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Decoding Missense Variants by
Incorporating Phase Separation via
Machine Learning

Mofan Feng1,2,6, Xiaoxi Wei1,6, Xi Zheng 1,2, Liangjie Liu1,2, Lin Lin1, Manying Xia1,
Guang He 1,2 , Yi Shi 1,2 & Qing Lu 1,3,4,5

Computational models havemade significant progress in predicting the effect
of protein variants. However, deciphering numerous variants of uncertain
significance (VUS) located within intrinsically disordered regions (IDRs)
remains challenging. To address this issue, we introduce phase separation,
which is tightly linked to IDRs, into the investigation of missense variants.
Phase separation is vital for multiple physiological processes. By leveraging
missense variants that alter phase separation propensity, we develop a
machine learning approach named PSMutPred to predict the impact of mis-
sense mutations on phase separation. PSMutPred demonstrates robust per-
formance in predicting missense variants that affect natural phase separation.
In vitro experiments further underscore its validity. By applying PSMutPred on
over 522,000 ClinVar missense variants, it significantly contributes to decod-
ing the pathogenesis of disease variants, especially those in IDRs. Our work
provides insights into the understanding of a vast number of VUSs in IDRs,
expediting clinical interpretation and diagnosis.

Approximately 25%of disease-associatedmissense variants are located
in intrinsically disordered regions (IDRs)1, present in ∼63% of human
proteins. However, studying variants in IDRs is challenging due to the
lack of a fixed tertiary structure and limited evolutionary
conservation2, as only a small proportion (∼15%) of IDRs exhibit high
conservation and high pLDDT scores (AlphaFold23) which denote
prediction confidence4. Numerous IDR variants are, therefore, anno-
tated as variants of uncertain significance (VUSs), making it difficult to
evaluate and predict their functional impact on diseases.

IDRs, particularly low-complexity IDRs, are crucial for the forma-
tion of membrane-less biomolecular condensates through phase
separation, a complex and not fully understood physicochemical
process in whichmolecules aggregate and segregate into distinct fluid
phases5,6. Phase separation leads to the formation of membrane-less

organelles called condensates which play essential roles in various
biological processes. An increasing number of proteins are recognized
for their roles via the formation of phase separation condensates.
These condensates include the nucleolus and transcription factories in
the nucleus7, stress granules8, and protein densities at neuronal
synapses9 and inner-ear hair cells10–12.

Accumulating studies in IDRs reveal thatmissense variants in IDRs
can perturb protein functions by altering phase separation13–15. Mis-
sensemutation impacts phase separation by altering specific residues,
such as key residues for polar interaction16, pi-contact17,18, or other
multivalent interaction19–21. These mutations can affect the IDR con-
formations, intra-molecular interactions, and inter-molecular protein-
protein interactions, leading to abnormal condensate formations7.
This can cause either loss22,23 or gain13,14,24 of natural phase separation,
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leading to misplacement and related gain or loss-of-function out-
comes. Notably, the gain of unnecessary phase separation can con-
tribute to disease phenotypes like neurodegenerative disorders such
as Alzheimer’s and Parkinson’s diseases25–27. These pioneering works
have confirmed the association between phase separation and disease
variants in several cases.

Existing missense variant prediction algorithms typically rely on
protein structural features or evolutionary features derived from
multiple sequence alignments (MSA). Using such features, prediction
algorithms of disease variants have made significant progress in pre-
dicting protein clinical relevance28–32, bridging the variant interpreta-
tion gap left by experiments due to the cost and labor constraints.
However, for numerous disease variants located in IDRs which often
lack a fixed structure7 and show poor evolutionary conservation2,
encoding variants using these traditional features becomes unsuitable,
making accurate prediction challenging. To address this challenge, we
propose to employ phase separation as a promising feature for
improving the prediction of IDR disease variants, given the role of
numerous IDRs in phase separation associated with various diseases.

Machine learning algorithms have shown remarkable perfor-
mance in predicting the propensity of proteins to undergo phase
separation. Several sequence-related features havebeen identified that
made phase separation prediction effective33–39 including pi-pi35,
cation-pi interactions36,37,40, electrostatic interactions39,41, hydrophobic
interactions38,40, and the valency and patterning of the low-complexity
region8,36,42. Protein-protein interactions (PPIs) and post-translational
modifications (PTMs) were also found to be promising features
recently43–45. Missense mutations can cause pathogenic changes by
altering phase separation. However, current sequence-based phase

separation prediction algorithms are trained on a limited set of known
phase-separating proteins, their ability to predict the impact of mis-
sense mutations on phase separation remains unclear and has not
been systematically evaluated.

To enhance comprehension of the correlation between IDR mis-
sensemutations anddiseases, we approached the issue from the phase
separation standpoint and devised features to represent the under-
lying phase separation alterations resulting from the mutation. Using
experimentally validated missense mutations that alter phase separa-
tion propensity in proteins naturally undergoing this process, we
constructed a computational tool named PSMutPred to predict the
effect of missense mutation on phase separation (Fig. 1). We demon-
strated that missense mutations that impact the normal phase
separation propensity can be predicted, and the direction of the shifts
in the PS threshold caused by these mutations are also predictable.

We next explored whether PS can be integrated into the patho-
genicity prediction of disease variants. By analyzing PSMutPred scores
for 520,000 + missense variants, we observed a positive correlation
between the variant’s tendency to impact phase separation and its
pathogenicity, especially in proteins prone to phase separation. We
also observed that in proteins related to neurodegenerative diseases,
disease variants thatwere predicted to enhance phase separation were
proportionally more prevalent compared to those that might weaken
phase separation. By integrating PSMutPred scores and other PS-
related features into representative unsupervised pathogenicity pre-
diction methods for missense variants (Fig. 1), such as EVE31 and
ESM1b46, we observed significant improvement in prediction accuracy,
especially for variants within low-conservation IDRs, with an ∼10%
increase in AUPR. These findings demonstrate that PSMutPred not
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Fig. 1 | Overview of the study. The upper green panel illustrates PSMutPred, a
machine learning approachdesigned topredict the effect ofmissensemutationson
natural phase separation. Each mutation is converted into a feature vector and
distinct models were employed for two main tasks: Identifying mutations that
impact PS (termed ‘Impact Prediction’) and determining whether a mutation

strengthens or weakens the PS threshold (labeled as ‘Strengthen/Weaken Predic-
tion’). Additionally, PS features, including the output from PSMutPred, were eval-
uated for their utility in predicting the pathogenicity of missense variants (lower
orange panel). dim. dimension.
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only can serve as a tool for predicting the impact of mutations on
phase separation, but also can provide informative encoding for
mutation impacts on IDRs. Additionally, phase separation offers fresh
perspectives and opportunities for pre-screening studies on the
pathogenicity of numerous VUSs.

Results
Collection of phase separation-related missense variants
To investigate relationships between missense mutations and protein
phase separation (PS) properties, we reviewed missense variants with
altered PS propensity that were documented in PhaSepDB47 and
LLPSDB48,49 databases. Tominimize the noise effect caused bymultiple
mutations within a single sequence, we narrowed our selection to
mutation records with a limited number of mutations in the sequence
that alter the normal PS threshold (annotated as ‘Impact’ mutations).
Examples include P22L in Ape1, which solidifies semi-liquid Ape1
Droplets50, and S48E in TDP-43, which disrupts PS51. We limited our
analysis to variants influencing proteins’ spontaneous PS, excluding
partner-dependent PS.

Our compilation yielded a list of 307 experimentally validated
‘Impact’mutation records from70proteins (Supplementary Fig. 1a and
Supplementary Data 1), including 79 that strengthened the PS prop-
erties (annotated as ‘Strengthen’) and 228 that weakened or disabled
them (annotated as ‘Weaken/Disable’). The PScore35 and PhaSePred43

scores indicate that the proteins from which these missense variants
originate are predominantlyproteins undergoing PS spontaneously, as
the PS propensity scores predicted for these proteins are significantly
higher compared to those of the human proteome (Fig. 2a).

