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An elevated rate of whole-genome
duplications in cancers from Black patients

Leanne M. Brown 1,4, Ryan A. Hagenson 1,4, Tilen Koklič2, Iztok Urbančič 2,
Lu Qiao1, Janez Strancar 2,3,5 & Jason M. Sheltzer 1,5

In the United States, Black individuals have higher rates of cancer mortality
than any other racial group. Here, we examine chromosome copy number
changes in cancers frommore than 1800 self-reported Black patients. We find
that tumors from self-reported Black patients are significantly more likely to
exhibit whole-genome duplications (WGDs), a genomic event that enhances
metastasis and aggressive disease, compared to tumors from self-reported
white patients. This increase in WGD frequency is observed across multiple
cancer types, including breast, endometrial, and lung cancer, and is associated
with shorter patient survival. We further demonstrate that combustion
byproducts are capable of inducing WGDs in cell culture, and cancers from
self-reported Black patients exhibit mutational signatures consistent with
exposure to these carcinogens. In total, these findings identify a type of
genomic alteration that is associated with environmental exposures and that
may influence racial disparities in cancer outcomes.

The unequal landscape of healthcare outcomes in the United States,
particularly among Black patients, demands immediate attention.
Black patients face higher rates of chronic disease, higher incidence of
preventable illness, and higher all-cause mortality compared to white
patients1–4. These disparities are particularly evident within the field of
oncology. For many cancer types, Black patients are diagnosed with
more advanced or aggressive cancers than white patients5–7. Although
cancer outcomes have drastically improved over the past several
decades, Black patients continue to have higher rates of cancer-related
death8–10. Mortality disparities are exacerbated within certain cancer
types, including breast and endometrial cancers, in which Black
patients exhibit 41% and 21% higher mortality, respectively, compared
to white patients11–13. Uncovering the mechanisms that mediate these
unequal outcomes could help identify prevention or treatment stra-
tegies that may aid those populations most at risk.

The source of racial disparities in cancer outcomes is at present
unresolved and may result from social, environmental, and genetic
factors14–20. In theUnitedStates, Black individuals aremore than twice as
likely to live below the federal poverty line than white individuals, and
lower socioeconomic status has been linked with decreased healthcare

access and lower cancer screening rates21–25. In addition, people within
economically-deprived communities have disproportionately higher
rates of environmental carcinogen exposure, which may increase the
risk of cancer development25,26. Within the healthcare system itself,
Black patients received worse care compared to white patients in more
than half of quality caremetrics in the 2022National Healthcare Quality
and Disparity Report27. These findings extend to cancer-specific inter-
ventions, as Black patients experience more delays in chemotherapy
induction for breast cancer treatment and are less likely to have ade-
quate oncological resection for gastrointestinal cancers treated with
curative intent surgery28,29.

In addition to these social and environmental influences oncancer
mortality, recent research has raised the possibility that genetic dif-
ferences between patient populations could affect the development
and/or progression of cancer. To date, most population-based cancer
profiling efforts have sought to investigate variability in the prevalence
of somatic point mutations between racial and ethnic groups30–34.
These studies have uncovered certain differences in the frequency of
mutations in common oncogenes and tumor suppressors that could
impact disease pathogenesis. For example, Black patients have been
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found to exhibit higher rates of mutations in the tumor suppressor
TP53 compared to white patients, and TP53 inactivation has con-
sistently been linked with poor prognosis35–41. Similarly, Black patients
with lung cancer have fewer mutations in the druggable oncogene
EGFR, which may affect treatment options42. Uncovering population-
based differences in mutation profiles can aid in clinical assessment
and may shed light on strategies to ameliorate outcome disparities.

Comparatively less is known about population-based associations
for other types of somatic alterations in cancer beyond single-
nucleotide point (SNP) mutations. Notably, chromosomal copy num-
ber alterations (CNAs) are pervasive across tumor types and have been
linked with disease progression, drug resistance, and poor patient
outcomes43–46. One recent study examined the prevalence of arm-scale
CNAs across a large cohort of cancer patients and found few significant
differences between Black and white populations47. Population-based
differences in many other classes of CNAs have not been previously
investigated.

One common type of chromosomal alteration is a whole-
genome duplication (WGD) event, in which a cell’s chromosome
complement doubles. The causes and consequences of WGDs are
poorly understood. Mutations in TP53 have been consistently asso-
ciatedwithWGDs in patient sequencing, and cell culture experiments
have demonstrated that loss of TP53 facilitates the outgrowth of cells
that have undergone a failed mitosis48,49. Environmental carcinogens
like combustion products have been shown to cause point muta-
tions, but a link between these pollutants and WGDs has not been
previously demonstrated50,51. Other genetic and environmental dri-
vers of WGD events remain obscure44,52,53. WGDs enhance tumor
adaptability and increase metastatic dissemination, potentially by
enhancing tumor heterogeneity and allowing cancers to sample a
wider range of karyotypes52,54–56. Approximately 30% of tumors
exhibitWGDs, butwhether patient raceor ethnicity is associatedwith
these events is unknown52.

In this work, we show that tumors from self-reported Black cancer
patients exhibit a significantly higher frequency of WGD events com-
pared to tumors from self-reported white patients across multiple
cancer types. We demonstrate that this disparity in WGD frequency is
associated with worse clinical outcomes and may be linked to differ-
ential environmental carcinogen exposure. Our findings identify a type
of large-scale chromosomal alteration that is more prevalent in Black
cancer patients and may contribute to racial disparities in cancer
outcomes.

Results
Tumors from self-reported Black patients display an increased
frequency of WGDs
WGD events in cancer are associated with genomic instability and
aggressive disease (Fig. 1A)52,57. We investigated the frequency of
WGD events in cancers from different patient cohorts: MSK-MET
(n = 13,071 patients), The Cancer Genome Atlas (TCGA) (n = 8060
patients), and the Pan-cancer Analysis of Whole Genomes (PCAWG)
(n = 1963 patients)58–60. These three datasets represent the largest
publicly-available tumor sequencing cohorts with both copy number
alteration data and patient demographic information. Full demo-
graphics of included patients and cancer types can be found in
Table S1.We compared the frequency ofWGD events in cancers from
self-reported Black and white patients in the MSK-MET and TCGA
cohorts and between cancers from individuals with inferred African
and European ancestry in the PCAWG cohort. We discovered that
cancers from self-reported Black patients and patients with inferred
African ancestry exhibited a significantly higher incidence of WGDs
compared to cancers from self-reported white patients or patients
with inferred European genetic ancestry (Fig. 1B-D). Notably, CNAs in
each of these datasets were detected using different genomic tech-
nologies: SNP arrays, targeted gene sequencing, and whole-genome

sequencing, for TCGA, MSK-MET, and PCAWG, respectively58–60.
As these findings were consistent across all three cohorts, we
anticipate that they are robust and independent of any platform-
specific artifacts.

The increase in WGD events in self-reported Black patients com-
pared to self-reported white patients ranged from 11% in the TCGA
cohort to 35% in the PCAWG cohort. Additionally, the overall rate of
WGD events ranged from 26% in MSK-MET to 36% in TCGA. However,
within cancer types that were shared across datasets, the frequency of
WGD events was highly correlated (Fig. S1). For instance, thyroid
cancers consistently displayed the lowest incidence of WGDs (0–4%)
while ovarian cancers consistently displayed the highest incidence of
WGDs (55–60%), in alignment with other reports44,52. The overall dif-
ferences inWGD frequency between cohortsmay reflect differences in
the distribution of cancer types.

Next, we sought to evaluate whether other minority populations
also exhibited an increase in WGD events. We therefore investigated
whether WGD events were elevated in cancers from patients who
identified as Asian, which represented the next-most common racial
group in the TCGA and MSK-MET cohorts. In both patient cohorts, we
did not detect a significant difference in WGD frequency between self-
reportedwhite andAsian patients (Fig. S2A andTableS2). Additionally,
tumors from males and females displayed equivalent frequencies of
WGD events within each cohort (Fig. S2B, Table S2).

