups. d-f The correlations
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sided). The density charts describe the distribution of interactions. The density
curves above each plot indicate the distribution of interactions along PD. The inset
graphs present the 2-dimensional density distribution of nodes.

Discussion

Although some evidence has indicated that metabolic exchanges are
ubiquitous, detecting those synergistic metabolic interactions in nat-
ural communities is still highly challenging’. Here, we built a bioin-
formatic workflow integrating co-occurrence with metabolic network
approaches using metagenomics sequencing datasets. There are two
primary considerations for this workflow construction. First, either co-
occurrence or metabolic network approaches have their advantages
and defects. The current metabolic network approaches mainly infer
synergistic interaction by measuring the metabolic complementarity

dependency or metabolite exchange potential between any two
microbial genomes'®***’, However, those two species may be out of
synergy in time and space due to lack of contact. Conversely, co-
occurrence network approaches infer species relationships in a series
of real natural communities, but they only reflect superficial co-
occurrence patterns that might not indicate true ecological
interactions'®"*, Therefore, we aim to combine the strengths of both
approaches to address their limitations (Fig. 1). Second, we applied the
random matrix theory (RMT) to construct the metabolic network
models, alleviating unreliable synergistic interactions. The RMT
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likelihood (REML) estimation. Data are presented as mean values + standard errors
of the estimated effect sizes. Bar length and error bar indicated the mean values and
standard errors of the estimated effect sizes. Significance test was conducted using
a t-test of Satterthwaite’s methods (number of observations n=80,200 for non-
self-loop pairwise interactions between 401 MAGs). Significant effects are repre-
sented by asterisks: ***p < 0.001, **p < 0.01, ‘ns’ stands for not significant.

d-f Correlation between Mlcompiementariy and genome size difference. The fitted
curve was modeled using the generalized linear model. The correlation was tested
using Spearman’s rank correlation test (two-sided).

method could obtain the lowest false positives in correlation-based
networks*>*°, In a synergistic metabolic network, there is a similar
requirement for threshold determination on metabolic com-
plementarity dependencies. Therefore, we established a publicly
available workflow integrated into our iNAP pipeline to facilitate ana-
lyses based on both co-occurrence and metabolic networks.

Using this workflow, we yield some insights into how thermo-
philes within geothermal ecosystems adapt to the scorching heat
through their synergies. Both co-occurrence and metabolic com-
plementarity networks revealed that the network density increased
significantly with the rising temperatures (Figs. 3 and 4). It suggested
that thermophiles may form tighter connections under extreme heat
and engage in more frequent material exchanges. These collaborations
could serve as a crucial adaptation strategy, fostering community
survival and enhancing resistance stability’*>. Some previous studies
have demonstrated that thermophiles may prioritize amino acid
assimilation to cope with nitrogen limitation®’, while some may even
adapt by exchanging or acquiring DNA from the environment®™. Our
metabolic networks provided additional evidence that the species

achieved high community function stability at high temperatures by
enhancing the efficiency of resource and information transfer (Fig. 6¢,
Supplementary Data 5).

Our analysis also revealed some genomic clues for metabolic
complementarity among thermophiles. As species diverged further on
the evolutionary tree, their metabolic synergy intensified, particularly
at extreme temperatures (Fig. 4). This aligns with previous findings
that species with less overlap in their metabolic abilities find greater
benefit in partnering with distant relatives*’. This observation likely
stems from underlying genomic differences. Distant phylogenetic
relationships often translate to greater genomic disparities, leading to
variations in essential compounds needed for survival®**, Further-
more, we also found that thermophiles inhabiting extremely heat
niches harbored the smallest average genomes (Fig. 6¢) that stream-
lined to minimize substrate and energy requirements (Supplementary
Data 5), consistent with the Black Queen Hypothesis?**". Consequently,
to maintain their vital metabolic activities, species with reduced gen-
ome sizes were compelled to engage in more frequent metabolic
interactions with other species. Finally, differences in genomic
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features, particularly in gene function distribution, are more likely to
occur between distantly related species with complementarity meta-
bolisms (Fig. 6¢). We observed that species with smaller genomes
prioritize genes crucial for genetic information storage and proces-
sing, potentially reflecting a strategy to conserve essential functions
while relying on external sources for metabolic needs****%, This sug-
gested a symbiotic approach to survival under harsh stress, where core
genetic elements are preserved while costly metabolic tasks are out-
sourced to their synergistic partners.