Properties of variants impacting phase separation
We observed that mutations impacting PS (annotated as ‘Impact’
mutations) are predominantly located in intrinsically disordered
regions (IDRs) rather than structured domain areas (Domains)
(Fig. 2b). Existing variant effect prediction models primarily rely on
evolutionary features28,30,31,52 and structural features32,53–55. However,
these features are inadequate for representing variants in IDRs and
their effects on PS. We found that current advanced pathogenicity
prediction models, such as AlphaMissense32 and EVE31, exhibit higher
uncertainty of predictions for variants in IDRs than in Domains (Sup-
plementary Fig. 1d). Moreover, they both fail to distinguish ‘Impact’
mutations from random background mutations (Supplementary
Fig. 1c). This underscores the urgent need for developing specialized
models to predict the effects of mutations on PS.

Among these ‘Impact’mutations, those involving serine, tyrosine,
arginine, lysine, and glutamine are the most prevalent (Fig. 2c and
Supplementary Fig. 5a). These residues play key roles in PS. Specifi-
cally, tyrosine and arginine residues are important PS drivers, with
cation-pi interactions between them serving as crucial forces for PS37.
Although lysine has a lower ability to form pi-contacts compared to
arginine, its interaction with nucleotide is essential for the PS of spe-
cific proteins such as tau and DDX3X56–58. Additionally, glutamine and
serine are vital for cross-beta sheet interaction, which can enhance the
propensity of PS37.

Interestingly, our analysis revealed that ‘Impact’mutations tend to
occur near domain boundaries. Specifically, the amino acid (AA) dis-
tance from each mutation site to its closest domain boundary was
calculated. We noted that, whether within Domains or IDRs, ‘Impact’
mutations are significantly closer to these boundaries compared to
randommutation sites (P ≤0.0001, Fig. 2d andSupplementary Fig. 5b).
Furthermore, we observed that pathogenic mutants predicted by
AlphaMissense32 also demonstrated shorter distances to domain
boundaries compared to those predicted as benign in both Domains
and IDRs (P ≤0.0001, Supplementary Fig. 1e).

In addition, we assessed pi-contact values at mutation sites using
the prediction function provided by PScore35, as pi-pi interactions are

vital in determining PS. For 6 out of the 8 predicted pi-contact values,
‘Impact’ mutations have higher predicted values than random muta-
tion sites (Fig. 2e). This suggests that mutations affecting PS are likely
to occur at sites with high pi-contact frequencies.

Next, we compared the changes in AA properties before and after
mutation between the ‘Strengthen’ and ‘Weaken/Disable’ groups. We
observed that missense mutations that strengthen PS propensity are
prone to have higher AA mass (P =0.0097), hydrophobicity
(P = 0.0024), and decreased polarity (P <0.0001) compared to
‘Weaken/Disable’ mutations (Fig. 2f and Supplementary Fig. 1f). Nota-
bly, the increase in hydrophobicity supports the previous discovery
that hydrophobicity serves as an important PS driver38,40.

Together, these findings show the distinct properties of missense
mutations impacting PS and the varying characteristics between
mutations that either strengthen or weaken PS. Based on these prop-
erties, we have developed tools to predict the impact of mutations on
PS, which will be discussed in the following section.

PSMutPred for predicting the impact of missense mutation on
phase separation tendency
To predict the impact of missensemutations on protein PS properties,
we developed PSMutPred composed of two machine learning (ML)
approaches. Thefirst approach termed the ‘ImpactPrediction’ (IP) task,
trainedMLmodels to predictmissensemutations that impact PS. In the
second approach termed the ‘Strengthen/Weaken Prediction’ (SP) task,
ML models were trained to predict the direction of the shifts in the
normal cellular PS threshold induced by ‘Impact’mutations (Methods).
The process is depicted in Fig. 1, indicated by the green section.

To encode such changes caused by missense mutations for
quantification andmodel learning,we considered thephysicochemical
properties of both the wild-type AA and mutant AA at each mutation
site, as well as the properties of AAs within IDRs. We applied pi-pi
contact frequency35 to encode the mutation site’s underlying sig-
nificance for PS. Additionally, features such as IUPred59 score and
mutation distance to domain boundary were used to encode the
position of thesemutations. Eachmutation sample was converted into
a 39-dimension feature vector (“Methods” section). Neither MSA fea-
tures nor structural features widely adopted in existing mutation-
related machine learning prediction28–31,52,53,60 were considered due to
the nature of IDRs.

Due to the limited availability of variants thathavenoPSeffect, for
each of the 70 proteins, we randomly generated 500 single AA var-
iants, resulting in a total of 35,000 random ‘Background’ mutations,
which were further used as negative samples (i.e., ‘Background’
mutations) for analyses (“Methods” section). The dataset of missense
mutations was divided into a cross-validation dataset (246 ‘Impact’
samples and 23,500 ‘Background’ samples from 47 proteins) and an
independent test set (61 ‘Impact’ samples and 11,500 ‘Background’
samples from 23 proteins) (Methods). We trained prediction models
including Logistic Regression (LR), Random Forest (RF), and Support
Vector Regression (SVR) for both tasks to explore the discriminative
power of predicting missense mutations’ effect on PS.

Performance evaluation of PSMutPred
Although there is currently no computational algorithm for missense
mutations on predicting the effect on PS, we attempted to determine if
existing PS predictionmethods are capable of discerning alterations in
PS propensity caused by missense mutations. Five high-performing PS
methods were selected, including DeePhase39, PSAP61, PScore35,
catGRANULE38, and FuzDrop62. We found that the prediction score
differences of ‘Impact’ mutations were higher than those of ‘Back-
ground’ mutations, by comparing the absolute differences of predic-
tion scores (Fig. 3a). However, the area under the curve of the receiving
operating characteristics (AUROCs) were unsatisfactory (Fig. 3b).
Except for FuzDrop62, none of the methods could differentiate
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between ‘Strengthen’ mutations and ‘Weaken’ mutations (Supple-
mentary Fig. 2c, d), as their prediction scores did not accurately reflect
the increase or decrease of PS propensity caused by mutations.

To test whether PSMutPred-IP can identify mutations that impact
PS, we implemented leave-one-source-out cross-validation (LOSO CV)
(Method). LOSO is used to evaluate the models’ predictive capabilities

for variants from unseen proteins, ensuring their generalizability.
AUROCs and AUPRs on LOSO (Fig. 3c, d) showed the accuracy of our
models, especially IP-SVR and IP-RF. Evaluation results on the inde-
pendent test set showed that our models have stable prediction per-
formance when facing mutations from different PS protein categories
(Fig. 3c, d).
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tively; ****P <0.0001, two-sided Mann–Whitney U test, p = 4.4e-40 and 1.4e-30,
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are maxima, upper quartile, median, lower quartile, and minima). e Distribution of
eight pi-contact prediction values (PPVs) for mutation sites. Values of ‘Impact’
mutations (in red) and ‘Background’mutations (in gray) were compared. The dot in
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higher. Source data are provided as a Source Data file.
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GRANULE). a Discriminative power evaluation of representative PS prediction
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were computed and visualized. For LOSO AUPR, data are presented as mean
values ± SD (Standard Deviation), and the scatter points represent the distribution
of background dataset sampling repeats. c, d Model performance in identifying
‘Impact’ mutations evaluated using leave-one-source-out (LOSO, Left) and an
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evaluation similar to (c and d) but the ‘Background’ mutations were generated
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data are provided as a Source Data file.
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To ensure that the superior performance of the algorithmwas not
caused by the distribution bias of ‘Impact’mutations, which tend to be
located in IDRs (Fig. 2b, d), we conducted an additional LOSO CV and
an independent validation for the IP task. Here we generated ‘Back-
ground’ samplesmaintaining the same IDRs:Domains ratio asobserved
in the ‘Impact’ samples. LOSO CV results and independent validation
results (Fig. 3e, f) were as promising as those from the previous dataset
(Fig. 3c, d). We also created another ‘Background’ dataset by aligning
the AA substitution frequencies with those in the impact dataset. This
wasdone to testwhether thepredictive powerwasdue to thehigh ratio
of specific AA types in ‘Impact’ samples (Fig. 3g, h).