Tumors from self-reported Black patients with specific cancer
types display an increased frequency of WGDs
We considered the possibility that the increased incidence of WGD
events in our pan-cancer analysis of self-reported Black patients could
result from differences in the representation of distinct cancer types
between populations. However, Black patients have historically been
underrepresented in genomic studies, which limits our statistical
power to detect significant differences in every cancer lineage61,62.
MSK-MET includes 7.3% self-reported Black patients (n = 959 patients),
TCGA includes 10.8% self-reported Black patients (n = 872 patients),
and PCAWG includes 6.2% patients with inferred African ancestry
(n = 122 patients) (Table S1). Tominimize false negatives resulting from
the underrepresentation of Black patients, we focused our analysis on
cancer types for which we had genomic data from at least 60 self-
reported Black patients in both the MSK-MET and TCGA datasets. The
three cancer types exceeding this threshold were breast cancer,
endometrial cancer, and non-small cell lung cancer (NSCLC) (Table S1).
Stratification of PCAWG by cancer type was not performed due to the
low number of patients with inferred African ancestry. In both TCGA
andMSK-MET,wedetected a significant increase inWGDevents in self-
reported Black patients with breast and endometrial cancers (Fig. 1E).
For NSCLC, we detected a significant increase in the MSK-MET cohort
but not the TCGA cohort. The increase ranged from 33% in breast
cancer (TCGA) to 202% in endometrial cancer (MSK-MET) (Fig. 1E).
These results indicate that self-reported Black patients have a sig-
nificantly higher incidence of WGD events both across cancers and
within individual cancer types.

Analysis of WGD frequency by tumor stage and histological
subtype
WGD abundance varies between histological cancer subtypes and is
more common in advanced malignancies52. Accordingly, we con-
sidered the possibility that differences in the prevalenceof histological
subtypes or differences in the stage at which tumors were diagnosed
could produce the increase in WGD events in self-reported Black
cancer patients that we observed. However, we determined that WGD
events were still significantly more common in tumors from self-
reported Black patients for many individual cancer stages and sub-
types (Figs. S3, 4; Table S1). For instance, self-reported Black patients
with either stage II or III breast tumors had a higher incidence of WGD
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events compared to white patients with similarly-staged tumors
(Fig. S3B). Additionally, while the frequency of histological subtypes
varied between self-reported Black and white patients, when we lim-
ited our analysis to only the most common histological subtypes of
each cancer (breast cancer: invasive ductal carcinoma; endometrial
cancer: endometrioid tumors, and NSCLC: adenocarcinoma), we still
detected an increased frequency of WGD events among self-reported
Black patients (Fig. S4A, B). These results indicate that the increased

incidence of WGDs in self-reported Black cancer patients is not simply
due to differences in tumor stage or histological subtype at diagnosis.

Eliminating overlap between the TCGA and PCAWG cohorts
596 patients in TCGA were also profiled as part of the PCAWG cohort.
To ensure statistical independence, we repeated our analysis of WGD
frequencies in TCGA after eliminating the patients who were also
included in PCAWG. Within this smaller patient population, we still
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Fig. 1 |WGDsaremore commonamong self-reportedBlack cancer patients and
thosewith inferred Africangenetic ancestry. AA schematic of thewhole-genome
duplication process.WGDs produce a cell with a doubled chromosome complement
(typically 4N). WGD events are associated with metastasis and disease progression.
Loss of the tumor suppressor TP53 promotes WGDs; other causes of WGDs are
largely unknown. The frequency of WGDs in self-reported Black and white patients
from three different cohorts: BMSK-MET, C TCGA, and D PCAWG. Note that in the
PCAWGdataset, a patient’s self-reported race was not available, and instead inferred

genetic ancestry was used (African (AFR) vs European (EUR)). E The frequency of
WGD events in self-reported Black and white patients with either breast cancer,
endometrial cancer, or NSCLC, in the MSK-MET and TCGA cohorts. Source data are
provided as a Source Data file. Statistical testing was performed via two-tailed
Pearson’s Chi-squared test. Statistical significance: NS p ≥0.05, * p <0.05, ** p <0.01,
*** p <0.001, **** p <0.0001. Figure 1A was created with BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en).
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observed a trend towards increased WGDs in self-reported Black
patients in a pan-cancer analysis and a significant increase in WGDs in
self-reported Black patients with breast cancer (Fig. S5 and Table S3).

Analysis of WGDs by inferred genetic ancestry
Recent studies have urged caution in the use of race when conducting
population-based research, noting that widely used definitions of race
represent artificial social constructs63,64. Instead, shared genetic
ancestry may better reflect population differences in disease risk.
Nonetheless, race may still be useful for investigating patterns of
health and disease in the US due to its association with the social
determinants of health, including poverty, pollution, systemic racism,
and lack of healthcare access65. According to the National Academy of
Sciences’ 2023 report Using Population Descriptors in Genetics and
Genomics Research, “race… may be a useful population descriptor for
researchers who wish tomeasure a consequential formof social status
and affiliation… [R]ace may be a proxy for the experience of racism in
health disparities studies.”

As described above, we found that both individuals who self-
reported as Black or African American and individuals with African
ancestry were more likely to exhibit WGD-positive cancers compared
to individuals who self-reported as white or individuals with European
ancestry (Fig. 1B–E). To extend this investigation, we re-analyzed the
MSK-MET dataset using inferred genetic ancestry instead of racial self-
reporting34. We found that the overall patterns of WGD were con-
served: African ancestry was associated with a 16% increase in WGD
events in a pan-cancer analysis and with a 32-135% increase in breast,
endometrial, and NSCLC (Fig. S6A, B; Table S4). Additionally, inferred
African ancestry and inferred Europeanancestrywere96.3% and 99.9%
concordant with self-reported Black and white identity, respectively
(Fig. S6C, D). Finally, the fraction of inferred African ancestry was
associated with an increasing frequency ofWGDs, while the fraction of
inferred European ancestry was associated with a decreasing fre-
quency of WGDs (Fig. S6E, F). We conclude that WGD events are
associated with both inferred African ancestry and Black self-identity.

Increasing aneuploidy burden associated with WGD events in
self-reported Black patients
Previous analyses of genetic differences between cancers from Black
andwhite patients have focused on exploring the spectrumof somatic
point mutations in each population30–34,42. As our investigation
uncovered a significant increase in the frequency of WGDs in Black
patients, we next sought to expand our analysis of CNAs to interrogate
all aneuploidy events.We calculated the aneuploidy burden, defined as
the sum total of arm-scale CNA events, in each tumor genome. We
discovered that cancers from self-reported Black patients had higher
levels of aneuploidy in a pan-cancer analysis (Fig. S7A, B). We then
analyzed breast cancer, endometrial cancer, and NSCLC individually,
as these cancers harbored the largest number of specimens from self-
reported Black patients, and we found that the average number of
aneuploid chromosomes was higher in self-reported Black patients
with these cancer types as well (Fig. S7C). However, cancers that have
undergone WGD events have consistently been observed to exhibit a
higher aneuploidy burden than WGD-negative cancers56,66. Indeed,
when we analyzed the aneuploidy levels in WGD-positive and WGD-
negative cancers separately, the differences between Black and white
patients were muted (Fig. S7D–F). There was no significant increase in
aneuploidy burden among WGD-negative Black patients, and among
WGD-positive Black patients there was an increase in aneuploidy bur-
den in the TCGA cohort but not the MSK-MET cohort in a pan-cancer
analysis.

Finally, we examined individual chromosome arm gain and loss
events in self-reported Black and white cancer patients. We found that
cancers fromself-reportedBlack patientswere significantlymore likely
to lose the q arm of chromosome 4 and p arm of chromosome 8

compared to cancers from self-reported white patients (Fig. S7G).
Therewas no significant difference among any of the other 39 possible
aneuploidies that were quantifiable. In a subtype-specific analysis, we
did not observe any consistent difference in aneuploidy patterns in
NSCLC, while in breast and endometrial cancers, self-reported Black
patients demonstrated increased frequencies of specific aneuploidy
events shared between MSK-MET and TCGA. In breast cancer, self-
reported Black patients demonstrated an increase in 16q gains com-
pared to self-reported white patients. Similarly, self-reported Black
patients consistently displayed 16q and 17p loss events in endometrial
cancer. When patients were subdivided by WGD status, no significant
differences in arm-scale aneuploidies were detected (Fig. S7G). We
conclude that there are moderate differences in the quantity and fre-
quency of arm-scale aneuploidies in self-reported Black patients,
though the most prevalent and consistent copy number difference is
an increase in WGD events.