Notably, these synergistic relationships can be asymmetrical®.
The distinct patterns observed in genome size differences between
commensalistic and mutualistic interactions underscore this imbal-
ance. Our results illuminated that a considerable proportion of
synergistic relationships are commensalistic (Fig. 4). In these com-
mensalistic interactions, there is a significant tendency for one parti-
cipant (the taker) to have a streamlined genome, while the other (the
giver) possesses a comparatively larger genome. This is particularly
evident in the extremely thermal group, where over half of the com-
mensalistic interactions involve a taker with a genome size streamlined
to lower than 2 Mbp (Fig. 7). Similar trends, though less pronounced,
are observed in the HT and MT groups. These findings suggest an
ecological strategy among geothermal microbial communities. The
commensalistic relationships often formed between microorganisms
where one has undergone genome streamlining, forming loss of
function (LOF), suggesting a specialized, especially energy-efficient or
metabolism-conserving role, while their partners maintain a larger,
potentially more versatile genomic repertoire. This dynamic could
reflect an evolutionary optimization, where streamlined genomes
reduce metabolic redundancy, relying instead on the metabolic

versatility of their partners with more complete genomes and various
capabilities. In contrast, mutualistic interactions, where both partici-
pants benefit, showed different genome patterns. These mutualistic
relationships often involve species with more balanced genomic cap-
abilities, suggesting that both partners contribute to and benefit from
their combined metabolic activities. By accurately distinguishing
between commensalism and mutualism, our findings provide a clearer
understanding of the ecological and evolutionary dynamics within
geothermal microbial communities.

We applied a novel approach to confirm that metabolic com-
plementarity is significantly associated with high temperatures in hot
spring habitats. To extend the applicability of our findings, we also
examined a composting system, another environment where high
temperatures are a primary stressor. Here, similar to hot springs,
mutualistic interactions, which involve symmetric synergies, were
notably infrequent (Supplementary Fig. 4). Among asymmetrical
synergistic interactions, i.e., commensalistic ones, the group subjected
to the highest temperature (DOS5) displayed the most pronounced
genome size differences between interacting parties (Supplementary
Fig. 4). However, compared to hot springs, fewer extremely stream-
lined genomes were identified in composting samples. Furthermore,
we observed a positive correlation between the complementarity
index (Ml ompiementariey) and phylogenetic distance, particularly strong
in the highest temperature group (Supplementary Fig. 3). This sug-
gests that temperature significantly influences the establishment of
metabolic complementarity between distantly related species in the
composting system as well. Although the retrieved MAGs from the
composting system did not exhibit as significant a range in genome
sizes as those from hot springs, a clear correlation between metabolic
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complementarities, as determined by the RMT approach, and genome
size differences was evident, especially at higher temperatures. These
findings underscore the critical role of temperature in shaping meta-
bolic complementarity across diverse environments.

While the developed metabolic pipeline marks progress in
microbial network analysis, it also highlights areas that require further
refinement for practical application in microbiome studies. As
observed in this study, there were only a few shared connections
between co-occurrence networks and metabolic networks (Supple-
mentary Data 5), and there are several possible reasons for this. First,
the basis behind the co-occurrence networks is the measured abun-
dance of microbial species obtained by metagenome sequencing,
which means that the statistical correlation between pairwise species is
itself biased, or even erroneous. In complex microbial communities,
the higher-order interaction (HOI) might be a non-negligible factor
that cannot be achieved in pairwise interaction models. The modeling
calculations and mechanistic studies associated with HOI must con-
sider much more than substance exchange alone. One prime example
is that the production of a substance by one species may require the
coexistence of two or more other species®*®’. Second, the metabolic
approach only demonstrated specific exchanged metabolites between
species, while fundamental species interactions are much more varied
than just the exchange of metabolites. For instance, the exchanges of
information systems or signal molecules, such as quorum sensing, may
mediate species interactions®>*, Since microbial interactions in nat-
ural habitats are difficult to reproduce under laboratory conditions,
our approach provides insights into observing co-occurrence and
interpreting metabolic interactions.