Moreover, a small proportion of ‘Impact’ mutations are multi-
point mutations (Supplementary Fig. 1b), the proposed models still
exhibited efficient predictive power and outperformed representative
PS models when analyzing the results without considering multi-point
mutations (Supplementary Fig. 2a, b). We also assess the performance
of PSMutPred-IP by only including naturally occurringmutations in the
database, and the model allowed efficient predictive power on these
mutations (Supplementary Fig. 5d, e).

We next investigated the performance of PSMutPred-SP models.
The significant discriminative power to distinguish between
‘Strengthen’ samples and ‘Weaken’ mutation samples from unseen
proteins under LOSOCV (SP-LR, P < 0.0001) (Supplementary Fig. 2e, f)
and AUROCs on the independent test set (Supplementary Fig. 2g)
indicated that SP-LR, SP-RF models can identify the direction of the
shifts in PS caused by missense mutations.

Feature importance indices were calculated for random forest
models of both tasks and grouped into feature types to discover
potentially key features (Supplementary Fig. 2h). In both tasks, the pi-
contact frequency of themutation site ranked first, suggesting that the
pi-pi interaction at the mutation’s specific location significantly influ-
ences the effect of mutations on protein phase separation. Beyond Pi-
contact, no single feature was identified as a dominating one, sug-
gesting the non-linear nature among features and amulti-factor causal
relationship between features and the PS outcome.

Overall, PSMutPred models not only predict missense mutations
that impact PS but also predict the direction of the PS-threshold shift.
Ourfinalmodel generates predictionsmadeby the IP-SVR, IP-RF, IP-LR,
SP-LR, and SP-RF models as well as their corresponding rank scores
(Methods). These models can be employed as effective tools for
assessing the tendency of missense mutations to affect PS, enhancing
the interpretation of disease variants’ pathogenicity.

Experimental validation on the PS-related mutations identified
by PSMutPred
Aberrant phase separation (PS) or aggregation processes have been
implicated in the pathogenesis of various diseases, including neuro-
degenerative disorders, autism7, and hearing loss10–12. In this study, we
employed PSMutPred to predict the PS impact (‘Impact prediction’
and ‘Strengthen/Weaken prediction’) of missense variants from genes
associated with PS-related diseases. Specifically, we selected EPS8,
known for its association with deafness, and analyzed the PS impact of
its ‘Uncertain’ missense mutations from the ClinVar63,64 database to
assess the accuracy of our prediction model.

Epidermal growth factor receptor pathway substrate 8 (EPS8) is a
multifunctional protein involved in cell mitosis and differentiation65–68,
in capping proteins through side-binding, in bundling of actin
filaments69–71 aswell as in the elongationof actin in hair cell stereocilia65.
Prior research has shown that EPS8 localizes to the tips of stereocilia
and contributes to the formation of PS-mediated condensates at the
stereocilia tip complex11,72. These findings suggest that EPS8 has the
capacity for self-phase separation and to interact with othermolecules.

To validate our predictions, we selected missense mutations,
including R265C, D586G, and K676R, from the 8 candidate mutations.
These candidates were predicted by PSMutPred-IP to impact PS, either

by strengthening or weakening it, with rank scores above 0.5 across all
models (IP-SVR, IP-RF, and IP-LR). Among these candidates, D586Ghad
the highest scores for both SP-LR and SP-RF, suggesting a stronger
propensity to enhance PS, while K676R scored the lowest for both
metrics implying an impairment of PS capacity. As negative controls,
we selected R702W and E728V from the 15 candidate mutations (all
with IP rank scores below 0.5 for IP-LR, IP-SVR, and IP-RF; at least one
had a score below 0.1).

For experimental validation, we overexpressed the wild-type and
mutants ofmouse Eps8 (which is highly conservedwith human EPS8, as
shown in Supplementary Fig. 3d) fused with a GFP tag in HEK293 cells.
Observations made using Olympus fluorescence microscopy high-
lighted distinct changes in puncta formation quantity to evaluate PS
capacity. Specifically, R265C andD585Gexhibited a notable increase in
the number of puncta, while K675R showed a significant reduction
(Fig. 4a, b and Supplementary Fig. 3a, b). Notably, D586G (equivalent
to D585G in mice) demonstrated enhanced PS capacity, aligning with
its high SP-RF and SP-LR scores. In contrast, K676R (equivalent to
K675R in mice) showed diminished PS ability, supported by its low SP-
RF and SP-LR scores. To confirm that the observed puncta are indeed a
result of liquid-liquid phase separation (LLPS), we also conducted a
fluorescence recovery experiment after a photobleaching (FRAP)
experiment to validate the dynamic and rapid formation of droplets
observed of both wild-type and mutant (D585G) of mouse EPS8 in
HEK293 cells (Supplementary Fig. 4h–j).

Eps8 comprises six domains, encompassing both well-structured
regions and intrinsically disordered regions (IDRs) (Supplementary
Fig. 3c). D585 in mice (equivalent to D586 in humans) is situated in the
SH3 domain. It forms stable hydrogen bonds with the sidechains or
backbones of K536 and K538 in mice (equivalent to K537 and K539 in
humans),maintaining structural stability through either a β-sheet-loop
conformation in mice or β-sheet-β-sheet conformation in humans
(Fig. 4d, e and Supplementary Fig. 3e, f). Additionally, D585 and its
neighboring residues, as well as interaction residues, exhibit high
conservation. However, the substitution of glycine for aspartate dis-
rupts the formationof these hydrogen bonds, leading to a destabilized
structure. This change might enhance PS by increasing flexibility and
modifying the β-sheet-loop structure. Conversely, K675 in mice
(equivalent toK676 inhumans) is located in an IDR at theC-terminusof
EPS8 (Fig. 4c and Supplementary Fig. 3d). Sequence alignment
underscores the high conservation of K675 and its adjacent residues
(Fig. 4f and Supplementary Fig. 3g). Lysine’s characteristic long and
hydrophobic side chain increases the likelihood of extending and
‘capturing’ polar residues from self-proteins or other proteins. This
substitution may alter these interactions, potentially impairing PS.

In summary, our study demonstrates that the changes in PS pro-
pensity, as predicted by ourmodel, accurately correspond to a distinct
number of puncta formed in live cells. This serves to underscore the
utility and accuracy of PSMutPred.

Phase separation effect prediction of disease variants by
PSMutPred
Phase separation turns out to be a general mechanism for protein con-
densate assembly forming as membrane-less organelles in various phy-
siological processes9,73–82. Mutations that change phase separation (PS)
are likely causes of disease13,22,23,83. To exam this theory, we divided mis-
sense variants corresponding to 8611 human genes from ClinVar63,64

(522,016 variants in total, downloaded in 2022.12) into PS-prone and low-
PS-prone propensity groups for between-group analyses (Methods).

By comparing the PS-prone group defined by 83 PS ClinVar pro-
teins with the low-PS-prone group (other proteins), we found that in
the PS-prone group, the PSMutPred-IP scores of variants (n = 1451)
were skewed to pathogenicity compared to those from low-PS-prone
group (n = 86,291) (Fig. 5a). To make the sizes of the two groups more
comparable and improve the efficiency of the comparison, we also
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defined the PS-prone group by collecting PS proteins predicted by
PScore35 and a meta-predictor PhaSePred43 (1276 proteins, 30,889
variants) and grouped variants from other proteins as low-PS-prone
group (56,853 variants). The between-group analysis showed con-
sistent results (Fig. 5b). However, when conducting the between-group
analysis using representative PS predictionmethods trained on phase-
separation proteins, the outcomes for DeePhase39 and catGRANULE38

displayed inconsistencies across the analyses (Supplementary
Fig. 6a, b). For theother threemethods,which includePSAP61, PScore35,
and FuzDrop62, the PS-prone group did not demonstrate significantly
higher Pearson correlation coefficients than the low-PS-prone group
(Supplementary Fig. 6a, b).