Association of WGD events with TP53 mutations
We sought to uncover the somatic alterations associated with WGD
events in self-reported Black and white patients. For this and sub-
sequent analyses, we focused on the MSK-MET cohort, as this was the
largest single patient cohort and had the best sequencing coverage of
cancer-relevant genes. We constructed a logistic regression model
linking somatic alterations with WGD status while correcting for can-
cer type (Fig. 2A, Supplementary Data 1). The strongest predictor of
WGD status was the presence of mutations in TP5352. In contrast,
mutations inKRAS,BRAF, and PTENwere significantly associatedwith a
reduced likelihood of WGD events. The association between TP53
mutations and WGD events has been previously observed, as loss of
p53 enhances the proliferation of cells that have undergone
tetraploidization52,67,68. The reasons why mutations in certain other
oncogenes and tumor suppressors are associated with fewer WGD
events is at present unclear and may reflect differences in the evolu-
tionary trajectories of these cancers69,70. We repeated our logistic
regression analysis for self-reported Black and white patients, con-
sidered separately (Fig. 2B, C, Supplementary Data 2, 3). In self-
reported Black patients, the only significant features associated with
WGD status with a q-value < 0.1 were TP53 mutations and amplifica-
tions of cyclin E (CCNE1). Cyclin E gains have recently been identified as
a driver of WGDs, and both features were also significantly associated
withWGDevents in our logistic regressionmodel of tumors fromwhite
patients (Fig. 2C)53. These results suggest that similar somatic altera-
tions drive WGDs in both self-reported Black and white patients.

As the types of somatic alterations associated withWGD events in
self-reported Black and white patients were similar, we considered the
possibility that differences in frequencies of these alterations could
influence the prevalence of WGDs. Consistent with previous observa-
tions, we found that self-reported Black patients were significantly
more likely to harbor TP53mutations than self-reportedwhite patients
in both a pan-cancer analysis and in breast and endometrial cancers
but not NSCLC (Fig. 2D, E)35–40. Next, we separated patients based on
TP53 status. We observed that there was no significant difference in
WGD frequency between Black and white patients with TP53-WT can-
cers. However, among patients with TP53-mutant cancers, self-
reported Black patients showed a trend towards increased WGD
events in a pan-cancer analysis and a significant increase in the NSCLC
cohort (Fig. 2F, G). These results suggest that the increased frequency
of TP53 mutations contributes to but cannot fully account for the
increased incidence of WGD events in Black patients.

Next, we investigated whether different classes of TP53mutations
could underlie the different prevalence of WGD events within self-
reported Black and white populations. However, the overall distribu-
tion of classes of TP53 mutations (e.g., missense vs nonsense) was
similar between self-reported Black and white patients (Fig. 2H, I).
Additionally, the same set of p53-inactivating point mutations,
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including the R175, R248, and R273 mutations, were commonly
observed among both Black and white patients (Fig. 2J).

We subsequently investigated the association between WGD
events and CCNE1 amplifications in self-reported Black and white
patients. Consistent with previous results, we found that CCNE1
amplifications were more common in self-reported Black patients

(Fig. S8A, B)35. However, when we split patients based on CCNE1
amplification status, we observed that a consistent difference in the
frequency of WGD events between self-reported Black and white
patients remained (Fig. S8C, D). We conclude that somatic genetic
alterations are unable to fully account for increased prevalence of
WGD events among self-reported Black patients.
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Association between self-reported race, WGD Status, and
patient outcome
We sought to determine whether the increased incidence of WGD
events in self-reported Black patients was linked with racial disparities
in patient outcome. Consistent with previous observations, WGD
events were strongly associated with hallmarks of aggressive
disease52,71. The rate of WGDs was significantly higher in metastatic
samples compared to primary tumor samples in both a pan-cancer
analysis and in individual cancer types (Fig S9A, B). WGD-positive
tumors were more likely to exhibit progressive disease after frontline
treatment andpatientswithWGD-positive tumorswere less likely to be
tumor-free at the conclusion of the observational follow-up period
(Fig S9C-D). We performed a multivariate Cox proportional hazard
regression analysis including WGD status and common clinical vari-
ables (age, sex, TP53 status, MSI status, aneuploidy burden, cancer
type). WGD status was significantly associate with shorter patient
survival even including these known disease-modifying factors
(Hazard Ratio: 1.21, 95% CI: 1.12–1.30, z(8) = 4.783, p < 1 × 10−5) (Fig S10).
These results are in agreement with other studies demonstrating that
WGD can drive malignant progression52,72.

Next, we looked at the interaction of self-reported race, WGD,
and patient outcome. Consistent with known national trends, we
found that self-reported Black cancer patients exhibited a sig-
nificantly shorter overall survival time following diagnosis compared
to self-reported white patients (Fig. 3A)8–10. Similarly, WGD events
were also associated with worse patient outcomes in a Kaplan-Meier
analysis (Fig. 3B). Interestingly, among the subset of patients with
WGD-positive tumors, there was no significant difference in survival
time between self-reported Black and white patients (Fig. 3C). How-
ever, within theWGD-negative patient subset, a significant difference
in survival between self-reported Black and white patients was
observed (Fig. 3D). These results are consistent with prior reports
demonstrating that WGD events drive metastases and aggressive
disease, and suggest that the increased incidence of WGD events
in self-reported Black patients may be linked with worse overall
survival46,58,73. We speculate that within WGD-negative patients,
WGD events may be occurring post-diagnosis, or additional genetic
and environmental factors may be contributing to these disparate
outcomes.

We repeated this analysis within the MSK-MET breast, endo-
metrial, and NSCLC cohorts. We observed that self-reported Black
patients with endometrial cancer, but not breast or NSCLC, had sig-
nificantly shorter survival times compared towhite patients within this
study (Fig. S11A–C). Racial disparities within breast and NSCLC out-
comes have been reported in other analyses, andwe speculate that the
MSK-MET cohort sizes may not be sufficiently large to detect survival
differences that are moderate overall11–13. Within endometrial cancer,
we observed that patients with WGD-positive tumors had worse out-
comes (Fig. S11D). Consistent with our pan-cancer analysis, within the
subset of tumors that were WGD-positive there was no significant
difference between self-reported Black and white patient outcomes,

while a significant difference remained apparent within the WGD-
negative subset (Fig S4E,F).

Finally, we further divided the pan-cancer survival analysis based
on TP53 status. As expected, TP53-mutant tumors had significantly
worse overall survival (Fig. S12A). In general, further subdividing
patients based on TP53 status, in addition to race and WGD status,
minimized race-baseddifferences in survival time (Fig. S12B–I). In total,
these results suggest that the increased incidence of TP53 mutations
and WGD events contribute to the worse overall outcomes for self-
reported Black cancer patients, although our findings do not rule out
the influence of additional social, environmental, and genetic factors.

Analysis ofWGDevents in self-reportedBlack andwhite patients
with prostate cancer
In the United States, there is a pronounced and pernicious racial dis-
parity between Black and white patients with prostate cancer74,75.
Overall, African Americans are about twice as likely to have metastatic
disease and die of prostate cancer compared to white Americans76,77.
We therefore investigated whether WGD events could contribute to
this disparity. We found that there was no significant difference in
WGD frequency between self-reported Black and white patients in the
MSK-MET cohort (Fig. S13A).We obtained a similar result within TCGA,
though we note that this analysis is limited by the fact that there are
only seven self-reported Black patients with prostate cancer in this
cohort (Fig. S13B). Consistentwith previous studies,we found that self-
reportedBlack prostate cancerpatients hadworseoverall survival than
white patients and WGD events were also associated with shorter
survival (Fig. S13C, D)74,77. As with our pan-cancer analysis, we found
that the survival disparities between Black and white patients was
maintained among WGD-negative cancers, while no difference in sur-
vival was apparent among cancers that have undergone WGDs
(Fig. S13E, F). In total, our data indicate thatWGDevents are associated
with aggressive disease in prostate cancer overall; however, these data
also suggest thatWGDevents themselves arenot a prominent driver of
disparities in this specific cancer type.