Methods

Sample collection, DNA extraction, and sequencing

Sediment samples for our study were collected from a hot spring in
Tengchong, Yunnan Province, China (N24°56’ ~ 25°27’, E98°26’ -~
98°27’) in June 2020. The temperature range measured at this hot
spring was between 63.5°C and 85.8°C, and the water was slightly
alkaline (pH range =8.36-8.70) (Supplementary Fig. 5a). Eight sam-
pling sites displaying a gradual temperature decrease were selected
along the spring flow, with five replicate samples collected at each site.
According to the measured temperature of each sample, eight tem-
perature sites were labeled as T85, T78, T73, T70, T67, T65, T64, and
T63 (Supplementary Fig. 5b). After sample collection, they were
promptly placed in a liquid nitrogen container and transported to
laboratory within 2 days. Subsequently, they were stored at —80 °C.
Before storage, sediment samples for DNA extraction were pre-divided
to prevent DNA damage due to repeated freeze-thaw cycles in later
experiments. After 48 h of lyophilization, total DNA within the micro-
bial community was extracted from 1.5g of freeze-dried sediment
using the grind plus kit method as previously described®*.

The acquired DNA was used for Illumina NovaSeq6000 PE250
metagenomic sequencing (DNA library insertion size: 450 bp) and
Oxford Nanopore sequencing (the PromethlON R9.4 flow cells FLO-
PR0O002, Oxford Nanopore PromethlON sequencer). The Illumina
sequencing was conducted on all 40 samples by Magigene Bio-
technology Co., Ltd. (Guangzhou, China). Replicate samples of each
site were mixed and sequenced using Nanopore sequencing by Bena-
gen Technology Co., Ltd (Wuhan, China).

Metagenome assembly, genome binning, and MAG classification
Raw lllumina metagenomic reads were quality trimmed using
Trimmomatic (v0.39, LEADING:3 TRAILING:3 MINLEN:50
SLIDINGWINDOW:4:20)%. The remaining reads of each sample were de
novo assembled using IDBA-UD (v1.1.3) with default parameters®. Here,
the reads of 5 replicates from one sampling site were co-assembled to
improve the robustness of assembly and the possibility of obtaining a
higher diversity of genomes within the homogeneous environment. The

sequencing coverage and read diversity were estimated using the
Nonpareil method® %, Then, contigs of samples from the same sampling
site were pooled together and used for co-assembly with Nanopore long
reads using OPERA-MS (v0.9.0) with default parameters®. Longer con-
tigs generated by this hybrid assembly, with a minimum length of
1000 bp (1500 bp for metaBAT2), were used for genome binning using
metaWRAP (v1.3.2)°, with metaBAT2 (v2.12.1)", MaxBin2 (v2.2.6)%, and
CONCOCT (v1.0.0)” as the core binning tools. Draft bins were quality
controlled using metaWRAP bin_refinement module with parameters -c
50 -x 10, indicating only MAGs with completeness higher than 50% and
contamination lower than 10% were retained for the following analysis,
declared to be medium- and high-quality MAGs™. The refined bins were
then replicated using dRep (v3.5.0)” with parameters -pa 0.9 -sa 0.99.
The estimated genome size was calculated by dividing the genome size
by the sum of completeness and contamination’®. The taxonomic clas-
sification of the selected MAGs was conducted with GTDB-Tk classify_wf
workflow against the GTDB genome database (Release 202)”. The
phylogenetic trees for bacterial and archaeal MAGs were constructed
using multiple sequence alignment results generated by GTDB-Tk
workflow. The unrooted bacterial and archaeal phylogenetic trees were
rooted using midpoint rooting method, performed by midpoint.root
function in phytools R package’™. and were then visualized using the
online tree display tool iTOL (v6.6)””. The phylogenetic distance was
then calculated using the cophenetic.phylo function in R.