IDRs and structured domains are both crucial for phase
separation6. When analyzing the PS-prone group defined by
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Fig. 4 | Experimental validation of Eps8 missense mutations predicted by
PSMutPred to impact PS. aRepresentative images of overexpressedGFP-Eps8 and
its mutants in HEK293 cells (scale bars: 10μm; n = 10 randomly picked cells). WT
denotes wild type. b Quantification of puncta within the wild type and mutants of
Eps8 in HEK293 cells (n = 10 randomly picked cells; ****P <0.0001 by two-tailed
Student’s t test, p = 8.1e-9 and 4.0e-10, respectively). Error bars represent SD, and
center lines represent mean values. c Ribbon diagram representation of mouse

EPS8 structure predicted by AlphaFold2, showing both front (left) and back (right)
views. d–f Detailed regions involving missense mutations with their neighboring
residues (d, f), and interaction analysis (e). The mutations are shown with the stick
mode in red while hydrogen bonds are shown as blue dashed lines. Sequence
alignments within critical residues are shown in bold. Source data are provided as a
Source Data file.
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algorithms, we found that PSMutPred-IP, along with other sequence-
based PS metrics (except PSAP), showed a significant positive corre-
lation with the pathogenicity of variants in both IDRs (n = 15,427) and
domains (n = 15,462) (Fig. 5c and supplementary Fig. 6c).

Additionally, we isolated variants likely in IDRs (unmapped by
PfamScan84,85, with IUPred359 score > 0.5) from the PS-prone group and
directly used PhaSePred-IP scores to predict pathogenicity ((Likely)
pathogenic as 1 and (Likely) benign as 0). Separate analyses were
conducted for the PS-prone group as defined by PS proteins and by
algorithms (Fig. 5e, f). The resulting AUROC scores indicated that
PSMutPred-IP can identify disease variants that lead to PS alterations.

Studies indicate that neurodegenerative lesions may be asso-
ciated with excessive PS25,86. Within the predicted PS-prone group, 19
proteins were identified to be highly associated with neurodegenera-
tive disease (Methods). SP prediction scores for the variants (n = 252)
of these proteins showed different patterns compared to other var-
iants (n = 19,266). Specifically, among these 252 variants, those pre-
dicted to strengthen PS were more inclined towards pathogenicity
compared to those predicted to weaken PS. This observation was
reflected by the positive Pearson coefficient values for both SP-LR and
SP-RF models, contrasting with the negative coefficient values for
variants fromother PS proteins (Fig. 5d). catGRANULE38 and FuzDrop62
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Fig. 5 | Evaluation of PSMutPred scores across ClinVar64 variants.
a–dComparison of variants’ Pearson correlationbetween groups. Groups include a
PS-prone group (83 known PS proteins, 1451 variants) and a low-PS-prone group
(8528 proteins, 84,840 variants) defined by PS proteins, and a predicted PS-prone
group (1276 proteins, 30,889 variants) and a predicted low-PS-prone group (7335
proteins, 56,853 variants). (two-tailed P-values computed by sci-kit learn pearsonr
package; *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001; NS = no significance).
a Comparison between the PS-prone group and the low-PS-prone group. P-values
are 1.7e-8, 5.8e-8, 2.6e-4, 3.4e-5, 2.4e-14, and 1.2e-275 respectively. b Comparison
between the predicted PS-prone group and the predicted low-PS-prone group.
P-values are 9.9e-82, 0.01, 4.9e-53, 0.02, 3.6e-198, and 7.7e-223 respectively.
c Comparison between variants located in IDRs (n = 15,427) and Domains
(n = 15,462) within the predicted PS-prone group. P-values are 6.4e-61, 2.8e-13, 1.7e-
23, 6.0e-37, 1.5e-149, and 1.4e-107 respectively. d Comparison between variants

from neurodegenerative disease (ND) related proteins (19 proteins, n = 252) and
variants from other proteins (non-ND) (within the predicted PS-prone group). P-
values are 0.88, 3.1e-8, 0.005, and 2.6e-95 respectively. e AUROC scores of
PSMutPred-IP models on pathogenicity prediction of IDR missense variants from
the PS-prone group (n = 489 variants). f A parallel evaluation of (e) but focuses on
the predicted PS-prone group (n = 8188). g Comparison of the proportion values
defined by different PSMutPred-IP models, including IP-RF (top), IP-LR (middle),
and IP-SVR (bottom). Comparison of the PS-prone group and the low-PS-prone
group on the left (PS proteins), and comparison between the predicted PS-prone
group and the predicted low-PS-prone group (Predicted-PS proteins). Differences
are based on 2-sample Kolmogorov’s D statistic, with positive values indicating
higher proportions in the PS-prone group and negative values indicating higher
proportions in another. Source data are provided as a Source Data file.
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also demonstrate a higher Pearson correlation coefficient than the
overall pattern (Supplementary Fig. 6d).

Additionally, we observed that mutations within IDRs of PS pro-
teins are more likely to affect PS than those in proteins less likely to
undergo PS. This conclusion was based on evaluating the proportion
of variants of ‘Uncertain Significance’ (VUSs) predicted to impact PS
for each protein (see Methods). Using Kolmogorov’s D statistic to
compare these proportions, we observed that the PS-prone group had
a higher incidence of PS-affecting variants than the low-PS-prone
group, as shown in Fig. 5g. We found that only for PSAP61 and PScore35,
PS-prone proteins have a higher proportion of missense mutations
predicted to ‘Impact’ PS (Supplementary Fig. 6e).

In summary, our comprehensive analyses revealed a notable
clustering of pathogenic missense mutations with an impact on PS
propensity in proteins with inherently higher PS propensity. Addi-
tionally, our findings indicate that compared to mutations that might
weaken PS, gain-of-PS mutations tend to aggregate specifically in dis-
ease mutations associated with neurodegenerative-related genes.
These results not only provide valuable insights into the relationship
between PS and disease but also underscore the reliability and validity
of PSMutPred.

Introducing a feature for thepathogenicitypredictionof disease
variants
Current variant interpretation methods heavily rely on evolutionary
features28,30,31,52,87 generated bymultiple sequence alignment (MSA). As
IDRs, especially those with poor evolutionary conservation2, challenge
the effectiveness of traditional features7, using two representative
pathogenicity prediction models, including EVE31 and ESM1b46,88, we
aim to testwhether PS-related features can address the IDRgaps left by
evolutionary features in pathogenicity prediction (Fig. 1, orange sec-
tion). EVE predicts pathogenic variants by thoroughly leveraging MSA
information, demonstrating that this feature alone can predict the
impact of most known disease mutations, proving the dominant role
of the evolutionary feature in this field. ESM1b utilizes large language
models (LLM) to learn protein information across species, modeling
the space of known protein sequences selected throughout evolution,
and can thus be considered an advanced representation of evolu-
tionary features.

Wefirst selected EVEand applied a straightforward approach, that
combined the unsupervised EVE score with a simple feature group,
including PSMutPred scores as the variant feature (Methods). We then
trained three models including RF, SVR, and LR, using ClinVar64 sig-
nificances as labels. Their performances were evaluated using both
blocked 3-fold cross-validation and an independent test set (Supple-
mentary Data 3) (Methods). We observed that all three combined
models demonstrated improved pathogenicity prediction, with RF
showing the best performance in terms of AUROC and AUPR scores
(Supplementary Fig. 4a, b, and Supplementary Table 1). We subse-
quently selected the RF model as the combined model for further
analysis, based on validation on the independent test set.