Self-reported race and WGD status are associated with metas-
tases to the same anatomic sites
Next, we used additional patient information that was collected as part
of theMSK-METdataset to further explore the clinical correlates of self-
reported race and WGD status. Within this cohort, self-reported Black
patients were diagnosed and underwent surgery at earlier ages com-
pared to self-reported white patients, and self-reported Black patients
were also more likely to die younger (Fig. 4A). Similarly, WGD-positive
tumors were associated with younger diagnoses, younger age at sur-
gery, and youngerdeath in all patients, regardless of race (Fig. 4B).Next,
we examined microsatellite instability in each patient, which is a
genomic state characterized by the accumulation of point mutations in
repetitive sequences78,79. We found that tumors from self-reported
Black patients were significantly less likely to exhibit highmicrosatellite
instability (MSI-H) compared to tumors fromwhite patients, andMSI-H

Fig. 2 | Genetic analysis ofWGD events in self-reported Black and white cancer
patients. A A volcano plot displaying genetic alterations associated with an
increased or decreased likelihood of WGD events across both self-reported Black
and white patients in the MSK-MET cohort. Acronyms: Mutant (Mut). B A table
displaying 10 events exhibiting the strongest correlation with WGD events among
self-reported Black patients. The bolded numbers indicate q-values below 0.05.CA
table displaying 10 events exhibiting the strongest correlation with WGD events
among self-reported white patients. The bolded numbers indicate q-values below
0.05. D A bar graph displaying the frequency of TP53 mutations across self-
reportedBlack andwhite cancer patients. EA bar graph displaying the frequencyof
TP53 mutations across self-reported Black and white patients with either breast
cancer, endometrial cancer, or NSCLC. F A bar graph displaying the frequency of
WGDevents among self-reportedBlack andwhite cancer patients, dividedbasedon

TP53 status. G A bar graph displaying the frequency of WGD events among self-
reported Black andwhite patients with either breast cancer, endometrial cancer, or
NSCLC, divided based on TP53 status. H A bar graph displaying the distribution of
different types of TP53mutations in self-reported Black and white cancer patients.
IAbar graph displaying the distributionof different types of TP53mutations in self-
reported Black andwhite patients with either breast cancer, endometrial cancer, or
NSCLC. J A lollipop plot displaying the sites of TP53 mutations in tumors from
either self-reported white (top) or Black (bottom) cancer patients. Source data are
provided as a Source Data file. Statistical testing was performed via two-tailedWald
test (A–C) with correction by Benjamini-Hochberg’s method (B, C) and two-tailed
Pearson’s Chi-squared test (D–I). Statistical significance: NS p ≥0.05, * p <0.05, **
p <0.01, *** p <0.001, **** p <0.0001.
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statuswas also less common inWGD-positive tumors (Fig. 4C, D).MSI-H
status has been linked with favorable outcomes, and the under-
representationofMSI-H cancers among tumors fromboth self-reported
Black patients and patients with WGD-positive disease could represent
another factor that contributes to differences in patient survival80,81.

Finally, we compared the frequency of metastatic dissemination
to different anatomic sites between patient populations. Consistent
with established disparities in overall outcomes, we observed that self-
reported Black cancer patients had a greater incidence of metastatic
disease compared to white patients. Notably, we found that self-
reported Black patients had significantly higher rates of metastases to
regional lymph nodes, distant lymph nodes, intra-abdominal space,
the male and female genitourinary system, and skin (Fig. 4E, Table S5,
Supplementary Data 4). Intriguingly, metastases to each of these sites
except the male genitourinary system was also more common among
WGD-positive tumors compared to WGD-negative tumors (Fig. 4F,
Table S6, Supplementary Data 5). In total, these findings suggest that
several differences in the clinical presentation of cancers in self-
reportedBlack andwhite populations couldbe related to the increased
incidence of WGDs among Black patients.

Carcinogen exposure drives WGD events in cell culture
Aswe found that the genetic drivers ofWGDevents were highly similar
between self-reported Black and white patients, we next sought to
investigate whether differences in environmental exposures could

contribute to the increased WGD events observed in self-reported
Black patients. In the United States, Black Americans are dis-
proportionately exposed to environmental carcinogens82–84. This has
been partially attributed to historic redlining, a discriminatorypractice
in which minority communities were concentrated in less desirable
neighborhoods near pollution-emitting factories and highways85,86. In
contemporary epidemiological studies, minority communities con-
tinue to live in disadvantaged neighborhoods with higher rates of
pollution exposure and cancer mortality compared to white
Americans87,88. Many carcinogens are known to accelerate the devel-
opment of point mutations; however, a link between environmental
pollutants and WGD events has not been reported50,51.

We established a cell culture system to investigate the link between
various common carcinogens and WGDs89,90. We cultured murine lung
epithelial cells alone (monoculture system) or, as a model of lung
inflammation, we cultured murine lung epithelial cells along with
alveolar macrophages (co-culture system) (Fig. 5A). We exposed the
monoculture and co-culture systems to a selection of common carci-
nogens, including combustion products, carbons, clays, and various
metal oxides, and performed live-cell imaging to follow mitotic pro-
gression (Fig. 5B, Table S7). We applied concentrations of carcinogens
that were not overtly toxic, as the overall rates of mitotic division were
largely unaffected by carcinogen exposure (Fig. 5C, Fig. S14A). In the
monoculture system, 0 out of 13 tested carcinogens caused an increase
in binucleation events (Fig. S14B). However, in the co-culture system, 5
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outof 13 carcinogens, including4out of 4 combustionproducts, caused
a significant increase in binucleation events (Fig. 5D). For instance,
exposure to Printex90, a model for carbon particles found in soot as a
result of the combustion of coal tar, petroleum, or other carbon-based
materials, caused a 9% increase in binucleation events during a 24 hour
period [t(7.38) = −4.33,p =0.003)]91,92. In total, these results suggest that
commonenvironmental carcinogens not only drive the development of

point mutations but can also promote WGDs by triggering mitotic
failure and binucleation.

Signatures of carcinogen exposure in lung tumors from self-
reported Black and white patients
We speculated that differences in environmental carcinogen exposure
could influence the development of WGDs in Black and white cancer
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Fig. 4 | Clinical correlatesofWGDstatus in self-reportedBlack andwhite cancer
patients. A A table displaying the demographics of self-reported Black and white
cancer patients in the MSK-MET cohort. B A table displaying the demographics of
cancer patients based on WGD status. C A bar graph displaying the frequency of
microsatellite instability (MSI-H) among tumors from self-reported Black andwhite
cancer patients.D A bar graph displaying the frequency ofmicrosatellite instability
(MSI-H) amongcancer patients basedonWGDstatus.EThe frequencyofmetastatic
dissemination todifferent anatomic sites, dividedbypatient race. Locationswritten
in red are significantlymore likely among self-reported Black patients, no locations
weremore likely among self-reported white patients. For Ovary and Female Genital
locations, frequencyofmetastasis represents female patients only. ForMaleGenital