Quantification of MAGs and co-occurrence network
construction

The refined bins were quantified by using CoverM (v0.7.0, https://
github.com/wwood/CoverM, genome mode and coupled reads as
input) with parameter: --method relative_abundance. In the output
relative abundance table (referred as MAG table), every column
representing a sample contains unmapped reads percentage, making
it reasonable to compare relative abundance across samples. A non-
metric multidimensional scaling analysis (NMDS) was conducted with
an encapsulated function metaMDS in the vegan package (R) to
investigate the community-level difference among sampling sites. A
dissimilarity test based on the Bray-Curtis distance was then applied
to divide samples into three groups. MAGs were assigned to three
groups (ET, HT, MT) based on their relative abundance in samples.
Each group comprised multiple samples with five replicates. A MAG
was considered present in a group if it had non-zero abundance in
more than half of the samples (=6 for ET; >8 for HT and MT). If a MAG
did not meet this criterion in any group, it was assigned to the group
with the highest total relative abundance. Additionally, MAGs were
ensured to be in the group corresponding to their sample prefix (e.g.,
T85 and T78 in ET). With the abundance table, the pairwise Spearman’s
rank correlation of each two MAGs was calculated. Since the relative
abundance table originated from the distribution of hypothetical
species in a natural environment, it can be regarded as the matrix that
the random matrix theory (RMT)-based approach requires. Before
using RMT cutoff tool on iNAP website**, majority_selection tool was
used to filter MAGs that had zero abundance in less than half of sam-
ples. This step is to exclude biases from correlation calculations due to
the effect of too many zeros. The separated noise formed a network
representing MAG pairs with a high abundance correlation, inferring
their co-occurrence. The network’s general properties were calculated
using the igraph R package and visualized using Cytoscape (v3.10.0)%.

Genome-scale metabolic models and interaction network
construction

Genome-scale metabolic models (GSMMs) for all MAGs were con-
structed using CarveMe (v1.4.1) with default parameters®. The input
for CarveMe was coding sequences of each MAG, which were pre-
dicted using Prokka®. The interactions between pairwise GSMMs were
predicted using PhyloMint*. All modeling software mentioned above
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required the installation of an optimization solver, which for our study
was IBM CPLEX Optimizer (ILOG COS 20.10 Linux x86-64 version).
PhyloMint metabolic complementarity index (Mlcompiementariey) Was
used to represent the cooperation potential of pairwise GSMMs, or
MAGs. For a given MAG pair, tWo Micompiementariey Values, ranging from
0 to 1, were calculated due to the asymmetry of the index that a MAG
could be both the metabolic giver and taker. Therefore, a higher
Micompilementariey Value was regarded as the maximum metabolic coop-
eration ability between pairwise MAGs and was used for the following
analysis. Mlcompiementariry Values were determined using the RMT cutoff
tool on iNAP website, and the corresponding pairwise interactions
were selected to form the PhyloMint complementarity network. In the
network, synergistic interactions are determined based on whether the
original PhyloMInt values for all species pairs represented by the edges
exceed the RMT screening threshold. If only the unidirectional Phy-
loMInt value exceeds the RMT threshold, the edge is defined as
representing commensalistic interactions; if the bidirectional Phylo-
Mint values both exceed the RMT threshold, the edge is defined as
representing mutualistic interactions. Similarly, the network attributes
were also computed. The predicted coding sequences of each MAG
were searched against the database of Clusters of Orthologous Genes
(COGs, https://www.ncbi.nlm.nih.gov/research/cog/)®* and were cate-
gorized into various biological functions. The effects of biological
functions on the complementarity potential between pairwise MAGs
were estimated using linear mixed-effects models (LMMs) to eliminate
the impact of genome size on functions. This step was performed
using the R package Ime4. Pairwise Mlcompiementariey Was regarded as the
response variable, and gene proportion differences of each biological
function were regarded as fixed effects. The genome size difference
was termed a random intercept effect.