Given that IDRs typically exhibit poorer evolutionaryconservation
than Domains7, it is unsurprising that we found EVE to be less effective
in predicting IDR variants compared to Domain variants (Fig. 6a, b and
Supplementary Table 1). As expected, the combined model led to a
more pronounced improvement in identifying IDR disease variants
(n = 5656) than those within Domains (n = 9738). Specifically, the
combined model showed a 4.3% improvement in AUROC and a 7.6%
improvement in AUPR for IDR variants, compared to a 2.6% AUROC
improvement and only a 1.7% AUPR rise for Domain variants (Fig. 6a, b
and Supplementary Table 1). TheMann–Whitney test further indicated
a significant improvement in the prediction of both pathogenic var-
iants as well as benign variants in IDRs (Fig. 6c, d). Additionally, we
consider that IDRs include a small subset of potentially conditionally
folded IDRs with high evolutionary conservation4, characterized by

highAlphaFold23-predicted confidence scores (pLDDT scores). For the
5656 IDRmutations in the test set, wemapped their pLDDT scores and
categorized them into a high pLDDT group (pLDDT ≥ 70) and a low
pLDDT group (pLDDT< 50). We found a more pronounced improve-
ment in AUPR for IDR variants with low pLDDT scores compared to
those with high pLDDT scores (9.8% compared to 3.9% AUPR
improvement, Fig. 6e). This indicates that current PS-related features
can supplement the evolutionary feature’s weakness in IDRs, especially
for low conservation IDRs.

To investigate the role of PSMutPred in pathogenicity prediction,
we examined the effect of including PSMutPred scores within various
feature combinations, and their performance on the test set was
quantified by AUROC and AUPR (Supplementary Fig. 4c). The com-
parative analysis highlighted a significant enhancement in the predic-
tion accuracy when PSMutPred scores were incorporated. Next, we
analyzed ClinVar mutations predicted by EVE with opposite outcomes
(pathogenic/likely pathogenic mutations with EVE scores < 0.5 and
benign/likely benign mutations with EVE scores ≥ 0.5) to evaluate the
PSMutPred’s discriminative power on thesemutations. We focused on
mutations within disordered regions of potential phase-separating
proteins (n = 600, Supplementary Fig. 4d). PSMutPred scores for false
negatives of EVE are significantly higher than those for false positives
of EVE, with P-values of 1.3e-4, 9.7e-5, and 9e-3 for IP-RF, IP-SVR and IP-
LR, respectively, as evaluated by the Mann–Whitney test. This shows
that PSMutPred can capture information of mutants where evolu-
tionary features failed.

Subsequently, similar to the process of appending features to EVE,
we combined PS-related features with the ESM1b score, which can be
considered as an advanced representation of evolutionary features.
Wemapped ESM1b scores to 140,320 ClinVar variants (Supplementary
Data 3) and tested the combined RF model using a blocked 5-fold
cross-validation (Methods). The combined model also achieved
improved prediction accuracy (Fig. 6f), especially for variants located
in IDRs with low pLDDT scores (Fig. 6g). This consistent result indi-
cates that PS-related features can address the weaknesses of evolu-
tionary features in predicting IDR variants, particularly those in IDRs
with low conservation. Using the PS features, combined with ESM1b
scores, we predicted pathogenicity scores for 1,015,769 ClinVar VUSs
(Supplementary Data 4) (“Methods” section). Among them, 527,524
are IDR variants (Fig. 6h), 9.3%of themwere predictedpathogenic, and
78.4% were predicted benign (Fig. 6i).

We chose EVE, ESM1b due to their unsupervised nature, which can
offer an unbiased baseline, making testing with our features straight-
forward. These findings reveal that the PS-related features including
variants’ impact on PS serve as a valuable encoding for IDR mutations
and can be integrated into pathogenicity prediction models in the
future to provide a better interpretation of pathogenicity variants.

Discussion
Missense mutations in IDRs are overlooked compared to those in fol-
ded regions. Pathogenicity prediction models, such as
AlphaMissense32, typically rely on evolutionary information and pro-
tein structural features. However, since IDRs often lack a consistent
structure and show limited evolutionary conservation, using these
traditional features to encode variants in IDRs turns out to be unsui-
table, making interpreting the numerous VUSs in IDRs difficult2. To
address the challenge, we turn to phase separation (PS), a widely
acknowledged property of IDRs linked to various diseases. As recent
studies emphasize, mutations within IDRs can disrupt regular PS,
which can lead to disease22,23, highlighting its potential as a predictive
feature.

Although a comprehensive understanding of the specific
mechanismsbywhichmissensemutations alter PS remains elusive7, we
considered differences in physicochemical properties, viewing them
as features that quantify mutation-induced changes. Additionally, we
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Fig. 6 | Analysis of phase separation-related feature contributions to patho-
genicity prediction. a–e Pathogenicity prediction performance evaluation of the
model combining EVE with PS-related features. a AUROC (Left) and AUPR (Right)
evaluations on the independent test set (n = 15,394). The purple line represents the
model trained with both EVE and PS features; the green line represents the EVE
score alone. b AUROC (Left) and AUPR (Right) evaluations specifically on variants
within IDRs from the data set analyzed in (a) (n = 5656). c, d The divergence of
predicted scores distributions between the standalone EVE (green) and the com-
bined model (purple), quantified using a two-sided Mann–Whitney U test on the
independent test set (****P <0.0001; P-values are 2.4e-27; 1.7e-15, 9.6e-59; and 7.2e-
293 respectively, the boxplot components within each violin plot, from top to
bottom are maxima, upper quartile, median, lower quartile, and minima.). c Score
distributions for pathogenic-prone variants (pathogenic and likely pathogenic,

n = 2044, left graph) and benign-prone variants (benign and likely benign, n = 3612,
right graph) with a focus on variants located in IDRs. d A parallel evaluation of (c)
but focusing on variants located in Domains (6665 pathogenic or likely pathogenic
and 3073 benign or likely benign). e Evaluation of IDRs variants with high Alpha-
Fold2 pLDDT scores (pLDDT ≥ 70, n = 2763) and low pLDDT scores (pLDDT < 50,
n = 2407). f–i Pathogenicity prediction performance evaluation of the model
combining ESM1b with PS-related features. f Evaluation of the model trained with
ESM1b and PS features using 5-fold cross-validation under the ClinVar dataset
(n = 140,321). g Evaluation of IDRs variants with high AlphaFold2 pLDDT scores
(pLDDT≥ 70, n = 36,032) and low pLDDT scores (pLDDT < 50, n = 25,755). h, i Pa-
thogenicity prediction for 1,015,769 ClinVar VUSs by combining PS features with
ESM1b scores. Source data are provided as a Source Data file.
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used the predicted pi-pi contact frequency35 at the mutation site as a
position-specific encoding. These considerationswere used todevelop
models predicting the effect of missense mutation on PS. Separate
models were constructed to predict the ‘Impact’ and ‘Strengthen/
Weaken’ effects of missense variants. The reliability of the model
predictions was validated through prediction results on variants from
unseen proteins and further experimental validations. Moreover,
subsequent analyses conducted on a larger-scale dataset further
affirmed the accuracy and effectiveness of our models.

It is crucial to note that, for single or a few key amino acids,
changes at the hot spots involved in charged or multivalent interac-
tions can impact phase separation. These key residues vary among
different proteins, with some being specific residues responsible for
post-translational modifications (PTMs)89,90, polar interaction16, or pi-
contact17,18 within low complexity domains (LCD), while others are
residues located at domain surfaces or boundaries facilitating multi-
valent interactions19,20, or contributing to cross-beta structures within
LCD21. Given this, we developed machine learning models using both
randomly generatedmutations and experimentally validatedmissense
mutations that alter PS propensity. These mutations mainly involve
single AA mutations, aiming to uncover the special characteristics of
‘hot spots’ mutations that alter phase separation. The discriminative
power of our algorithms indicates an inherent patternamongmissense
variants impacting PS, allowing for their prediction.