location, frequency ofmetastasis representsmale patients only. F The frequency of
metastatic dissemination to different anatomic sites based on WGD status. Loca-
tions written in red are significantly more likely among WGD-positive patients, no
locations were more likely among WGD-negative patients. For Ovary and Female
Genital locations, frequencyofmetastasis represents female patients only. ForMale
Genital location, frequency of metastasis represents male patients only. Central
Nervous System (CNS), Lymph Node (LN), Peripheral Nervous System (PNS),
Urinary Tract (UT). Statistical testing was performed via two-tailed Wilcoxon rank-
sum test (A, B) and two-tailed Pearson’s Chi-squared test (C–F). Source data are
provided as a Source Data file. Statistical significance: NS p ≥0.05, * p <0.05, **
p <0.01, *** p <0.001, **** p <0.0001.
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patients. While nationwide disparities in pollution exposure between
Black and white Americans are well-documented, we do not know the
exposure histories of the patients in our sequencing cohorts93–95. In
order to investigate whether Black and white patients in our cohorts
exhibited evidence of differential pollution exposure, we analyzed
carcinogen-associated mutational signatures in the NSCLC tumors
from TCGA. Based on prior work, we established signatures for classes
of common mutagens including radiation, alkylating agents, and het-
erocyclic amines96. Interestingly, we found that lung tumors from self-
reported Black patients exhibited a significant increase in the pro-
portionofmutations associatedwith polycyclic aromatic hydrocarbon
(PAH) exposure (Fig. 5E, F). PAHs are a common urban pollutant pro-
duced by burning carbon, and combustion products like Printex90
and diesel exhaust are significant sources of PAH exposure97–100. In
contrast, lung tumors from self-reported white patients exhibited
evidence of higher radiation and aldehyde exposure (Fig. 5E, F). While
we do not know the specific exposure histories of these patients, this
analysis suggests that Black cancer patientsmay have been exposed to
different environmental pollutants than white cancer patients. Nota-
bly, we found evidence of a combustion-associated mutational sig-
nature in lung tumors from self-reported Black patients, and we found
that combustionbyproductswere sufficient to triggermitotic failure in
cultured lung epithelial cells.

Discussion
In this work, we found that self-reported Black or African American
cancer patients exhibited a significantly greater incidence of WGD
events compared to white cancer patients. This discrepancy was
detectable in both a pan-cancer analysis and in several individual
cancer subtypes. Historically, most research on genetic differences
between cancer patient populations has focused on single-nucleotide
point mutations; our work demonstrates the existence of significant,
outcome-associated differences in patterns of chromosomal altera-
tions as well30–33. We speculate that analyzing other types of genetic or
epigenetic alterations in cancer (e.g., methylation patterns, smaller
CNAs, intratumoral heterogeneity, etc.) may reveal additional infor-
mative differences101.

Our work is consistent with previous reports that documented an
increased incidence of WGD events among African ancestry prostate
cancer patients in sub-Saharan Africa102,103. However, our analysis
lacked sufficient numbers to recapitulate this finding in prostate can-
cer specifically, as the TCGA cohort only included seven Black patients
with this cancer (Fig. S13, Table S1). More broadly, while African
American patients are significantly underrepresented inmost genomic

studies, dedicated sequencing efforts specifically designed to assess
underrepresented patient populations have uncovered a wealth of
new cancer drivers and vulnerabilities, illustrating the power of these
focused efforts38,41,103. Notably, the cancer types in which self-reported
Black patients exhibit frequent WGD events (breast, endometrial,
prostate, and NSCLC) are also among those that have been recognized
as exhibiting themost significant racial disparities in patient incidence
or outcome13,19,20,33. Furthermore, we found that, among WGD-positive
cancer patients, there were no differences in overall survival times,
suggesting that WGDs may represent one mechanism underlying the
disparate outcomes that have been demonstratedwithin the American
healthcare system.

Our genetic analysis of tumor sequencing data revealed a strong
association between TP53 mutations and WGD events in both self-
reportedBlack andwhite patients. Consistentwith previous results, we
found that Black patients exhibited a higher incidence of TP53 muta-
tions overall35,36,38. However, WGD events were still more common
among self-reported Black patients with TP53-mutant cancers com-
pared to self-reported white patients. Our work did not identify any
significant differences in the genetic drivers of WGDs associated
with patient race, suggesting that these events may be influenced by
epigenetic or environmental factors. Furthermore, our preliminary
evidence demonstrates that carcinogen exposure, particularly com-
bustion agents, result in WGD events in vitro, thereby providing a
potential mechanistic link between known social determinants of
health and aggressive disease. This is particularly important because
African Americans in the US are more likely to live in areas with higher
rates of carcinogenic air pollution, including diesel exhaust, which
could affect the development ofWGDs in lung cancer25,26,104. Additional
work will be required to verify the source(s) of the disparate rates of
WGDs between patient populations.

The reason why carcinogen exposure triggered mitotic failure
only in epithelial cells co-cultured with macrophages is at present
unclear. It has previously been observed that epithelial cells are cap-
able of tolerating foreign particulate matter, in part by upregulating
lipid metabolism genes and sequestering the particles at the cell
membrane. In contrast, the sameparticulatematter exposure results in
cell death in macrophages, which causes the re-release of the parti-
culate matter into the surrounding environment and the secretion of
pro-inflammatory cytokines89. We speculate that certain paracrine
signals from themacrophagesmaybe affectingmitosis in the epithelial
cells, though the identity of those signals is at present unknown.

Finally, the increase in WGD events among self-reported Black
patients that we have documented has the potential to influence

Fig. 5 | The effects of carcinogen exposure on mitosis. A A schematic outlining
the experiment design. B Representative live cell microscopy images illustrating
examples of a normal mitosis and an abnormal mitosis leading to a binucleation
event. The scale bar represents 10 µm and the scale is consistent across all images.
C A box plot displaying the proliferation rate of lung epithelial cells co-cultured
with alveolar macrophages after exposure to various carcinogens. The p value for
the comparisonbetween the control sample andNanoclayBent is0.01.DAboxplot
displaying the proliferation rate of lung epithelial cells co-cultured with alveolar
macrophages after exposure to various carcinogens. For the boxplots in (C) and
(D), the center represents themedian values, the whiskers define theminimumand
maximum values, and bounds of the box reflect the 25th and 75th percentiles of
values obtained for each compound. Statistical testing for each carcinogen expo-
sure [DieselN1650 (n = 3), DieselN3 (n = 4), ExhaustN1 (n = 4), Printex90 (n = 4),
GON059 (n = 4), MWCNT401 (n = 4), MWCNTN006 (n = 5), HNTNN (n = 4), Nano-
clayBent (n = 3), Fe2O3N018 (n = 3), SiO214 (n = 3), TiO2nt (n = 3), all biological
replicates] was performed via pairwise two-tailed t-tests to reference control (n = 8,
biological replicates). The p-value for the comparison between the control sample
and DieselN1650 is 0.027, between the control sample and DieselN3 is 0.027,
between the control sample and ExhaustN1 is 0.009, between the control sample
and Printex90 is 0.003 and between the control sample and HNTNN is 0.038. E A

volcano plot showing the mutagen class attributed proportions associated with
self-reported racial group. Difference in the proportion of mutagen-attributed
mutations between self-reported Black and white racial groupswere tested by two-
tailed Student’s t tests followed by Benjamini-Hochberg correction135. Red points
indicate q-value < 0.05. F A table displaying proportions mutagen-attributed
mutations by mutagen signature classes between self-reported Black and white
patients. Difference in proportion of mutagen-attributed mutations between self-
reported Black and white racial groups were tested by two-tailed Welch’s t-tests
followed by Benjamini-Hochberg correction135. Acronyms: polycyclic aromatic
hydrocarbons (PAHs), reactive oxygen species (ROS), nitric oxide species (NOS).
Mutagen class names are maintained from ref. 96. such that Control refers to
mutations observed in untreated controls, Other refers to mutations from muta-
gens that did not fit into any specific mutagen class of interest, and Unassigned
refers to mutations not corresponding to any mutagen classes including Control.
The bolded numbers indicate q-values below 0.05. Source data are provided as a
Source Data file. Statistical significance: NS p ≥0.05, * p <0.05, ** p <0.01, ***
p <0.001, **** p <0.0001. Figure 5A was created with BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en).
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patient staging and treatment. We found that WGD-positive tumors
were more likely to have spread to regional or distant lymph nodes,
which may warrant additional surveillance and interventions among
Black patients. More broadly, chromosomal alterations are strongly
associated with patient outcome, and analyzing tumor karyotypes as
part of a standard pathological workup may improve our ability to
preemptively detect aggressive disease45,105–109. Additionally, recent
research has demonstrated that WGD-positive cancer cells harbor
unique genetic vulnerabilities. For instance, alterations in the mitotic
apparatus resulting from WGD events cause cells to become depen-
dent on the mitotic kinesin KIF18A, which is otherwise dispensable in
diploid cells70,110. AMG650 is a small molecular inhibitor of KIF18A that
has entered Phase I clinical trials, underscoring the recent progress
toward selectively targeting WGD-positive cancers111. Therapies
designed to selectively target WGD-positive tumors may be particu-
larly effective in Black cancer patients and could serve to ameliorate
the disparate racial outcomes in cancer mortality.