Extraction of shared interactions and determination of potential
exchangeable metabolites

If a specific pairwise MAG interaction possessed both co-occurring
properties, as detected by the co-occurrence network and the
metabolic cooperation potential detected by the PhyloMint
Ml compiementaricy N€tWOrk, they were defined as a “dual interaction”. A
dual interaction indicated that two MAGs shared a strong correlation
between environmental co-occurrence patterns and metabolite
profiling complementarity. Using the PhyloMint algorithm, seed
metabolites were defined by the strongly connected component and
represented substrates acquired exogenously. When considering
two MAGs, A and B, a metabolite found in A’s seed set but not in B’s
seed set indicated a potential transferability from B to A. This sug-
gests that B could synthesize the metabolite while A could utilize it.
This definition aligns with the computation method of the PhyloMint
complementarity index. In line with the previously described defi-
nitions, the potential of one MAG to utilize the metabolites produced
by another was determined by the overlap between one MAG’s seed
metabolite set and the other MAG’s non-seed metabolite set. The
metabolite profiles were taken directly from the corresponding
genome-scale metabolic models generated by CarveMe with the
BiGG Models database (Version 1.6)**. The metabolites were cate-
gorized using the Human Metabolome Database (HMDB Version
5.0)*. Due to the miscellaneous nomenclature of diverse metabo-
lites, we manually browsed all related metabolites by their name in
the BiGG Models database to recheck the classification in HMDB and
made some changes to the metabolite classification rules of HMDB as
follows (at “super class” level): (i) fatty acyl CoAs were separated
from lipids and lipid-like molecules, and were then grouped with
other CoA derivatives to form the class “Coenzyme A derivatives”; (ii)
compounds identified as amino acids, peptides, and analogs were
separated from organic acids and derivatives into a separate class;
(iii) Carbohydrates and carbohydrate conjugates were separated
from organic oxygen compounds into a separate class; (iv) all

inorganic compounds were combined into one class, “Inorganics”.
This class included homogeneous metal and non-metal compounds
(inorganic compounds that contain solely metal or non-metal ele-
ments, respectively); (v) Organic nitrogen compounds, organic oxy-
gen compounds, organoheterocyclic compounds, benzenoids, and
organosulfur compounds were combined into one class “Organic
compounds with specific atoms or structures”; (vi) Oxidized ferro-
doxin, reduced ferrodoxin, protoheme, staphyloferrin B, and pyo-
verdine P. putida specific were categorized into “Other metabolites”.
With these modified rules, all metabolites involved in our study were
classified into nine categories (Supplementary Fig. 6, Supplemen-
tary Data 5).

Analysis of the composting system

Zhao et al. conducted a 30-day composting experiment in 10 com-
posting piles at a food waste composting facility. As the temperature
changed during the experiment, they selected six sampling time
points, with three replicates from each composting pile for each
sampling, obtaining a total of 180 samples for metagenomic sequen-
cing. After co-assembly and binning, they obtained 159 high-quality
MAGs (completeness >90%, contamination <5%) for further study.
Three sampling time points were selected, Day 0, 5, and 25 (tagged as
D00, D05, and D25), with average temperatures of 26.02 °C, 64.29 °C,
and 41.35 °C. These three time points were regarded as three states of
temperature change in the composting experiment (Day O: the
beginning of the experiment, the coolest temperature; Day 5: the
highest temperature; Day 25: the temperature dropped in the late
stage of the experiment). The relative abundance table of MAGs at
these three sampling time points was summarized as a proxy for the
state of these MAGs at that time point. The metabolic models and
metabolic complementarity indices of MAGs were constructed and
calculated using the methods described above. In the three groups,
MAGs with relative abundance greater than O were assigned to the
corresponding group for the construction of metabolic com-
plementarity networks. The threshold for identifying metabolic com-
plementarity within networks was established at an RMT cutoff
of 0.280.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The metagenomic sequence data for this study have been deposited in
the Genome Sequence Archive in National Genomics Data Center,
China National Center for Bioinformation / Beijing Institute of Geno-
mics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/gsa). The
lllumina sequencing data are archived under the GSA accession
CRAO013105. The Nanopore sequencing data are archived under the
GSA accession CRA013130. All data needed to evaluate the conclusions
in the paper are present in the paper and/or the Supplementary
Information. Source Data are provided as a source data file. Source
data are provided with this paper.
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