We currently focus on predicting single-site mutations because
single AA substitutions play a more critical role in diagnosing Men-
delian diseases and are more prominently featured in current disease
datasets, such as those in ClinVar64, compared to multi-site mutations.
Multi-sitemutations,whichwe are unsurehow to perfectly encode, are
currently treated as supplementary to our dataset to help the model
learn information about AA properties or segments that are important
for phase separation. The model trained in this manner has shown a
good ability to predict the performance of a single AA mutation that
alters phase separation. Our final model only predicts the effect of
single AAmutations at present. Going forward, as the dataset expands,
different approaches to processingmulti-sitemutation samples can be
explored and the development of a more comprehensive multi-site
mutation prediction approach can be employed to improve the
accuracy and adaptability of PSMutPred.

Through analysis of PSMutPred scores usingClinVar64 variants, we
discovered that proteins prone to PS have a higher proportion of
disease variants altering PS, compared to proteins less likely to
undergo this process. Among thesemutations, those likely to enhance
PS were proportionally more prevalent in neurodegenerative-disease-
related genes than those that weaken PS, which supports the current
discoveries25,86. Therefore, we can confidently assert that PSMutPred
scores serve as valuable encodings for assessing the potential impact
of missense mutations on PS, making them applicable to a broader
range of research.

We further combined PS-related features, including PSMutPred
scores, with evolutionary scores31 as well as ESM1b46 to predict
pathogenicity and assessed the performance using ClinVar labels.
PSMutPred targets the ‘IDR gap’ by evaluating variants in IDRs by their
potential effects on phase separation. Consequently, this approach
showed a more comprehensive interpretation of pathogenicity, espe-
cially in IDRs, our intuitive and straightforward collaborative approach
offers a more comprehensive interpretation of pathogenicity across
both domains and IDRs. It further demonstrates that the impact of
phase separation features effectively complements the current focus
on pathogenicity interpretations, which predominantly consider
ordered regions. We did not build a model from scratch, instead, we
highlighted the contribution of PS to improving the accuracy of
pathogenicity predictions, offering a fresh perspective in this field.
Looking ahead, leveraging diverse data such as weak labels from
population frequency and variants from HGMD91 and gnomAD92 may

further refine these predictions. Additionally, advanced machine
learningmethods, including deep learning, hold the potential to boost
accuracy.

However, except IDRs, some folded domains also play important
roles in driving phase separation, such as multivalent tandem struc-
tured domains6. Our feature encoding metrics currently favor muta-
tions that impact IDRs rather than those impacting folded domains.
Due to the limited training data available and to avoid overfitting, we
chose simpler feature encoding and traditional machine learning
models instead of developing a complex encoding method to com-
prehensively capture the effects of mutations in structured domain
areas. In subsequent evaluations of pathogenicity, we also assessed the
pathogenicity of mutations within domains. The results show that the
improvement in predictive accuracy for mutations in IDRs was sig-
nificantly greater than for those in domain areas. Includingmore high-
quality, experimentally validated data, especially regarding the effects
of missense mutations on structured domains, and integrating more
comprehensive features could refine the prediction of mutation
impact on PS.

Ultimately, our study not only presents methods to predict the
effects of missense mutations on PS but also contributes to the pre-
diction and improved understanding of VUSs occurring in IDRs,
enhancing the diagnostic accuracy for rare genetic disorders.

Methods
Data acquisition
Experimentally validated missense mutations that impact phase
separation (PS) and their corresponding experimental sequences were
curated from the PhaSepDB47 and LLPSDB48,49 databases up to 2022.11.
We focused on entries that documented individual proteins under-
goingphase separation, rather thanmulti-protein co-phase separation;
no additional filtering criteria were applied. In the corresponding lit-
erature of each entry, proteins involved in these entries were reported
to undergo phase separation, alongwith themutations that resulted in
changes to their phase separation propensities. We retained single
amino acid (AA)mutation samples aswell asmulti-AAmutations with a
number of mutation sites less than or equal to five. We got 214 single
AA mutation samples, 43 two-mutation-sites-samples, 26 three-muta-
tion-sites-samples, 18 four-mutation-sites-samples, and 6 five-
mutation-sites-samples (Supplementary Fig. 1b). We finally obtained
307 samples corresponding to 70 proteins including 79 ‘Strengthen’
samples that strengthened PS, and 228 ‘Weaken/Disable’ samples that
weakened or diminished PS (Supplementary Data 1).

As a limited number of experimentally validated mutations that
do not affect PS are available for reference, we created ‘Background’
samples by generating random single AA missense mutations with the
wild-type sequences for each of the 70 proteins. Mutations already
included in the ‘Impact’ samples were excluded. For each gene, we
generated 500 random mutations, leading to a total of 35,000
mutations.

It should be noted that this does not imply that background
mutations cannot alter PS under any conditions, instead, it allowed us
to learn missense mutations that impact PS.

Statistical analysis of phase separation-related missense
mutations
We used PfamScan84,85 to predict the structural domain regions,
abbreviated as ‘Domains’, within the experimental sequences. Any
segment of the sequence not identified as a domain by PfamScan was
annotated as an IDR. Multi-AA mutation samples were decomposed
into single AA mutations (484 mutations) for subsequent statistical
analysis. To analyze the distance of mutation points to domain
boundaries, mutations within proteins that have both IDRs and
domainswere chosen (341mutation sites), and 1000 randommutation
sites were selected for each comparison.

Article https://doi.org/10.1038/s41467-024-52580-3

Nature Communications |         (2024) 15:8279 11

www.nature.com/naturecommunications


We estimated the pi-contact frequency at the mutation site using
the pi-pi interaction prediction function in PScore35. These values
correspond to 8 sp2 groups. The categorization process divides pi-
contacts based on: (1) short-range (4 sequence separation) vs. long-
range (>4), (2) sidechain vs. backbone, and (3) absolute predicted
frequency vs. relative difference from sp2 groups with the same
identity respectively (see PScore35 for more details).

To analyze the changes in the AA properties pre and post-muta-
tion, we calculated the index differences for properties including
hydrophobicity93, polarity94, and mass95. The Kolmogorov–Smirnov
test was then applied to compare these index differences between the
‘Strengthen’ and ‘Weaken/Disable’ mutation groups.

Development of PSMutPred
Training and testing dataset. We divided themutation samples into a
cross-validation dataset (47 human proteins) and an independent test
set (23 non-human proteins). ‘Non-human’ in this context specifically
refers to experimental protein sequences originating from species
other than humans. Specifically, we classified the proteins based on
their HGNC gene names. The 47 human proteins were those found in
the Human Uniprot database, while the remaining 23 proteins, which
were not found in the Human Uniprot database, were labeled as non-
human proteins.

In the case of the ‘Impact Prediction’ (IP)models (‘IP task’ in short),
we grouped ‘Strengthen’ and ‘Weaken/Disable’ mutations into one
group and set their labels to 1, while the labels of ‘Background’ muta-
tions were set to 0. For the IP task, we got 246 ‘Impact’ mutation
samples, and 23,500 ‘Background’ samples in the cross-validation
dataset, 61 ‘Impact’ samples, and 11,500 ‘Background’ samples in the
independent test set. In the caseof the ‘Strengthen/WeakenPrediction’
(SP) models (‘SP task’ in short), labels of ‘Strengthen’ mutations were
set to 1, and labels of ‘Weaken/Disable’mutations were set to 0. For the
SP task, we got 174 ‘Weaken/Disable’ samples and 72 ‘Strengthen’
samples in the cross-validation dataset; 7 ‘Strengthen’ samples, and 54
‘Weaken/Disable’ samples in the independent test set.