Methods
Data acquisition
All genomic data analyzed in this manuscript have already been pub-
lished in the sources described below. Our use of de-identified and
published clinical and genomic data complies with all relevant ethical
regulations. Mutational, copy number, sample, and patient data were
downloaded from the cBioPortal datahub (https://github.com/
cBioPortal/datahub)112,113. Whole genome duplication determinations
were sourced from the original cohort study (MSK-MET and PCAWG)
or from subsequent analyses (TCGA)44,52,60. A samplewas considered to
have undergone WGD based on processing by FACETS (MSK-MET),
consensus across 10 different methods (PCAWG), or ABSOLUTE
(TCGA)60,114,115. Genetic ancestry determinations for the MSK-MET
cohort were graciously provided by Kanika Arora, following the
method from ref. 34. Racial data was determined by electronic health
record review (MSK-MET) and by interview during enrollment where
patients were asked to select from the racial categories defined by the
U.S. Office of Management and Business and used by the U.S. Census
Bureau (TCGA). Regional lymph node metastasis data were sourced
from ref. 58. Mutagen signatures of environmental agents were
obtained from theoriginal study96,116. Sample size calculationswere not
possible as our analysis was limited by the availability of published
copy number data from patient cancers.

Data harmonization and cleaning
Data was harmonized across cohorts by including lesions with known
WGD status within sample data, considering only genomic aberrations
for genes found in the IMPACT-505 geneset within mutational and
copy number data, and maintaining patients with known sex, and self-
reported race or inferred ancestry within patient data depending on
availability of either self-reported race or ancestry data. In MSK-MET,
patients with self-reported race of Asian-far east/Indian (Asian), Black
or African American (Black), or white and inferred ancestry of either
African or European were maintained separately; in TCGA, patients
with self-reported race of Asian, Black, or white were maintained; in
PCAWG, patients with inferred ancestry of African or European were
maintained. With the exception of analyzing WGD frequency in
metastatic samples, all included samples were from primary lesions
with determinable WGD status, known sex, and had self-reported race
of Asian, Black, or white (MSK-MET and TCGA) or inferred genetic
ancestry of African or European (MSK-MET and PCAWG). Excluded
samples were those from metastatic lesions, without determinable
WGD status, unknown sex, or from either a racial group or genetic
ancestry other than those explicitly included. Metastatic samples
included for supplemental analysis included MSK-MET samples with
determinable WGD status, known sex, and had self-reported race of
Black or white. Metastatic samples were excluded because nearly all

specimens from TCGA and PCAWG are from primary tumors, and
excluding the metastatic samples allowed us to perform a more
representative comparison across patient databases. Samples that
lacked known WGD status or the additional demographic information
listed above were excluded as samples without that information were
not informative for our overall research question regarding the asso-
ciation between WGD status and patient race.

To be included in our analysis, genomic aberrations had to occur
in ≥200patients across racial groups and≥2%of patientswithin a racial
group. We focused mutational analysis on nonsynonymous mutations
and trichotomized copy number levels to neutral, loss, and gain. As the
cohortswe analyzeddonot use the same identifiers for cancer type,we
considered all cancer types regardless of identifier in pan-cancer ana-
lyses, while standardizing across cohorts for comparisons by cancer
type. Standardizationwas as follows: breast cancerwere samples listed
as BRCA (TCGA) or Breast Cancer (MSK-MET); endometrial cancer
were samples listed as UCEC (TCGA), Endometrioid Adenocarcinoma
(MSK-MET), Serous Carcinoma (MSK-MET); non-small cell lung cancer
(NSCLC) were samples listed as LUAD (TCGA), LUSC (TCGA), or Non-
Small Cell Lung Cancer (MSK-MET); prostate cancer were samples lis-
ted as PRAD (TCGA) or Prostate Cancer (MSK-MET). A positive deter-
mination for regional lymph node metastasis was made according to
the presence of “regional_lymph” in the “met_site_mapped” variable
from ref. 58. The code used to perform this analysis is available at
https://github.com/sheltzer-lab/wgd_disparities.

Software versions
Analyses were performed using R (version 4.2.2)117, PRISM (version
9.4.1), and Python (version 3.10.8)118. R packages: car (version 3.1-2)119,
EnhancedVolcano (version 1.16.0)120, ggplot2 (version 3.4.2)121, gt
(version 0.9.0)122, gtsummary (version 1.7.2)123, maftools (version
2.14.0)124, openxlsx (version 4.2.5.2)125, reshape (version 1.4.4)126, tidy-
verse (version 2.0.0)127. Python packages: lifelines (version 0.27.4)128,
matplotlib (version 3.6.2)129, and pandas (version 1.5.2)130. Carcinogen
analyses and life cell imaging software included Imspector (version
16.2.8282-metadata-win64-BASE) software provided by Abberior
Instruments131; Fiji, ImageJ 1.52p (NIH)132; Mathematica 12.0, license
L5063-5112 (Wolfram)133. Mutagen signature attributions were deter-
mined by signature.tools.lib (v2.4.4)134.

Whole-genome duplication frequency analysis of MSK-MET,
TCGA, PCAWG
The frequency of WGD was calculated as the number of WGD-positive
samples over the total sample count within a self-reported racial group,
inferredancestry,or self-reported sexatapan-cancer level andadditional
subset by cancer type; testing for association was done via two-tailed
Pearson’s Chi-squared test. WGD frequencies by cancer type were com-
pared between MSK-MET, TCGA, and PCAWG via Pearson correlation.

Whole-genome duplication frequency in TCGA-exclusive
patients
To analyze independent patients within the TCGA dataset, shared
samples between TCGA and PCAWG were removed. The frequency of
WGD was calculated as the number of WGD-positive samples over the
total sample count (TCGA-Exclusive) within a self-reported racial
group for pan-cancer and cancer type analyses; testing for association
was done via two-tailed Pearson’s Chi-squared test and Fisher’s exact
test across racial groups.

Whole-genome duplication frequency analysis by metastatic
status and cancer stage
The frequency of WGD was calculated as the number of WGD-positive
samples over the total sample countwithin a self-reported racial group
by metastatic status (MSK-MET) and stage (TCGA) for each cancer
type: testing for association was done via two-tailed Pearson’s Chi-
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squared test. Available staging information in TCGAwas utilizedwhich
includes pathological staging for breast cancer and NSCLC and clinical
staging for endometrial cancer. Metastatic status and cancer staging
distributions were summarized within each racial group by cancer
type; testing for association was done via two-tailed Pearson’s Chi-
squared test and Fisher’s exact test across racial groups.

Whole-genome duplication frequency analysis by histological
subtype
Shared cancer types between MSK-MET and TCGA were aggregated.
For breast cancer, IDC includesMSK-MET histological designations HR
+/HER2+ Ductal Carcinoma, HR+/HER2- Ductal Carcinoma, HR-/HER2+
Ductal Carcinoma, Ductal Triple Negative Breast Cancer (TNBC) and
TCGA histological designations Ductal Luminal A, Ductal Luminal B,
Ductal HER2-enriched, Ductal Basal-like, Ductal Normal-like. ILC
includes MSK-MET histological designations HR+ Lobular Carcinoma
and TCGA histological designations Lobular Luminal A, Lobular
Luminal B, LobularHER2-enriched, Lobular Basal-like, Lobular Normal-
like. For endometrial cancer, shared cancer types between MSK-MET
and TCGA included endometrioid and serous subtypes. For NSCLC,
shared cancer types between MSK-MET and TCGA included adeno-
carcinoma and squamous cell carcinoma. The frequency of WGD was
calculated as the number of WGD-positive samples over the total
sample count within a self-reported racial group by share histological
subtype for each cancer type; testing for association was done via two-
tailed Pearson’s Chi-squared test across racial groups.

Concordance between inferred genetic ancestry and self-
reported race
Inferred genetic ancestrydesignations (African and European) for each
patient of the MSK-MET cohort followed the method described in
ref. 34. and maintained separately34. Concordance between inferred
genetic ancestry and self-reported race was determined as the pro-
portions of African ancestry patients who self-identified as “Black” and
European ancestry patients who self-identified as “white”.

Correlation of fractional ancestry to WGD
Fractional ancestries (AFR and EUR) for all MSK-MET patients regard-
less of majority inferred genetic ancestry were binned then correlated
to the binned rates of WGD. Separately, AFR and EUR fractional
ancestry were binned into 5%-sized bins, thenwithin eachbin, both the
rate of WGD and number of patients were calculated. We then ran a
logistic regression between bin number and rate ofWGD, weighted by
the number of patients, to test for a relationship.

Logistic regression of genomic aberrations to WGD
In MSK-MET, in order to determine which genomic aberrations cor-
related with increased rates of WGD, we built multivariate logistic
regression models in R for self-reported Black patients only, self-
reported white patients only, and all self-reported Black and white
patients (i.e., all patients). All frequently occurring genomic aberra-
tions (≥200 patients and ≥2% patients) were included in the models
and were coded as binary predictor variables. Using a similar method
to ref. 52. we reduced the models by removal of covariates in two
stages: 1) removal of aliased covariates (i.e., those with perfect corre-
lation to another covariate), and 2) recursive removal of the covariate
with the highest variance inflation factor (VIF) until all covariates had a
VIF ≤ 4 in order to remove multicollinearity. Cancer types were inclu-
ded in the final models. Significance of covariates were tested byWald
test followedby FDR correction via Benjamini &Hochberg’smethod135.

Aneuploidy burden and chromosomal arm-level differences by
self-reported race and WGD status
Total aneuploidy score, as defined as total amount of chromosome
armgains and losses, were calculated for each patient withinMSK-MET

and TCGA. Differences in total aneuploidy score by self-reported race
andWGD status were calculated using unpaired t-tests at a pan-cancer
level and within each cancer type. Chromosomal arm levels fre-
quencies were calculated as the number of samples with chromosome
arm aneuploidy (either gain or loss) over the total number of samples
with determined arm status (gain, loss, or neutral) for each respective
available chromosome arm within each self-report race group on a
pan-cancer and cancer type level. Testing for association of specific
aneuploidies was done via two-tailed Pearson’s Chi-squared test.

TP53 analysis
Nonsynonymous mutations in TP53 were analyzed across racial
groups, WGD status, and cancer type. Sample containing at least one
nonsynonymous mutation in TP53 were consider TP53-mutant, while
the remaining samples were considered TP53-WT. The frequency of
TP53 mutation was calculated as the proportion of TP53-mutant sam-
ples over the total sample count within a racial group at a pan-cancer
level and additionally subset by cancer type and/orWGDstatus; testing
for association was done via two-tailed Pearson’s Chi-squared test
across self-reported racial groups. Variant classification distributions
were summarized within each racial group at a pan-cancer level and
additionally subset by cancer type; testing for associationwasdone via
two-tailed Pearson’s Chi-squared test across self-reported racial
groups. Location of TP53 mutations were summarized within each
racial group and visually compared across self-reported racial groups.

CCNE1 analysis
Gains and losses of CCNE1 were analyzed across racial groups, WGD
status, and cancer types. Samples demonstrating amplifications of
CCNE1 were considered CCNE1 gain. All remaining samples demon-
strating either loss of CCNE1 or no alteration were considered CCNE1
neutral/loss. The frequency of CCNE gains was calculated as the pro-
portionof CCNE1 gained sampleover total sample countwithin a racial
group at a pan-cancer level and additional subset by cancer type and/
or WGD status; testing for association was done via two-tailed Pear-
son’s Chi-squared test.

Whole-genome duplication and tumor response and status
Clinical data including tumor response for first course of treatment
and tumor status at the end of the clinical observation period were
sourced from TCGA. Tumor responses included for analysis included
“Complete Remission/Response”, “Partial Remission/Response”,
“Stable Disease”, and “Progressive Disease,” the remaining responses
were not included for analysis as these categories represented dis-
puted, uncertain, or missing clinical responses. The frequency of
progressive disease was calculated as the proportion of patients with
“Progressive Disease” over total number of patients with included
tumor responses byWGD status at a pan-cancer and cancer type level.
For tumor status, patients with documented “TUMOR_FREE” or
“WITH_TUMOR” were included for analysis, remaining patients with
missing data were excluded. The frequency of patients with persistent
disease at the end of TCGA’s clinical observational period was calcu-
lated as the proportion of patients “WITH TUMOR” over total number
of patients with documented tumor status by WGD status at a pan-
cancer and cancer type level. The definitions of these variables were
provided in ref. 136. Testing for association was done via two-tailed
Pearson’s Chi-squared test.

Cell culture
Themurine epithelial lung tissue cell line (LA-4; cat. no.ATCCCCL-196)
and the murine alveolar lung macrophage (MH-S; cat. No. CRL2019)
cell line were purchased from and cultured according to American
Type Culture Collection (ATCC) instructions. Cells were cultured in
TPP cell culture flasks at 37 °C in a 5%CO2 humidified atmosphere until
monolayers reached desired confluency. All experiments were
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performed with cells before the twentieth passage. For long-term live
cell experiments, a stage-top incubator that maintains a humidified
atmospherewith 5%CO2 and is heated to 37 °Cwas used. Themedium
used for culturing of the epithelial LA-4 cells was Ham’s F-12Kmedium
(Gibco) supplemented with 15% FCS (ATCC), 1% P/S (Sigma), 1% NEAA
(Gibco), 2 × 10−3 M L-Gln. For alveolar macrophages cell line, MH-S,
RPMI 1640 (Gibco)medium supplemented with 10% FCS (ATCC), 1% P/
S (Sigma), 2 × 10−3 M L-Gln, and 0.05 × 10−3 M beta mercapthoethanol
(Gibco) was used. No commonly misidentified cell lines were used in
this study.

Carcinogen materials for exposure assays
The environmental and engineered particulate matter used in this
study are summarized in Table S7. These included four particles
produced by fuel combustion (three diesel exhaust samples, one
carbon black sample), three engineered carbonaceous particulate
matters (graphene oxide, two multiwall carbon nanotubes), two clay
samples, and four metal oxides89,137–149. TiO2 nanotubes were synthe-
sized by ref. 150. Printex 90was kindly provided by Evonik, Frankfurt,
Germany. NM-401 MWCNT (MWCNTs-NM401-JRCNM04001a) were a
kind gift from JRC Nanomaterial Repository. All other materials,
except from commercially available DieselN1650, were obtained
through the EU project nanoPASS from prof. Ulla Vogel (NRCWE,
Copenhagen, Denmark).

Particulate matter preparation
Cuphorn sonicationwas employed todisperse particulatematter in a
low osmolarity, high pH buffer solution [vehicle: 1mM bicarbonate
buffer (100 times diluted bicarbonate buffer), pH of 10] to minimize
charge screening of the particulate matters’ active surfaces. To
ensure uniform dispersion, particulate matter was resuspended to
contain 3 cm2 of the particulate matter surface/3 µL. The resulting
suspensions underwent cup horn sonification in an ice bath for
15min, utilizing 5 s on and 5 s off regimen for a total duration of
30min, at a power setting of 20–30W (amplitude 70) to guarantee
optimal dispersion. Prior to microscopy, the volume of particulate
matter dispersion containing 10 times larger of the particulatematter
surface area of the cell culture well was added in a dropwise manner.
The volume of particulate matter applied to cells represented 3% of
the final cell media volume.