Machine learning features. We used a set of simple features (39
dimensions) to encode each mutation entry. The two tasks share a
common set of feature encoding. For multi-point mutations, certain
featureswere adjusted toaccount for thepresenceofmultiplemutation
sites. The details of the features for each sample are described below:

IDR-related features of the mutation site(s) (5 dimensions): The
structural domains of the experimental sequences corresponding to
the sample were predicted using PfamScan84. Segments not predicted
as Domains were designated as IDRs. (1) One binary value indicating
whether the site is located in IDRs. Formulti-pointmutation, this value
is set to 0 if any of the mutation sites are located within Domains; (2)
One value quantifies the residue distance of the mutation site to its
nearest domain boundary. Formulti-pointmutation, this value reflects
the average distance of all mutation sites; (3) One value representing
the likelihood of the mutation site being within IDRs predicted by
IUPred359. For multi-point mutations, we use the average of the pre-
dicted values for all mutation sites; (4) One value representing the
average of the full sequence IUPred359 scores; and (5) One binary value
indicating whether the protein sequence has IDRs or not.

The predicted pi-contact frequency at the mutation site (8
dimensions):Wederived 8predicted values for pi-pi interactions at the
mutation site from the wild-type sequence using the pi-pi interaction
prediction function in PScore35 (see PScore35 for more details). In the
case of multi-point mutation, we computed the 8 values as the mean
scores across all mutation positions.

Physicochemical feature encoding for the mutation site (26
dimensions): We targeted the changes in AA characteristics at the
mutation site whenever possible by employing five physicochemical
indices that were previously used for protein feature encoding96–99. We

selected hydrophobicity93, polarity100, volumes of side chains (VSC) of
amino acids101, solvent-accessible surface area (SASA)102, and net
charge index (NCI) of side chains of amino acids96,103. For each index,
we computed four feature values: (1) Index value for the wild-type AA
at themutation site. Formulti-pointmutation,we used themean value;
(2) Numerical difference in index value between mutant and wild-type
AA, we summed the difference values for multi-point mutations; (3)
Average index values for all AAs in the wild-type sequence’ IDRs
(defined as areas outside of Domains predicted by PfamScan84,85), and
(4) the difference between the index value of mutant AA and the
average index value (from point 3), for multi-point mutation, we
accumulated the difference values for each mutant AA. Additionally,
six binary values (6 dimensions) were used to capture the presence of
three properties (positively charged, negatively charged, and hybri-
dized) in both the mutant AA and wild-type AA. For multi-point
mutations, an element is set to 1 if at least one AA exhibits the
respective property.

Machine learning algorithm and model performance evaluation.
For both the IP task and the SP task, to evaluate the generalizability of
ourmodels on variants from unseen proteins, we implemented a blind
test called ‘leave-one-source-out cross-validation’ (LOSO CV). In this
approach, for each validation iteration, we held out variants from a
single protein from the total set of proteins (variants from cross-
validation dataset; 47 proteins). We iteratively held out all variants
(both positive and negative samples) associated with a single protein
as the validation dataset from the total set of cross-validation proteins,
while variants from the other proteins in the dataset were used for
model training, and the trainedmodel predicted the values for the left-
out samples. After cycling through all proteins in the dataset, the
prediction results of the validation dataset corresponding to each
protein were combined, andmetrics including AUROC and AUPRwere
applied to assess predictive performance.

Especially for the IP task, a dataset balancing process was applied
before the LOSO CV was initiated. First, before initiating the LOSO CV
process (i.e., before traversing samples corresponding to different
proteins), we randomly selected a subset of negative samples. This
subset, drawn randomly from the total pool of 35,000mutations (500
for each protein), was twice the size of the positive sample set. These
selected negative samples were then combined with the positive
samples to form a sub-dataset. Next, the LOSO CV procedure was
initiated on this sub-dataset, where we sequentially traverse different
proteins, using the mutation samples corresponding to a single pro-
tein as the test set and the remaining for training themodel. Thiswhole
process is repeated 50 times for robustness.

We added representative PS predictors including DeePhase39,
PSAP61, PScore35, catGRANULE38, aswell as FuzDrop62 for comparison in
the IP task. For FuzDrop62, we applied the residue-level PS scores for
calculation. Expecting greater score changes for ‘Impact’ mutations
than ‘Background’mutations, we calculated the absolute difference in
scores before and after each mutation to represent the predicted
values.

We applied the Python Scikit learn (sklearn) package to develop
machine learning models. Data was normalized by the MinMaxScaler
from sklearn before fitting the models. We trained models including a
RandomForestClassifier (with parameters: class_weight = ‘balanced’,
and max_depth = 10), an SVR (with default parameters), and a Logis-
ticRregression (with parameters: class_weight = ‘balanced’, kernel =
‘liblinear’, and penalty = ‘l1’) for both the IP and the SP task. We cal-
culated the AUROC with the sklearn roc_auc_score, and roc_curve
metric to evaluate the performance. Additionally, the AUPR were cal-
culated with sklearn precision_recall_curve. The discriminative power
of models was evaluated using the Mann–Whitney test.

The cross-validation dataset and independent test set were com-
bined to train the final PSMutPredmodels for both tasks. According to
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themodels’ performance, we produced IP-RF, IP-SVR, and IP-LR scores
and SP-RF, SP-LR scores. To prevent the overuseof negative samples in
the IP task, for each model, 10 different subsets of samples were ran-
domly sampled from the ‘Background’mutations with twice the size of
the collected ‘Impact’mutations to train 10 sub-models. The averaged
prediction scores of the 10 trainedmodels aswell as the ranks for these
scores in all ClinVar63,64 variantswere used as thefinal prediction scores
for each IP-RF, IP-SVR, and IP-LR model. These models were used to
predict PSMutPred scores for each missense variant in ClinVar.

Experimental materials
Plasmid preparation and cell culture. The full-length coding
sequences of mouse Eps8 (NM_007945.4) and its mutations were PCR
amplified and cloned into the pEGFP-C3 vector. The primers were
purchased from biosune, Shanghai (sequences of primers were shown
in Supplementary Data 5). These recombinant plasmids were then
transiently transfected into HEK293 cells (HEK293T (source: ATCC,
CRL-3216; RRID: CVCL_0063)) using the Lipofectamine 3000 Kit
(Invitrogen), with 1–2μg of plasmid used per well in a 12-well plate
(Costar, Corning) for each transfection. Before fixation, HEK293 cells
were cultured for 16-24 h in DMEM medium (Gibco) supplemented
with 10% FBS (Gibco) and 1% Penicillin-Streptomycin Solution (Gibco),
under 5%CO2 conditions. Cells werewashed 3 timeswith PBS for 3min
each, then fixed in 4% PFA for 20min at room temperature. Detailed
validation information and references for these products can be found
on the respective manufacturers’ websites.

Imageanalysis andquantification. HEK293 cellswere visualizedusing
an IX73 Inverted Fluorescence Microscope (Olympus) equipped with a
60× 1.42 NA Plan Apochromat oil objective. Images were captured with
an Iris 9 sCMOS camera (Teledyne Photometrics) and the setup was
controlledby the cellSens imaging system (Olympus). After subtracting
thebackground and setting an identical fluorescence threshold, ImageJ
software was applied to quantify the number of puncta per cell, with
modules including ‘Analysis Particles’, ‘Find Maxima’, and ‘Set Mea-
surement’. The statistical analysis applied a two-tailed Student’s t-test
for experimental comparisons of puncta numbers using GraphPad
Prism 9. Each assay was performed at least three times.

Protein structure analysis of EPS8. We performed the sequence
alignment of EPS8with the ClustalX tool. The structures of human and
mouse EPS8 were predicted using AlphaFold23,104. The interaction
among residues was analyzed using the crystal structure of the SH3
domain of EPS8 (PDB: 7TZK). The protein structure analysis was per-
formed using PyMol version 2.5.0.

Between-group analysis
Missense mutation data was collected from ClinVar up to 2022.12,
which contains 522,016 variants corresponding to 8611 human pro-
teins. Of these, 39,166 are pathogenic or likely pathogenic, 48,576 are
benign or likely benign and the remainder 434,274 are ‘Uncertain
Significance’.