Live cell microscopy
A combination of fluorophores was used to label structures of interest
in cells. We labeled murine epithelial lung tissue cells with Cell-
Tracker™ Green CMFDA (CTG, Thermo Fisher (#C2925), excitation
peak 492 nm, emission peak 517 nm, 1μM), CellMask™ Deep Red
(CMDR, Thermo Fisher (#C10046), excitation peak 650nm, emission
peak 685 nm, 0.5μg/mL), and Abberior LIVE 550 Tubulin (Abberior,
(#LV550), excitation peak 551 nm, emission peak 573 nm, 100nM). We
labeled murine alveolar lung macrophages with CellTracker™ Orange
CMRA dye (CTO, Thermo Fisher (#C34551), excitation peak 548 nm,
emission peak 576 nm, 1μM). It is noteworthy that CTG and CTO
fluorophores were added one day prior tomicroscopy, while the other
fluorophores were added immediately before imaging. Additionally,
only CTG and CTO were washed with PBS, whereas the other labels
were not. Live cell microscopy was performed using the STED micro-
scope by Abberior Instruments in confocal mode. An inverted micro-
scope body (Olympus IX83) was equipped with a stage top incubator
(Okolab H301-MIN), which maintains atmosphere with the 37 °C, 5%
CO2, and at least 95% humidity to enable long term imaging of living
cells. Images were captured by 20× magnification and 0.8 numerical
aperture (NA) lens. The microscope system incorporates four pulsed
laser sources with a pulse duration of 120 ps and amaximum power of
50 µW at the sample plane. Four avalanche photodiode detectors are
utilized for signal detection. We detected particulate matter in the

label-free, backscatter detection mode, utilizing the 488/488 ± 5 nm
excitation/detection.

Carcinogen exposure assays
Cells labeled with live cell compatible fluorophores were exposed to
particulate matter for a total of 24 h as detailed in ref. 89. Cytotracker
was added one day prior to microscopy and removed prior to micro-
scopy. The remaining fluorophores were added immediately prior to
imaging. Murine lung epithelial cells in monoculture or in coculture
with murine macrophages were exposed to individual particulate
matters immediately prior to imaging. For eachparticulatematter, 3–4
biological replicates were performed (cells with the next (+1) passage
number, seeded andmeasured 3–4 days later), eachwith 1–3 technical
replicates (cells with the same passage number, but seeded in a
neighboring well and measured in parallel on the same day). Results
were highly reproducible across biological and technical replicates.
Control samples are cells labeledwith all fluorophores exposed to 3μL
of vehicle buffer without particulate matter (1mM (100 × diluted)
bicarbonate buffer only), representing 3% of the total cell medium
volume. 24-h time-lapse fluorescence and scattering microscopy ima-
ges were quantified utilizing standard quantification algorithms of the
Infinite platform (version 42), written in Python and Mathematica, to
derive: 1) cell proliferation (number of cells), 2) binucleate cell for-
mation (fraction of bi- and multinucleate epithelial cells). Rates of
proliferation and binucleation changes were averaged within all the
available biological and/or technical replicates. Changes in cellular
responses to carcinogen exposures were tested by pairwise two-tailed
t-tests to reference control. The carcinogen exposure assays were
performed in a blinded manner, and the experimenter was not aware
of the identity of the material or its properties during the data col-
lection or analysis stages of the assay.

Mutagen signature attributions
In order to extract mutagen signature attributions from TCGA NSCLC
samples, the “signatureFit_pipeline” of signature.tools.lib was run
using the Mutagen53 catalog from Kucab, et al. with the settings:
genome.v = “hg19”, randomSeed = 6206, fit_method = “Fit”, thresh-
old_p.value = 0.05, optimisation_method = “KLD”, useBootstrap =
FALSE, exposureFilterType = “fixedThreshold”, threshold_percent = 5,
threshold_nmuts = 10, multiStepMode = “errorReduction”, and
minErrorReductionPerc = 1596. Results were then saved via ‘plotFi-
tResults‘ from the same package. These results were then normalized
across samples by taking the number of assignments per mutagen
signature in a sample divided by the total assignments for that sample.
These normalized assignmentswere then summedwithin themutagen
classes as defined by ref. 96. We then compared these mutagen class
assignments across self-reported racial groups using two-tailed
Welch’s t-tests followed by false discovery rate correction using Ben-
jamini-Hochberg’s method135.

Survival analysis
Survival analysis was performed in Python, using the packages: life-
lines, matplotlib, and pandas. Significance was tested via logrank test.

Clinical correlates of WGD and patient race
Equivalence of ages at key clinical event times (diagnosis, death,
sequencing, and surgical procedure) were compared across self-
reported racial groups andWGD status via Wilcoxon rank-sum test. All
ages except for diagnosis were directly reported by MSK-MET, while
age at diagnosis was inferred based on survival status, whereby dead
patients’ age at diagnosis was calculated as overall survival in months,
while for living patients’ age at diagnosis was calculated from age at
last contact minus overall survival in months. Microsatellite instability
status was determined using designated Stable and Instable determi-
nations; the frequency of microsatellite instability (MSI-H) was
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determined as the number of Instable samples divided by the total
number of Stable and Instable samples within a self-reported racial
group or WGD status; testing for association was done via two-tailed
Pearson’s Chi-squared test. Staging information for MSK-MET dataset
remained incomplete. The frequency of metastasis location was
determined by the proportion of samples with recorded metastasis
divided by the total number of samples from a self-reported racial
group or WGD status; testing for association was done via two-tailed
Pearson’s Chi-squared test. For those metastases occurring in only a
subset of patients (e.g., Female Genital andMaleGenital), only samples
contained within the same subset were considered in our calculations.

Data visualization
Scientific illustrations were assembled using BioRender (Fig. 1A and
Fig. 5A). Graphs and scatterplotswere generated usingGraphpad Prism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MSK-MET database are available at: https://www.cbioportal.org/
study/summary?id=msk_met_2021112. The TCGA database is available
at: https://www.cbioportal.org/study/summary?id=laml_tcga_pan_can_
atlas_2018,acc_tcga_pan_can_atlas_2018,blca_tcga_pan_can_atlas_2018,
lgg_tcga_pan_can_atlas_2018,brca_tcga_pan_can_atlas_2018,cesc_tcga_
pan_can_atlas_2018,chol_tcga_pan_can_atlas_2018,coadread_tcga_pan_
can_atlas_2018,dlbc_tcga_pan_can_atlas_2018,esca_tcga_pan_can_atlas_
2018,gbm_tcga_pan_can_atlas_2018,hnsc_tcga_pan_can_atlas_2018,
kich_tcga_pan_can_atlas_2018,kirc_tcga_pan_can_atlas_2018,kirp_tcga_
pan_can_atlas_2018,lihc_tcga_pan_can_atlas_2018,luad_tcga_pan_can_
atlas_2018,lusc_tcga_pan_can_atlas_2018,meso_tcga_pan_can_atlas_
2018,ov_tcga_pan_can_atlas_2018,paad_tcga_pan_can_atlas_2018,pcpg_
tcga_pan_can_atlas_2018,prad_tcga_pan_can_atlas_2018,sarc_tcga_pan_
can_atlas_2018,skcm_tcga_pan_can_atlas_2018,stad_tcga_pan_can_atlas_
2018,tgct_tcga_pan_can_atlas_2018,thym_tcga_pan_can_atlas_2018,
thca_tcga_pan_can_atlas_2018,ucs_tcga_pan_can_atlas_2018,ucec_tcga_
pan_can_atlas_2018,uvm_tcga_pan_can_atlas_2018. The PCAWG dataset
is available at: https://www.cbioportal.org/study?id=pancan_pcawg_
2020. Preprocessed versions of these data are available in the code
repository at github.com/sheltzer-lab/wgd_disparities. MSK-MET
inferred ancestry determinations are available in the same code
repository under the data folder. Data from the in vitro assays and
TCGA NSCLC mutagen attributions are available in Source Data. Raw
microscopy images are available at https://doi.org/10.5281/zenodo.
13151979. All data used in this study are available under non-restricted
access. Source data are provided with this paper.

Code availability
The code generated for this study is available at https://doi.org/10.
5281/zenodo.13134595151 and at https://github.com/sheltzer-lab/wgd_
disparities.
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