After excluding the training data points for PSMutPred, we divi-
ded missense variants corresponding to 8611 proteins into a PS-prone
group and a low-PS propensity group in two ways: 1. By grouping
variants from experiment-verified PS protein to the PS-prone group
and the rest to the low-PS-prone group. Specifically, we referenced 155
human PS proteins (59 PS-Self proteins, 96 PS-Part proteins) from
PhaSepDB43,47, among which 83 were found in ClinVar63. This resulted
in 1451 variants in the PS-prone group, leaving 86,291 variants for the
low-PS-prone group. 2. Variants from predicted PS proteins, based on
either a PScore35 higher than 4 or a PhaSePred43 rank (PdPS-10fea_rnk)
higher than 0.9, were allocated to the PS-prone group. This resulted in
30,889 variants from 1276 proteins in the PS-prone group, leaving
56,853 variants for the low-PS-prone group.

We first performed analysis excluding variants with ‘Uncertain
significance’. For each group, the Pearson correlation score was com-
puted using the Python Scipy package by comparing the PSMutPred-IP
ranks of its variants against their respective ClinVar pathogenicity
labels (pathogenic or likely pathogenic coded as 1 and benign or likely
benign coded as 0). The ranks of the absolute score difference of
DeePhase39, PSAP61, PScore35, catGRANULE38, aswell as FuzDrop62, were
also used to compute the Pearson correlation.

The significance of each computed Pearson value is annotated
with corresponding P-values, indicating the robustness of the corre-
lation within each group.We compared the coefficient values between
the PS-prone group and the low-PS-prone group. We also computed
and compared the coefficient values between IDR variants (n = 15,427)
andDomain variants (n = 15,462) within the PS-prone group defined by
predictions (a variantwas classifiedbyDomainvariants if identified in a
structured domain by PfamScan84,85 and as an IDR variant if it is
unmapped).

In addition, we divided the PS-prone group into a neurodegen-
erative disease (ND) group and a non-ND group. To do that, we col-
lected disease genes related to common neurodegenerative diseases
including Alzheimer’s disease, Amyotrophic lateral sclerosis, Fronto-
temporal dementia, Huntington’s disease, Multiple Sclerosis, and
Parkinson’s disease from DisGeNet105. After removing duplicates, we
screened genes with a gene-disease association score (GDA score)
higher than 0.5, resulting in a subset of 91 genes (Supplementary
Data 2), 19 of which were both matched in ClinVar genes and the PS-
prone group (363 variants, 252 being predicted ‘Impact’ mutation by
PSMutPred-IP, having a combined IP-LR, IP-SVR, and IP-RF rank score
sum above 1.5). We compared the coefficient values of PSMutPred-SP
between variants corresponding to the ND genes and those were not
within the predicted PS-prone group. The ranks of the score difference
of various sequence-based PSmethods, were also used to compute the
Pearson correlation.

We then performed a between-group analysis to test whether
proteins with a higher propensity to undergo PS have a higher pro-
portion of variants predicted to impact PS. For each PSMutPred-IP
model (IP-RF, IP-LR, IP-SVR), we calculated the proportion of IDR VUSs
predicted as ‘Impact’ (PSMutPred-IP rank score > 0.8) for each protein.
The proportion values of the PS-prone group and the low-PS-prone
group were compared. We compared the PS-prone group (1276 pro-
teins)with the low-PS-pronegroup (7335proteins) definedby algorithm
prediction and compared the PS-prone group (83 proteins) with the
low-PS-prone group (8528 proteins) defined by experimental-verified
PS proteins. Sequence-based PS methods were also added to the com-
parison, and for each method, a variant is predicted to be an ‘Impact’
variant if its corresponding absolute score difference rank is above 0.8.

Analysis of phase separation feature’s performance in refining
pathogenicity prediction
Dataset acquisition. We collected ‘EVE_scores_ASM’ scores from EVE31,
which include scoring for all possiblemissense variants corresponding
to 3219 disease-associated genes. Among them, 47,870 ClinVar63 var-
iants (by annotations up to 2021.4.) were used to evaluate the EVE
model, 30,758 pathogenic or likely pathogenic were marked as posi-
tive samples and 17,112 ‘Benign’or ‘Likely benign’ variantsweremarked
as negative samples. We applied these samples for model cross-
validation (cross-validation set). To construct an independent test
dataset, we screened variants (ClinVar63 annotations up to 2022.12)
that were not used to evaluate the EVEmodel and removed variants in
the same AA position seen in the cross-validation set to avoid data
leakage. This resulted in 15,394 variants including 8,709 pathogenic or
likely pathogenic variants and 6685 benign or likely benign variants.

We collected ESM1b46 scores, which encompass the scoring of all
possible missense variants for 42,286 proteins and their isoforms. In
total, scores for 140,321 variants were mapped to ClinVar63. These
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variants were then used as a cross-validation dataset to evaluate the
combination of ESM1b and PS features.

Pathogenicity prediction combining PS-related features. To test
whether the integration of PS-related properties can improve the accu-
racyof pathogenicity prediction,webuilt amodel basedon the following
features: PSMutPred-IP model scores predicting the propensity of the
missensemutation to impact PS (3 dimensions, predicted values of IP-LR,
IP-RF, and IP-SVR); PSMutPred-SP model scores predicting the direction
of the shift in the normal PS threshold induced by the mutation (2
dimensions, SP-LR, SP-RF); PScore35 representing the PS tendency of the
wild-type protein (1 dimension); IUPred59 score of the mutation site
representing the probability of the site to locate in IDRs (1 dimension);
binary encoding whether the mutation is in a Domain predicted by
PfamScan84,85 (1 dimension); the residue distance of the mutation site to
the nearest IDR (1 dimension); one-hot encoding for wild-type and
mutant AA (40 dimensions); EVE score or ESM1b score of the variant (1
dimension).We trainedmodels including aRandomForestClassifier (with
parameters: n_estimators = 200, class_weight = ‘balanced’, and max_-
depth = 15), an SVR (with default parameters), and a LogisticRregression
(with parameters: class_weight = ‘balanced’, kernel = ‘liblinear’, and pen-
alty = ‘l1’). The dataset was standardized using the MinMaxScaler from
Scikit Learn before fitting each model. Based on the performance, we
selected the RandomForestClassifier as the optimal model.

Model performance benchmarks. To evaluate the models on the
cross-validation set, we applied a blocked n-fold cross-validation
where variants from the same gene were strictly assigned to the same
group. To evaluate themodels on the independent test set, themodels
were first trained on the cross-validation set and then evaluated using
the independent test set.

Pathogenicity prediction. The data points were combined to train a
final pathogenicity predictor (140,321 variants; PS feat. + ESM1b pre-
dictor). Moreover, to transform the continuous pathogenicity scores
into ‘Pathogenic’, ‘Likely benign’, and ‘Uncertain’ categories, we
determined 0.5 as the initial threshold to distinguish between ‘Likely
pathogenic’ and ‘Likely benign’ based on the test set’s F1 score. To
define the uncertainty of prediction, we considered applying an offset
around this threshold. For instance,with a0.1 offset, predictions below
0.4 are categorized as ‘Likely benign’, while those above 0.6 are clas-
sified as ‘Likely pathogenic’. We observed that starting from the initial
0.5 threshold, the AUROC and Accuracy improved as the offset
increased (Supplementary Fig. 4f).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Variants used in this study are collected from PhaSepDB (http://db.
phasep.pro), LLPSDB v2.0 (http://bio-comp.org.cn/llpsdbv2/home.
html), and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). Collected
training and evaluation data for machine learningmodels in this study
are available as Supplementary Data Files and at https://github.com/
Morvan98/PSMutPred. Pathogenicity prediction results for ClinVar
VUSs are available as Supplementary Data File and at https://github.
com/Morvan98/PSMutPred/tree/main/data. All data supporting the
findings of this study are available within the article and supplemen-
tary information files. Source data are provided with this paper.

Code availability
PSMutPred is freely available at https://github.com/Morvan98/
PSMutPred as well as https://doi.org/10.24433/CO.5744011.v1.
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